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The characterization of nanohertz-frequency gravitational waves (GWs) with pulsar-timing arrays
requires a continual expansion of datasets and monitored pulsars. Whereas detection of the stochastic GW
background is predicated on measuring a distinctive pattern of interpulsar correlations, characterizing the
background’s spectrum is driven by information encoded in the power spectra of the individual pulsars’
time series. We propose a new technique for rapid Bayesian characterization of the stochastic GW
background that is fully parallelized over pulsar datasets. This factorized likelihood technique empowers a
modular approach to parameter estimation of the GW background, multistage model selection of a
spectrally-common stochastic process and quadrupolar interpulsar correlations, and statistical cross-
validation of measured signals between independent pulsar subarrays. We demonstrate the equivalence of
this technique’s efficacy with the full pulsar-timing array likelihood, yet at a fraction of the required time.
Our technique is fast, easily implemented, and trivially allows for new data and pulsars to be combined with
legacy datasets without reanalysis of the latter.
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I. INTRODUCTION

The precision timing of millisecond radio pulsars can be
exploited over long observational campaigns to search for
ultra low-frequency gravitational waves (GWs). As a GW
deforms the spacetime between the Earth and a pulsar, it
causes the times of arrival (TOAs) of radio pulses to deviate
from flat spacetime expectations. These arrival-time devia-
tions depend on the relative position of the GW source to
the Earth-pulsar line-of-sight, and the GW metric pertur-
bation at the time the wave front first passed the pulsar as
well as when it subsequently passes the Earth [1–3]. The
result is that after detailed timing ephemerides are con-
structed for each pulsar—depending on its rotational
period, period spindown, etc.,—there will be an additional
unmodeled GW-induced influence.
The GW frequencies to which pulsar-timing campaigns

are sensitive depend on how the time series of pulses is
sampled; broadly speaking, the lower frequency is dictated
by the inverse observation time (now greater than a decade,
such that flow ≲ 3 nHz), while the accessible upper
frequencies are limited by the observational cadence and
timing precision to fhigh ∼ 0.1 μHz. The class of objects
that are expected to dominate the GWemission in this band

of frequencies are binary systems of supermassive black
holes, with masses ≳108–1010 M⊙ [4–9]. These should be
formed as a consequence of the hierarchical growth of
galaxies over cosmic time, where resident supermassive
black holes pair up within the common galactic merger
remnant after a chain of dynamical processes. The GW
signals from these supermassive black hole binaries
(SMBHBs) will not all be individually resolvable
with pulsar timing, instead stacking incoherently within
frequency-resolution bins to form a stochastic GW back-
ground (GWB) [10–12].
In an individual pulsar’s data, this GWBwill manifest as a

low-frequency stochastic (red) process, which could appear
spectrally similar to intrinsic red noise from e.g., pulsar
rotational instabilities, or pulse propagation through time-
dependent ionized interstellar medium paths [13–16].
Therefore,GWsearches throughpulsar timing are performed
by correlating data across a pulsar-timing array (PTA) [17],
where the sought after evidence consists of a distinctive
GWB-induced interpulsar correlation signature known as the
Hellings and Downs curve [18]. There are several collabo-
rations that have now been contributing to this goal for
over a decade, including the North American Nanohertz
Observatory for Gravitational waves (NANOGrav) [19], the
Parkes Pulsar Timing Array (PPTA) [20,21], and the
European Pulsar Timing Array (EPTA) [22]. Together with*stephen.r.taylor@vanderbilt.edu
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the Indian Pulsar Timing Array (InPTA) [23], these collab-
orations also constitute the International Pulsar TimingArray
(IPTA) [24–26]. The Chinese Pulsar Timing Array [27], and
telescope-centered efforts such as CHIME/Pulsar [28] and
MeerTime [29], will be important future contributors.
These PTA collaborations have recently delivered results

that, for the first time, go beyond placing upper limits on
the amplitude of a putative GWB. The NANOGrav Col-
laboration has announced the discovery a low-frequency
stochastic process in its 12.5 year dataset [30], whose
spectrum is common across many of the pulsars in its array.
For a fiducial model of the GWB generated by a population
of SMBHBs, the median characteristic strain amplitude at a
frequency of 1=yr is 1.92 × 10−15. Likewise, the PPTA [31]
and EPTA [32] have found similar processes with median
strain amplitude 2.2 × 10−15 and 2.95 × 10−15, respectively.
All of these results are statistically consistent with one
another, and broadly in alignment with theoretical expect-
ations of the GWB spectrum from SMBHBs [33].
Furthermore, the IPTA has also recently announced the
discovery of a similar stochastic process with amplitude
2.8 × 10−15 [26], where this result derives from the synthesis
of older NANOGrav, PPTA, and EPTA datasets. However,
none of these results exhibit significant interpulsar correla-
tions, and as such these processes could still be noise or other
systematic processes of non-GWorigin. Nevertheless, it has
been argued that the first milestone of GWB detection is the
initial emergence of a common-spectrum process in PTA
datasets, followed later by significant interpulsar correlations
[34,35]. The latter measurement is the definitive evidence for
a GWB, and requires that data from many pulsars be cross-
correlated to infer the Hellings and Downs signature.
Modern PTA data-analysis frameworks model all signal

and noise processes in the time domain. This is primarily
for practical reasons. The signal of interest is a low-
frequency stochastic process whose power-spectral density
(PSD) is steeper than the PSD of a rectangular window
function for existing pulsar-timing baselines; as such, a
direct Fourier transform of the data without careful win-
dowing would suffer from spectral leakage effects.
Likewise, the observations are unevenly sampled, again
rendering traditional Fourier transform techniques invalid
(although Lomb-Scargle periodogram techniques could be
used). The drawback of time-domain modeling is that all
observations across all pulsars must be cross-correlated
within a Gaussian likelihood function. Evaluating this
likelihood requires the inversion of a dense covariance
matrix, which scales with the number of timing observa-
tions as ∝ OðN3

obsÞ. Furthermore, with Bayesian techniques
now the standard statistical approach, this likelihood
function must be sampled at least ≳106 times across large
parameter spaces in a global search over signal and noise
parameters. As such, given that the total number of
observations in recent NANOGrav data releases exceeds
105 [36], even direct time-domain modeling is not tractable.

