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Accretion disks surrounding compact objects, and other environmental factors, deviate satellites from
geodetic motion. Unfortunately, setting up the equations of motion for such relativistic trajectories is not as
simple as in Newtonian mechanics. The principle of general (or Lorentz) covariance and the mass-shell
constraint make it difficult to parametrize physically adequate 4-forces. Here, we propose a solution to this
old problem. We apply our framework to several conservative and dissipative forces. In particular, we
propose covariant formulations for Hooke’s law and the constant force and compute the drag due to
gravitational and hard-sphere collisions in dust, gas, and radiation media. We recover and covariantly
extend known forces such as Epstein drag, Chandrasekhar’s dynamical friction, and Poynting-Robertson
drag. Variable-mass effects are also considered, namely, Hoyle-Lyttleton accretion and the variable-mass
rocket. We conclude with two applications: (1) The free-falling spring, where we find that Hooke’s law
corrects the deviation equation by an effective anti–de Sitter tidal force and (2) black hole infall with drag.
We numerically compute some trajectories on a Schwarzschild background supporting a dustlike accretion
disk.
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I. INTRODUCTION

The observation of gravitational waves brought unprec-
edented experimental access to ultrarelativistic macro-
scopic systems: binaries of black holes (BHs) and other
compact objects [1,2]. In the coming years, LISA [3,4] is
projected to access a lower frequency range enough to
start observing extreme-mass-ratio inspirals (EMRIs).
An EMRI consists of a system of two inspiraling BHs
with a large mass discrepancy. In an EMRI, the smaller BH
can be seen as a point particle that practically follows a
geodesic on the metric that would be purely generated by
the larger BH. There is a slight deviation from the geodesic
due to gravitational wave emission and associated
backreaction [5,6].
Candidates for EMRIs consist of inspiraling stellar mass

compact objects into supermassive BHs, which are believed
to reside in galactic centers and active galactic nuclei [7]. It
is likely that such EMRIs do not evolve in a true vacuum
due to the presence of matter, namely, accretion disks of gas
or dust, or dark matter halos [8–11]. In such environments,

the infalling stellar mass BH gravitationally disturbs
surrounding matter, leading to an overall drag force on
the BH itself (an effect typically known as “dynamical
friction” [12–16]). Closer encounters lead instead to
accretion of matter, wherein the BH increases its mass
via gravitational capture [14,17–19]. Such environmental
effects may leave an imprint on the gravitational wave
signal of certain EMRIs [20].
Naturally, objects without an event horizon, which may

range in mass from neutron stars and exotic compact
objects [2] to asteroids and dust grains, may also interact
with matter via direct contact collisions, as in typical
atmospheric or hydrodynamic drag [21–24].
Environmental effects are not exclusive to massive

media. It is well known that radiation exerts an outward
pressure on the orbital motion of dust grains and other
small particles around stars [25–27]. Radiation also has a
dissipative impact on the orbits of such objects, an effect
known as Poynting-Robertson drag [28–31]. It is equally
possible that, in systems within or close to Eddington
luminosity, such as quasars or active galactic nuclei, the
orbits of compact objects may be disturbed by their own
gravitational influence on the radiation field (an effect akin
to dynamical friction) [32].
These are astrophysical scenarios where the geodesic

equation needs correction because satellite motion is being
perturbed or driven away by external forces. While cur-
rently more of an academic interest, one may also consider
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other mechanical problems in a curved background, where
the same holds true. One such example, which we will
address here, consists of attaching an elastic spring to a pair
of masses and letting the system fall gravitationally, e.g.,
into a BH. Given an external, nongravitational effect on the
motion of a test particle, we will be interested in finding the
appropriate equations of motion. As we will try to convey
in what follows, this procedure is not as simple as in
Newtonian mechanics.
Ifm and τ are, respectively, the mass and proper time of a

test particle that is moving with 4-velocity uμ on a curved
background with metric gμν, one typically writes Newton’s
second law in curved spacetime as

m
Duμ

dτ
¼ m

�
duμ

dτ
þ Γμ

νσuνuσ
�

¼ fμ; ð1Þ

where fμ is the 4-force acting on the test particle and Γμ
νσ is

the connection associated with the metric gμν. Naturally, if
there is no force acting on the test particle, we have fμ ¼ 0
andEq. (1) reduces to the geodesic equation.Our task is then
to find which fμ better parametrizes a given external effect.
Importantly, the 4-velocity uμ is constrained to be a unit

timelike vector,

u2 ¼ gμνuμuν ¼ −1; ð2Þ

where we took the “mostly plus” signature for the metric.
This condition is sometimes called the “mass-shell” con-
straint, which the solution of (1)must satisfy. Differentiating
Eq. (2) and using (1) leads to the following constraint on the
4-force fμ:

f · u ¼ gμνfμuν ¼ 0: ð3Þ

This means that any physically adequate choice of fμ, i.e.,
which conserves the mass shell (2), should be orthogonal to
the momentum uμ at all times.
In Newtonian mechanics, the force is an arbitrary object,

which can be parametrized according to a given external
effect on the test particle’s motion. Unfortunately, such
intuitive reasoning does not typically carry onto the 4-force
fμ. Most obvious generalizations of the Newtonian force to
the 4-force fμ do not satisfy the orthogonality constraint
(3). For example, the naive covariant extension of Hooke’s
law fμ ¼ −kΔxμ, where k is the spring constant and Δxμ
the four-displacement of the spring, would not obey (3)
at all times.1 Another example would be a generic drag
4-force fμ ¼ −buμ, where b is some drag coefficient. Now
we have f · u ¼ b, which can only satisfy (3) in the trivial
case b ¼ 0.

