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In this work we analyze a solution that mimics the Bardeen solution with a cosmological constant
surrounded by quintessence. We show that this solution can be obtained by Einstein equations coupled with
nonlinear electrodynamics. We also show that the solution is not always regular and what the conditions for
regularity are. We analyze the thermodynamics associated with this type of solution by establishing the
form of the Smarr formula and the first law of thermodynamics. We obtain some thermodynamic quantities
such as pressure, temperature, heat capacity, and isothermal compressibility. Once we have these
thermodynamic quantities, we check if this solution has phase transitions and how it behaves at the
points where the transitions occur. For some values of the parameters, we find that the solution exhibits a
first-order phase transition, like a van der Waals fluid.
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I. INTRODUCTION

General relativity (GR) is able to predict and describe a
number of astrophysical objects [1]. One of the most
important predictions of GR is black holes [2]. Due to
their causal structure, black holes have a surface to which
any particle or wave passing through this surface cannot
return; this surface is known as the event horizon. Recently,
the study of black holes has become more important. Two
events that contributed to this were the detection of
gravitational waves by the LIGO/VIRGO collaboration
[3–9], and the first image of the environment of a black hole
obtained by the Event Horizon Telescope (EHT) collabo-
ration [10–15]. Although these experiments represent a
major development in black hole research, the presence of a
shadow or gravitational ringdown are not definitive proof
of this type of solution [16,17]. In addition to black holes,
there are a number of solutions that can be obtained through
GR. Some of these solutions are, for example, wormholes
[18–27], boson stars [28–30], black bounce [31–37], and
regular black holes [38–61] among others. For some of
these solutions to exist, coupling with auxiliary fields such
as scalar, electromagnetic, or Dirac fields are necessary.
The black bounce, for example, is a type of solution that
may arise from the coupling of the gravitational theory with
a scalar field and an electromagnetic field [34].
In the context of black holes, the problem of singularities

arises, i.e., places in spacetime where the geodesics are

interrupted [62]. Possibly, the existence of singularities is a
failure of the theory because it is a classical theory of
gravity. In this sense, a quantum theory of gravity could
solve the problem of the existence of singularities [63].
We do not yet have a complete theory of quantum gravity,

but there are some alternatives to eliminate the problem of
the singularity. One of these alternatives is the regular black
hole, so named because there are no singularities. The first
regular solution was proposed by Bardeen [64]. Since the
Bardeen solution did not satisfy the Einstein equations for
the vacuum, Beato and Garcia showed that this solution can
be obtained if one takes into account the coupling of
gravitational theory with nonlinear electrodynamics [65].
In the literature, the study of regular solutions has become
quite extensive, with a large number of proposed solutions
and with the analysis of the properties [66–70].
Another type of solution that avoids the presence of

singularities is the black bounce [31]. Unlike the regular
metrics mentioned above, this type of solution has a
minimal area that is not zero. Depending on the parameters
of this solution, it is possible to obtain the Schwarzschild
metric, a kind of regular black hole where there is a bounce
instead of a singularity, and a Morris-Thorne wormhole
[36]. Another novelty is that, if we consider GR, these
solutions are not described only by coupling with nonlinear
electrodynamics, which requires an additional matter
[34,37]. Bronnikov and his collaborators also proposed a
solution with a structure similar to the black bounce, the
black universe [22,23,47]. Several papers have appeared on
black bounces, quasinormal modes, shadows, absorption,
and others [71–77].
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Classically, black holes are objects from whose interior
nothing can escape. Thus, one would expect that no
radiation can emanate from them [78]. By semiclassical
analysis, it has been shown that black holes can indeed emit
radiation and that they also have a temperature and entropy
[79]. In fact, there is a whole thermodynamics associated
with the study of black holes. Just as we have the standard
laws of thermodynamics, there are four laws for black hole
thermodynamics [80]. In particular, the first law provides
us with a kind of energy conservation equation, and thus it
is possible to relate the entropy of the black hole to its
parameters such as mass, charge, and rotation [81]. Since it
is a thermodynamic system, it is also possible to analyze the
thermodynamic stability of black holes. For example, the
Schwarzschild solution has a negative heat capacity, so it is
a thermodynamically unstable solution [81].
The entropy of a black hole and the area are related by