The remedy to this has been rank-reduced approaches
[37–39], where random Gaussian processes are modeled in
the time domain with basis design matrices that are much
lower in dimensionality than the number of observations.
The bottleneck of the likelihood remains a Cholesky
covariance matrix inversion, but now of order the number
of basis coefficients rather than the number of observations.
The number of basis coefficients includes the number of
timing ephemeris parameters, and the number of frequen-
cies on which the GWB is modeled, which is small since
we are targeting a low-frequency signal. Thus, rank-
reduced modeling approaches enable PTA GWB searches
to be carried out within reasonable periods of time
(∼days to weeks). However, even this approach is becom-
ing costly, and will struggle to cope in the future with the
expansion of PTAs to include new pulsars and data e.g.,
from daily CHIME observations. Hence, in this paper we
propose a new analysis scheme that parallelizes PTA data
analysis over pulsars, and compresses pulsar data into
sufficient statistics that can be arbitrarily and quickly
combined in postprocessing. The resulting approach is fast
through the trivial parallelization of the analysis, and with a
modularity that can cope with the computational demands
of the ever-growing PTA data volume in the future.
This paper is laid out as follows. We outline our approach

for parallelization ofBayesian PTAdata analysis in Sec. II. In
Sec. III we carry out a sequence of tests of this new approach,
including assessing its performance for parameter estimation
of theGWB’s amplitude, and recovering the significance of a
common-spectrum process and GWB-induced interpulsar
correlations. We conclude in Sec. IV, where we also remark
on future applications of this method and further general-
izations that we are exploring.

II. PARALLELIZING THE PTA LIKELIHOOD

GW searches with PTAs begin with data in the form of
timing residuals, i.e., a best-fit deterministic timing ephem-
eris has already been constructed in terms of the pulsar
period, spindown, binary parameters, etc., and the ephem-
eris-modeled TOAs then subtracted from the observed
TOAs. These residuals encapsulate noise and any phenom-
ena that were unmodeled at the stage of the original timing
epehemeris construction. The latter group includes the
influence of GW signals on the TOAs. A GWB will
imprint spatiotemporal correlations in PTA data; these
include long-timescale correlations in the residual time
series as a result of the expected low-frequency character-
istic strain spectrum, as well as a distinctive pattern of
interpulsar correlations known as the Hellings and Downs
curve [18]. This curve is the relevant correlation pattern
imparted by an isotropic, stationary, and unpolarized
Gaussian GWB on PTA data, and depends only on the
angular separation between pulsars.
As a result, the entire PTA dataset can be modeled

with a multivariate Gaussian likelihood that has a dense
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time-domain covariance matrix. The elements of this
matrix encode the temporal covariance expected between
different timing residuals at different times, modulated by
the corresponding Hellings and Downs factor for the
relevant angular separation between the pulsars. We write
the PTA likelihood as

pðδtjηÞ ¼ exp ð− 1
2
δtTC−1δtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

detð2πCÞp ; ð1Þ

where δt is the vector of concatenated timing residuals
across all pulsars in the PTA, and C≡ CðηÞ is the data
covariance matrix with parameters η. This covariance
matrix can be described by

hδtaiδtTbji ¼ CðaiÞðbjÞ ¼ Na;ðijÞδab þ Cred
a;ðijÞδab þ ΓabCGWB

ðijÞ ;

ð2Þ

where δð··Þ is the Kronecker delta function, ða; bÞ index
pulsars, ði; jÞ index timing residuals, N is a white noise
covariance matrix in a given pulsar, Cred is the intrinsic red-
noise covariance matrix in a given pulsar, CGWB is the
GWB covariance matrix, and Γab is the Hellings and
Downs cross-correlation factor between the relevant pair
of pulsars, given by

Γab ¼
3

2
xab ln xab −

xab
4

þ 1

2
þ δab

2
; ð3Þ

and xab ¼ ð1 − cos θabÞ=2 for pulsars with angular sepa-
ration θab. A schematic for the structure of this PTA
covariance matrix is shown in Fig. 1.

Recent work [34] has shown that the curation of existing
PTA datasets has led to several high-quality pulsars being
observed over long baselines, with the potential result that
key pulsars now lie in the intermediate signal regime of
GWB detection; in Siemens et al. [40] this is defined as the
GWB signal exceeding the level of intrinsic pulsar and
instrumental noise in lower frequencies in the power
spectrum of pulsar timing residuals. An additional effect
is that the expected GWB-induced cross-correlations are no
greater than a half of the autocorrelation values (i.e., the
Hellings and Downs curve has a maximum of 0.5). As
such, the significance of a common-spectrum process (i.e.,
information encoded in the autocorrelations) should cur-
rently be much greater than the significance of GWB-
induced cross-correlations. This has been shown in simple
analyses [34], as well as more realistic simulations that
mirror the existing cadence and sensitivity of real datasets
[35]. Thus, the working explanation for the emergence of
strong common-spectrum processes in the datasets of all
three long-baseline PTA collaborations [30–32] is that this
is an early indicator of an emerging GWB signal at low
frequencies, to be followed several years later by the
definitive GWB evidence in the form of significant
cross-correlation measurement [35].
With the information content of GWB autocorrelations

currently swamping that of cross-correlations, the PTA
covariance matrix can be approximated with a block-
diagonal structure. While we can not use this autocorre-
lation information directly to claim evidence of a GWB, we
can use it for accurate, fast, and parallelizable spectral
characterization. To see this, we now drop the cross-
correlation blocks of the PTA covariance matrix, such that

pðδtjηÞ ≈ exp ð− 1
2

P
aδt

T
aC−1

aaδtaÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detð2πCÞp ;