Of course, in flat spacetime, one may just forget about
covariance and work directly with the force F⃗ in the special
relativistic generalization of Newton’s second law,

m
dðγv⃗Þ
dt

¼ F⃗ with γ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2=c2

p ; ð4Þ

where v⃗ is the velocity of the test particle and c is the speed
of light. In this equation, F⃗ should be the same physical
object as in the original Newton’s second law and can
therefore be parametrized in the same way. The only
difference with respect to the Newtonian case is the
presence of the γ factor, which increases the inertia of
the test particle when v → c and prevents it from surpassing
the speed of light c.
Well-studied examples with exact solutions include the

constant force case F⃗ ¼ constant, which leads to hyper-
bolic motion [34–36] and the relativistic harmonic oscil-
lator [37–39], which follows from Hooke’s law F⃗ ¼ −kΔx⃗.
Both examples obviously reduce to the corresponding
Newtonian cases at nonrelativistic velocities. In the con-
stant force case, relativistic effects necessarily appear at late
times, for which v → c (instead of v → ∞ in the
Newtonian case). In the case of Hooke’s law, trajectories
with large amplitudes, which would lead to faster-than-light
motion in Newtonian mechanics at the equilibrium point,
are instead “flattened” near this point, where relativistic
velocities are achieved instead. In the ultrarelativistic limit,
the wordline assumes a zigzag or “sawlike” shape,2 akin to
a photon bouncing between two parallel mirrors. See, e.g.,
[41] for a pedagogical introduction to both cases.
The 4-force fμ can be found in terms of F⃗, as explained

in many textbooks [42–46]. The idea is to match the spatial
part of Eq. (1), in flat spacetime, with Eq. (4), making use
of the usual relation between coordinate and proper times
dt ¼ γdτ and uμ ¼ γð1; v⃗Þ (we set c ¼ 1 from now on).
This fixes the spatial part of the 4-force f⃗, and the time
component f0 follows from the orthogonality condition (3).
The result is

fμ ¼ γðF⃗ · v⃗; F⃗Þ: ð5Þ

A similar strategy can of course be applied in curved-
spacetime, where one directly parametrizes f⃗ in a given
curved background and fixes f0 using (3). However, by
treating f⃗ and f0 separately, one is not obeying the
principle of covariance and, in addition to going against
the underlying spirit of the theory of relativity, there is no
guarantee that the resulting expression for fμ transforms

1Such a choice would lead to the unphysical (in our view)
dependence of the rest mass m on the spring constant k (see, e.g.,
[33]).

2This was recently observed in an optical lattice that simulates
a relativistic harmonic oscillator, namely, on an energy band with
the mass-shell (2) energy-momentum dispersion but a much
smaller “speed of light” c ¼ 143 mm=s [40].
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covariantly, i.e., as a 4-vector. Moreover, it is F⃗ that is the
force, not f⃗, so one must be careful in choosing f⃗ as to
correspond to the physically appropriate force F⃗ in flat
spacetime.
In essence, parametrizing the 4-force in a covariant and

physically meaningful way such that the mass-shell con-
straint (2) is also satisfied does not seem to be an obvious
task. Of course, as a purely mathematical problem this
should not be too hard; the point is if typical Newtonian
forces can be described covariantly, i.e., whether the
intuitive Newtonian picture that is part of every physicist’s
training translates in some way to fμ. Concretely, the
question we are asking is this: Given a Newtonian force, for
instance, Hooke’s law or a drag force, is there a corre-
sponding covariant 4-force fμ that describes it and which is
also orthogonal to uμ at all times?
To our knowledge, despite the seniority of the subject,

there is yet no covariant framework for relativistic forces
that is capable of addressing this question. In fact, such
absence may somewhat explain the relatively small amount
of relativistic studies on the aforementioned astrophysical
problems [47–50], as most work takes a pseudo-Newtonian
(or even purely Newtonian) approach (see, e.g., [51–56]
and references therein). Indeed, the vast majority of
environmental effects on the motion of astrophysical bodies
do not seem to have covariant descriptions. One notable
exception, and to our understanding, the only known fully
covariant example, is the Poynting-Robertson 4-force
which, in its simplest form as derived by Robertson in
1937 [29], reads

fμ ¼ −eσðu · nÞ½ðu · nÞuμ þ nμ�; ð6Þ

where e is the radiation energy density, or the intensity of
radiation in c ¼ 1 units, on the rest frame of a source (e.g.,
a star), σ is the spherical cross section of the test particle,
and nμ is a null vector, which specifies the direction of the
radiation flux.
It is clear that Eq. (6) satisfies the mathematical require-

ments of being both covariant and orthogonal to uμ.
However, while expression (6) covariantly describes a
force caused by absorption and scattering of radiation
and, in particular, quantitatively explains the Poynting-
Robertson effect, there is nothing immediately intuitive
about its form (6). It is not surprising that the “nature [of the
Poynting-Robertson force] has been the subject of consid-
erable controversy and misunderstanding since the begin-
ning of the [20th] century” [25]. While the quoted work
from 1979 by Burns et al. seems to have settled much of the
discussion on the physical origin of the Poynting-
Robertson effect, their exposition still faced some criticism
in recent years [57].3 It is also unfortunate that the

Poynting-Robertson 4-force has been unjustifiably (and,
as we will see, erroneously) used to covariantly describe
drag due to collisions with dust/gas particles, where e and
nμ in Eq. (6) were interpreted, respectively, as the proper
mass density and 4-velocity of the dust/gas medium
[59–61]. Such confusion, in our view, although in part
caused by the absence of a direct Newtonian analog for the
Poynting-Robertson effect, is another symptom of the
absence of a covariant framework for relativistic forces.
Historically, as far as we understand, much of the

endeavor on the search for such a formulation has been
specific to the constant force. Naturally, a constant fμ