S ¼ A=4 [82]. However, for some solutions, if the first law
of thermodynamics is maintained, the relation between area
and entropy is no longer preserved [83]. Since entropy can
be determined by Wald’s formula [81] and we consider
general relativity, the relation between entropy and the area
of the black hole is not changed. In this way, the first law of
thermodynamics must be modified depending on the type
of solution we consider [84,85]. This type of modification
can affect the thermodynamic stability of a solution, since
its temperature and heat capacity also change [86].
The structure of this paper is as follows. In Sec. II we

introduced and analyze some general properties, such as the
spacetime conditions of regularity. In Sec. III we start
analyzing the thermodynamics of this solution using the
temperature, the Smarr formula, and the first law of
thermodynamics. Section IV is devoted to the study of
the heat capacity and its importance for thermodynamic
stability. In Sec. V we obtain the equation of state and the
possibility to analyze this solution from the point of view of
virtual micromolecules. In Sec. VI we analyze the
Helmholtz free energy and the isothermal compressibility
to compare them with the heat capacity results. In Sec. VII
we see how the thermodynamic functions behave near the
critical points to obtain the critical exponents. Our con-
clusions and perspectives can be found in Sec. VIII.
In this paper we consider natural units, where

c ¼ ℏ ¼ G ¼ 1, and the metric signature ðþ;−;−;−Þ.
We adopt the convention that Greek indices run from 0
to 3, so that x0 ¼ t, x1 ¼ r, x2 ¼ θ, and x3 ¼ ϕ.

II. BARDEEN-KISELEV SOLUTION WITH
COSMOLOGICAL CONSTANT

We consider a spherically symmetric spacetime

ds2 ¼ fðrÞdt2 − 1

fðrÞ dr
2 − r2ðdθ2 þ sin2 θdϕ2Þ: ð1Þ

The solution is magnetically charged and has cosmo-
logical constant. The action that describes this theory is

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p ½Rþ 2λþ LNED�; ð2Þ

where R is the curvature scalar, λ is the cosmological
constant, and LNED is the nonlinear Lagrangian of electro-
magnetic theory. The Lagrangian is a nonlinear function of
the electromagnetic scalar F ¼ FμνFμν, where Fμν is the
Maxwell-Faraday tensor.
For a spherically symmetric spacetime that is only

magnetically charged, the only nonzero component of
Fμν is [45]1

F23 ¼ q sin θ; ð3Þ

and the scalar F is

F ¼ 2q
r4

; ð4Þ

where q is the magnetic charge.
Let us consider the Lagrangian

LðF Þ ¼ 24
ffiffiffi
2

p
Mq2

κ2
� ffiffiffiffiffi

2q2

F

q
þ 2q2

�5=2 −
6ωcð2Fq2 Þ

3
4
ðωþ1Þ

κ2
: ð5Þ

When c → 0, the Bardeen solution is recovered. In the limit
F → 0

LðF Þ ≈ −
6c2

3
4
ðωþ1ÞωF

3ðωþ1Þ
4

κ2ðq2Þ34ðωþ1Þ þ 12
ffiffiffi
24

p
FF 1=4m

κ2
ffiffiffiffiffi
q24

p
þOðFF 3=4Þ: ð6Þ

When ω ¼ 1=3, we find

LðF Þ ≈ −
4cF
κ2q2

þ 12
ffiffiffi
24

p
FF 1=4m

κ2
ffiffiffiffiffi
q24

p þOðFF 3=4Þ; ð7Þ

so that for very small values ofF the linear term dominates,

LðF Þ ≈ F ; F → 0: ð8Þ

This means that electromagnetism in the Maxwell limit
behaves approximately like Maxwell theory.
In the presence of the cosmological constant the Einstein

equations are

Rμν −
1

2
gμνRþ λgμν ¼ κ2Tμν: ð9Þ

1In [87], the authors explicitly show how the nonzero compo-
nents are obtained for a spherically symmetric electromagnetic
field.
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Using the stress-energy tensor to nonlinear electrodynamics

Tμν ¼ gμνLðF Þ − dL
dF

Fμ
αFνα; ð10Þ

and solving the Einstein equations, we obtain the metric
function

fðrÞ ¼ 1 − 2cr−3ω−1 −
2Mr2

ðq2 þ r2Þ3=2 −
λr2

3
: ð11Þ

For the limit c → 0 we find the Bardeen-(anti-)de Sitter
solution and for q → 0 we find the Kiselev-(anti-)de Sitter
solution with cosmological constant [88].
To obtain the horizons, we need to solve fðrÞ ¼ 0.

