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We study the gravito-electromagnetic perturbations of the Kerr-Newman (KN) black hole and identify the
two—photon sphere and near-horizon—families of quasinormalmodes (QNMs) of the black hole, computing
the frequency spectra (for all the KN parameter space) of the modes with the slowest decay rate.We uncover a
novel phenomenon for QNMs that is unique to the KN system, namely eigenvalue repulsion between QNM
families. Such a feature is common in solid state physics where e.g., it is responsible for energy bands/gaps in
the spectra of electrons moving in certain Schrödinger potentials. Exploiting the enhanced symmetries of the
near-horizon limit of the near-extremal KN geometry, we also develop a matched asymptotic expansion that
allows us to solve the perturbation problem using separation of variables and provides an excellent
approximation to the KN QNM spectra near extremality. The KN QNM spectra derived here are needed not
only to account for gravitational emission in astrophysical environments, such as the ones probed by LIGO,
Virgo and LISA, but also to allow one to extract observational implications of several new physics scenarios,
such as minicharged dark-matter or certain modified theories of gravity, whose observables degenerate to
those of the KN solution at the scale of binary mergers.

DOI: 10.1103/PhysRevD.105.084044

I. INTRODUCTION

The black hole (BH) uniqueness theorems single out the
Kerr-Newman (KN) solution as the most general regular,
stationary, analytic and asymptotically flat electro-vacuum
solution of Einstein-Maxwells equations [1]. Nevertheless,
astrophysical BHs are not expected to be able to retain a
significant amount of electric charge [2,3]. Consequently,
all LIGO-Virgo [4,5] observations of events compatible
with BH binaries [6] have been so far described under the
assumption that the merging objects can be modeled by
the Kerr metric, the zero-charge limit of the KN solution.

Due to the lack of template models describing coalescing
KN BHs (especially in the merger-ringdown regime), the
zero-charge assumption has not yet been verified in full on
observational data; although see Refs. [7,8] for recent work
in this direction. Gravitational-wave (GW) observations of
BH mergers are now probing the largest curvature regimes
ever reached, enabling the experimental study of gravity in
its strong-field and dynamical regime [6,9] and opening an
observational window on potential unobserved gravita-
tional phenomena. Here, we further the characterization
of KN solutions by finding the full gravito-electromagnetic
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quasinormal mode (QNM) spectra of KN BHs for
the slowest decaying modes and for the full range of the
KN 2-parameter space. The determination of the QNM
spectrum requires solving a coupled system of two partial
differential equations (PDEs) for two gauge invariant
Newman-Penrose (NP) fields [10] that, upon gauge
fixing, reduce to the PDE system originally found by
Chandrasekhar [11,12].
Perturbative results in the small rotation parameter a

[13,14] and in the small charge parameterQ [12] expansions
about the Reissner-Nordström (RN) and Kerr backgrounds
are available. Moreover, in [10], a numerical search of KN
modes has been performed in regions of the KN parameter
space that could be more prone to developing an instability,
finding none and thus providing evidence for the linear
mode stability of KN (further supported by the non-linear
time evolution study of [15]). In this manuscript, we
complete the search initiated in [10] and compute the
frequency spectra, across the full KN 2-parameter space,
of themost dominant (i.e., with slowest decay rates) gravito-
electromagnetic QNM families (as described below, there
are twomain families). These are the modes that reduce—in
Chandrasekhar’s notation [11]—to theZ2,l¼m¼ 2, n¼ 0
modes in the Schwarzschild limit (a ¼ Q ¼ 0), where the
harmonic number l gives the number of zeros of the
eigenfunction along the polar direction and n is the radial
overtone (a andQ are the rotation and charge parameters of
KN). In this process we find that, for l ¼ m ¼ 2, n ¼ 0, KN
has two families of QNMs. We coin these families as (1) the
photon sphere (PS), and (2) the near-horizon (NH) families,
although the sharp distinction between the PS and NH
modes is unambiguous only for small rotation a, i.e., when
the KN 2-parameter black hole is close to the Reissner-
Nordström 1-parameter family.
In the Reissner-Nordström case, the PS family of QNMs

is singled out because, in the eikonal or geometric optics
limit (i.e., the WKB limit m ¼ l → ∞) it has a frequency
spectrum that is closely connected to the properties of
unstable equatorial circular photon orbits [16–27]. On the
other hand, the NH family of QNMs distinguishes itself
very clearly from the PS family because: (i) its wave-
function near extremality is very much localized near the
horizon and decays rapidly to zero away from the horizon,
and (ii) its QNM spectrum has an imaginary part that
vanishes in the extremal limit (moreover, in the Reissner-
Nordström case, the NH frequency has a vanishing real
part, unlike the PS modes).
It follows that to explore the PS and NH QNM families