¼
Y
a

exp ð− 1
2
δtTaC−1

aaδtaÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detð2πCaaÞ

p ;

¼
Y
a

pðδtajηÞ: ð4Þ

We have now factorized the PTA likelihood into a product
of per-pulsar likelihoods. This then allows independent,
parallel analyses to be performed in each pulsar dataset,
with these intermediate results then stitched together in
postprocessing to yield the full PTA result.
In this paper we consider a GWBwith the fiducial power-

law characteristic strain spectrum from a population of GW-
emitting SMBHBs, hcðfÞ ¼ AGWBðf=1 yr−1Þ−2=3 [e.g.,
[41] ], which yields a timing-residual power spectral density
(PSD), SGWBðfÞ ¼ ðA2

GWB=12π
2Þðf=1 yr−1Þ−γ yr3, where

γ ¼ 13=3. As such, in each independent pulsar dataset we
sample intrinsic pulsar and instrumental noise, in addition to
the amplitude,ACP, of a low-frequency common process that
has a fixed PSD spectral index of γ ¼ 13=3. This latter

FIG. 1. A schematic representation of the PTA data covariance
matrix, where the pulsar autocorrelations are influenced by
intrinsic white noise (typically instrumental), intrinsic red noise
(typically low-frequency pulsar rotational instabilities), and a
GWB signal. By contrast, the cross-correlations are influenced
only by the GWB, and encode the sufficient evidence for a GW
detection claim. On the other hand, the pulsar autocorrelations
will dominate the spectral characterization of the GWB, since the
cross-correlations are weaker.
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common process is a proxy for the GWB in an individual
pulsar dataset. Since ACP is the only common search
parameter across the array, we can use its marginal posterior
distribution from each pulsar as a sufficient statistic to
recover themarginal posterior ofACP for the entire array, i.e.,

pðACPjδtÞ ∝ pðACPÞ
Y
a

pðACPjδtaÞ
p̄ðACPÞ

; ð5Þ

where p̄ðACPÞ is the prior on the common-process amplitude
applied during the analysis of each pulsar dataset, and
pðACPÞ is the prior on the final, desired PTA result. The
practical details of how this factorized likelihood (FL)
scheme is implemented are given in the next section, along
with the means by which FL results can also accelerate the
search for cross-correlation significance.

III. RESULTS

We test the efficacy of our new FL approach against the
full PTA likelihood function using a suite of realistic PTA
simulated datasets. The format of these simulations closely
follow Pol et al. [35]. The PTA configuration corresponds
to the 45 pulsars from the NANOGrav 12.5 year dataset
[36] that were searched for the influence of an isotropic
stochastic GWB [30]. Observational timestamps, TOA
uncertainties, noise properties, and other metadata were
derived from the real pulsar data, and then used to create
synthetic noise-only data realizations. Rather than restrict
to a maximum of 12.5 yr of data, we extend to a near-future
scenario corresponding to 15 yr. This is achieved by
drawing observational cadences and uncertainties from
distributions of the final year of real data, then adding
new observations to each pulsar until the maximum base-
line of 15 yr is reached. No new pulsars are added to the
array when expanding from 12.5 to 15 yr [42].
We then inject 100 different realizations of a GWB signal

into these noise-only datasets, generating a set of 100 PTA
datasets, each of which has 45 pulsars. One of our key aims
is to verify that the FL approach has equivalent Bayesian
statistical coverage to the full PTA likelihood, i.e., the
injected parameter values fall within the p% posterior
credible region in p% of realizations. In Bayesian infer-
ence, this is only guaranteed when the injected parameter
values are drawn from within the prior distribution that is
subsequently used in the analysis. Thus, the spectral
characteristics of the GWB used to generate each of the
100 injections are drawn from log10 AGWB ∈ U½−18;−14�,
where the spectral index is fixed at γGWB ¼ 13=3.
The basic analyses to be performed for all of the

following tests are Bayesian per-pulsar noise characteriza-
tion studies. Since we are ignoring interpulsar correlations,
these analyses are performed entirely in parallel. The
inference model of each corresponds to white noise
fixed at the injected level, with intrinsic red noise charac-
terized by a power-law PSD with search parameters

log10 Ared ∈ U½−20;−11� and γred ∈ U½0; 7�. We also
model an additional power-law PSD process with fixed
spectral index γCP ¼ 13=3, and log10 ACP ∈ U½−18;−14�;
this process acts as a modeling proxy for the presence of the
GWB in each pulsar. The result of analyzing each PTA
dataset is a sequence of 45 × 3-dimensional Markov Chain
Monte Carlo (MCMC) chains, each iterated for at least
1 × 106 steps, and subsequently thinned by a factor of 10
(i.e., only every 10th sample was used) to deliver 1 × 105

usable samples. Each chain is postprocessed into a histo-
gram representation of the 1-dimensional marginalized
posterior distribution of log10 ACP in the respective pulsars.
While there are various rules-of-thumb to deduce the
optimal bin-width in such a histogram representation
(e.g., Scott’s rule [43]), these usually assume that the
underlying density is Gaussian. A more agnostic scheme
would implement the Sheather-Jones algorithm [44], which
attempts to minimize the asymptotic mean integrated
squared error between the estimator and the true underlying
density. In practice, we used Nbin ¼ 100 for most of our
results, however this choice is varied in Sec. III C. The end
result of analyzing all pulsars within a given PTA dataset is
that the data has been compressed into histogram estimators
of the marginal posterior of log10 ACP.

