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We present a new approach to constrained classical fields that enables the action formalism to dictate
how external sources must enter the resulting equations of motion. If symmetries asserted upon the varied
fields can be modeled as restrictions in Fourier space, then we prove that these restrictions are automatically
applied to external sources in an unambiguous way. In contrast, the typical procedure inserts symmetric
Ansätze into the Euler-Lagrange differential equations, even for external sources not being solved. This
requires ad hoc constraint of external sources, which can introduce leading-order errors to model systems
despite superficial consistency between model field and source terms. To demonstrate, we consider
Robertson-Walker cosmologies within general relativity and prove that the influence of pointlike
relativistic pressure sources on cosmological dynamics cannot be excluded by theoretical arguments.
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I. INTRODUCTION

The principle of stationary action is the theoretical
foundation of contemporary physics [ [1], §2.2]. Unlike
differential equations, the integral nature of the action
makes it attractive for working with nonlocal constraints,
such as those in Fourier space. Such constraints are
commonly made to reduce the complexity of model
equations. For example, a symmetry Ansatz that removes
coordinate dependence in ẑ has vanishing Fourier modes
off of the bxy plane. Traditionally, simplifying assumptions
such as these are applied to all fields in a given physical
model. This includes both the dynamical degrees of free-
dom within the model and fields representing external
sources. In applied settings, this is justified: the experi-
menter has physical control over sources and boundaries. In
observational settings, however, this is not always the case.
For example, in cosmology, one uses data to reconstruct the
types of source present within the Universe and their
distribution in spacetime. Though there is little disagreement
that general relativity (GR) is the appropriate framework
within which to construct cosmological models, there has
been significant debate concerning what simplifying
assumptions can be made. Many authors have argued that
the formation of structures must necessarily be taken into
account when constructing a cosmological model (e.g.,
[2–5]). This “cosmological backreaction,” though well

motivated by the nonlinear nature of Einstein’s field equa-
tions, has been disputed (e.g., [6–9]). The debate over
backreaction highlights the ambiguities that can present
when determining the appropriate notion of “source” in
idealized models.
In this paper, we will derive the Euler-Lagrange equa-

tions for classical fields on the N-torus in a manner that
incorporates the additional symmetries imposed by Fourier-
space constraint. We will discover that symmetries imposed
on model fields automatically become applied to other
fields held fixed during the variation, i.e., sources.
Consequently, a significant advance of our approach to
the Euler-Lagrange equations is an unambiguous procedure
for converting an unconstrained, microphysical source into
a source appropriate for simplified dynamical models. This
work generalizes an existing technique, applicable only
with position-independent model fields, to arbitrary shap-
ing in Fourier space [10,11].

II. DEFINITIONS

Let the N-torus be denoted by TN, let I be a closed
interval on R, and define

M ≔ I × TN: ð1Þ

Note thatM can accommodate a flat Lorentz metric f with
global coordinates ðx; ηÞ and that η ¼ η0 defines a spatial
slice with respect to f. In these coordinates, f ¼ −dη2þ
dx2. With respect to f, TN is the product of N, mutually*kcroker@phys.hawaii.edu
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orthogonal, circles of equal, but arbitrarily large, length. In
this case, x becomes a coordinate on the simply connected
covering space of the flat N-torus: RN . Each component of
x is then well-defined up to integral multiples (translations)
of V1=N on any TN, where V is the volume of the torus.
Let A be one of a finite collection of fields on M. Let

LðA; ∂μA;…Þ be a Lagrange density with convergent
power series in A, these other fields, and their derivatives.
We suppose that A can be represented by its spatial Fourier
transform Aðk; ηÞ on TN ,

Aðx; ηÞ ¼
X
k

eik·xAðk; ηÞ: ð2Þ

We will often suppress coordinate dependence for con-
cision. All modes of the N-torus are integer multiples of a
fundamental mode,

K ≔
2π

V1=N : ð3Þ

The action S characterizing the dynamical evolution of A is
the integral of L over M

S ≔
Z
M

LdNþ1x: ð4Þ

The equations of motion for the field A are determined by
demanding that S be critical to all C∞ variations δA, of
compact support in space and time, which satisfy the same
constraints as the field A [ [12], § 5]. We emphasize that δA
is an entirely new field temporarily introduced to determine
equations of motion.
Evaluation of the varied Lagrange density gives, by

definition, Z
M

δA

�
δL
δA

�
dNþ1x ≔ 0: ð5Þ

If the degree of freedom A were unconstrained, then the
equations of motion δL=δA ¼ 0 would follow from the
fundamental lemma of variational calculus. The fundamen-
tal lemma (e.g., [ [13], § 2.2]), however, requires that the
variations δA include all C∞ functions of compact support.
If the field A is constrained in Fourier space, then the
variations δA are necessarily constrained in the same way.
This means that the variations δA are not sufficient to
allow the application of the fundamental lemma to extract
equations of motion.