in the KN background, we start by identifying them in the
Reissner-Nordström black hole. Here, the NH QNM family
has the slowest decay rate very close to extremality where
the charge attains its maximum value (and where the
temperature vanishes) but, as we decrease the charge Q,
the PS QNM family becomes the dominant solution: the
two QNM curves intersect and trade dominance at a critical

charge. We then switch on the rotation a and follow these
two families of QNMs as each one of them spans a surface
in the 2-dimensional parameter space of the KN black hole.
In particular, we identify these surfaces as they run from the
Reissner-Nordström limit (with a ¼ 0, Q ≠ 0) all the way
to the Kerr limit (with a ≠ 0, Q ¼ 0). Interestingly, we will
find that as we move toward the Kerr limit, the PS and NH
families lose their individual identities. They start interact-
ing with each other and at a certain point the two families of
QNMs with the two slowest decay rates can be seen as a
combination of what were the PS and NH modes in the
Reissner-Nordström limit. Thus, this work solves a long-
standing QNM puzzle. Indeed, there are hints in the
literature (not made very precise) that PS and NH
QNMs modes should coexist and eventually compete in
the Reissner-Nordström case. It was also known that in the
Kerr case there are two families of modes: the “damped
modes” and “zero-damped modes” of [26,28,29]. But it had
not been understood how the latter are related to the PS and
NH modes of the Reissner-Nordström black hole. With our
computation of the full QNM spectra, we will address this
problem accurately because we will follow the families of
QNMs along the full 2-parameter space of the KN black
hole between its two distinguished 1-parameter limits.
While doing so, we find that, remarkably, the KN frequency
spectra—unlike its a ¼ 0 and/or Q ¼ 0 limits—are popu-
lated with intricate phenomena known as eigenvalue
repulsions. These are ultimately responsible for the fact
that the PS and NH families of Reissner-Nordström lose
their individual identities and typically combine to form
new ‘PS-NH’ QNM families as we move along the KN
phase space toward the Kerr limit.
Besides computing numerically the QNM spectra for the

l ¼ m ¼ 2, n ¼ 0 gravito-electromagnetic QNMs, we will
also use analytical methods to compute the PS and NH
QNMs or the PS-NH modes in some limits. These
analytical approximations match well our numerical results
in the regime of parameters where they are valid and they
contribute significantly to understanding the origin and
distinction between the two QNMs families. For the PS
case, the QNM spectrum for l ¼ m ¼ 2 is well approxi-
mated by the frequencies computed in the eikonal or
geometric optics: the real and imaginary parts of the PS
frequency are proportional to the Keplerian frequency and
to the Lyapunov exponent of the orbit, respectively
[26,27,30]. On the other hand, the NH QNM spectrum
near extremality is well approximated by a matched
asymptotic expansion that explores the enhanced sym-
metries of the near-horizon limit of the near-extremal KN
geometry and allows us to solve the perturbation problem
using separation of variables. In this manuscript, we will
present the final formula for these frequencies (its deriva-
tion will be given in [30]) and compare them with the
numerical data. Moreover, in [30] we will also give the
QNM frequencies for other values of l, m, n to have a
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wider characterization of the KN QNM spectra (and this
will also allows us to further discuss the eigenvalue
repulsion phenomena between the different modes).
Beyond studying the fundamental properties of the

slowest decaying QNMs of KN, our results are of interest
for the interpretation of observational data and for appli-
cations in both ground and space-based GW detectors
[4,5,31–34]. Indeed, the observational applications of our
results are not limited to modeling the GW emission in
realistic astrophysical environments, but include the pos-
sibility of constraining certain dark matter [35] and
modified gravity [8] models. The full implications of these
results to GW observations are explored in a companion
paper [36].

II. FORMULATION OF THE PROBLEM

The KN BH solution can be described in standard Boyer-
Lindquist coordinates ft; r; θ;ϕg (time, radial, polar, azi-
muthal coordinates) [37]. The Killing vector K ¼ ∂t þ
ΩH∂ϕ generates the event horizon with angular velocityΩH

and temperature TH. The event horizon location rþ is the
largest root of the functionΔ. In terms of the mass, rotation,
and charge parameters fM; a;Qg, these quantities are

Δ¼ r2 − 2Mrþ a2þQ2; r� ¼M�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2 −Q2

p
;

ΩH ¼ a
r2þ þ a2

; TH ¼ 1

4πrþ

r2þ − a2 −Q2

r2þ þ a2
: ð1Þ

At r− ¼ rþ, i.e., a ¼ aext ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 −Q2

p
, the KN BH has a

regular extremal (“ext”) configuration with Text
H ¼ 0, and

maximum angular velocity Ωext
H ¼ aext=ðM2 þ a2extÞ.