cannot satisfy the orthogonality constraint (3) at all times τ.
Instead, as noted early on by Born [34], in 1909, hyperbolic
motion has constant proper acceleration. That is, if F⃗ is
constant and aligned with v⃗ in Eq. (5) it follows that fμ,
despite being variable, has a constant norm, f2 ¼ jF⃗j2 ¼
constant. Then, Eq. (1) implies that ðduμ=dτÞ2 ¼ constant.
The latter condition can be easily turned into the covariant
statement ðDuμ=dτÞ2 ¼ constant, which may now be used
to covariantly define motion under a constant force.
However, just specifying that the 4-acceleration has a
constant norm is not sufficient to describe the motion of
a test particle on a four-dimensional manifold. Rindler [62],
in 1960, proposed that this condition be supplemented with
the requirement of planarity, i.e., that the worldline be
torsionless. He showed that this would amount to two
additional conditions that, together with constant norms for
the 4-acceleration and the 4-velocity [i.e., the mass shell
(2)], would provide the necessary four equations that fix the
evolution of a test particle. One immediate question is, of
course, how can the requirement of planarity be physically
justified. It is also not clear how this approach generalizes
to other forces, for example, Hooke’s law or drag forces.
Different proposals that supplement, or arrive at, the
constancy of the proper acceleration have been and con-
tinue to be suggested to this day [63–69]. It is quite
remarkable that the covariant formulation of the constant
force, arguably the “simplest” force, is still an active topic
of research today.
Instead of dealing directly with the 4-force or the

equations of motion (1), one may see if better luck is
found within a Lagrangian (or Hamiltonian) formulation.
At first sight, an obvious advantage is that the Lagrangian is
a scalar function that, under the requirement of covariance,
should be the same in every frame, i.e., be a scalar invariant.
The Lagrangian may then be built from contractions of gμν,
uμ, and other relevant covariant objects within the system in
study. While this method works well for many topics, such
as relativistic field theory [44,70], here we still have to
impose the nonholonomic constraint of the mass shell (2).
Motivated, in part, by the search for a relativistic theory of
quantum mechanics, much thought was given in the 1950s
and early 1960s on how to incorporate (2) into a variational
method, namely, by Dirac [71,72] and contemporaries of3See [58] for a response from the original authors.
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his (see [73] and references therein). Unfortunately, sig-
nificant difficulties are also encountered here. To quote a
few authors, “It seems to be established by now that
relativistic dynamics is marred by the impossibility of
translating it into terms of a Hamiltonian formalism” [74]
or “[The equations of motion for the relativistic harmonic
oscillator] may be derived from a variational principle, but
not in an unambiguously Lorentz-invariant fashion” [33].
Finally, to quote [75], “It is a strange fact that although the
theory of relativity is almost sixty years old, no universally
accepted covariant generalization of the Euler-Lagrange-
Hamilton-Jacobi theory of mechanics has been developed.”
It appears that another sixty years have passed and the

situation has not improved dramatically. Though efforts in
this direction seem to have waned after the “no-interaction
theorem” of Currie et al. [76] and consequent extensions
[77–79]. As the name suggests, the no-interaction theorem
states that under the requirement of Poincaré invariance a
system of a finite number of particlesmust be free, i.e., every
particle must follow a straight line. Indeed, instantaneous
action at a distance is obviously forbidden due to finiteness
of the speed of light, and if, instead, one considers retarded
interactions, then there is a finite time interval in which
energy-momentum conservation is violated. Unless, of
course, a dynamical field carries and exchanges the
energy-momentum variation in that time interval. In this
case, the no-interaction theorem does not apply, given that a
field has infinitely many degrees of freedom.
This motivates the use of fields to mediate interactions

between relativistic particles. However, only vector fields,
such as the electromagnetic field Aμ, seem to preserve the
mass shell (2) [75,80]. The corresponding Euler-Lagrange
equations then fix the 4-force to be given by Lorentz’s law

fμ ¼ F μνuν; ð7Þ

where F μν ¼ ∂μAν − ∂νAμ is the Faraday tensor.
In summary, the Lorentz 4-force (7) looks like the only

choice for fμ, which is compatible with the principles of
relativity. Indeed, apart from gravity, which is encoded in
the metric gμν, all other known fundamental forces of nature
are vectorial. Therefore, there should be no need to search
for other 4-forces, as all classical natural phenomena should
have a description in terms of Eq. (1), Lorentz’s law (7),
and associated field equations. While this is technically
true, in practice, it may not always be the case. Obviously,
the Lorentz force (7) has had myriads of applications across
the last century and until the present day. However, as
mentioned in the beginning, today there is also growing
experimental evidence on macroscopic relativistic systems
that may not evolve in a true vacuum, and for which
environmental effects may play a role in the dynamics.
Describing such environmental effects in terms of Eqs. (1)
and (7) seems completely unfeasible in practice. Rather, a
phenomenological description, which is agnostic to the

degrees of freedom of the environment, should be the most
appropriate.
In looking for an alternative, nonfundamental description

the no-interaction theorem should be completely mute. The
mechanical system in study should simply consist of the
test particle, which is nonetheless being acted upon by an
external agent. In particular, such a system will not
conserve energy momentum, a key ingredient of the no-
interaction theorem.4 This idea is obviously central to
Newton’s original formulation of his second law, for which
one may freely parametrize the force to model the action of
an external agent whose fundamental origin may be
completely unknown. It is entirely possible that we have
missed some important references, given that the theory of
relativity is more than a century old, but we are not aware of
a corresponding formalism for relativistic forces that, again,
is covariant and preserves the mass shell (2).
In this work we propose such a framework. We now

outline the rest of the paper and briefly summarize our
method. We start, in Sec. II, by proving that any 4-force fμ

that preserves the mass shell (2) can always be written in
Lorentz’s law form (7) where F μν is an arbitrary anti-
symmetric tensor.5 In Sec. III, we connect F μν with a
Newtonian description. We write

F μν ¼ UμFν −UνFμ; ð8Þ

where Uμ is a unit timelike 4-vector and Fμ is an arbitrary
4-vector. We show through the use of the equivalence
principle that Fμ maps directly to the force in Newton’s
second law (4). Concretely, if Uμ is associated with the
4-velocity of some object, then F⃗ is the force on the
instantaneous local Lorentz rest frame of that object.6 In
this way, we find the covariant generalization of several
conservative (Sec. IV) and dissipative forces (Sec. V).
For example, identifying Uμ with the 4-velocity of a

point charge in uniform motion implies that F⃗ is the electric
force on the rest frame of the charge, i.e., Coulomb’s law.
The associated covariant Faraday tensor [81] then follows
from Eq. (8). Other examples include Hooke’s law and drag
forces,

Fμ
Hooke ¼ −kΔxμ; Fμ

Drag ¼ −Buμ; ð9Þ

where B ¼ Bðuμ; UμÞ is some model-dependent drag
coefficient. In the case of drag, Uμ is associated with the
4-velocity of the medium, while for Hooke’s law,Uμ can be

4Naturally, the full system of test particle þ environment
should still conserve energy momentum.