III. RESULTS

We will now generalize the fundamental lemma to the
case where degrees of freedom are constrained in k space.
Lemma 1. Let Aðk; ηÞ be the Fourier transform of some

field Aðx; ηÞ that appears in L. Let V denote the support of
Aðk; ηÞ. Then the equations of motion for A are

δL
δA

� F−1½1V � ¼ 0; ð6Þ

where � denotes convolution,1 F−1 denotes the inverse
Fourier transform, and 1 denotes the indicator function.
Proof.— Suppose we have varied L with respect to A.

Use compactness of M to write the varied action as an
iterated integral

Z
η

Z
x
δA

�
δL
δA

�
dx dη: ð7Þ

The temporal integrand canbe recognized as an inner product
on L2 (i.e., the Lebesgue square-integrable functions)

Z
η

�
δA;

δL
δA

�
TN
dη: ð8Þ

We compute this inner product in k space. Use the indicator
function to express the Fourier transform of a variation as

δAðk; ηÞ ≔ δAðk; ηÞ1VðkÞ; ð9Þ

where δAðx; ηÞ denotes an arbitraryC∞ variation of compact
support in position and time. The inner product in expression
(8) is L2 basis invariant (i.e., Plancheral’s theorem):�

δA;
δL
δA

�
x
¼

�
δA1V;

δL
δA

�
k
: ð10Þ

Using standard properties of the inner product onL2, wemay
commute the indicator function�

δA1V;
δL
δA

�
k
¼

�
δA;

δL
δA

1V

�
k
: ð11Þ

Using Plancheral’s theorem to return to position space
produces the convolution of δL=δA against the inverse
Fourier transform of the indicator function for V�

δA;
δL
δA

1V

�
k
¼

�
δA;

δL
δA

� F−1½1V �
�

x
: ð12Þ

We conclude that the varied action is equal to

Z
M

δA

�
δL
δA

� F−1½1V �
�
dNþ1x ≔ 0: ð13Þ

The variations under the action integral δA are now arbitrary
in C∞ and have compact support. In this form, the funda-
mental lemma of variational calculus can be applied to

1Convolution on TN is understood as circular/cyclic convolu-
tion, see [ [14], p. 265].
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extract consistent equations of motion from under the
action. ▪
For clarity, we note that the consistent equations of

motion, given in Eq. (6), expand to�
∂μ

� ∂L
∂ð∂μAÞ

�
−
∂L
∂A þ � � �

�
� F−1½1V � ¼ 0; ð14Þ

where dots denote higher derivative terms that may result
from more intricate L. Note that the typical Euler-Lagrange
equations

∂μ

� ∂L
∂ð∂μAÞ

�
−
∂L
∂A þ � � � ¼ 0 ð15Þ

obtain from Eq. (14) only when V → RN . In this limit,
F−1½1V � becomes the Dirac delta distribution, which is the
identity under convolution. Explicitly, Eq. (14) is the
correct generalization of the Euler-Lagrange equations in
the presence of a particular class of nonlocal constraint.
This class of nonlocal constraint is ubiquitous. For exam-
ple, whenever symmetry assumptions asserted upon the
field A remove coordinate dependence, Fourier-space
support along that reciprocal coordinate axis collapses to
the origin. We emphasize that the convolution in Eq. (14) is
nontrivial. If L contains external sources, then a priori
constraint of external sources to respect the symmetries of
A is no longer required. Additional constraint of external
sources, distinct from that required by Eq. (14), will at best
introduce additional physical assumptions into the model.
At worst, the ad hoc constraint will fail to correctly capture
the symmetries required by the action, yet still introduce a
source appearing superficially to do so.
Note that it is possible to replace 1V in Eq. (9) with any

other strictly positive function μðkÞ with support on V.
Because both source and fields are filtered in Eq. (13),
the true A can still be recovered by a deconvolution
against F−1½μ−1�.