However, we cannot obtain analytical expressions for the
radius of the horizon. The number of horizons depends on
the values of the parameters. In Fig. 1 we see that the
number of horizons can be up to four.
Ifwewant to check the existence of curvature singularities,

since spacetime is spherically symmetric, we only need to
check the Kretschmann scalar [36], K ¼ RμναβRμναβ, which
is given by

K ¼
4ð2cr−3ω−1 þ 1

3
r2ðλþ 6M

ðq2þr2Þ3=2ÞÞ2
r4

þ
4ð2cð3ωþ 1Þr−3ω−2 þ 2Mrðr2−2q2Þ

ðq2þr2Þ5=2 − 2λr
3
Þ2

r2

þ
�
2cð9ωðωþ 1Þ þ 2Þr−3ðωþ1Þ

þ 2

3

�
λþMð−33q2r2 þ 6q4 þ 6r4Þ

ðq2 þ r2Þ7=2
��

2

: ð12Þ

The spacetime is regular only for some values of ω. When
ω ≤ −1, the solution is regular in r → 0 and to ω ≥ −1 it is
regular in r → ∞ but is not asymptotically flat. For ω ¼ −1
we have the following limits:

lim
r→∞

KðrÞ ¼ 8

3
ð6cþ λÞ2; ð13Þ

lim
r→0

KðrÞ¼ 8ð12Mðq2Þ3=2ð6cþλÞþq6ð6cþλÞ2þ36M2Þ
3q6

:

ð14Þ
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FIG. 1. Graphic representation of fðrÞ with respect to the radial coordinate with different values of q, λ, c, and ω.
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For this value of ω, the solution is curvature regular
everywhere, since we have only a shift in the cosmological
constant.

III. THERMODYNAMICS

To start the study of black hole thermodynamics, we can
obtain the temperature of a black hole using the surface
gravity by [81]

Tk ¼
k
2π

; ð15Þ

where

k ¼ f0ðrÞ
2

����
r¼rþ

ð16Þ

is the surface gravity and rþ is the event horizon radius.
Considering Eq. (11), we obtain

Tk ¼
1

4π

�
2cð3ωþ 1Þr−3ω−2þ þ 2Mrþðr2þ − 2q2Þ

ðq2 þ r2þÞ5=2
−
2λrþ
3

�
:

ð17Þ
The first law of black hole thermodynamics for a charged

and static black hole is given by [89]

dM ¼ THdSþΦdqþ VdP; ð18Þ

whereM is the total energy of the system,Φ is the magnetic
potential, P is the thermodynamic pressure, written as

P ¼ −
λ

8π
; ð19Þ

and S is the entropy of the system. The area law states
that [82]

S ¼ A
4
¼ πr2þ; ð20Þ

where A is the area of the black hole.
The first law, as given in Eq. (18), is not valid if we have

nonlinear electrodynamics [84–86]. The temperature and
magnetic potential can be derived from the first law as
follows:

TH ¼ ∂M
∂S and Φ ¼ ∂M

∂q : ð21Þ

We can obtain M from the condition fðrþÞ ¼ 0, which
leads to

M¼−
1

6
ðq2þ r2þÞ3=2r−3ω−3þ ð6cþλr3ωþ3

þ −3r3ωþ1
þ Þ: ð22Þ

The temperature in (21), with (22), is given by

TH ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ r2þ

p
r−3ω−5þ ð6cðq2ðωþ 1Þ þ r2þωÞ þ r3ωþ1

þ ð−2q2 − λr4þ þ r2þÞÞ
4π

: ð23Þ

The temperature Tk is different from TH. In addition to
temperature, the other quantities derived from the usual first
law of thermodynamics, derivative of the mass with respect
to some parameter, also present problems. To solve this
problem, we need to modify the first law. The usual first
law arises in a context where the Lagrangian of the theory
does not explicitly depend on the mass of the black hole.
Thus, when building the first law for solutions with
nonlinear electrodynamics, derivatives of the stress-energy
tensor must be taken into account and these corrections
must modify the first law in such a way that the old
thermodynamic quantities must relate to the new ones
through a correction factor.
The new first law is written as [90]

dM ¼ TdSþΦdqþ PdV; ð24Þ

where

dM¼ dM

�
1þ4π

Z
∞

rþ
r2
∂T0

0

∂Mdr

�
¼Wðrþ;qÞdM; ð25Þ

where Wðrþ; qÞ is the correction factor, given by

Wðrþ; qÞ ¼
�
1þ 4π

Z
∞

rþ
r2
∂T0

0

∂M dr

�
; ð26Þ

and T0
0 is one of the components of the stress-energy tensor.