5It is trivial that antisymmetry of F μν implies the orthogonality
constraint (3) and, therefore, conservation of (2). Here we also
prove the converse statement.

6That is, fμ given by Eqs. (7) and (8) reduces to Eq. (5) in the
local Minkowski frame in which Uμ ¼ ð1; 0⃗Þ. The existence of
such a frame is guaranteed by the equivalence principle.
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taken as the 4-velocity of whatever object is attached to the
other end of the spring.
The equivalence principle relates B with typical drag

coefficients in Newtonian mechanics. However, since most
of these drag coefficients were originally derived within a
Newtonian setting, e.g., Newtonian hydrodynamics, one
should first rederive these drag coefficients within a special
relativistic setting before covariantly generalizing them.7

For this reason, Sec. V is supplemented with a special
relativistic derivation of a class of dissipative forces;
namely, those for which free molecular flow applies
(i.e., with large Knudsen number). In Sec. VA, this is
done for several of the drag forces already mentioned and
the associated covariant drag coefficients B are found (see
Table I). In Sec. V B, we extend our formalism to variable-
mass systems. In particular, Hoyle-Lyttleton accretion
and the variable-mass rocket are given covariant
descriptions.
We consider a couple of simple applications in Sec. VI.

We make use of Eq. (9) to, respectively, study an elastic
spring in free fall and the infall of an observer onto a black
hole with an accretion disk. See Fig. 1 for some explicit
nongeodetic trajectories on a Schwarzschild background.
In Sec. VII we summarize our findings, the limitations of

our method, and discuss some future directions.

II. EQUATIONS OF MOTION

We consider units where m ¼ c ¼ 1. We take spacetime
as the four-dimensional pseudo-Riemannian manifold
endowed with a metric gμν. We take the mostly plus
convention, for which the Minkowski metric reads

ημν ¼ diagð−1;þ1;þ1;þ1Þ: ð10Þ

We make use of the usual notations for the temporal
and spatial parts of a 4-vector, Aμ ¼ ðA0; A⃗Þ with
A⃗ ¼ ðA1; A2; A3Þ, the relation between covariant and con-
travariant tensors Aμ ≡ gμνAν, and the dot product
A · B≡ AμBμ with the special case A2 ≡ AμAμ.
The line element of the metric reads

−dτ2 ¼ gμνdxμdxν; ð11Þ

for which a massive particle respects dτ2 > 0. Then, the
4-velocity uμ ≡ dxμ

dτ is restricted to the mass shell

u2 ¼ gμνuμuν ¼ −1: ð12Þ

This condition ensures that only three of the 4-velocity
components are independent. Differentiating the above
leads to

gμν _uμuν þ
1

2
uσuμuν∂σgμν ¼ 0; ð13Þ

which in terms of the 4-acceleration,

aμ ≡Duμ

dτ
¼ _uμ þ Γμ

ρσuρuσ; ð14Þ

where

Γμ
ρσ ≡ 1

2
gμνð∂ρgνσ þ ∂σgνρ − ∂νgρσÞ; ð15Þ

are the Christoffel symbols, reads

aμuμ ¼ 0: ð16Þ

Now, given an arbitrary 4-vector āμ we may project out the
component along uμ to construct an orthogonal vector to
uμ. Thus, aμ takes the general form

aμ ¼ āμ þ ðāνuνÞuμ; ð17Þ

for any 4-vector āμ. Making further use of (12), we may
also write (17) as

aμ ¼ F μνuν ð18Þ

with

F μν ≡ uμāν − uνāμ þ ϵμν ρσωρuσ; ð19Þ

for any ωμ. Note that the ωμ-dependent piece is orthogonal
to uν so it drops out of (18). Importantly, any antisymmetric
tensor can be written in the form (19). Each of āμ and ωμ

contribute with three independent components [the com-
ponent along uμ cancels out of (19)] that make up the six
independent components of a generic antisymmetric
tensor.8 Hence, Eq. (16) implies

_uμ þ Γμ
ρσuρuσ ¼ F μνuν ð20Þ

for any F μν ¼ −F νμ.
Conversely, starting from (20) with an antisymmetric

F μν and contracting with uμ makes the rhs vanish, which
implies Eq. (16) and thus u2 ¼ constant. The constant
should be fixed to 1 as an initial condition to (20). This
establishes equivalence of Eq. (12) with Eq. (20) and the
initial condition u2ð0Þ ¼ −1.

7Or, alternatively, understand their Newtonian regime of
validity in a covariant way.

8For concreteness, take a local inertial frame where
uμ ¼ ð1; 0⃗Þ. Then, the spatial components of āμ and ωμ can
be, respectively, seen as the “electric” and “magnetic” fields of
F μν. The time components are proportional to uμ and drop out of
(19).
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To a given choice of F μν corresponds a certain para-
metrization of a nongravitational force. Note that F μν need
not be a field; it may depend on the velocity. Naturally,
when F μν is proportional to the electromagnetic field
tensor, we recover the covariant form of Lorentz’s force
law, and in the absence of force,F μν ¼ 0, Eq. (20) becomes
the geodesic equation.