Since ∂t, ∂ϕ are Killing vector fields of KN, its gravito-
electromagnetic perturbations can be Fourier decomposed
as e−iωteimϕ, where ω and m are the frequency and
azimuthal quantum number of the mode. Using the NP
formalism, [10] derived a set of two coupled PDEs for two
gauge invariant quantities ψ−2 and ψ−1 that describe the
most general perturbations (except for trivial modes that
shift the parameters of the solution) of a KN BH, namely:

ðF−2 þQ2G−2Þψ−2 þQ2H−2ψ−1 ¼ 0;

ðF−1 þQ2G−1Þψ−1 þQ2H−1ψ−2 ¼ 0; ð2Þ

where the second order differential operators fF ;G;Hg are
in Eq. (A4) of the Appendix. The gauge invariant (under
diffeomorphisms and NP tetrad rotations) perturbed quan-
tities ψ−2 and ψ−1 are a combination of NP scalars Ψ’s and
Φ’s (see (A2) of Appendix).
To solve the coupled PDEs (2), we need to impose

physical boundary conditions. At spatial infinity, we require
only outgoing waves, and at the future event horizon, we
keep only regular modes in ingoing Eddington-Finkelstein
coordinates. Finally, we must require regularity at the

North (South) pole θ ¼ πð−πÞ. See Appendix for more
details.
A scaling symmetry of the system allows us to work with

the adimensional parameters fã;Q̃;ω̃g≡fa=M;Q=M;ωMg
(or fâ; Q̂; ω̂g≡ fa=rþ; Q=rþ;ωrþg). The t − ϕ symmetry
of KN means that we need only consider modes with
ReðωÞ ≥ 0, as long as we study both signs of m [38]. To
solve the PDE problem numerically, we use a pseudospec-
tral method that searches directly for specific QNMs using
a Newton-Raphson root-finding algorithm. We refer to the
review [39] and [40–42] for details. The exponential
convergence of the method, and the use of quadruple
precision, guarantee that the results are accurate up to, at
least, the eighth decimal place.

III. ANALYTICAL ANALYSIS
AND EIGENVALUE REPULSION

There are regimes of the parameter space where the
frequency of the QNMs can be well approximated by
analytical formulae obtained from perturbation/WKB
expansions. This helps identify different families of
QNMs. There are two main families of QNMs: (1) the
photon sphere (PS), and (2) the near-horizon (NH) families.
However, as we will find later, this sharp distinction is
unambiguous only for small values of the rotation parameter.
In particular, we can see this clearly for the a ¼ 0 Reissner-
Nordström (RN) case, the imaginary part of the frequency
spectra of which is shown in the left panel of Fig. 1 (in units
of rþ since some curves change toomuch in a small range of
charge ifwe use units ofM) [43]. Lettingn ¼ 0; 1;… denote
the radial overtone, the orange diamond and dark-red
triangle curves describe the n ¼ 0 (PS0) and n ¼ 1 (PS1)
PS families, respectively. And, the green circle and blue
square curves describe the n ¼ 0 (NH0) and n ¼ 1 (NH1)
NH families. Focusing our attention on the families
with slowest decay rate, the PS0 and NH0 curves intersect
(simple crossover) at Q̂ ¼ Q̂RN

c ≃ 0.959227 (Q̃≡ Q̃RN
c ≃

0.9991342). For 0 ≤ Q̂ < Q̂RN
c , PS0 is the dominant QNM,

while for Q̂RN
c ≤ Q̂ ≤ 1 it is the NH0 QNM that has

smaller jImω̂j.
In the eikonal or geometric optics limit (the WKB limit

l ∼ jmj ≫ 1) the PS QNM frequencies are known to be
related to the properties of the equatorial plane unstable
circular photon orbits. The real and imaginary parts of the
PS frequency are proportional to the Keplerian frequency
Ωc and to the Lyapunov exponent λL, respectively [16–25].
The latter describes how quickly a null geodesic congru-
ence around the orbit increases its cross section under
radial deformations. In this limit, the PS frequencies are
(see [26,27,30])

ωeikn
PS ≃

m
bs

− i
nþ 1=2
bsr2s

jr2s þ a2 − absj
jbs − ajð6r2s þ a2 − b2sÞ−1

2

; ð3Þ
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where rs and bs are the radius and impact parameter of the
unstable orbits defined implicitly in terms of M, Q:

