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We construct meronic black holes and solitons in the Einstein SUðNÞ-Yang-Mills theory in D ¼ 4 and
D ¼ 5 dimensions. These analytical solutions are found by combining the generalized hedgehog ansatz
with the Euler parametrization of the SUðNÞ group from which the Yang-Mills equations are automatically
satisfied for all values of N while the Einstein equations can be solved analytically. We explicitly show the
role that the color number N plays in the black hole thermodynamics as well as in the gravitational spin
from isospin effect. Two remarkable results of our analysis are that, first, meronic black holes can be
distinguished by colored black holes by looking at the spin from isospin effect (which is absent in the latter
but present in the former). Second, using the theory of nonembedded ansatz for SUðNÞ together with the
spin from isospin effect, one can build fields of arbitrary high spin out of scalar fields charged under the
gauge group. Hence, one can analyze interacting higher spin fields in asymptotically flat space-times
without “introducing by hand” higher spin fields. Our analysis also discloses an interesting difference
between the spin from isospin effect in D ¼ 4 and in D ¼ 5.
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I. INTRODUCTION

Yang-Mills (YM) theory is one of the main ingredients of
the standard model which up to now has been phenom-
enologically extremely successful. Since the main open
problems in high energy physics such as color confinement
are nonperturbative in nature, it is of great interest to
analyze topologically nontrivial configurations of the YM
theory which are believed to play a fundamental role in
the nonperturbative phase of the theory (see [1–14] and
references therein).
A very interesting class of configurations that play an

important role in the nonperturbative phase of the YM
theory are the so-called merons1 introduced in [15]. One of
the characteristics of merons is that they can always be
brought in the form A ¼ λÃ, where Ã is a pure gauge field.
Since such an ansatz would be trivial in Abelian gauge
theories, merons are genuine non-Abelian configurations. It
is known that merons connect different topological sectors

of the theory and these are related to instantons [16–19].
Also, lattice studies show that, as far as confinement is
concerned, merons play a very important role, as can be
seen in [16–18]. The existence of merons can be traced
back to the appearance of Gribov copies [20] as merons can
be interpreted as tunneling events between different Gribov
vacua [21].
However, most of the studies of merons up to now (with

the exception of [22]) have been devoted to the SUð2Þ
symmetry group case. In the present case we will focus on
the SUðNÞ-YM theory (for arbitrary values of N) mini-
mally coupled to general relativity (GR). We will be
interested in genuine SUðNÞ configurations: namely, con-
figurations that are not trivial embedding of SUð2Þ into
SUðNÞ. This technical detail will be especially relevant in
the analysis of the physical effects of nonembedded
gravitating merons.2

The great importance to carefully analyze the coupling of
GR with YM theory arises (at the very least) from two
considerations. First of all, there are situations of high
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1Although the name “meron” is generally used to describe

Euclidean solutions, in this work we will call merons to
configurations with λ ¼ 1=2 in Lorentzian space-time, which
we will show in the following sections.

2Here it is worth to emphasize that the term “nonembedded,”
which will be adopted here, is very common in the literature on
the Skyrme model after the pioneering papers [23,24], where the
authors constructed the first numerical examples of genuine
SUð3Þ configurations in the Skyrme model [which are not trivial
embeddings of SUð2Þ solutions into SUð3Þ].
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physical interest (such as close to black holes and neutron
stars or in cosmology) in which the coupling of YM theory
with GR cannot be neglected. Moreover, the coupling of
topologically nontrivial configurations in YM theory with
GR can be even useful to regularize them. For instance,
merons, which on flat space-times are singular, when
coupled to GR can become regular (see, for instance,
[25–28] and references therein).
Many of the results in Einstein-YM are numerical

[29–33], and these solutions have been derived in the case
of the SUð2Þ gauge group. In the Einstein SUð2Þ-YM
system rigorous results are also known [34] [in-depth
analysis of the SUðNÞ case can be found in Refs. [35–37]).
In the present paper we will construct explicit analytic

examples of nonembedded gravitating merons in the
Einstein SUðNÞ-YM theory for arbitrary values of N.
However, the main result of the paper is not the con-
struction of the analytic solutions in itself3 but rather the
nontrivial physical effects which can be made manifest only
with a careful group-theoretical analysis. The solutions that
we will construct below disclose peculiar characteristics of
the SUðNÞ gauge group [which are absent in the SUð2Þ
case] as well as the quite nontrivial differences between
the cases in D ¼ 4 and D ¼ 5 dimensions. One of the
interesting features will arise from the analysis of the spin-
from-isospin effect [38–40], comparing the new configu-
rations with N > 2 with the usual N ¼ 2 case.
A similar question about “genuine SUðNÞ configurations

with N ≥ 3” in the low energy limit of QCD (which is
described by the Skyrme model [41]) was answered in
the seminal works [23,24], and recently in [42–44].
In Refs. [23,24], the first numerical example of a non-
embedded solution representing a dibaryon (a bound state
of two baryons) was constructed in the SUð3Þ-Skyrme
model [this numerical construction of nonembedded con-
figurations was extended to the SUðNÞ-Skyrme model in
[45]]. Time after, in [43], combining the Balachandran
ansatz and the generalized hedgehog ansatz with some
known results on the Euler angles for SUð3Þ [46–48], the
first analytical solutions with high topological charge that
describe gravitating dibaryons as well as dibaryons in flat
space-time at finite density were constructed in the Einstein
SUð3Þ-Skyrme model [43]. These dibaryons are genuine
SUð3Þ features in the sense that they are not trivial
embeddings of SUð2Þ in SUð3Þ. Finally, very recently,
the generalized hedgehog ansatz has been combined with
the Euler parametrization of the SUðNÞ group describing
the so-called nuclear pasta phases at finite density in the
SUðNÞ-Skyrme model [42,44]. These solutions are genuine
SUðNÞ, due to the image of SUð2Þ through the Euler ansatz

construction is just a submanifold but not a subgroup of
SUðNÞ, as we will show below. In this sense the map is not
an embedding of SUð2Þ into SUðNÞ but just of S3 into
SUðNÞ [49].
In the present paper, the ansatz proposed in [42] for the