We find that the relation between the temperatures is

Tk ¼ Wðrþ; qÞTH ¼ Wðrþ; qÞ
∂M
∂S ¼ r−3ω−2þ ð6cðq2ðωþ 1Þ þ r2þωÞ þ r3ωþ1

þ ð−2q2 − λr4þ þ r2þÞÞ
4πðq2 þ r2þÞ

; ð27Þ
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and Wðrþ; qÞ is

Wðrþ; qÞ ¼
r3þ

ðq2 þ r2þÞ3=2
: ð28Þ

When we have an extreme black hole, as we see in the
first image of Fig. 1, the temperature arising from surface
gravity is zero. To understand this we just need to realize
that the radius of the horizon is just where we have a
minimum of the function fðrÞ. So the derivative at that
point is zero. The correction factor is not zero for an
extreme black hole. So, both Tk and TH are zero for
extreme black holes.
The temperatures for Bardeen-(anti-)de Sitter and

Kiselev-(anti-)de Sitter are given by

TkB ¼ −
2q2 þ λr4þ − r2þ
4πq2rþ þ 4πr3þ

; ð29Þ

TkK ¼ 6cωr−3ω−1þ − λr2þ þ 1

4πrþ
: ð30Þ

It is not so obvious what the differences are between this
temperature and the temperature of Eq. (17). To better
analyze this situation, let us see how the temperature
behaves when we change certain parameters in Fig. 2. If
we assign a value to rþ, the temperature decreases as the
charge and the parameter c increase. These results show
that the solution(11) is colder than the Bardeen- (anti-)de
Sitter solution and the Kiselev-(anti-)de Sitter solution.
To obtain the complete first law, we must first find the

Smarr formula, a relation that connects the mass (energy) to
the other parameters through a homogeneous function. We
can derive the Smarr formula from the properties of a
homogeneous function [91].

In terms of the entropy, mass can be written as

MðS; q; c; λÞ

¼ 1

6

�
q2 þ S

π

�
3=2

S−
3
2
ðωþ1Þ

�
ð3π − λSÞS3ω

2
þ1

2 − 6cπ
3ðωþ1Þ

2

�
:

ð31Þ

To determine the degree of homogeneity, we write

MðlaS;lbq;ldc;lhλÞ

¼ 1

6

�
l2bq2þ laS

π

�
3=2

l−
3a
2
ðωþ1ÞS−3

2
ðωþ1Þ

×

�
ð3π− lhλlaSÞla2ð3ωþ1ÞS1

2
ð3ωþ1Þ−6π

3ðωþ1Þ
2 ldc

�
: ð32Þ

To isolate l, we assume h ¼ −a, d ¼ að3ωþ 1Þ=2,
b ¼ a=2, and a ¼ 1, which leads to

MðlS; l1=2q; lð3ωþ1Þ=2c; l−1λÞ

¼ −
1

6

ffiffi
l

p �
q2 þ S

π

�
3=2

× S−
3
2
ðωþ1Þ

�
6π

3ðωþ1Þ
2 cþ ðλS − 3πÞS1

2
ð3ωþ1Þ

�
; ð33Þ

such that the mass is a homogeneous function with degree
of homogeneity n ¼ 1=2 [91].
Euler’s identity states that for a homogeneous function

with degree n, we have [91]

n:fðx1; x2…xmÞ ¼ a1x1
∂f
∂x1 þ a2x2

∂f
∂x2 þ a3x3

∂f
∂x3 þ � � �

þ amxm
∂f
∂xm : ð34Þ

Thus we obtain
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FIG. 2. Graphic representation of the temperature associated to the solution (11) with M2λ ¼ −0.08π and ω ¼ −2=3.
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1

2
MðS; q; c; λÞ ¼ THSþ 1

2
Φq

þ 1

2
ð1þ 3ωÞAcc − Aλλ; ð35Þ

where TH and Φ are given by (21), and Ac and Aλ are

Ac ¼
∂M
∂c and Aλ ¼

∂M
∂λ : ð36Þ

With Eq. (21) and (36) we get that (35) and (31) are equal.
The first law is written as

dM ¼ WðS; qÞdM
¼ TkdSþWðS; qÞΦdqþWðS; qÞAcdc

þWðS; qÞAλdλ: ð37Þ

For regular black holes, it is normal that the Lagrangian
depends explicitly on some parameters, such as charge and
mass. Fluctuations in the matter sector are not a problem
because they are compensated by fluctuations in the
geometry sector by the first law, (37).