M ¼ rsðb2s − a2 − 2r2sÞ
ðbs − aÞ2 ; Q¼ rs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2s − a2 − 3r2s

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðbs − aÞ2

p : ð4Þ

There are two real roots rs higher than rþ which are in
correspondence with two PS modes: the corotating one
(with m ¼ l) that maps to the eikonal orbit with radius
rs ¼ r−s and bs > 0 (and that has the lowest jImω̃j) and the
counterrotating mode with m ¼ −l which is in correspon-
dence with the orbit with radius rs ¼ rþs and bs < 0, with
rþs ≥ r−s ≥ rþ. As a check, we find that (3) is in excellent
agreement with the numerical data for l ¼ m ¼ 6 (see
[30]), and it still gives a reasonable approximation when
l ¼ m ¼ 2. Altogether, this identifies the PS QNM family
and validates our numerics.
Now let us discuss the NH family of QNMs. In the RN

case (left panel of Fig. 1), this is the dominant QNM near
extremality, i.e., for Q̂RN

c < Q̂ ≤ 1. Near extremality, the
RN and KN near-horizon QNM wave functions are very
localized near the horizon and quickly decay to zero away
from it. This suggests doing a poor-man’s matched asymp-
totic expansion (MAE), whereby we take the near-horizon
limit of the perturbed equations (2) to find the near-region
solution (which we solve analytically) and match with a
vanishing far-region wave function in the overlapping
region where both solutions are valid [48]. In fact,
motivated by the result that the near-horizon limit of the
extremal KN BH corresponds to a warped circle fibred over
AdS2 (anti–de Sitter) [49], the perturbations of which can
be decomposed as a sum of known radial AdS2 harmonics,
we can use separation of variables. Therefore, the system

of 2 coupled PDEs for fψ−2;ψ−1g separates into a system
of 2 decoupled radial ordinary differential equations
(ODEs) and a coupled system of 2 angular ODEs. This
yields an analytical expression for the NH frequency (its
long derivation is given in [30]):

ω̃MAE
NH ≃

mã
1þ ã2

þ σ

�
mãð1 − ã2Þ
2ð1þ ã2Þ2 −

i
4

1þ 2n
1þ ã2

−
ffiffiffiffiffiffiffiffi
−λ2

p
4ð1þ ã2Þ2

�

ð5Þ

where n ¼ 0; 1; 2;… is again the radial overtone, here
ã ¼ ãext, and the expansion is over the off-extremality
parameter σ ¼ 1 − r−

rþ
up to Oðσ2Þ. Here, λ2ðm; ãextÞ is a

separation constant that we find by solving numerically the
aforementioned coupled system of two angular ODEs. In
our conventions, Reð ffiffiffi

z
p Þ > 0 and Imð ffiffiffi

z
p Þ > 0 when z is

positive and negative, respectively. Our initial derivation of
(5) is valid for λ2 > 0 but, motivated by the Kerr results
reported in [28,29,50], we will use it also when λ2 < 0 [51].
In a complementary manner, in the WKB limitm ≫ 1, λ2 is
well approximated by

λWKB
2 ¼ λ2;0m2 þ λ2;1mþ λ2;2 þ

λ2;3
m

þOð1=m2Þ; ð6Þ

where the WKB coefficients λ2;0;…; λ2;4 are functions of ã
given in (A6) of the Appendix. At extremality (σ ¼ 0), (5)
reduces to Reω̃ ¼ mΩ̃ext

H and Imω̃ ¼ 0, and in the Kerr and
RN limits, it reduces to the expressions first found in
[26,28,29], respectively.
Approximation (5) is in excellent agreement with the

numerical frequencies (near extremality). This is illustrated
in the left and right panels of Fig. 1. For the RN case

FIG. 1. QNM spectra for KN BHs with a=aext ¼ 0 (left), 0.39 (middle) and 0.96 (right). In the RN case, there is an unambiguous
QNM family classification: the orange diamond (dark-red triangle) curve is the n ¼ 0 (n ¼ 1) PS family which reduces to the dark-red
disk ωrþ ¼ 0.74734337 − 0.17792463i (red square ωrþ ¼ 0.69342199 − 0.54782975i) in the Schwarzschild limit [11,47]. The green
circle (blue square) curve is the n ¼ 0 (n ¼ 1) NH family (not shown: for Q̂ < 0.85 these curves extend to lower Imω̂). In the middle and
right panels one observes eigenvalue repulsions unique to the KN QNM spectra. On the left/right panels we also show the frequency
ω̃MAE
NH given by (5) for n ¼ 0 (black solid curve) and for n ¼ 1 (magenta solid curve).
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(left panel), extremality is at Q̂ ¼ 1 and (5) with n ¼ 0
(black line) gives the correct slope for the NH0 family
(green circles), while (5) with n ¼ 1 (magenta line) yields
the slope of the NH1 family (blue squares). On the right
panel, we take a KN BH family with a=aext ¼ 0.96 (so the
whole family of solutions is close to extremality) and
compare the numerical results for the dominant n ¼ 0
QNMs (curve that connects orange diamonds and green
circles) with the black curve, i.e., (5) with n ¼ 0. Moreover,
we also compare (5) with n ¼ 1 (magenta curve) with the
n ¼ 1 numerical modes with the second slowest decay rate
(3-branched curve connecting the dark-red triangles, green
circles and blue squares). So, (5) clearly identifies the NH
family in the RN limit, and more generically, the dominant
modes near extremality.
Figure 1 illustrates a remarkable property of KN QNMs.