III. COVARIANT MAP

To make practical use of (20), we look for a map that
given a Newtonian force F⃗N produces the corresponding
F μν. This map should be such that (20) reduces to
Newton’s second law,

du⃗
dt

¼ F⃗N; with u⃗ ¼ v⃗ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p ; ð21Þ

in a suitable local inertial frame, where v⃗ is the test
particle’s velocity. Noting that dt ¼ u0dτ, we can rewrite
the above as

du⃗
dτ

¼ F⃗Nu0: ð22Þ

Thus, one option for F μν is

F μν ≡UμFν −UνFμ; ð23Þ

where Uμ is a unit timelike vector

U2 ¼ −1; ð24Þ

and Fμ is a 4-vector whose spatial part matches F⃗N in a
local inertial frame where Uμ ¼ ð1; 0⃗Þ. That is,

½F⃗ ¼ F⃗N �U⃗¼0
; ð25Þ

in the instantaneous local inertial frame

gμνðxαðτÞÞ ¼ ημν; Γμ
ρσðxαðτÞÞ ¼ 0: ð26Þ

This is achieved, for example, in a Riemann normal
coordinate system centered at the test particle’s instanta-
neous position [36]. Once in Minkowski spacetime, we are
free to apply a Lorentz boost and align Uμ along the time
direction. Hence, one can always find a frame where (25)
and (26) are both applicable. This is consistent with the
local flatness theorem [36,82] but, more generally, with the
equivalence principle.
It is now straightforward to check that, in the frame (26),

the spatial part of (20) with F μν given by Eq. (23) reduces
to Eq. (22). Therefore, one can use (25) to find Fμ and plug

into (23) to get F μν.9 Naturally, this is only useful if the
expression for f⃗ is known in the frame (26) where U⃗ ¼ 0.
Given that U2 ¼ −1, we may identify Uμ with the
4-velocity of some physical massive object.
One obvious option is to take this object as the test

particle itself, so thatUμ ¼ uμ, and F⃗ is the force on the test
particle in its own instantaneous inertial rest frame. There
are some cases where this identification can be useful, such
as with dissipative forces (see Sec. V). Another example is
the Abraham-Lorentz self-force [81], which is, in fact, only
strictly valid in the instantaneous rest frame of the accel-
erated charge. Application of Eqs. (23)–(26) leads to
Dirac’s covariant expression for the corresponding 4-force
[83] (see the Appendix A).
Alternatively, one may considerUμ as the 4-velocity of a

secondary object. Note that, strictly speaking,Uμ is a vector
on the tangent space at the test particle’s instantaneous
position. This means that such a secondary object would
have to be comoving with the test particle. Most drag forces,
which are due to relative motion with respect to a fluid, fit
into this description. In this case,Uμ can be interpreted as the
4-velocity of the fluid at the test particle’s instantaneous
position and F⃗ is the force on the test particle in the fluid’s
rest frame. In fact, for most forces, there is typically a
secondary object that is responsible in someway by the force
F⃗ acting on the test particle—say an electric charge that acts
on the test particle through aCoulomb field, the opposite end
of an elastic spring towhere the test particle is attached or, as
mentioned above, the element of fluid surrounding the test
particle at each moment. It is helpful to refer to such
secondary object as the “force applier.”
If the force applier is not exactly comoving with the test

particle, but rather keeps itself in the test particle’s close
vicinity, then the tangent spaces of both objects will
approximately overlap and in this limit Uμ should retain
its interpretation as the force applier’s 4-velocity. In this
case, both test particle and applier will share the same local
inertial frame (26) where space is approximately flat and
the equivalence principle holds.
In flat space, there is a single tangent space that is

common to every point, i.e., Minkowski spacetime itself.
In this case, Uμ can be literally taken as the force applier’s
4-velocity, even if test particle and force applier are a finite
distance apart. Moreover, most Newtonian forces between
two separated objects depend on the Euclidean distance
between them. In flat space, these “at-a-distance”
Newtonian expressions can be easily covariantly general-
ized using the Minkowski metric. This is because, in flat
space, coordinates can be interpreted as 4-vectors. The
resulting expression for F μν will not be a general covariant

9Specifying F⃗ in the local frame (26) is enough to fix F μν

given that the component of Fμ along Uμ does not contribute to
Eq. (23). Just like the Newtonian force, only three components of
Fμ independently contribute to the 4-force.
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but rather a Lorentz covariant. We apply this method in
Sec. IV to find Lorentz covariant generalizations of typical
Newtonian conservative forces, namely, Coulomb’s law,
Hooke’s law, and the constant force.
As just mentioned, Lorentz covariant expressions can be

useful if test particle and force applier are sufficiently close
so that space in their vicinity is approximately flat. In
particular, if the applier is in free fall, in the absence of
force, the test particle would also be in free fall. Their
separation would then be dictated by the geodesic deviation
equation [36]. If there is force, however, the same cannot
hold true since the test particle will not be in free fall. In
this case, the equation for the deviation between test
particle and force applier’s worldlines needs correction.
In Sec. VI A, we find this correction explicitly for the case
of an elastic spring connecting both objects using the
Lorentz covariant generalization of Hooke’s law.

IV. CONSERVATIVE FORCES

Here, we covariantly generalize typical conservative
Newtonian forces. As discussed in the previous section,
we restrict ourselves to flat spacetime, so the expressions
obtained here will be Lorentz covariant, not general
covariant. It is also important to note that all cases
considered here should only be physically accurate for a
force applier in uniform motion,

Uμ ¼ constant: ð27Þ

As mentioned in Sec. I, an accelerated applier may only
communicate its momentum to the test particle after a finite
time interval, if both objects are a finite distance apart.
In such a case, a field description for F μν, as in electro-
dynamics, should be the most appropriate. Nonetheless,
even if the applier is initially in uniform motion, there
should still be some backreaction due to its action on the
test particle. We assume it to be negligible by, e.g., taking
the applier to be very massive compared to the test particle.
In this way Eq. (27) is dynamically preserved.10

Assuming (27) also allows for a quantity to be con-
served.11 In the applier’s rest frame, this covariant quantity
corresponds to the total (kineticþ potential) energy. This is
shown explicitly in Appendix B where the results of this
section are rederived from a Lagrangian approach.