IV. HEAT CAPACITY

From thermodynamics, we know that the stability of a
thermodynamic system requires CP ≥ CV ≥ 0 and
kT ≥ kS ≥ 0, where CP and CV are the heat capacity at
constant pressure and volume, respectively, and kT and kS
are the isothermal compressibility and isentropic compress-
ibility, respectively [92].
In black thermodynamics, compressibility and heat

capacity also give us information about the stability of
the system. The isothermal compressibility and heat capac-
ity at constant pressure are given by [93]

CP ¼ Tk
∂S
∂Tk

����
P
; ð38Þ

kT ¼ −
1

V
∂V
∂P

����
T
: ð39Þ

We will focus on the heat capacity. We get that the heat
capacity at constant pressure is

CP ¼ f2Sðπq2 þ SÞðS3ω
2
þ1

2ð2π2q2 þ λS2 − πSÞ − 6cπ
3ðωþ1Þ

2 ðπq2ðωþ 1Þ þ SωÞÞg
× f6cπ3ðωþ1Þ

2 ðπq2Sðωð6ωþ 7Þ þ 4Þ þ π2q4ðωþ 1Þð3ωþ 2Þ þ S2ωð3ωþ 2ÞÞ
þ S

3ω
2
þ1

2ðπS2ð3λq2 þ 1Þ − 7π2q2S − 2π3q4 þ λS3Þg−1 ð40Þ

This result is valid only if we derive temperature from the surface gravity. If we use (21), we get

C̄P¼
2Sðπq2þSÞðS3ω

2
þ1

2ð2π2q2þλS2−πSÞ−6cπ
3ðωþ1Þ

2 ðπq2ðωþ1ÞþSωÞÞ
6cπ

3ðωþ1Þ
2 ð2πq2Sð3ω2þ5ωþ2Þþπ2q4ð3ω2þ8ωþ5ÞþS2ωð3ωþ2ÞÞþS

3ω
2
þ1

2ðπS2−4π2q2S−8π3q4þλS3Þ
: ð41Þ

These two heat capacities are connected by

CP ¼ WðS; qÞ ∂TH

∂Tk
C̄P: ð42Þ

The heat capacity to the Bardeen-(anti-)de Sitter and
Kiselev-(anti-)de Sitter solutions are

CPB ¼ 2Sðπq2 þ SÞð2π2q2 þ λS2 − πSÞ
πS2ð3λq2 þ 1Þ − 7π2q2S − 2π3q4 þ λS3

; ð43Þ

CPK ¼ 2Sð−6cπ3ðωþ1Þ
2 ωþ λS

3ðωþ1Þ
2 − πS

3ω
2
þ1

2Þ
6cπ

3ðωþ1Þ
2 ωð3ωþ 2Þ þ λS

3ðωþ1Þ
2 þ πS

3ω
2
þ1

2

: ð44Þ

In Fig. 3 we see how the heat capacity to the solution (11)
behaves. There are both positive and negative values forCP,
so the solution is thermodynamically stable for some values
of entropy. This behavior is different from the Schwarzschild
solution where the heat capacity is always negative,
CP ¼ −2S. We also see that in the range of small values
of entropy and negative heat capacity, the temperature is also
negative and therefore this range has no physicalmeaning. In
the Bardeen- (anti-)de Sitter solution, the first phase tran-
sition occurs at a higher temperature value than in the other
cases, while the second phase transition occurs at a lower
temperature value than in the other cases. In this way, the
Bardeen solution has a smaller temperature range for the
intermediate phase. From Fig. 4 we see that the Kiselev-
(anti-)de Sitter solution has only one phase transition, while
the solution (11) has two phase transitions.
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V. EQUATION OF STATE

From the modified first law (37), the thermodynamic volume is given by

V ¼ ∂M
∂P ¼ 4πr3þ

3
: ð45Þ

With (17) and (45) we obtain the equation of state PðT; VÞ, i.e.,
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PðT; VÞ ¼ 4q2ð6π4=3T ffiffiffiffi
V3

p þ ð6πÞ2=3Þ þ 6ð6πÞ2=3TV − 3
ffiffiffi
63

p
V2=3

36
ffiffiffi
π3

p
V4=3 −

4ωπωþ
2
3c

3ωþ2
3Vωþ5

3

�
2

ffiffiffi
2

3
p

q2ðωþ 1Þ þ
�
3V
π

�
2=3

ω

�
: ð46Þ

The pressure to the Bardeen-(anti-)de Sitter and Kiselev-
(anti-)de Sitter solutions are

PBðT; VÞ ¼
ffiffi
π
6

3
p ð2q2 þ 3TVÞ

3V4=3 þ 2πq2T
3V

−
1

262=3
ffiffiffi
π3

p
V2=3 ; ð47Þ

PKðT; VÞ ¼ −c
�
4π

3

�
ω

ωV−ω−1 þ
ffiffi
π
6

3
p

Tffiffiffiffi
V3

p

−
1

262=3
ffiffiffi
π3

p
V2=3 : ð48Þ

The critical points result from the conditions [94–96]