SUðNÞ-Skyrme model will be adapted to the Einstein
SUðNÞ-YM case in order to construct analytical solutions
describing nonembedded meronic black holes (BHs). It is
important to highlight that, recently, this ansatz [consider-
ing λ ¼ λðrÞ] has allowed the construction of analytical
solutions describing inhomogeneous condensates in the
Yang-Mills-Higgs theory in (2þ 1) dimensions [50] as
well as in (3þ 1) dimensions [51].
The present analysis has three quite nontrivial outcomes.

First, one can tell apart merons BHs from colored BHs
using the spin from isospin effect: while an asymptotically
flat meron BH changes the spin of a scalar test field, a
colored black hole does not. This is a very intriguing way to
distinguish a colored BH from a meron BH. Second, using
the technology of nonembedded ansatz in SUðNÞ, one can
generate test fields with arbitrary high spin. This is a really
powerful result since it allows us to study the dynamics of
higher spin fields without introducing any explicit higher
spin field but, actually, just analyzing the dynamics of a
self-interacting scalar field (charged under the gauge group)
living in asymptotically flat SUðNÞ nonembedded meron
BHs (with large enough N). It is worthwhile to remind the
reader here of the severe technical problems which are
encountered when analyzing the interactions of higher spin
fields related to the Coleman-Mandula theorem and its
generalizations (see [52–56]) “preventing” a nontrivial
interacting S matrix in a flat space for particles with high
enough spins.4 The present approach provides with a valid
and sound alternative to the analysis of higher spin
interactions in (asymptotically) flat space-times: one can
just consider a four-dimensional renormalizable scalar field
theory for a Higgs field (which, consequently, has quartic
vertices) charged under the SUðNÞ gauge group and living
in the background of a nonembedded SUðNÞ (gravitating)
meron. In the asymptotic region, due to the presence of the
nonembedded meron BH, the scalar field becomes a higher
spin field. Hence, the present construction allows us to
study interacting higher spin fields in asymptotically flat
space-times. A further byproduct of our framework is that
the structure of the spin from isospin effect in D ¼ 4 is
slightly different from the one in D ¼ 5 dimensions. The
reasons behind this difference will also be discussed.
The paper is organized as follows: in Sec. II we give a

brief review of the Einstein SUðNÞ-YM theory and we
present the ansatz that allows us to construct analytical
solutions. In Sec. III we construct BH solutions in D ¼ 4,

3Although in a different form and with different ansatz,
spherical black holes in Einstein SUðNÞ-YM theory have been
already discussed in the literature (see [37] and references
therein).

4We will mention the relations of the present approach with
recent developments in higher spin field theory in the next
sections.
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and we study the spin from isospin effect and how higher
spin fields can be generated. In Sec. IV we construct BH
solutions in D ¼ 5 and we compare its characteristics with
those of the D ¼ 4 case. In Sec. V, using a similar ansatz,
we found an analytic gravitating soliton solution.
Section VI is devoted to the conclusions and perspectives.

II. THE EINSTEIN SUðNÞ-YANG-MILLS THEORY

In this section we make a brief review of the Einstein
SUðNÞ-Yang-Mills theory and also we introduce the
general ansatz that allows us to construct analytical
solutions.

A. Field equations

The action of Einstein SUðNÞ-Yang-Mills theory is
given by

I ¼
Z

dDx
ffiffiffiffiffiffi
−g

p �
R − 2Λ

κ
−

1

2e2
Tr½FμνFμν�

�
; ð2:1Þ

where R is the Ricci scalar, Fμν ¼ ∂μAν − ∂νAμ þ i½Aμ; Aν�
is the field strength of the gauge field Aμ, κ is the Newton’s
coupling constant, Λ the cosmological constant and e is the
YM coupling.
Here we use the convention c ¼ ℏ ¼ 1, Greek indices

fμ; ν; ρ;…g run over the D-dimensional space-time with
mostly plus signature and Latin indices fa; b; c;…g are
reserved for those of the internal space (in the present paper
we will consider the cases D ¼ 4 and D ¼ 5).
The YM field equations are

∇νFμν þ i½Aν; Fμν� ¼ 0; ð2:2Þ

where ∇μ is the Levi-Civita covariant derivative.
The Einstein equations, on the other hand, are given by

Rμν −
1

2
Rgμν þ Λgμν ¼ κTμν; ð2:3Þ

with

Tμν ¼
2

e2
TrðFμαF α

ν −
1

4
gμνFαβFαβÞ; ð2:4Þ

the energy-momentum tensor of the YM field.