A. Coulomb force

Let us first consider the Coulomb force because it
provides a quick check of (23). Coulomb’s law reads

F⃗N ¼ q
x⃗
jx⃗j3 ; ð28Þ

where q is a constant, and x⃗ is the position of the test
particle with respect to the point charge at the origin. We
identify the applier as the point charge that is at rest at the
origin.
In the applier’s rest frame, where Uμ ¼ ð1; 0⃗Þ, we have

jx⃗j2 ¼ x2 þ ðU · xÞ2: ð29Þ

We can now apply (25) to find

Fμ ¼ q
xμ

½x2 þ ðU · xÞ2�32 ð30Þ

and plug into (23) to get

F μν ¼ q
Uμxν −Uνxμ

½x2 þ ðU · xÞ2�32 ; ð31Þ

which is the electromagnetic field tensor of a point charge q
in uniform motion with 4-velocity Uμ [81]. Indeed, we
should only expect (31) to be valid for constant Uμ since
Coulomb’s law (28) is only valid if the charge is strictly at
rest [81].
Note that xμ in (31) should actually be the coordinate

difference between test particle and the charge. In this case,
we shift

xμðτÞ → xμðτÞ − Xμðτ̃Þ; ð32Þ

where τ̃ is the charge proper time and Xμ its 4-position.
Since the charge is in uniform motion, we must have

Xμðτ̃Þ ¼ X̄μ þ τ̃Uμ; ð33Þ

where X̄μ is a constant 4-vector specifying the initial
4-position of the charge. Conveniently, any term xμ ∝
Uμ does not contribute to (31), so we may simply shift

xμðτÞ → xμðτÞ − X̄μ ð34Þ

in (31) to account for a displaced charge.

B. Hooke’s law

Herewe covariantly generalize Hooke’s law.We consider
the force applier as the opposite end of the elastic spring to
where the test particle is attached.We let the applier be at rest
at the origin. For a zero rest length spring, we have

F⃗N ¼ −kx⃗; ð35Þ

with x⃗ as the position of the test particle. From Eqs. (25) and
(35) we have

10Also note that, in curved spacetime, condition (27) general-
izes to the force applier being in free fall via the equivalence
principle. This is made use of to study the free-falling spring in
Sec. IV B.

11Thus, technically, these are conservative forces only if the
applier is uniform motion (27).
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Fμ ¼ −kxμ; ð36Þ

and (23) yields

F μν ¼ kðxμUν − xνUμÞ: ð37Þ

We can now plug (23) into (20) and solve for the motion.
Naturally, if the applier is at rest Uμ ¼ ð1; 0⃗Þ, we (trivially)
recover the relativistic harmonic oscillator [33,37–39]. A
nontrivial check of (37) can be made by comparing with the
work of Gron [84] (see also [85]), where the stress on an
elastic body in different inertial frames was studied.
Without loss of generality, we let the spring move with
velocity v along x. This amounts to having both ends of the
spring moving solidarily with the following instantaneous
parametrization for their 4-velocities:

uμ ¼ Uμ ¼ γð1; v; 0; 0Þ; γ ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p
: ð38Þ

Plugging the above into (37) we get the following for the
spatial part of the equations of motion (20):

dpx

dt
¼ −kγðx − vtÞ; ð39Þ

dpy

dt
¼ −

k
γ
y;

dpz

dt
¼ −

k
γ
z; ð40Þ

where we made use of dt ¼ γdτ. In agreement with Gron
[84], we see that there is an effective spring coupling of kγ
for strains along the direction of motion and of k=γ for
transverse strains.
Finally, we may also make an electromagnetic

analogy with Hooke’s law. Plugging (37) into Maxwell’s
equations [81],

∂μF μν ¼ Jν ð41Þ

gives

Jμ ¼ 3kUμ; ð42Þ

which is the 4-current of a homogeneous medium with
constant proper volume charge density 3k moving with
constant 4-velocity Uμ.

C. Constant force

Arguably, the simplest force in Newtonian mechanics is
the constant force,

F⃗N ¼ const: ð43Þ

Plugging (43) into Newton’s law (21) yields so-called
hyperbolic motion [34–36].

In our covariant description, we require identification of
the force applier. To make progress, we note that a uniform
electric field is generated by a homogeneously surface
charged infinite flat sheet. We may thus identify the sheet
as the force applier of a constant force, whose covariant
generalization (23) should correspond to its electromagnetic
field tensor, similar to the Coulomb force. Hence, we write

F⃗N ¼ σ

2
n⃗ ¼ const; ð44Þ

where σ is a constant that plays the role of the surface charge
density and n⃗ is the unit normal to the sheet that points in the
direction of observation (where the test particle is). Then,
Eq. (25) yields

Fμ ¼ σ

2
nμ ð45Þ

with12

nμjU⃗¼0
¼ ð0; n⃗Þ: ð46Þ

The above translates into the following covariant constraints
on nμ:

n2 ¼ 1; n ·U ¼ 0: ð47Þ

This leaves twofold freedom for nμ, which are precisely the
angles that specify the orientation of the sheet. Equation (23)
then reads

F μν ¼ σ

2
ðUμnν − UνnμÞ; ð48Þ

with nμ obeying (47).
One can now check that (48) is consistent with the

electromagnetic field tensor produced by an infinite homo-
geneously surface charged flat sheet in uniform motion
with 4-velocity Uμ [81].
It is not surprising that a constant force can be written

covariantly in terms of a constant “electromagnetic field”
F μν. In fact, any constant F μν will lead to uniformly
accelerated motion [65], which is not surprising. A constant
magnetic field also leads to constant, albeit centripetal,
acceleration. This analysis is restricted to flat spacetime.
Indeed, note that Eq. (48) is only Lorentz covariant: We are
assuming that there is a single tangent space at every point
on the sheet to which nμ belongs, which only holds true in
flat space. In Sec. V B we show how the variable-mass
rocket can provide a general covariant definition of uni-
formly accelerated motion.