�∂P
∂V

�
T
¼ 0; and

�∂2P
∂V2

�
T
¼ 0: ð49Þ

Unfortunately, we are not able to solve this equation
analytically, but if we fix some values for parameters q,
ω-, and c, we get numerical values for Tc, Pc, and Vc. In
Fig. 5 we show the isotherm considering three cases,
T < Tc, T > Tc, and T ¼ Tc, where Tc is the critical
temperature. It is clear that the pressure is higher for
higher temperature values. At a fixed temperature,
the pressure increases as the charge and c increase.
For the Kiselev-(anti-)de Sitter solution it is not
possible to solve the condition (49) because there is no
inflection point in PðVÞ. So we are not able to find the
critical points.
Since we have the equation of state PðT; VÞ, we

can obtain the compressibility factor Z, which is defined
as [92]

Z ¼ PV
T

: ð50Þ
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For an ideal gas, i.e., a gas in which there is no interaction
between the particles that compose it, we have Z ¼ 1 [92].
For a real gas where there is interaction between the
particles that make it up, Z depends on factors such as
pressure and temperature [92]. Thus, the compressibility

factor basically tells the deviation of the behavior of a real
gas from that of an ideal gas. Since PðT; VÞ is a function of
temperature and volume, Z is also a function of T and V
and is written as

ZðT; VÞ ¼ 4q2ð6π4=3T ffiffiffiffi
V3

p þ ð6πÞ2=3Þ þ 6ð6πÞ2=3TV − 3
ffiffiffi
63

p
V2=3

36
ffiffiffiffiffiffi
πV3

p
T

−
c
T

�
4π

3V

�
ωþ2

3

�
q2ðωþ 1Þ þ

�
3V
4π

�
2=3

ω

�
: ð51Þ

To Bardeen-(anti-)de Sitter and Kiselev-(anti-)de Sitter
we find

ZKðT; VÞ ¼ −
cð4π

3
ÞωωV−ω

T
−

ffiffiffiffi
V3

p

262=3
ffiffiffi
π3

p
T
þ

ffiffiffi
π

6

3

r
V2=3; ð52Þ

ZBðT; VÞ ¼
ffiffi
π
6

3
p ð2q2 þ 3TVÞ

3T
ffiffiffiffi
V3

p þ 2πq2

3
−

ffiffiffiffi
V3

p

262=3
ffiffiffi
π3

p
T
: ð53Þ

In Fig. 6 we see how Z behaves when we increase
the pressure for different values of the temperature. The
compressibility factor diverges to small values of the
pressure. As said, for a real gas Z ≠ 1, but for small values
of pressure some gasses behave like an ideal gas. For a van
der Waals fluid, the compressibility factor at the critical
point is Zc ¼ 0.375 [95]. For the solution (11) we find
Zc ≈ 0.75, which is twice as much as in the van der Waals
case.

In the context of fluids, the compressibility factor, when
analyzed microscopically, provides information about the
interaction of the molecules that make up the fluid [97].
The most important point is this interpretation of the
molecules in the context of black holes. According to
Wei and Liu, it is possible to analyze a black hole
microscopically through the idea of virtual molecules
[98]. Thus, it is interesting to use the number density of
virtual micromolecules of the black hole, i.e.,

n ¼ 1

v
¼ 1

2l2prþ
; ð54Þ

where v is the specific volume of the black hole fluid and
lp ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏG=c3

p
is the Planck length. Since we are consid-

ering natural units, lp ¼ 1 and n ¼ 1=v ¼ 1=2rþ. Note that
the specific volume is linear with the radius of the event
horizon. In terms of the number density, the temperature is

TðnÞ ¼ 3cð2nÞ3ωþ2nð4n2q2ðωþ 1Þ þ ωÞ − 8n4q2 þ 2πPþ n2

2nπð4n2q2 þ 1Þ : ð55Þ

For Bardeen-(anti-)de Sitter and Kiselev-(anti-)de Sitter we
find

TBðnÞ ¼
−8n4q2 þ n2 þ 2πP

8πn3q2 þ 2πn
; ð56Þ

TKðnÞ ¼
6c23ωωn3ωþ2

π
þ P

n
þ n
2π

: ð57Þ

In Fig. 7 see how the temperature behaves when we change
the number density for different values of the pressure.
There is a maximum value of n and, depending on the value
of P, there are other limits in the number density. For
example, for small values of pressure, there is a range
where the temperature is negative, so these values of n are
not allowed. Towards larger values of charge, the number
density increases. As c increases, the number density
decreases.
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VI. HELMHOLTZ FREE ENERGY AND
ISOTHERMAL COMPRESSIBILITY