In the RN case (left panel) and for small rotation, the PS0
family dominates the spectra for 0 ≤ Q̃ < Q̃cðãÞ (with
Q̃cð0Þ ¼ Q̃RN

c ) while the NH0 family dominates for
Q̃cðãÞ < Q̃ ≤ 1. But, when ã grows and approaches to
extremality, e.g., at a=aext ¼ 0.96 (right panel), the PS0
family merges with the NH0 family (i.e., orange diamond
and green circle curves merge in the right panel of Fig. 1).
For higher a=aext the two families remain merged and this
line of solutions approaches Imω̃ ¼ 0, Reω̃ ¼ mΩ̃ext

H as
a → aext. The whole n ¼ 0 QNM curve in the right plot is
thus well approximated by (5): it captures the NH0 modes
in the RN limit but also the “PS0-NH0 merged" modes
(when close to extremality).
The above features of the KN QNMs can be best

understood in terms of a critical rotation ã⋆ (or critical
charge Q̃⋆ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ã2⋆

p
) in relation to the extremal rotation

ãext (or extremal charge Q̃ext). When ã⋆ < ãext ≤ 1

(0 ≤ Q̃ext < Q̃⋆), as is the case in the Kerr limit where
ãext ¼ 1, the PS family terminates at Imω̃ ¼ 0 and Reω̃ ¼
mΩ̃ext

H at extremality. However, when ã⋆ > ãext
(Q̃⋆ < Q̃ext), as is the case in the RN limit where
Q̃ext ¼ 1, the PS family falls short of the ðImω̃;Reω̃Þ ¼
ð0; mΩ̃ext

H Þ surface at extremality.
Interestingly, the ⋆ transition point turns out to be given

(within numerical error) by the point where the separation
constant λ2ðm; ãextÞ in (5) vanishes: λ2ðm; ãNH⋆ Þ ¼ 0

(λ2 > 0 for ãext < ãNH⋆ ; λ2 < 0 for ãext > ãNH⋆ ). To get
accurate values for ãNH⋆ we use the numerical solution for
λ2. Alternatively, we get a good approximation by using the
WKB result (6) for λ2:

ãNH⋆ jWKB ∼
1

2
−
5

ffiffiffi
3

p ð2 − ffiffiffi
2

p Þ
32m

þ 5ð69 − 176
ffiffiffi
2

p Þ
2048m2

þOðm−3Þ ð7Þ

In the first case we get fã⋆; Q̃⋆gNH ≃ f0.360; 0.932g while
(7) yields fã⋆; Q̃⋆gNHWKB ∼ f0.311; 0.970g (for m ¼ 2) [54].

In summary, our analysis uncovers a surprising property
not observed in the QNM spectra of Schwarzschild, Kerr or
RN. Indeed, in the KN QNM spectra we observe a
phenomenon know as eigenvalue repulsion [55]. The latter
is common in solid state physics when e.g., electrons move
in certain Schrödinger potentials that introduce energy
bands/gaps (see e.g., Sec. 7 of [58]). The eigenvalue
repulsion feature is most evident by considering the
evolution of the 3 plots in Fig. 1. In the RN case (left
plot), and for small rotation, we have a sharp and
unambiguous distinction between the four families of
modes represented. In particular, the PS0 family dominates
the spectra for 0 ≤ Q̂ < Q̂cðâÞ (with Q̂cð0Þ ¼ Q̂RN