12As mentioned in footnote 9 the choice of n0 on the local
Lorentz frame (26) is arbitrary. We set it to zero.
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V. DISSIPATIVE FORCES

Here, we consider the force due to relative motion of the
test particle with respect to a medium. We find it easiest to
compute the force in the test particle’s instantaneous rest
frame. Hence, we let Uμ ¼ uμ in (23) and reserve the
symbol Uμ for the 4-velocity of the medium at the test
particle’s instantaneous position.13

Most dissipative forces, in the rest frame of the test
particle, can be written generically

F⃗N ¼ bU⃗; ð49Þ

for some drag coefficient b. Equation (49) is then cova-
riantly generalized to

Fμ ¼ BUμ; ð50Þ

with B a covariant drag coefficient that should depend on
invariants built out of uμ and Uμ. Because of the mass-shell
conditions (12) and (24), there is only one nontrivial
possibility,

B ¼ Bð−u ·UÞ: ð51Þ

Then, Eq. (25) relates the drag coefficients

BðU0Þ ¼ b: ð52Þ

Finally, Eq. (23) gives

F μν ¼ BðuμUν − uνUμÞ; ð53Þ

which is antisymmetric under interchange of the test
particle and force applier uμ ↔ Uμ, a resemblance of
Newton’s third law.14

Note that the form (53) for F μν also follows from letting
Uμ be the medium 4-velocity in Eq. (23) and parametrizing
instead Fμ ¼ −Buμ.15 That is, interpreting the force applier
as the fluid that applies a force F⃗N ¼ −Bu⃗ in its rest frame.
As a simple test, consider flat space and take both the test

particle and fluid moving collinearly along x,

uμ ¼ γð1; v; 0; 0Þ; γ ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p
; ð54Þ

Uμ ¼ Γð1; V; 0; 0Þ; Γ ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − V2

p
: ð55Þ

Plugging the above parametrizations into Eq. (53) and
using dt ¼ γdτ, the x component of (20) reads

dðγvÞ
dt

¼ −BðγΓð1 − vVÞÞγΓðv − VÞ; ð56Þ

where we made explicit dependence (51). Equation (56)
takes a more familiar form when use is made of the formula
for relativistic addition of velocities [81],

v0 ¼ v − V
1 − vV

; γ0 ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v02

p : ð57Þ

Equation (56) can then be written as

m
dðγvÞ
dt

¼ −Bðγ0Þmγ0v0; ð58Þ

where we briefly reinstated m for physical clarity.
Equation (56) states the force on the test particle is
proportional and against its momentum relative to the
medium p⃗0 ¼ mγ0v0, i.e., according to (57).
Now, similar to what was done for the conservative

forces in Sec. IV, we may take any Newtonian drag force
and covariantly generalize it. For example, Stokes’s drag
[88] reads

F⃗N ¼ 6πμRU⃗; ð59Þ

where μ is the fluid viscosity, R is the sphere radius, and U⃗
is, nonrelativistically, also the velocity of the fluid. It then
follows that the drag coefficient b ¼ 6πμR is constant, so
(52) immediately reads

B ¼ 6πμR: ð60Þ

Unfortunately, Stokes’s drag, which follows from
Newtonian hydrodynamics, should not be valid relativis-
tically.16 This is the case for most dissipative forces, which
are typically derived within a Newtonian setting. Naturally,
this does not prevent covariant generalization of these
forces; rather, we may covariantly express their domain of
validity. Nonrelativistic relative motion between test par-
ticle and the medium amounts to having the fluid moving
very slowly, i.e., U0 ∼ 1, in the test particle’s rest frame.
This condition reads covariantly

13In this case, the 4-force fμ ¼ F μνuν is related to Fμ via an
orthogonal projection fμ ¼ PμνðuαÞFν, where PμνðuαÞ≡
gμν þ uμuν. The reader familiar with relativistic hydrodynamics
may recognize PμνðUαÞ, which projects orthogonally to the
fluid’s 4-velocity Uμ. The projector PμνðUαÞ is a key player in
Eckart’s covariant formulation of relativistic viscous fluids [86]
(see [87] for a more recent account).

14Note that this is not the case for any of the conservative
examples of Sec. IV. In fact, Newton’s third law does not hold in a
relativistic theory given that interchange of momenta between
two bodies cannot be instantaneous, unless the interaction is via
direct contact, which is typically the working assumption for
most dissipative forces.

15As done in Eq. (9) in Sec. I.

16In fact, flow should become turbulent way before relativistic
velocities are achieved, so Stokes’s law (59) would not apply
either way.
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nonrelativistic regime : ðu ·UÞ ∼ −1: ð61Þ

To go beyond the nonrelativistic regime, one should
rederive these dissipative forces within a special relativistic
setting, e.g., using relativistic hydrodynamics [87].
Here we show that for a certain class of dissipative forces

the relativistic derivation can be done straightforwardly.
Namely, when the size of the test particle, i.e., the perturber
inside the medium, is of the order, or smaller, than the mean
free path of a particle in the medium. That is, when the
Knudsen number ≳1. In this case, a continuum hydro-
dynamical description is not adequate. Instead, kinetic
theory applies, where one may consider the drag as a
result of numerous individual scattering events between the
test particle and each medium constituent.
In what follows, we will compute B for a variety of well-

known models. We first consider, in Sec. VA, the drag
force due to scattering in a medium, where no change to the
test particle’s mass is undergone. In Sec. V B we consider
variable-mass effects, in particular, the force due to
accretion and the variable-mass rocket.