To verify the phase transition, we should analyze the
Helmholtz free energy [94–96,99–102], F, given by

F ¼ M − TS: ð58Þ

With (22), (17), and (20), we obtain

F ¼ 1

6

�ðq2 þ r2þÞ3=2ðð8πPr2þ þ 3Þr3ωþ1
þ − 6cÞ

r3ðωþ1Þ
þ

þ 3r2þð6cr−3ωþ − 8πPr3þ − 3rþÞ
2ðq2 þ r2þÞ

−
6c
r3ωþ

− 3cð3ωþ 1Þr−3ωþ þ 3rþ

�
: ð59Þ

To Bardeen-(anti-)de Sitter and Kiselev-(anti-)de Sitter we
find

FB ¼ rþ
2
−
r3þð8πPr2þ þ 3Þ
4ðq2 þ r2þÞ

þ ð8πPr2þ þ 3Þðq2 þ r2þÞ3=2
6r2þ

;

ð60Þ

FK ¼ −
c
r3ωþ

�
1þ 3ω

2

�
− 2πPr3þ þ rþ

6
ð8πPr2þ þ 3Þ − rþ

4
:

ð61Þ

In Fig. 8 we show the behavior of the Helmholtz free
energy. For small values of the temperature, we have only
small black holes. As we increase the temperature, there is
more than one possible state. There is a temperature value
for which there are three different states, but two of them
have the same energy. Interestingly, there is a black hole,
the intermediate one, for which the heat capacity is
negative, that is, it is thermodynamically unstable.
When we increase the pressure, the intermediate black
hole disappears and the phase transition occurs from a
small black hole to a large black hole. The Kiselev solution
has only two phases and as the charge increases, the
temperature required for the phase transition decreases. In
the Bardeen solution, there are three phases, but as c
increases, one of the phases disappears at positive
temperatures.
Another way to analyze the phase transition is

through isothermal compressibility. If we use (39) with
(46), we get
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kT ¼ 24πðr2þ þ q2Þr3ωþ5
þ ½r3ωþ1

þ ðq2r2þð24πPr2þ þ 7Þ
þ 8πPr6þ þ 2q4 − r4þÞ − 6cðq2r2þðωð6ωþ 7Þ þ 4Þ
þ q4ðωþ 1Þð3ωþ 2Þ þ r4þωð3ωþ 2ÞÞ�−1: ð62Þ

To Bardeen-(anti-)de Sitter and Kiselev-(anti-)de Sitter
we get

kTB ¼ 24πr4ðq2 þ r2Þ
q2r2ð24πPr2 þ 7Þ þ 8πPr6 þ 2q4 − r4

; ð63Þ

kTK ¼ 24πr3ωþ3

6cω− ð18cω2þ18cωÞþð8πPr2−1Þr3ωþ1
: ð64Þ

When the isothermal compressibility is positive, the sol-
ution is thermodynamically stable [92]. In Fig. 9 we see
that the solution is stable for a small and large black. As we
already know from the heat capacity, the intermediate black
hole is thermodynamically unstable.

VII. CRITICAL EXPONENTS

As we have seen, some physical quantities such as
isothermal compressibility and heat capacity diverge during
a phase transition. Even though these quantities diverge, we
can analyze their behavior near the transition point. For this
purpose, we use the critical exponents [95,96]. To obtain
the critical exponents, we use

t ¼ T − Tc

Tc
; v ¼ V − Vc

Vc
; and p ¼ P

Pc
: ð65Þ
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The critical exponents α, β, γ, and δ are obtained
from [92]

CV ¼ T

�∂S
∂T

�
∝ jtj−α; ð66Þ

η ¼ V1 − V2 ∝ jtjβ; ð67Þ

kT ¼ −
1

V
∂V
∂P ∝ jtj−γ; ð68Þ

jP − Pcj ∝ jV − Vcjδ; ð69Þ

where η is the difference in volume between two phases.
Before proceeding, we have analyzed the phase tran-

sition graphically for certain parameter values. Thus, in the
next analyses, although it is not obvious, we consider
the same values as before, ω ¼ −2=3, q ¼ 0.2M, and
Mc ¼ 0.2.
If we use (65) and rewrite (46) and expand it for small

values of t and v, we get

p ¼ 1þ tða − bvÞ − dv3 þOðv4; tv2Þ; ð70Þ

where a, b, and d are just constants that are combinations of
ω, q, and c. If we consider t as constant and derive p to v,
we get

dp ¼ −ðbtþ 3dv2Þdv: ð71Þ

This relation is important to apply Maxwell’s area law,
which states [95,96]