B. General ansatz

We consider a meronlike ansatz for the YM field

Aμ ¼ −iλðxμÞðU−1∂μUÞ; ð2:5Þ

where UðxÞ is in a subgroup of SUðNÞ. It is well known
that there are many ways of embedding SUð2Þ into SUðNÞ.
It was Dynkin the first to consider the classification of such
embeddings [49] (see [57] for details and applications in

gauge theory). We choose what is sometimes called the
“maximal” embedding, which is the only one which gives
rise to a irreducible representation of SUð2Þ of spin j ¼
ðN − 1Þ=2 (in agreement with the nomenclature in the
Skyrme literature, we will call these configurations
“nonembedded”). We may parametrize it in terms of the
generalized Euler angles as follows

U ¼ e−iF1ðxμÞT3e−iF2ðxμÞT2e−iF3ðxμÞT3 ; ð2:6Þ

where the matrices Ta are explicitly given by

T1 ¼
1

2

XN
j¼2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðj − 1ÞðN − jþ 1Þ

p
ðEj−1;j þ Ej;j−1Þ; ð2:7Þ

T2 ¼
i
2

XN
j¼2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðj − 1ÞðN − jþ 1Þ

p
ðEj−1;j − Ej;j−1Þ; ð2:8Þ

T3 ¼ −
XN
j¼1

�
N þ 1

2
− j

�
Ej;j; ð2:9Þ

with

ðEi;jÞmn ¼ δimδjn: ð2:10Þ

They are chosen so that the following relations are satisfied:

½Ta;Tb� ¼ iϵabcTc; TrðTaTbÞ ¼
NðN2− 1Þ

12
δab: ð2:11Þ

It is worthwhile to emphasize that the above generators are
an irreducible representation of SUð2Þ, which is not true for
all embbedings [46–48]. In the case of SUð3Þ, for instance,
one may take one half of the first three Gell-Mann matrices
as generators of SUð2Þ, which form a spin 1=2 represen-
tation of SUð2Þ. However, it is not irreducible, because its
three 3 × 3 matrices have zeros everywhere except for their
2 × 2 first blocks, where the spin matrices are embedded.
The above Ta matrices, on the contrary, form the spin-j
irreducible representation of SUð2Þ, with j ¼ ðN − 1Þ=2.
This may be seen directly from the diagonal element (2.9),
or by noting that

ðT⃗Þ2 ¼
X3
a¼1

TaTa ¼ σðNÞ1; ð2:12Þ

σðNÞ ¼ ðN2 − 1Þ
4

¼ jðjþ 1Þ: ð2:13Þ

Picking the irreducible representation of SUð2Þ for all
values of N implies that for every N we are using a
representation with different spin. This means that ðT⃗Þ2
(which will play an important role to define the “square of
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the total angular momentum operator”) depends on N. One
can see that σðNÞ grows with N2 so that, for the irreducible
embedding ansatz presented here, the total angular momen-
tum will also grow with N (as it will be discussed in the
next sections).

C. A short review on merons

Classic results on gravitating merons and their physical
applications in the case of Einstein-YM theory with the
SUð2Þ gauge group are in [58–68].5
A meron can always be brought in the following form:

Aμ ¼ −iλðU−1∂μUÞ; λ ≠ 0; 1; ð2:14Þ

which is proportional to a pure gauge term without being,
of course, a pure gauge configuration. Therefore the
existence of merons is an intrinsically non-Abelian feature.
The first example on flat space-time was constructed by de
Alfaro, Fubini and Furlan in Ref. [15], and it has λ ¼ 1=2.
Although, in principle, λ could take any value different
from zero and one, here we will show that even in the case
of the SUðNÞ gravitating meron λ ¼ 1=2 is indeed a
special value.
The field strength Fμν of the meron in Eq. (2.14) is

proportional to the commutator,

Fμν ¼ −iλðλ − 1Þ½U−1∂μU;U−1∂νU�: ð2:15Þ

Recently6 in [25–28], it has been possible to analyze
explicitly the physical effects generated by SUð2Þ meron
BHs. In particular, it has been shown that the asymptoti-
cally flat case is a very interesting arena to implement the
usual spin from isospin effect without worrying about the
singularities associated to the meron (which are hidden
behind the BH horizon). In the present paper, we will ask
the following questions:
(1) Is the Einstein SUðNÞ-YM case physically different

from the already known SUð2Þ case?
(2) Are there genuine SUðNÞ configurations which are

absent in the SUðMÞ case with M < N?
(3) Which are the physical effects associated to these

genuine SUðNÞ configurations?
The above interesting questions can be answered in a

very elegant way combining the group theoretical tools
developed in Refs. [46–48], both with the idea of non-
embedded ansatz developed in [23,24], as well as with the
recent results in [42,43].

III. BLACK HOLES IN D= 4

In this section we construct meron BHs in the Einstein
SUðNÞ-YM theory in D ¼ 4.