A. Parameter estimation

With our entire PTA datasets distilled down to a set of
histogram probability density estimators of the common-
spectrum process’ amplitude, parameter estimation is
remarkably simple. Given that the prior on this amplitude
was uniform in log10 ACP, all histogram estimators can be
multiplied together and renormalized to deduce the equiv-
alent full PTA posterior of log10 ACP. One pragmatic
refinement is that occasionally some pulsars will lack
MCMC-sample coverage over the same values as others,
leading to multiplication of finite values by zeros in some
bins. This can result in sharp posterior declines or poor
posterior recovery at higher, data-informed values of the
amplitude. To remedy this, we add a small value of ϵ ¼
10−20 to all bins in all pulsar histograms.
In the left panel of Fig. 2, we use three simulations

(corresponding to strong, moderate, and weak signal
injections) to contrast the performance of our FL estimation
of log10 ACP with the full PTA likelihood model. Not only is
the FL estimate equivalent to what is deduced through
sampling with the full PTA likelihood, it is also much less
inhibited by sampling limitations in low-density regions. It
is able to recover the posterior density many orders of
magnitude lower than what direct MCMC sampling with
the PTA likelihood can achieve (compare the FL estimation
as solid lines in Fig. 2 to direct MCMC sampling as shaded
histograms), which results from sampling the tails of many
individual pulsar posteriors that have less contrast than the
full PTA posterior. We will see the enormous benefit of this
for model selection in the next subsection. The right panel
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of Fig. 2 illustrates the FL recovery of the moderate GWB
signal injection in the PTA, alongside the recoveries of the
amplitude of the proxy process in each individual pulsar.
While the case studies shown in Fig. 2 are very

promising, we now undertake a more rigorous assessment
of the parameter estimation efficacy of the FL approach.
The simulated dataset generation that was discussed earlier
was specifically constructed to enable tests of Bayesian
coverage through p − p plots. By drawing injected signal
parameters from within the analysis prior, the injected
values should lie within the p% credible region in p% of
simulations. Rather than judge the overall efficacy of the
standard PTA data analysis pipeline, the scope of our
analysis is to compare the relative performance of the FL
approach to that achieved with full PTA likelihood. The
results of this comparison are shown in Fig. 3, where the
difference in the Bayesian coverage of each approach is
shown as a function of credible interval. If the FL approach
perfectly matched what an analysis with the full PTA
likelihood could achieve then the difference should be zero
at all credible intervals. While there is some mild scatter
around zero, the resulting match is excellent, indicating that
the FL approach effectively reproduces the efficacy of the
standard PTA analysis pipeline.

B. Model selection

The parallelized parameter estimation discussed in the
previous section facilitates a two-stage model selection
process for PTA GWB searches, namely: (1) emergence
of a spectrally-common stochastic process across pulsars in
the array, and (2) detectionofHellings andDowns interpulsar
correlations, regarded as the definitive detection signature.

1. Detecting a common process

The relevant detection statistic for a spectrally-common
stochastic process is the Bayes factor between models that

include this process versus one in which it is absent (i.e., per-
pulsar noise alone). In our case, where the GWB spectral
shape is fixed to γCP ¼ 13=3, the amplitude parameter acts as
a signal “switch” that encompasses the noise-only model at
the lower prior boundary (log10 ACP ¼ −18), and the
signalþ noise model for all other values. As such, compu-
tation of this Bayes factor can be addressed with the Savage-
Dickey approximation, which depends only on the prior to
posterior density ratio at the amplitude forwhich the signal is
effectively zero. Hence,

BCP ¼
pðlog10 ACP ¼ −18Þ

pðlog10 ACP ¼ −18jfdigNp
Þ : ð6Þ

We evaluate this for our suite of simulations, using both
the full PTA model analysis and the parallelized FL
analysis. In the full PTA model analysis, the posterior

FIG. 2. Left: Example of common process amplitude posterior recovery for a weak, moderate, and strong signal injection. Faded regions
are fromMCMC sampling of the full PTA likelihood. Solid lines are parallelized reconstructions using the factorized likelihood technique.
Dashed vertical lines are the injected values. Right: The FL amplitude posterior recovery of themoderate signal from the left panel is shown
again here, along with the common process amplitude posteriors from the individual pulsar analyses (faded gray histograms). These
individual pulsar posteriors are the compressed representation of the pulsar data that are used for the final PTA recovery (green).