Z
VdP ¼ 0: ð72Þ

Thus, considering Maxwell’s area law and the fact that the
pressure is constant at the phase transition, we obtain

p ¼ 1þ tða − bv1Þ − dv31 ¼ 1þ tða − bv2Þ − dv32; ð73Þ

0 ¼
Z

v2

v1

ðvþ 1Þðbtþ 3dv2Þdv: ð74Þ

Solving these equations yields the nontrivial solution as
follows:

v1 ¼ −v2 ∝
ffiffi
t

p
and η ∝

ffiffi
t

p
: ð75Þ

This means that one of the critical exponents is β ¼ 1=2.
We can also use (70) to calculate the isothermal

compressibility and we find that

kT ∝
1

t
; ð76Þ

such that γ ¼ 1.
We can rewrite the condition jP − Pcj ∝ jV − Vcjδ as

jp − 1j ∝ jvjδ. From (70) we get

p − 1 ∝ tða − bvÞ − dv3:

However, in the critical isotherm we have t ¼ 0, so that,

p − 1 ∝ v3: ð77Þ

With this result, we find the critical exponent δ ¼ 3.
To determine α, we need to analyze the heat capacity at

constant volume. To obtain CV , we need to rewrite the
entropy as a function of volume, which is given by

SðVÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
9V2π

16

3

r
: ð78Þ

If the volume is constant, the heat capacity at constant
volume is

CV ¼ T

�∂S
∂T

�����
V
¼ 0: ð79Þ

This means that the critical exponent is α ¼ 0. We see that
these exponents satisfy the Griffiths, Rushbrooke, and
Widom equalities [92,96,103];

αþ βð1þ δÞ ¼ 2; Griffiths ð80Þ

γðδþ 1Þ ¼ ð2 − αÞðδ − 1Þ; Griffiths ð81Þ

αþ 2β þ γ ¼ 2; Rushbrooke ð82Þ

γ ¼ βðδ − 1Þ; Widom ð83Þ

which says that there are only two independent exponents.

VIII. CONCLUSIONS

In this article, we have obtained and analyzed a mag-
netically charged solution that mimics the Bardeen regular
black hole, magnetically charged, with cosmological con-
stant, and surrounded by quintessence. The Lagrangian of
this solution has as a limit in the Bardeen case at c ¼ 0.
We find a metric function that can have up to four
horizons depending on the parameters. By analyzing the
Kretschmann scalar, we find that the solution is regular: in
the whole spacetime up to ω ¼ −1, at infinity of the radial
coordinate when ω ≤ −1, in r ¼ 0 up to ω ≥ −1.
It was also possible to analyze the solution from the point

of view of black hole thermodynamics. We obtained two
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different temperatures Tk and TH reflecting the use of
nonlinear electrodynamics, and therefore we modified the
first law by the correction factor (28). Moreover, analyzing
(33), we found that the mass is a homogeneous function
with a degree of homogeneity n ¼ 1=2, and thus we found
the Smarr formula (35).
We obtain two values for the heat capacity connected by

(42). Analyzing Figs. 3 and 4, we conclude that CP can take
both positive and negative values as a function of entropy,
i.e., there are regions where the solution is thermodynami-
cally stable ðCP ≥ 0Þ and in others it is unstable ðCP < 0Þ.
The equation of state (46) behaves like a van derWaals fluid
for q ¼ 0.2M,Mc ¼ 0.2, and ω ¼ −2=3, and at the critical
point the compressibility factor is twice as large as in the van
der Waals case. We also construct the temperature as a
function of the number density of virtual micromolecules of
the black hole, as shown in Fig. 7. To obtain a positive
temperature, n cannot take any arbitrary value, so there must
be some bounds on this variable.
By analyzing the Helmholtz free energy and the iso-

thermal compressibility of the system, we show that the

solution has two thermodynamically stable states, namely
small and large black holes. During the phase transition, a
third intermediate phase occurs, but it is thermodynami-
cally unstable. Finally, fixing the values q ¼ 0.2M,
Mc ¼ 0.2, and ω ¼ −2=3, we calculated the critical
exponents β ¼ 1=2, γ ¼ 1, δ ¼ 3, and α ¼ 0, but only
two of them are independent since they are connected by
the Griffiths, Widom, and Rushbrooke equalities.
In future work, we hope to explore some topics that are

missing in this paper, such as geodesic analysis, shadows,
causal structure, maximum analytical extension, and the
analysis of the interaction with bosonic and fermionic
fields.
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