A. Analytic meron black hole solutions

We impose spherical symmetry considering the metric

ds2 ¼ −fðrÞdt2 þ 1

fðrÞ dr
2 þ r2ðdθ2 þ sin2θdϕ2Þ: ð3:1Þ

The meron in Eq. (2.5) that satisfies identically the
complete set of YM equations in Eq. (2.2) is given by

F1ðxμÞ ¼ −ϕ; F2ðxμÞ ¼ 2θ; F3ðxμÞ ¼ ϕ; ð3:2Þ

together with the particular value of λ mentioned above,

λ ¼ 1

2
: ð3:3Þ

From the Einstein equations in Eq. (2.3), we obtain for the
metric function fðrÞ the following expression

fðrÞ ¼ 1 −
2m
r

−
Λ
3
r2 þ 8λ2ðλ − 1Þ2κ

e2r2
ðN − 1ÞNðN þ 1Þ

6

¼ 1 −
2m
r

−
Λ
3
r2 þ κ

2e2r2
TN; ð3:4Þ

with TN ¼ ðN−1ÞNðNþ1Þ
6

as the tetrahedral numbers for
N ¼ 2; 3;….
It turns out that the meron in this case is just the Wu-

Yang monopole, whose singularity is dressed under the BH
horizon. In fact,

Ai ¼ −
1

r2
ϵijaxjTa; ð3:5Þ

where, ðx1; x2; x3Þ ¼ rðsin θ cosϕ; sin θ sinϕ; cos θÞ. The
above solution has exactly the same form as the one in
Minkowski space-time, but be aware that the xi are only
asymptotically the Cartesian coordinates of flat space. It is a
straightforward computation to check that twice the Wu-
Yang monopole field in Eq. (3.5) gives vanishing field
strength, that is, as pure gauge as expected for a meron with
λ ¼ 1=2. Now, if one performs a gauge transformation
using a group element of the form (2.6), with

F1ðxμÞ ¼ −ϕ; F2ðxμÞ ¼ −θ; F3ðxμÞ ¼ ϕ; ð3:6Þ

then the YM potential transforms to the “Dirac gauge”

A ¼ ð1 − cos θÞdϕT3: ð3:7Þ

This potential has a Dirac string singularity at θ ¼ 0, and
the field strength is given by

5It is interesting to note that in [58] the authors constructed the
first example of a SUð2Þmeron black hole. However, the concept
of meron was invented after such black hole was constructed.
That is why the authors of [58] do not mention the connection
with merons.

6Using a strategy developed originally to analyze the Skyrme
model (see [44,69–77]).
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Fμν ¼ fμνT3;

where fμν is the field of the Dirac monopole, with
fθϕ ¼ sin θ, the only nonvanishing component. The field
is effectively Abelian, and its contribution to the action in
Eq. (2.1) is

1

2e2

Z
d4x

ffiffiffiffiffiffi
−g

p
fμνfμνTr½T2

3�¼
NðN2−1Þ

24e2

Z
d4x

ffiffiffiffiffiffi
−g

p
fμνfμν;

where we have used Eq. (2.11). This means that, in fact, the
effective coupling constant Q is given by

Q2 ¼ 12e2

NðN2 − 1Þ : ð3:8Þ

The resulting metric is precisely the Reissner-Nordström
metric in (anti–)de Sitter with unitary magnetic charge,

g ¼ 1

Q
¼ NðN2 − 1Þ

12e2
: ð3:9Þ

Note that the monopole in the Dirac gauge is not of the
form (2.14). Its double is not pure gauge. Actually, it may
be multiplied by any constant to get a monopole solution
with any magnetic charge. However, if the magnetic charge
is not unitary, then we will not be able to perform a gauge
transformation that takes it to the Wu-Yang form, that is, it
will not be a meron anymore. Indeed, the gauge trans-
formation from the meronic configuration to the Abelian
Dirac monopole is singular at the origin (see the discussion
on pages 13 and 14 of [78]). Since two gauge potentials are
gauge equivalent if and only if there is a proper gauge
transformation (namely, a smooth gauge transformation
which is also well behaved at infinity7) from one configu-
ration to the other, one can conclude that the present
meronic configuration and the Dirac monopole are not
gauge equivalent. Note also that if one would not define
gauge equivalence using proper gauge transformations one
would arrive at absurd conclusions such as that the
(anti–)de Sitter space-time in (2þ 1) dimensions is the
same as the Bañados-Teitelboim-Zanelli black hole (as
these two configurations are connected by an improper
gauge transformation).
Even though the above solution is well known, there is

an interesting feature arising from the dependence of the
effective charge g with N as seen in Eq. (3.9). If the
cosmological constant Λ is positive, then for a horizon to

exist the magnetic (or electric) charge must satisfy
g2 < ð4ΛÞ−1. Therefore, these merons cease to exist for
big enough N. There are also bound for the mass. If the
cosmological constant vanishes, for instance, then for a
horizon to dress the singularity the mass must be such that
M2 > g2. Therefore, as N grows, the mass of the merons
are forced to grow as well.
Obviously, spherically symmetric BHs in the Einstein

SUðNÞ-YM theory have been already discussed in depth in
the literature (see, for instance, [35–37,80–82] and refer-
ences therein). In fact, the idea of the present construction
(using an explicit “nonembedded” ansatz for the meronic
field) is that it discloses in a very neat way the fact that the
spin from isospin effect depends actually on “the N” of the
gauge group SUðNÞ, so that the interactions of test scalar
fields [charged under SUðNÞ] with the gravitating merons
discussed here can generate fields of arbitrary high spin (if
N is large enough). This fact has not been noticed before (to
the best of our knowledge) and is a novel outcome of our
technique.