FIG. 3. Bayesian p − p comparison of amplitude recovery
between the FL approach and the standard full PTA likelihood.
The y-axis shows the difference that these two approaches give
for the fraction of simulations in which the injected value lies
within the p% credible region on the x-axis. The horizontal line is
for equivalent efficacy of the approaches.
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density is practically evaluated using pðlog10 ACP ¼
−18jfdigNp

Þ ¼ fb=Δb, where fb is the fraction of total
MCMC samples contained within −18 ≤ log10 ACP ≤
−18þ Δb, and the choice of Δb is varied over 100 values
between 0.01 and 0.1, with the results averaged. The bin
width Δb is chosen to be small enough so as not to
encounter any significant changes in the posterior density
away from the value at the lower prior boundary. In the FL
analysis, the normalized histogram estimator directly pro-
vides the posterior density. In both approaches, we estimate
the uncertainty on the Bayes factors using bootstrap
resampling. In the full PTA model analysis the single
MCMC chain is resampled with replacement, while in the
FL analysis each pulsar’s MCMC chain is resampled with
replacement before forming new histogram estimators that
are multiplied across. This procedure is repeated 100 times
for each approach, generating distributions of Bayes factors
that are summarized as median values with 68% uncertainty
regions. The results are shown in Fig. 4, where the left
panel exhibits the growth of this common-process Bayes
factor with GWB amplitude. The results deduced under
each approach match well, as is shown more directly in the
right panel where the amplitude dimension is collapsed
over and the Bayes factors are directly plotted against one
another.

2. Detecting interpulsar spatial correlations

While evidence for a common-spectrum process across
the array is a necessary condition for PTA GWB detection,
it is not sufficient. It is possible that statistically-indepen-
dent (yet spectrally-similar) low-frequency noise may arise
in millisecond pulsars, which could appear as a common-
spectrum process. Likewise, solar-system ephemeris or
clock systematics could manifest as low-frequency proc-
esses in pulsar timing-residual data. As such, the only

robust metric for GWB detection is via the measurement of
Hellings and Downs interpulsar timing-residual correla-
tions, corresponding to the overlap reduction function for
an isotropic stochastic background composed of tensor-
transverse GW polarizations. The signature is predomi-
nantly quadrupolar in pulsar angular separation, with power
at higher multipoles but none at l ¼ 0, 1. By contrast,
intrinsic pulsar noise has zero expected cross-correlation
with other distinct pulsars, while solar-system ephemeris
and clock systematics are expected to produce dipolar and
monopolar correlations, respectively [45].
The FL approach can be used to construct a statistic that

measures the significance of cross-correlations, whether
they be Hellings and Downs or another template signature.
This statistic is the optimal two-point correlation statistic
for a GWB in PTA data—commonly referred to as the
optimal statistic (OS)—and provides a signal-to-noise
(S/N) ratio estimate for cross-correlations in PTA data
[40,46–48]. The OS can be shown to derive from the linear
term in a Taylor expansion of the PTA log-likelihood with
respect to cross correlations [46,47,49], and as such it is
only applicable in the weak signal regime (where signal
strength here refers to the relative amplitude of cross-
correlated power versus autocorrelated power). However,
an approach has been developed to improve the efficacy of
the OS in intermediate signal scenarios, where it is
marginalized over the joint posterior distribution of intrin-
sic pulsar noise and autocorrelated GWB power that has
been computed from a full PTA search for a common
process [48,50]. Both intrinsic noise and autocorrelated
GWB power feature as individual pulsar weightings in the
construction of the OS; by mapping the distribution of the
statistic under the posterior spread of these weighting
contributions, we propagate all sources of uncertainty in
the noise estimation into the final OS distribution. This
approach is referred to as the noise marginalized OS

FIG. 4. Left: Bayes factors in favor of a common-spectrum process across all pulsars are shown as a function of the injected GWB
amplitude. These are computed under the standard full PTA likelihood analysis, and using the parallelized FL analysis. The FL values
are horizontally offset for ease of viewing. Right: The amplitude dependence from the left panel is collapsed over to more directly
compare the Bayes factor computed under each approach. The black dashed line is a zero-intercept unit-gradient relation to represent
perfect agreement.
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(NMOS). It is important that the calculation of the NMOS
S/N ratio use Monte Carlo draws from a joint posterior
derived from a full PTA search, so that the covariance
between individual pulsar red noise parameters and the
common process (i.e., the autocorrelation term of the
GWB) is accurately reflected.
As shown previously in this paper, the FL approach gives

an almost identical reproduction of the common red-noise
posterior when compared to a conventional full PTA
analysis. Therefore we would expect it to give an equally
faithful reproduction of NMOS results. However, to do so
we must reweight the posterior distributions from each of
our separate pulsar analyses in order to achieve consistency
with the FL-reconstructed common-process posterior. This
is equivalent to using the FL-reconstructed marginal dis-
tribution of the common process amplitude as a weighting
to piece together the full, joint PTA posterior distribution
from our separate per-pulsar analyses. By doing so, the
covariance between all red noise models across the PTA is
properly incorporated just as in a conventional, full PTA
Bayesian analysis.
Mathematically, this is achieved through reweighting the

conditional distribution of red noise parameters from an
individual pulsar analysis, pðfAred; γredgijACP; diÞ, by the
ratio of the FL-reconstructed common process posterior
pðACPjfdigNp

Þ to the common-spectrum process posterior
in that individual pulsar, pðACPjdiÞ,

pðfAred; γredgijACP; fdigNp
Þ ¼ pðfAred; γredgijACP; diÞ

×
pðACPjfdigNp

Þ
pðACPjdiÞ

: ð7Þ

The calculation of the NMOS is then as follows: (i) a
random draw is made from the FL posterior of ACP; (ii) the
reweighted joint posterior of a pulsar’s red noise parameters
given this value of ACP is constructed, and then used to
draw values for the red noise parameters. This procedure
ensures that the drawn samples capture the same covariance
structure present in the posteriors from a full Bayesian
analysis. Stage (ii) is repeated for every pulsar in the PTA.
The entire process is repeated 1 × 104 times to give a
distribution of OS values. Practically, we carry out this
procedure by creating a three-dimensional empirical dis-
tribution for each pulsar from the posteriors for
ðAred; γred; ACPÞ. The 3D distribution is then collapsed to
a 2D conditional distribution for ðAred; γredÞ for each value
of ACP drawn from the FL posterior. The red noise
parameters used in the NMOS calculation are then drawn
from each individual pulsar’s 2D conditional red-noise
distribution.
Figure 5 shows the results of applying this FL scheme for

computing cross-correlation S/N ratio values on our simu-
lated datasets. The agreement with the conventional
approach is very strong, showing virtually identical recov-
ery in the median and spread of S/N ratio values. The
benefits of the FL approach are that this never requires a
full PTA Bayesian analysis, pulsars do not need to be
reanalyzed repeatedly, and this parallelized scheme easily
allows for new pulsars to be analyzed and incorporated into
the calculations.