c ) while
the NH0 family dominates for Q̂cðâÞ < Q̂ ≤ 1. The two
modes intersect at Q̂ ¼ Q̂cðâÞ with a simple crossover and
similar crossovers occur when the PS1 curve intersects the
NH0 or NH1 curves. However, at a=aext ¼ 0.39 (middle
panel), we find that eigenvalue repulsion occurs between
the PS1 and NH0 families: the PS1 curve breaks into two
pieces and the same occurs for the NH0 curve. The left
(right) branch of the PS1 family now connects to the right
(left) branch of the NH0 curve and a frequency gap appears
between the two new curves in the neighborhood of the two
associated kinks. The distinction between the families is no
longer sharp. As the rotation increases, new eigenvalue
repulsions occur. For example, at a=aext ¼ 0.96, the PS0
curve breaks into two pieces and the same occurs (again)
for the NH0 curve. The left branch of the PS0 family now
merges with the right branch of the NH0 curve and this new
curve is well described by the black curve (5) (not shown:
the right branch of the PS0 curve merges with a n > 1 NH
curve). Below, the left branch of the NH0 curve now
bridges the dark-red triangle PS1 curve with the blue square
NH1 curve (the NH1 curve also breaks and merges with
another n > 1 curve but we do not show these further
subdominant modes).

IV. FULL QNM SPECTRA

The full spectra of the most dominant KN QNMs—
classified as Z2, l ¼ m ¼ 2, n ¼ 0 by [11] (Table V,
page 262) in the Schwarzschild limit—is given in
Fig. 2. The left/right panel gives the imaginary/real part
of the frequency. The brown curve has Imω̃ ¼ 0,
Reω̃ ¼ mΩ̃ext

H . To scan the 2-dimensional parameter space
we used a grid with 100 × 100 points in ½0; 1� × ½0; 1� for
fQ̂; a=aextg with âext ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Q̂2

p
.

The KN modes with slowest decay rate always terminate
at extremality along the extremal brown curve, with the
frequencies off-extremality well approximated by (5) as
illustrated in Fig. 1. The red surface family, continuously
connected to the Schwarzschild mode (dark-red point
[11,47]), is the PS0 QNM family as we unambiguously
identify it in the RN limit. It dominates the spectra for most
of the parameter space. However, for large Q̃ it is instead
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the NH0 QNM family (green surface) that has the lowest
jImω̃j. In between these orange/green regions there is a
yellowish zone. This is where either simple crossovers (that
trade mode dominance) or eigenvalue repulsions between
the PS0 and NH0 modes occurs. These were already
analysed in the discussion of Fig. 1.
Besides characterizing the fundamental properties of

linear perturbations of the KN black hole, the derived
QNM spectra can be used to model beyond Standard Model
physics in binary mergers and GW emission in realistic
astrophysical environments, bearing increasing importance
with future enhancements in sensitivity of current and
planned GW observatories. In a companion paper [36], we
apply the results obtained in this work to the latest
observations from the GW detector network.
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APPENDIX: PDE AND WKB COEFFICIENTS

1. Coupled pair of PDEs for the KN perturbations

The uniqueness theorems [59,60] state that the Kerr-
Newman (KN) black hole (BH) is the unique, most general
family of stationary asymptotically flat BHs, of Einstein-
Maxwell theory. It is characterized by 3 parameters:massM,
angular momentum J ≡Ma and charge Q. The Kerr,
Reissner-Nordström (RN) and Schwarzschild (Schw) BHs
constitute limiting cases: Q ¼ 0, a ¼ 0 and Q ¼ a ¼ 0,
respectively. The gravitational andMaxwell fields of theKN
BH in Boyer-Lindquist coordinates are given by [37,61]

ds2 ¼ −
Δ
Σ
ðdt − asin2θdϕÞ2 þ Σ

Δ
dr2 þ Σdθ2

þ sin2θ
Σ

½ðr2 þ a2Þdϕ − adt�2;

A ¼ Qr
Σ

ðdt − asin2θdϕÞ; ðA1Þ

with Δ ¼ r2 − 2Mrþ a2 þQ2 and Σ ¼ r2 þ a2 cos2 θ.
Linear gravito-electromagnetic perturbations about the

KN background are more easily addressed in the Newman-
Penrose (NP) formalism [62]. In the context of this
formalism there is a well-known set of NP scalars built
of contractions of the NP tetrad with the Weyl tensor (e.g.,
Ψ2, Ψ3 and Ψ4) or with the Maxwell field strength (e.g.,Φ1

and Φ2) [11,63]. Out of these, one can construct two gauge
invariant perturbed quantities, i.e., quantities that are
invariant under both linear diffeomorphisms and tetrad
rotations, namely [10]:

FIG. 2. Imaginary (left panel) and real (right panel) parts of the frequency for the Z2, l ¼ m ¼ 2, n ¼ 0 KN QNMwith lowest Imjω̃j.
At extremality, the dominant mode always starts at Imω̃ ¼ 0 and Reω̃ ¼ mΩ̃ext