B. About colored black holes

It is well known that the Einstein-YM theory admits
spherically symmetric BHs solutions with a non-Abelian
hair (see [83–85] and references therein) in which the non-
Abelian electric and magnetic fields decay too fast to give
rise to charges. Despite their instability [86,87], the very
important role of such non-Abelian hairy BHs (especially
in the application of holography) cannot be underestimated
[88,89]. Here we want just to emphasize that these BHs can
be written very easily using the present approach. We will
consider the following metric

ds2¼−fðrÞdt2þ 1

hðrÞdr
2þ r2dθ2þ r2sin2θdϕ2; ð3:10Þ

together with a radial profile for the YM field, namely

Aμ ¼ −iλðrÞðU−1∂μUÞ;

and

F1ðxμÞ ¼ −ϕ; F2ðxμÞ ¼ 2θ; F3ðxμÞ ¼ ϕ: ð3:11Þ

Of course, λ ¼ 1=2, would give the meron BH, while hairy
colored BHs must be found numerically. The YM equa-
tions are reduced to the following equation for the profile

λ00 þ ðfhÞ0
2fh

λ0 −
2λðλ − 1Þð2λ − 1Þ

r2h
¼ 0: ð3:12Þ

On the other hand, the components of the energy-momentum
tensor are

7Well behaved at infinity means that the group-valued element
U which generates such gauge transformation must approach the
center of the gauge group at spatial infinity: see the discussion in
[79]. Note that the group element of the form (2.6) [with
F1ðxμÞ ¼ −ϕ, F2ðxμÞ ¼ −θ, F3ðxμÞ ¼ ϕ] not only is singular
at the origin but also does not approach the center of SUð2Þ
(which is �12×2) at spatial infinity.
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Ttt ¼ 4TN ×
f

e2r4
ð2λ2 − 4λ3 þ 2λ4 þ r2hλ02Þ;

Trr ¼ 4TN × −
1

e2hr4
ð2λ2 − 4λ3 þ 2λ4 − r2hλ02Þ;

Tθθ ¼ 4TN ×
2

e2r2
ðλ − 1Þ2λ2;

Tϕϕ ¼ sin2θTθθ;

while the components of the Einstein tensor (with cosmo-
logical constant) are given by

Gtt þ Λgtt ¼
f
r2

ð1 − h − rh0Þ − Λf;

Grr þ Λgrr ¼
1

r2fh
ðfh − f þ rhf0Þ þ Λ

1

h
;

Gθθ þ Λgθθ ¼
r

4f2
ðf½rf0h0 þ 2hðf0 þ rf00Þ�

þ 2f2h0 − rhf02Þ þ Λr2;

Gϕϕ þ Λgϕϕ ¼ sin2θðGθθ þ ΛgθθÞ:

This equations system (where N only enters as an overall
factor in the energy-momentum tensor) has been already
analyzed, so that the known numerical solutions of the
references mentioned above can be adapted to the
present case.
Here we only want to mention that the key difference

between meron BHs and colored BHs appears in the Klein-
Gordon equation

ð□ −m2ÞΦ ¼ 0; □ ¼ DμDμ; ð3:13Þ

for a scalar field Φ charged under the gauge group. In the
asymptotically flat case, the terms that should give rise to
the spin from isospin effect [which are gμνAμAνΦ and
gμνðAμÞ∇νΦ] decay faster than in the case of the meron
BH, so that, in the asymptotic region of the colored BHs,
such terms are unable to form the contribution “ðJ⃗Þ2=r2”
(which will be discussed in the next section) needed to
transform bosons into fermions (and vice versa).

C. Gravitational spin from isospin effect in SUðNÞ
In general, the presence of a background field breaks the

natural symmetries of a theory. For instance, the SUðNÞ
Klein-Gordon or Dirac equations, in which the Yang-Mills
field is explicitly given, will break rotational invariance
(unless the given field is spherically symmetric). However,
there are situations in which the field is indeed symmetric,
but the corresponding gauge potential, which appears in the
equations, is not. In that case, the orbital angular momen-
tum ⃗l will not be a symmetry generator. However, it is
possible to compensate the lack of invariance of the
potential under spatial rotations with an appropriate gauge

rotation. For example, the potential in Eq. (3.5) is not
invariant under rotations. However, if one performs the
same SUð2Þ gauge rotation to both space-time indices and
internal indices, then the symmetry is recovered. The
operator that generates such a transformation is

J⃗ ¼ ⃗lþ T⃗; ð3:14Þ

where the vector T⃗ is formed by the generators of the
nonembedded subgroup of SUðNÞ defined in Eqs. (2.7)–
(2.10), while ⃗l is the usual orbital angular momentum
operator. Hence, J⃗ should be considered as the total angular
momentum of the system.
It is precisely this spherical symmetric up to an internal

rotation which gives rise to the Jackiw-Rebbi-Hasenfratz-
’t Hooft mechanism, or “spin form isospin” effect [38,39],
according to which the excitations of a Bosonic field
charged under SUð2Þ around a background gauge
field with the above characteristics behave as Fermions.8

We are interested here in the case of SUðNÞ, in which the
meron solution discussed in the previous section will do the
same trick. A quick way to derive the spin from isospin
phenomena is to analyze the Klein-Gordon equation in
Eq. (3.13) for a scalar field Φ (which will be assumed to
belong to the fundamental representation) charged under
SUðNÞ, being in this case ∇μ the Levi-Civita covariant
derivative corresponding to the metric in Eqs. (3.1) and
(3.4), and Aμ is the SUðNÞ meron gauge potential in
Eqs. (2.5), (2.6), and (3.2). For the present purpose, it is
enough to restrict us to the static case, set Λ ¼ 0 and to
explore the asymptotic region, where the metric is
Minkowski. We also set m ¼ 0, so that Eq. (3.13) becomes