IV. DISCUSSION

Lemma 1 allows, for the first time, unambiguous
modeling of physical systems where the source terms
are not under the modeler’s direct experimental control.
Under Lemma 1, various assumptions about the external
source translate into testable observational consequences.
To demonstrate, we will apply Lemma 1 to the well-known
Robertson-Walker (RW) system. In GR, the field to be
determined is the spacetime metric tensor g. In order that
cosmological problems remain well posed [15], attention is
often restricted [16] to g defined on I × T 3. The source for g
is the stress-energy tensor T. It is not varied when
determining the Einstein field equations. Instead, the stress
is defined implicitly through the variation of some matter
action SM with respect to g,

δSM ∝ ∶
Z
M

T · δg
ffiffiffiffiffiffiffiffiffiffiffiffiffi
− det g

p
d4x; ð16Þ

where · denotes complete contraction. Note that T is only
well-defined under a varied action integral. Variation of the
remaining contribution to the GR Lagrange density gives

δSGR ¼
Z
M

δg · ½G − κ2T�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
− det g

p
d4x; ð17Þ

where G denotes the Einstein tensor and κ2 is a dimen-
sionful coupling constant.
If g is unconstrained, then the fundamental lemma can be

applied and the Einstein field equations can be extracted
from under the varied integral. In RW cosmology, however,
g is defined to be isotropic and homogeneous, e.g.,

g ≔ a2ðηÞf; ð18Þ

where recall that we have defined f to be the flat metric on
M. In this form, notice that g is constrained in Fourier
space: all of its spatial derivatives vanish. In other words,
g and its variations δg are constrained to have singleton
support in k space

supp gðkÞ ¼ supp δgðkÞ ¼ 0: ð19Þ

As proved in Lemma 1, equations of motion (i.e., Einstein’s
equations appropriate for the RW Ansatz) cannot be
extracted without first convolving against F−1½δðkÞ�.
Performing [10] this convolution and extracting the equa-
tion of motion gives

6V
d2a
dη2

− κ2a3
Z
V
TrTðη;xÞd3x ¼ 0; ð20Þ

where Tr denotes the (coordinate invariant) trace of the
stress. Assuming the stress to be of type I, rearranging and
dividing by the volume gives

d2a
dη2

¼ 4πG
3

a3
�
ρ̄ −

X3
i¼1

P̄i

�
V

; ð21Þ

where Newton’s constant G enters via κ2 ¼ 8πG. In this
equation, ρ̄ is the timelike eigenvalue (i.e., energy density)
and P̄i are the spacelike eigenvalues (i.e., principal pres-
sures) [ [11], § B]. If one writes each principal pressure as
an isotropic pressure Pðη;xÞ plus an anisotropic contribu-
tion, the anisotropic contributions will vanish when aver-
aged over the 3-torus, leaving

d2a
dη2

¼ 4πG
3

a3hρ̄ − 3PiV : ð22Þ

This Friedmann equation has the expected form, but the
position-independent energy density and isotropic pressure

WELL-DEFINED EQUATIONS OF MOTION WITHOUT … PHYS. REV. D 105, 084042 (2022)

084042-3



are unambiguously volume averages over the position-
dependent, microphysical quantities. This result contradicts
widely repeated arguments that stresses interior to compact
objects do not contribute to the Friedmann source (e.g.,
[17–20]). We have proved that not only can such stresses
contribute, but they can influence dynamics at leading
order. The existence of objects that contribute leading-order
pressures to Friedmann’s equations now becomes an
observational question.
In summary, we have leveraged the action integral itself

to derive the appropriate Euler-Lagrange equations in the
presence of Fourier-space constraint. Our result applies

generally to classical fields on the N-torus and is relevant
because Fourier-space constraint is implicit whenever
symmetry assumptions remove coordinate dependence.
The resulting Euler-Lagrange equations feature a necessary
convolution operation, which reduces to the familiar
presentation in the unconstrained limit. This convolution
operation interacts with unconstrained external sources to
produce effective sources that are consistent with the model
constraint. The need for ad hoc assumptions to align
external sources with model symmetries is replaced with
an unambiguous procedure, which is determined directly
from the action.
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