H (brown curve). The dark-red point (a ¼ 0 ¼ Q),
ω̃ ≃ 0.37367168 − 0.08896232i, is the gravitational QNM of Schwarzschild [11,47]. In the right panel, the orange and green regions are
so close to the extremal brown curve that they are not visible.
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ψ−2 ¼ ðr̄�Þ4Ψð1Þ
4 ;

ψ−1 ¼
ðr̄�Þ3

2
ffiffiffi
2

p
Φð0Þ

1

ð2Φð0Þ
1 Ψð1Þ

3 − 3Ψð0Þ
2 Φð1Þ

2 Þ; ðA2Þ

with r̄ ¼ rþ ia cos θ. Here, NP scalars with superscript ð0Þ
refer to scalars in the KN background and the superscript
ð1Þ to first order perturbations of the scalar. These NP
scalars (A2) are the ones relevant for the study of
perturbations that are outgoing at future null infinity and
regular at the future horizon [64]. Reference [10] derived a
set of two coupled partial differential equations (PDEs) for
ψ−2 and ψ−1 that describe the most general perturbations
(except for trivial modes that shift the parameters of the
solution) of a KN BH, namely:

ðF−2 þQ2G−2Þψ−2 þQ2H−2ψ−1 ¼ 0;

ðF−1 þQ2G−1Þψ−1 þQ2H−1ψ−2 ¼ 0; ðA3Þ

where the second order differential operators fF ;G;Hg are
given by [10]

F−2 ¼ ΔD†
−1D0 þ L−1L

†
2 − 6iωr̄;

G−2 ¼ ΔD†
−1α−r̄

�D0 − 3ΔD†
−1α− − L−1αþr̄�L

†
2

þ 3L−1αþia sin θ;

H−2 ¼ −ΔD†
−1α−r̄

�L−1 − 3ΔD†
−1α−ia sin θ

− L−1αþr̄�ΔD†
−1 − 3L−1αþΔ;

F−1 ¼ ΔD1D
†
−1 þ L†

2L−1 − 6iωr̄;

G−1 ¼ −D0αþr̄�ΔD†
−1 − 3D0αþΔþ L†

2α−r̄
�L−1

þ 3L†
2α−ia sin θ;

H−1 ¼ −D0αþr̄�L
†
2 þ 3D0αþia sin θ

− L†
2α−r̄

�D0 þ 3L†
2α−; ðA4Þ

with α� ≡ ½3ðr̄2M − r̄Q2Þ �Q2r̄��−1, and we introduced
the radial and angular Chandrasekhar operators [11],

Dj ¼ ∂r þ
iKr

Δ
þ 2j

ðr −MÞ
Δ

; Kr ¼ am − ðr2 þ a2Þω;

Lj ¼ ∂θ þKθ þ j cot θ; Kθ ¼
m

sin θ
− aω sin θ: ðA5Þ

The complex conjugate of these operators, namely D†
j and

L†
j , can be obtained from Dj and Lj via the replacement

Kr → −Kr and Kθ → −Kθ, respectively.

Note that fixing a gauge in which Φð1Þ
0 ¼ Φð1Þ

1 ¼ 0, (A3)
reduces to the Chandrasekhar coupled PDE system [11]

(see also the derivation in [12]). Finally, note that in the
limit Q → 0 (A3) decouple yielding the familiar Teukolsky
equation for Kerr [66].
Since ∂t; ∂ϕ are Killing vector fields of KN, we can

Fourier decompose the perturbations fψ−2;ψ−1g as
e−iωteimϕ. This introduces the frequency ω and azimuthal
quantum number m of the perturbation. The t − ϕ sym-
metry of the KN BH allows us to consider only modes with
ReðωÞ ≥ 0, as long as we study both signs of m. Then, to
solve the coupled PDEs (A2), we need to impose physical
boundary conditions (BCs). At spatial infinity, a Frobenius
analysis of (A3) that allows only outgoing waves yields the
decay:

ψ sj∞ ≃ eiωrr−ð2sþ1Þþiω
r2þþa2þQ2

rþ

�
αsðθÞ þ

βsðθÞ
r

þ � � �
�
;

where s ¼ −2;−1, and βsðθÞ is a function of αsðθÞ and its
derivative fixed by expanding (A3) at spatial infinity.
At the horizon, a Frobenius analysis whereby we require

only regular modes in ingoing Eddington-Finkelstein
coordinates, yields the expansion

ψ sjH ≃ ðr − rþÞ−s−
iðω−mΩH Þ

4πTH ½asðθÞ þ bsðθÞðr − rþÞ þ � � ��;

where bsðθÞ is a function of asðθÞ and its derivative.
At the North (South) pole x≡ cos θ ¼ 1ð−1Þ, regularity

dictates that the fields must behave as (ε ¼ 1 for jmj ≥ 2,
while ε ¼ −1 for jmj ¼ 0, 1 modes)

ψsjN;ðSÞ ≃ ð1 ∓ xÞε
1�1
2

sþjmj
2 ½A�

s ðrÞ þ B�
s ðrÞð1 ∓ xÞ þ � � ��;

where Bþ
s ðrÞðB−

s ðrÞÞ is a function of Aþ
s ðrÞðA−

s ðrÞÞ and its
derivatives along r, whose exact form is fixed by expanding
(A3) around the North (South) pole.