ð∇i þ iAiÞð∇i þ iAiÞΦ
¼ ð∇2 þ 2iAi∇i þ ið∇iAiÞ − AiAiÞΦ: ð3:15Þ

The first term in Eq. (3.15) is the Laplacian,

∇2Φ ¼ 1

r2
½∂rðr2∂rΦÞ − L⃗2Φ�;

where

L⃗ ¼ −ir⃗ × ∇⃗
is the orbital angular momentum operator. Using Eq. (3.5),
the second term in Eq. (3.15) is

8An effect which is very similar to the Jackiw-Rebbi-Hasen-
fratz-’t Hooft mechanism occurs for Skyrmions [41] (for a
detailed review, see [3]). Indeed, the excitations around the
Skyrme soliton with winding number equal to one can behave
as fermions.
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2iAi∇i ¼ 2i
r2
Taϵ

ajixj∇i ¼ −2TaLa:

The third term vanishes because ∇iAi ¼ 0, as one may
verify directly. Finally, for the last term,

−AiAi ¼ −
1

r4
ðr2δab − xaxbÞTaTb ¼ −

1

r2
½T⃗2 − ðr̂ · T⃗Þ2�;

where r̂ · T⃗ ¼ xaTa=r is the projection of T⃗ along the
direction of r⃗. Putting all together, Eq. (3.15) turns out to be

0 ¼ 1

r2
∂rðr2∂rΦÞ þ 1

r2
ð−L⃗2 − 2TaLa − T⃗2 þ ðr̂ · T⃗Þ2ÞΦ;

¼ 1

r2
∂rðr2∂rΦÞ − 1

r2
ðJ⃗2 − ðr̂ · T⃗Þ2ÞΦ: ð3:16Þ

Here J⃗ is the total angular momentum in Eq. (3.14). We see
that it forms in the Klein-Gordon equation, supplementing
the orbital part as it should. Therefore, one can generate
higher spin fields in asymptotically flat space-times using
test scalar fields (charged under the gauge group) living
in the SUðNÞ meron BHs constructed in the previous
subsections.

D. Higher spin fields from nonembedded
ansatz in D= 4

The classic results in [52–56], showed that, under
“normal” circumstances, in flat space-times one cannot
formulate a consistent quantum field theory with massless
particles with spins greater than two. The same approach
also suggests similar negative results in asymptotically flat
space-times. Soon after these original references, some
positive partial results on how to define consistent (cubic)
interactions between higher spin fields were obtained in
[90–92]. However, the problem to define consistent renor-
malizable interactions between higher spin fields on
(asymptotically) flat space-times remained. A situation
with negative cosmological constants (due to its role as
an effective infrared cutoff) was disclosed in [93,94] (an in-
depth analysis of the current situation can be found in
[95–101] and references therein). To the best of authors’
knowledge, the only well-established case (so far) in which
it is possible to define a consistent interaction in four-
dimensional (asymptotically) flat space-times is the cubic
vertex (see, for a modern perspective, [102–104] and
references therein). In particular, in those references, a
complete classification of the possible cubic vertices has
been performed. It is worth to emphasize that, within their
approach, the spectrum is reducible and consist of propa-
gating massless particles with spin s, s − 2, s − 4,… and so
on. Consequently, this modern formulation is different from
[90], in which case the field equations describe a single
massless degree of freedom of a particile with spin s.

In this sense, the spin from isospin effect corresponding
to the nonembedded gravitating merons constructed in the
previous sections is more similar to [90] rather than to the
modern references mentioned above. The reason is that
with the choice of the generators in Eqs. (2.7), (2.9), and
(2.10) one gets an irreducible representation of SOð3Þ of
spin j ¼ ðN − 1Þ=2. Hence, due to the conversion of
isospin into spin (see [105,106]) a scalar field charged
under the gauge group SUðNÞ becomes a field of spin
j ¼ ðN − 1Þ=2. One way to see this (which has been
already discussed in the previous sections) is that the
ansatz for the gauge field in Eqs. (2.5)–(2.7), (2.9), and
(2.10) is not spherically symmetric, but the lack of spherical
symmetry can be compensated by an internal rotation of
spin j ¼ ðN − 1Þ=2 so that the “true” angular momentum
operator acting on such a scalar field corresponds to a spin-
j field.
Now, if one wants to consider interactions one can

analyze the well-known (renormalizable in D ¼ 4) scalar
field Lagrangian for the Higgs field charge under the
SUðNÞ gauge group with a quartic Higgs potential whose
field equations and Lagrangian read, respectively,

gμνð∇μ þ iAμÞð∇ν þ iAνÞΦ ¼ −γðv2 − jΦj2ÞΦ; ð3:17Þ

I½Φ� ¼ 1

4

Z
d4x

ffiffiffiffiffiffi
−g

p ðTr½DμΦDμΦ� − γðv2 − jΦj2Þ2Þ;

Φ2 ¼ −
1

2
Tr½ΦΦ�: ð3:18Þ

The above theory is renormalizable in D ¼ 4 and the
corresponding Feynman rules in coordinates space can be
defined in the usual way (taking care of the nontrivial
background). In order to display the interplay between the
vertices and the spin of Φ, one can expand explicitly in
terms of eigenfunctions Φ of J⃗2 and r̂ · T⃗. Clearly, being
the original theory I½Φ� well defined in D ¼ 4, the
interaction vertices will be well defined as well, and, since
the field Φ acquires a spin j ¼ ðN − 1Þ=2 due to the
background, one can interpret the usual Feynman rules as
Feynman rules for spin ðN − 1Þ=2 fields. The original no-
go theorems [52–56] are avoided since the presence of the
gravitating meron breaks the symmetry of the vacuum and
changes the topology of space-time. Thus, as long as the
backreaction of Φ on the background can be neglected, in
principle this construction works. Of course, there are
severe technical complications to implement this program
in practice due to the fact that the nontrivial background
prevents one from finding easily the propagators in Fourier
space. We hope to return to this interesting issue in a
future work.
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IV. BLACK HOLES IN D= 5

In this section we construct meron BHs in the Einstein
SUðNÞ-YM theory in D ¼ 5.