C. Cross-validation

Parameter estimation and model selection are important
inference tasks, but are not the only means by which
confidence can be built in the detection of a signal. The
model selection discussed so far has all been “in sample”,

FIG. 5. Left: NMOS S/N ratio values for Hellings and Downs cross-correlations are shown as a function of the injected GWB
amplitude. The conventional calculation involves marginalizing the OS values over noise and common-process samples generated from
a Bayesian analysis with the full PTA likelihood. In the FL approach, noise values for each pulsar are drawn from reweighted conditional
distributions based on the FL-reconstruction of the common process amplitude, thereby imprinting the covariance structure of the full
PTA on individual-pulsar posterior distributions. The FL values are horizontally offset for ease of viewing. Right: The amplitude
dependence from the left panel is collapsed over to more directly compare the S/N ratio values from each approach. The black dashed
line is a zero-intercept unit-gradient relation to represent perfect agreement.
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i.e., all data is used to compute a figure of merit under
different models, then the model with the largest figure of
merit (in our case the Bayesian evidence) is favored.
However, “out of sample” model selection can also be
important in assessing how well a model is internally self-
consistent among the data (see, e.g., Wang et al. [51]). For
example, leave-one-out cross-validation in PTA analysis
consists of assessing a model’s performance by condition-
ing it on all but one pulsar, then projecting it into the left-
out pulsar to see how well it is supported. Essentially, we
are testing the predictive power of a model that has been
trained on a portion of the data then tested against another
portion that has been held out.
In the PTA literature, leave-one-out cross-validation is

referred to as “dropout,” because each pulsar is dropped out
sequentially to determine whether the model evidence for a
common process increases or decreases as a result
[30,31,52]. Below we provide a mathematical framework
for the dropout factor to serve as a guide for developing a
FL approach. The dropout factor will be presented in full in
a separate study [53].
Consider two hypotheses for an array of Np pulsars:
(i) H0: intrinsic noise per pulsar, plus a common-

spectrum process (with 13=3 spectral index) in all
Np pulsars.

(ii) H1: intrinsic noise per pulsar, plus a common-
spectrum process (with 13=3 spectral index) in
Np − 1 pulsars, where pulsar p is included in the
analysis but does not respond to the common process.

The Bayesian evidence for H0 is

Z0 ¼pðfdigNp
jH0Þ¼

Z
pðfdigNp

jfθ⃗igNp
;ACPÞ

×pðfθ⃗igNp
ÞpðACPÞdNp θ⃗dACP; ð8Þ

where pðfdigNp
jfθ⃗igNp

; ACPÞ is the PTA likelihood for all

Np pulsars, pðfθ⃗igNp
Þ is the prior for all intrinsic noise

parameters, and pðACPÞ is the prior for the common
process’ amplitude. As discussed in Sec. II, without any
interpulsar correlations the PTA likelihood exactly factor-
izes into a product over pulsars. We can simply split this
into the likelihood for ðNp − 1Þ pulsars (which is the
likelihood for hypothesis H1) and the pth pulsar.

pðfdigNp
jfθ⃗igNp

; ACPÞ ¼
YNp

i¼1

pðdijθ⃗i; ACPÞ

¼ pðfdigNp−1jfθ⃗igNp−1; ACPÞ
× pðdpjθ⃗p; ACPÞ: ð9Þ

Therefore, the evidence for H1 can be written as

Z1 ¼
Z

pðfdigNp−1jfθ⃗igNp−1; ACPÞpðfθ⃗igNp−1ÞpðACPÞ

× pðdpjθ⃗pÞpðθ⃗pÞdNp θ⃗dACP; ð10Þ

where we have used the fact that the prior on intrinsic noise
parameters is also factorizable. Using Bayes’ theorem, we
can recognize the first grouping of terms before the product
symbol as pðACP; fθ⃗igNp−1jfdigNp−1Þ × Z�, where Z� is a
normalization factor. Since this is a normalized posterior
probability distribution, integrating over the common
process amplitude and all intrinsic noise parameters of
the ðNp − 1Þ pulsars considered inH1 simply yields 1. The
only remaining terms are an integral over the product of the
likelihood and prior of intrinsic noise parameters in pulsar
p, which is the Bayesian evidence for a noise-only model in
this pulsar, Zp;1 (i.e., model H1). Finally, the evidence for
model H1 is

Z1 ¼ Z�

Z
pðdpjθ⃗pÞpðθ⃗pÞdθ⃗p

¼ Z�Zp;1: ð11Þ

We now return to Z0 to factorize the likelihood, but
remembering that the likelihood for pulsar p depends on
ACP in model H0. We still get a grouping of terms that can
be rewritten as pðACP; fθ⃗igNp−1jfdigNp−1Þ × Z�, but one
can only marginalize this distribution over the intrinsic
noise parameters of which pulsar p is independent. This
gives the marginal distribution pðACPjfθ⃗igNp−1; fdigNp−1Þ
which we write compactly as pðAjH1Þ. The evidence for
model H0 is then