2. WKB coefficients for the separation constant λ2
At extremality, the modes with slowest decay rate

(independently of belonging to the NH or PS families)
always approach Imω̃ ¼ 0 and Reω̃ ¼ mΩ̃ext

H and (5) of the
main text provides an excellent approximation to their
frequency in an expansion off-extremality (as analyzed in
the discussion of Fig. 1 of the main text). The derivation of
the analytical approximation (5) of the main text is quite
long and thus we will present it in the companion manu-
script [30].
In (5) of the main text, the separation constant λ2 has a

WKB expansion for largem, as given in Eq. (6) of the main
text. The associated WKB coefficients are
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λ2;0 ¼ 4ð1 − 4â2Þ; λ2;1 ¼ −4ð1þ â2Þð2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − â2

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2â2

p
Þ; ðA6aÞ

λ2;2 ¼
3

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − â2

p
ð1þ â2Þ2ð3 − 726â10 − 253â8 þ 128â6 − 74â4 − 50â2Þ

ð1þ 2â2Þ½ð66â6 − 5â4 − 12â2 þ 5Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − â2

p
þ 4ð1 − â4Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2â2 þ 1

p
�
; ðA6bÞ

λ2;3 ¼ ½4ð1þ 2â2Þ7=2ð578577650112â40 − 338129795520â38 − 1042453021104â36þ 1170932108544â34

þ 243872180244â32 − 1092788709804â30þ 457571937931â28 þ 286639850738â26 − 371225227587â24

þ 75821376048â22þ 83823143199â20 − 64522516578â18þ 5397537793â16þ 11870759300â14 − 5939331087â12

þ 15670254â10þ 798959271â8 − 269248008â6 − 8868395â4þ 20327618â2 − 4782969Þ
þ 4

ffiffiffiffiffiffiffiffiffiffiffiffi
1− â2

p
ð1þ 2â2Þ3ð661231600128â40 − 788969522880â38 − 475886378880â36þ 1029138506352â34

− 630648141552â32 − 452699156052â30þ 658166339168â28 − 186975958943â26 − 249892000005â24

þ 178743692406â22 − 3249242106â20 − 56479482309â18þ 20902690721â16þ 3663601312â14 − 5845481340â12

þ 1100552199â10þ 410656173â8 − 279409506â6þ 19829366â4þ 13153165â2 − 4782969Þ�−1

× ½3â2
ffiffiffiffiffiffiffiffiffiffiffiffi
1− â2

p
ð1þ â2Þ3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2â2þ 1

p
ð90588729217536â46þ 93586813404480â44 − 64234642488192â42

− 54181551934224â40þ 14733709326864â38 − 34708141099764â36 − 8979094220672â34þ 34432474064505â32

− 10922161747605â30 − 23041644949212â28þ 5136927583340â26þ 4733507876355â24 − 3578226571619â22

− 898929274206â20 þ 753565243446â18 − 135077374365â16 − 174223122235â14þ 33089919120â12

þ 8380363168â10 − 9890782275â8 − 803782461â6 þ 541670718â4 − 148272034â2 − 57395628Þ
þ 3â2ð1þ â2Þ3ð158530276130688â48þ 192260601732672â46 − 226279077675552â44

− 257580189150768â42þ 238634465705064â40þ 187478664334236â38 − 167948153974214â36

− 79050787933609â34þ 69165996968940â32þ 1562277529575â30 − 26149776558142â28

þ 6310859786413â26þ 3820171951948â24 − 4424582883901â22 − 417658252182â20þ 868831525263â18

− 249677209480â16 − 170706582299â14þ 47404470046â12þ 4708012127â10 − 10932078636â8 − 398469675â6

þ 532105820â4 − 176969858â2 − 57395628Þ�: ðA6cÞ

The derivation of (6) of the main text and of (A6) is again long and will be given it in the companion manuscript [30]. There,
we also show that this WKB expansion provides an excellent approximation already form ¼ 10 and a good approximation
even for m ¼ 2.
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