A. Analytic meronic black hole solutions

We consider a five-dimensional, spherically symmetric,
space-time ansatz:

ds2 ¼ −fðrÞ2dt2 þ 1

fðrÞ2 dr
2

þ r2

4
ðdγ2 þ dθ2 þ dϕ2 þ 2 cos θdγdϕÞ; ð4:1Þ

together with the YM field given by Eqs. (2.5) and (2.6),
with

F1ðxμÞ ¼ −ϕ; F2ðxμÞ ¼ −θ; F3ðxμÞ ¼ −γ; ð4:2Þ

λ ¼ 1

2
: ð4:3Þ

These fields satisfy the YM equations. They correspond to
a D ¼ 5 meron, an analog of the D ¼ 4 case described in
the previous section. The Einstein equations may be
explicitly solved:

fðrÞ2 ¼ 1 −
2m
r2

−
Λ
6
r2

−
2

3
× 24ðλ − 1Þ2λ2 κ logðrÞ

e2r2
ðN − 1ÞNðN þ 1Þ

6
;

¼ 1 −
2m
r2

−
Λ
6
r2 −

κ logðrÞ
e2r2

TN: ð4:4Þ

Here TN ¼ ðN−1ÞNðNþ1Þ
6

are the tetrahedral numbers. The
constant λ has been left arbitrary so one can see that when
the YM field is pure gauge, λ ¼ 1, the metric reduces to
Schwarzschild-(anti–)de Sitter in D ¼ 5.

B. Gravitational spin from isospin effect in SUðNÞ
As in the previous section, in order to study the spin from

isospin effect, we will analyze the Klein-Gordon equation
in Eq. (3.13) in D ¼ 5 for a scalar field Φ charged under
SUðNÞ, with ∇μ the Levi-Civita covariant derivative
corresponding this time to the metric in Eqs. (4.1) and
(4.4). Here Aμ is the SUðNÞ meron gauge potential in
Eqs. (2.5), (2.6), and (4.2).
In D ¼ 5 the orbital angular momentum is given, in

Cartesian coordinates, by

LAB ¼ −iðxA∂B − xB∂AÞ;

where xA, A ¼ 1;…; 4 are the spatial indices. They satisfy
the SOð4Þ algebra. Because SOð4Þ ¼ SOð3Þ × SOð3Þ, the

above generators may be divided into two sets, each
satisfying the SOð3Þ algebra. Explicitly,

L�
a ¼ ϵa

bcLbc � L4a; ½L�
a ; L�

b � ¼ iϵcabL�
c ;

½Lþ
a ; L−

b � ¼ 0; ð4:5Þ

where a, b ¼ 1, 2, 3. We call Lþ
a , L−

b the right and left
angular momentum, respectively. It is useful to write these
generators in the spherical coordinates of the 3-sphere
defined in the metric (4.1). For example, the right angular
momentum is given by

Lþ
1 ¼ i

�
cos γ cot θ∂γ þ sin γ∂θ −

cos γ
sin θ

∂ϕ

�
; ð4:6Þ

Lþ
2 ¼ i

�
sin γ cot θ∂γ − cos γ∂θ −

sin γ
sin θ

∂ϕ

�
; ð4:7Þ

Lþ
3 ¼ −i∂γ: ð4:8Þ

In this form, the generators are well defined not only in
Minkowski space but also in the BH geometry in Eq. (4.1).
In terms of these, the D’Alambert operator is

□ ¼ −
1

f2
∂2
t þ

1

r3
∂rðr3f2∂rÞ −

1

r2
1

2
LABLAB;

¼ −
1

f2
∂2
t þ

1

r3
∂rðr3f2∂rÞ −

2

r2
½ðL⃗þÞ2 þ ðL⃗−Þ2�:

As in the D ¼ 4 case, we now consider the Klein-Gordon
equation for a scalar fieldΦ in the background of the right-
handed meron,

ð□þ i∇μAμ þ 2iAμ∇μ − AμAμ −m2ÞΦ ¼ 0: ð4:9Þ

Substituting the explicit expressions for Aμ and gμν given by
Eqs. (2.5), (2.6), (4.1)–(4.4), and (4.9) takes the form

�
−

1

f2
∂2
t þ

1

r3
∂rðr3f2∂rÞ

−
1

r2
ð2ðJ⃗þÞ2 þ 2ðJ⃗−Þ2 − σðNÞ1Þ−m2

�
Φ¼ 0; ð4:10Þ

where 1 is the N × N identity matrix, σðNÞ is given in
Eq. (2.13) and

Jþa ¼ Lþ
a þ Ta; J−a ¼ L−

a :