Z0 ¼ Z�

Z
pðACPjH1Þpðdpjθ⃗p; ACPÞpðθ⃗pÞdθ⃗pdACP

¼ Z�Zp;0

Z
pðACPjH1Þ
pðACPÞ

pðACP; θ⃗pjdpÞdθ⃗pdACP; ð12Þ

where on the second line we have used Bayes’ theorem to
express the calculation as an integral over the posterior
distribution of pulsar p, and Zp;0 is the Bayesian evidence
for a model that includes a common process in this pulsar
(i.e., model H0). Finally, the ratio of model evidences
Z0=Z1—which is denoted as the dropout factor that
assesses how well pulsar p supports the presence of a
common process found by the other ðNp − 1Þ pulsars—can
be practically evaluated as

Dropout Factor ¼ Z0

Z1

¼ Zp;0

Zp;1

�
pðACPjH1Þ
pðACPÞ

�
p
; ð13Þ

where hip is an average over posterior samples from pulsar
p. The right-hand side of Eq. (13) is easily computed using
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FL techniques, thereby avoiding the need to perform large
numbers of PTA analyses and also rendering it trivial to
assess the support for a common process in newly added
pulsars. The one-dimensional marginalized posterior dis-
tribution pðACPjH1Þ can be deduced from an FL parameter
estimation analysis in ðNp − 1Þ pulsars, similar to those
shown in Sec. III A. The ratio of this posterior density to the
known prior density of ACP is then evaluated at, and
averaged over, the posterior samples of the dropped-out
pulsar p. The ratio of evidences on the right-hand side,
Zp;0=Zp;1, gives the Bayes factor for a common red
process in pulsar p, acting as a prior weighting for this
common process in the calculation. It can easily be
computed from the MCMC chain of each single-pulsar
analysis using the Savage-Dickey technique.
We now compute the dropout factors for each pulsar in

one of our simulated datasets, which contains an injected
GWB signal with amplitude AGWB ¼ 1.91 × 10−15

(broadly similar to the common process discovered in
the NANOGrav 12.5 yr dataset [30]). The conventional
technique for computing the dropout factor is via a
Bayesian product-space sampling analysis [see, e.g.,
[54,55] ], where an MCMC chain samples a space of
parameters that is concatenated over two models; one in
which a common process is present in all pulsars, and
another in which the common process is present in all but a
selected pulsar. The transition between models is achieved
by including an additional indexing parameter with differ-
ent model behavior activated in different ranges, e.g.,
nmodel ∈ ½0; 0.5� activates the model likelihood with a
common process in all pulsars, whereas nmodel ∈ ½0.5; 1�

activates a likelihood with one pulsar dropped out. The
ratio of samples for which the chain occupies one model
range over another gives the odds ratio between the models,
and thus (assuming equal prior odds between the models)
the dropout factor. The uncertainty on this value is derived
from 1 × 103 bootstrap resamplings of the MCMC chain.
Results for this conventional dropout approach are

shown as blue points and uncertainties in Fig. 6. We see
that ∼1=2 of pulsars support the common process found by
the remainder of pulsars (i.e., dropout factors > 1), ∼1=3
are insensitive to the common process and yield dropout
factors of ∼1, and the rest disfavor the presence of a
common process with dropout factors< 1. This behavior is
expected from the varying sensitivity of different pulsars;
while it seems counter-intuitive that some pulsars disfavor a
common process in a dataset that we know contains a GWB
signal, one possible explanation is that we have ignored
interpulsar correlations, which would otherwise exert
greater control in driving agreement between the process
amplitudes inferred from different pulsar subsets. This
variant of the dropout factor—where interpulsar correla-
tions are modeled—is still being developed and will be
presented in Vigeland [53].
We also analyze the dropout factors for this dataset using

the FL-ready approach in Eq. (13). As discussed earlier, a
combination of the Savage-Dickey technique (for the first
ratio of evidences) and FL posterior amplitude representa-
tion (for the integral under the posterior of a given pulsar)
are needed. There are two metaparameters that we vary in
this scheme. The first corresponds to the tolerance on the
lowest acceptable number of MCMC samples in the lowest

FIG. 6. The dropout factor is the ratio of Bayesian evidences between a model that includes a common process in all pulsars versus one
that leaves the common process out of one pulsar. This factor assesses the support that a given pulsar has for a common process that has
been found by all other pulsars, acting as a technique for performing leave-one-out cross validation. We compute the dropout factors for
all pulsars in one of our simulated datasets that includes a GWB with AGWB ¼ 1.91 × 10−15. The conventional product-space MCMC
sampling approach (blue) is compared to the new FL approach of Eq. (13) (orange), where we see excellent agreement. All uncertainties
are derived through bootstrap resampling of MCMC chains.
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amplitude bin for the Savage-Dickey Bayes factor calcu-
lation of Zp=Zp;0. This influences the effective widths of
the lowest amplitude bin whose posterior density features
in the Bayes factor calculation discussed in Sec. III B 1. We
vary this across five values: 10, 25, 50, 75, and 100. The
second metaparameter is the number of bins adopted for the
histogram estimator of the common process posterior in the
FL calculation. In our analyses thus far we found thatNbin ¼
100was appropriate, however for this dropout factor analysis
we allow it to be varied across Nbin ¼ ½10; 25; 50; 75; 100�.
Thus, the dropout factor calculation for each pulsar was
performedwith 25 distinctmetaparameter combinations, and
for each of those combinations the MCMC chains of all
pulsars were resampled with replacement 1000 times to
generate 2.5 × 104 bootstrapped dropout factor estimates.
These results are summarized as orange median values with
68% uncertainty regions in Fig. 6. The agreement with the
conventional dropout approach is excellent. This FL dropout
estimation approach is modular, all calculations are carried
out in theMCMC postprocessing stage, and new pulsars can
be trivially incorporated.

IV. CONCLUSIONS

We have introduced a new technique for gravitational-
wave background (GWB) searches and characterization
with pulsar-timing arrays. This technique is parallelized
over separate pulsar datasets, making it trivial to expand
the array of searched pulsars without requiring exhaustive
and repetitive re-analysis of the entire PTA dataset. By
leveraging the fact that spectral information about the GWB
is—and may remain so even in the post-detection era—
dominated by PTA autocorrelations, we can collapse the
PTA data covariance matrix to a block-diagonal structure.
This is equivalent to approximating the PTA likelihood as a
product over individual pulsar likelihoods, each of which
includes a stochastic process with a common spectrum
across the array. By doing so, each pulsar dataset can be
analyzed in parallel, then reduced to a set of sufficient
statistical measures for the spectrum of the GWB, which
are stitched together in postprocessing. We call this the
factorized likelihood technique.
We have considered the case where the GWB is

represented by a power-law characteristic strain spectrum,
and equivalently a power-law power spectral density in the
pulsar timing residuals. This power law has a fiducial
spectral index based on the theoretical expectations for the
GWB from a population of inspiraling supermassive binary
black holes. These supermassive binary black holes are
expected to synthesize the dominant GWB signal in the
PTA sensitivity band, in excess of other potential cosmo-
logical signals (e.g., primordial GWBs, and backgrounds
from cosmological phase transitions or cosmic strings). As
such, we can fix the spectral index and vary only the
amplitude of the GWB in our searches. Therefore, in the
analysis of each pulsar, we model noise associated with

intrinsic pulsar and instrumental sources (with correspond-
ing parameters), plus a stochastic process characterized by
a fixed-index power law, whose amplitude is searched over.
This latter process is a proxy for the GWB in each
individual pulsar’s analysis.
Upon deriving the marginal posterior distributions of the

GWB amplitude from each pulsar, we process these into
histogram estimators that act as sufficient statistics for
further analysis. All of the information about the GWB that
was originally encoded in the PTA autocorrelations is now
distilled into these histograms, which are de facto com-
pressed representations of the PTA data. We found that the
PTA GWB amplitude recovery using this FL approach was
virtually indistinguishable from the standard PTA like-
lihood approach, as was the calculation of the Bayes factor
for the presence of a common-spectrum process across the
PTA. Furthermore, while this approach discards the PTA
cross-correlations, it does facilitate the rapid and modular
calculation of the PTA cross-correlation S/N ratio, which
otherwise requires an additional Bayesian PTA analysis to
calibrate noise weightings. The S/N ratio values derived
from FL noise weightings versus a full Bayesian PTA
analysis match incredibly well. Hence, the FL technique
enables fast, parallelizable recovery of the amplitude and
cross-correlation significance of a GWB in PTA data,
thereby circumventing many of the sampling and computa-
tional limitations that PTAs will encounter as data volume
grows. This technique has already seen broad uptake within
the PTA community for analyzing NANOGrav [30], PPTA
[31], EPTA [32], and IPTA [26] flagship datasets and other
studies [56] (having been developed by the lead author), but
has lacked a formal methodology until now.
There are several further applications that are straight-

forward when tackled with the FL technique but which
would otherwise be challenging using conventional sam-
pling with the PTA likelihood. For example, in almost all
PTA analyses the white-noise characteristics of each pulsar
are held fixed at values previously found in single-pulsar
noise characterization. The reasons for this are that the
likelihood calculation is slowed down when sampling
white-noise characteristics, and there can be many white-
noise parameters per pulsar that lead to a greatly expanded
parameter dimensionality. However since the FL technique is
parallelized over pulsars, likelihood speed and sampling
efficiency remain well within reasonable levels, thereby
allowing the uncertainties in thesewhite-noise characteristics
to be propagated into the final GWB results. An extension of
this concept is that bespoke noise models that account for
e.g., additional chromatic influences, can be constructed for
each pulsar in parallel, then trivially combined in postpro-
cessing to deliver PTA GWB constraints. Performing this
same kind of analysis in a full PTA likelihood analysis is
fraught with speed and sampling limitations.
The implementation of the FL technique introduced here

does have some caveats that we plan to generalize in
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forthcoming work. Most important is that the spectrum of
the GWB is assumed to be a power law with a fixed spectral
index, and parametrized only by its amplitude.
Alternatively, we can model the GWB’s spectrum in each
pulsar with a free parameter in each frequency bin.
Provided that the recovered joint posterior of this
Bayesian periodogram from each pulsar can be represented
with high fidelity (using e.g., optimized kernel density
estimators), these then act as sufficient statistics for more
generalized PTA spectral characterization of the GWB
beyond the power-law assumption. With an optimally-
tuned MCMC algorithm to sample the per-frequency
spectral posteriors of each pulsar, this approach should
be as fast and trivially parallelizable as the techniques
presented in this paper. No significant additional computa-
tional time is required beyond the single-pulsar noise
analyses that are already performed. This approach is
currently being developed. The farthest we could push
this FL concept would be to also recover the Fourier
coefficients of the modeled GWB signal in each pulsar. By
retaining phase information from the pulsar time-series in
the form of the Fourier coefficients, we would regain the
ability to perform Bayesian cross-correlation analyses, yet
with a highly-compressed representation of the original
data. The end goal is that the PTA GWB analysis
framework would be future proofed against the torrent

of data from ongoing observation campaigns as well as
newly discovered pulsars.
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