From this equation we see that the angular momentum is
given by the pair Jþa , J−a which, besides the orbital part Lþ

a ,
L−
a , has a contribution from the generators of SUðNÞ. In

this case, only the right angular momentum Jþa gets shifted.
Of course, there is nothing special about the right angular
momentum. A second solution of the Yang-Mills-Einstein
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system exists which shifts the left angular momentum J−a
instead. It is obtained by replacing the group element U of
the above solution by by U−1. The metric (3.4) and the
meron form (2.5) of the gauge field are the same.
Note also that, in addition to the angular momentum, the

expression multiplying r−2 in Eq. (4.10) contains a term
proportional to the identity. This is much simpler than the
D ¼ 4 case, where the extra term is ðr̂ · T⃗Þ2, as seen in
Eq. (3.16). The reason behind this reduction (similar to
what happens for the BH in [25]), lies in the term AμAμ in
Eq. (4.9), which in the D ¼ 5 case, turns out to be
proportional to ðT⃗Þ2. Then, the spin of the particles
becomes exactly σN according to Eq. (2.12).
There is another important difference between the black

hole solutions in D ¼ 4 and D ¼ 5 presented above,
namely, the first has vanishing topological charge while
the latter has a finite one. In fact, consider the following
standard definition of the topological charge,

B ¼ 1

24π2

Z
Σ
ρB; ρB ¼ ϵijkTr½LiLjLk�;

where Σ is any three-dimensional spatial surface defined by
t ¼ const and r ¼ const while

Lμ ¼ U−1∂μU ¼ Ωa
μTa ð4:11Þ

are the Maurer-Cartan form components, Ωa
μ are the left-

invariant 1-forms components of an element UðxÞ ∈
SUðNÞ parametrized as in Eq. (2.6). Note that a necessary
(but not sufficient) condition for having a nonzero topo-
logical charge is that the functions Fi in Eq. (2.6) must be
independent. This effectively occurs in the case of the BH
in D ¼ 5 considered above, where each function depends
linearly on a different coordinate of the 3-sphere [see
Eq. (4.2)], and it is possible to verify that B ≠ 0 on Σ by
integrating into the ranges of the coordinates in Eq. (4.1).
On the other hand, in the case of the meron BH in D ¼ 4,
the functions Fi are not independent [see Eq. (3.2)], and it
is direct to check that ρB ¼ 0 identically.

V. GRAVITATING SOLITON

In this section we present an analytic self-gravitating
soliton solution in D ¼ 4. Although this configuration has
compact spatial sections (and, consequently, no spin from
isospin effect) it possesses interesting features which are
worth mentioning.9

We consider a static space-time metric that is a product of
R × S3 with a constant scale factor ρ0, namely

ds2 ¼ −dt2 þ ρ20
4
ððdγ þ cos θdϕÞ2 þ dθ2 þ sin2 θdϕ2Þ;

ð5:1Þ

together with the following ansatz for the gauge field

F1ðxμÞ ¼ γ; F2ðxμÞ ¼ θ; F3ðxμÞ ¼ ϕ; ð5:2Þ

and

λ ¼ 1

2
: ð5:3Þ

With the above ansatz the SUðNÞ-YM equations are
identically satisfied, while the Einstein equations provide
the following constraints between the coupling constants

ρ20 ¼
κTN

e2
; Λ ¼ 3

2

e2

κTN
: ð5:4Þ

The energy density of the soliton is then

T00 ¼
3

2

TN

e2ρ40
¼ Λ

κ
¼ 3

2

e2

κ2TN
: ð5:5Þ

One can see that, if one requires having a static gravitating
configuration, then the cosmological constant must scale as
1=N, so that it must be small and positive when N is large.
One can also consider a time-dependent scale factor,

ρ ¼ ρðtÞ, in which case the field equations read

ρ̈ −
1

3
Λρþ κTN

2e2ρ3
¼ 0; ð5:6Þ

_ρ2 −
1

3
Λρ2 þ 1 −

κTN

2e2ρ2
¼ 0: ð5:7Þ

The above equations system represents a cosmological
space-time whose source is the energy-momentum tensor
of a nonembedded SUðNÞ meron, because still in this
dynamical case the YM equations are identically satisfied
for λ ¼ 1=2. We hope to come back on the analysis of these
cosmological space-time in a future publication.

VI. CONCLUSIONS AND PERSPECTIVES

In this paper we have constructed meron BHs and self-
gravitating soliton solutions in the Einstein SUðNÞ-YM
theory in D ¼ 4 and D ¼ 5 dimensions for all values of N.
These analytic configurations have been found by combin-
ing the generalized hedgehog ansatz with the Euler para-
metrization of the SUðNÞ group from which the YM
equations are automatically satisfied for all values of N,
while the Einstein equations can be solved analytically.
One of the main results of this work is that we explicitly

show the role that the color number N plays in the
9See [107] for the construction of gravitating merons in

D-dimensional massive Yang-Mills theory and the Skyrme model.
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gravitational spin from isospin effect. In fact, meron BHs
can be distinguished by colored BHs by looking at the spin
from isospin effect, because this effect is present only in the
meron BHs constructed here.
In order to compute the spin generated from the isospin

we have considered a Bosonic field charged under SUðNÞ
around the background gauge field of the BH solutions,
showing that this mechanism works differently for the
BHs in D ¼ 4 and D ¼ 5. This difference lies in the
presence of a nonzero topological charge for the ansatz of
the D ¼ 5 case.
Also, using the theory of nonembedded ansatz for

SUðNÞ together with the spin from isospin effect, one
can build fields of arbitrary high spin out of scalar fields

charged under the gauge group. Hence, one can analyze
interacting higher spin fields in asymptotically flat space-
times without introducing by hand higher spin fields.
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