A. Drag due to collisions in a medium

Consider the motion of a test particle through a medium,
a field of pointlike objects of much smaller mass M. Each
medium constituent will have momentum

Pμ ¼ MUμ ð62Þ

with M ≪ m ¼ 1 and Uμ the 4-velocity of an individual
constituent.17

The particles of the medium will then scatter on the test
particle and have an overall dissipative effect on its motion.
To estimate this effect, we work on the comoving frame of
the test particle. If the medium has proper particle density n,
the test particle will see a Lorentz contracted density γn,
where

Uμ ¼ γð1; v⃗Þ; γ ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p
: ð63Þ

The medium constituents will thus scatter off the test
particle at a rate

dν ¼ njU⃗jdσ; ð64Þ

where jU⃗j ¼ γv and dσ is the differential cross section of
the interaction between the test particle and an individual
constituent.
After scattering, there will be a momentum shift on each

constituent. Momentum conservation then implies a
momentum shift on the test particle itself, which will

naturally depend on the scattering angle. When multiplied
by the collision rate (64), the momentum shift gives the
infinitesimal force on the test particle. The total force on the
test particle, due to scattering in the medium, is thus

F⃗N ¼
Z

Δp⃗dν ¼
Z

njU⃗j
�
dσ
dΩ

�
Δp⃗ðU⃗;ΩÞdΩ; ð65Þ

where Δp⃗ is the momentum shift on the test particle, and
dΩ is the solid angle element.
If the scattering process is elastic, i.e., if each medium

constituent exits the scattering event with the same energy
as they entered with, then the scattering angle fully
specifies the momentum shift. This can be seen in the
following way. We decompose the momentum shift into
parallel and orthogonal components to U⃗,

Δp⃗ ¼ Δp⃗k þ Δp⃗⊥: ð66Þ

If the differential cross section only depends on the polar
angle θ, then the orthogonal component Δp⃗⊥ integrates to
zero in Eq. (65). The force will then be parallel to the
medium velocity U⃗ and will have the form (49). In terms of
the scattering angle θ, the parallel component reads

Δp⃗el: ¼ Δp⃗k ¼ MU⃗ð1 − cos θÞ: ð67Þ

If, instead, the scattering process is inelastic, in the sense
that particles deposit their full momentum by, e.g., “stick-
ing” to the test particle after colliding, then the momentum
shift will be simply given by the initial momentum

Δp⃗inel ¼ MU⃗: ð68Þ

We assume here that no increase in the test particle’s rest
mass is undergone. The extra mass is randomly diffused
away by evaporation or some similar process [21].
Importantly, we do not need to specify the mechanism,
only that the test particle’s mass remains unchanged. In this
case, the integral (65) is trivial and is given by

F⃗inel ¼ ρσjU⃗jU⃗; ð69Þ

with ρ ¼ Mn, the proper mass density of the medium, and
σ as the total scattering cross section (which, depending on
the nature of the interaction, may still be a function of jU⃗j).

1. Dust

Hard-sphere scattering.—Consider the test particle as a
sphere of radius R. The hard-sphere differential scattering
cross section is constant and reads [89]

dσ
dΩ

¼ R2

4
: ð70Þ17We regret the slightly misleading notation for M as the mass

of an individual constituent.
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Considering the collision to be elastic, the dust particles
will specularly reflect off the test particle. Plugging (67)
into (65) and integrating over the angles gives back Eq. (69)
with

σ ¼ πR2: ð71Þ

The fact that the elastic and inelastic models yield the same
result is a peculiarity of the spherical shape of the test
particle.
Comparing (69) with (49), we read off

b ¼ ρσjU⃗j ¼ ρσ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðU0Þ2 − 1

q
: ð72Þ

From (52) and (51) we then find the covariant drag
coefficient due to hard-sphere collisions in a dust medium,

B ¼ ρσ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðu ·UÞ2 − 1

q
: ð73Þ

Naturally, in many situations, the purely elastic/inelastic
models for the momentum shift are inadequate. For
example, in the ultrarelativistic motion of dust grains
through interstellar dust, impinging ions have a penetration
length far greater than the typical diameter of dust grains,
meaning that they only leave a fraction of their momentum
on the test particle [24].
There is also the possibility that dust grains themselves

become ionized after scattering [23], medium particles
reflect diffusely off the test particle (instead of specularly)
[21], or quantum diffractive effects become relevant [90].
Gravitational scattering.—We now let the test particle

have enough mass to be a gravitational perturber. When
drifting across a field of matter, it will gravitationally
deflect the surrounding matter, which then must backreact
on the perturber itself. On average, this results in a force
opposing the perturber’s velocity, a dissipative effect
known as dynamical friction, first studied in detail by
Chandrasekhar [12].
Naturally, dynamical friction is not a typical drag force,

since it is due to a long-distance interaction. However, if the
perturber’s mass is much smaller than the curvature scale of
the background metric, as in EMRIs where the curvature
scale is set by the largest black hole mass, one can still see
dynamical friction as a local effect. Note that a similar
assumption occurs in Newtonian computations of dynami-
cal friction,where it is assumed that, in the vicinity of the test
particle, one may just consider its own gravitational field.
To estimate the dynamical friction effect, we can make

use of the gravitational scattering cross section in (65). We
let the perturber be a Schwarzschild black hole. At leading
order in Newton’s constant G, the differential cross section,
in the perturber’s rest frame, is [91,92]

dσ
dΩ

¼ G2ð1þ v2Þ2
4v4 sin4ðθ=2Þ ; ð74Þ

where v is the dust particle initial velocity, and θ is the
deflection angle. The nonrelativistic limit v → 0 yields the
Rutherford formula.
Since at leading order in G the scattering process is

conservative, we make use of the elastic momentum shift
(67) in (65). Plugging (74) into (65) and making use of

Uμ ¼ γð1; v⃗Þ; γ ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p
; ð75Þ

we find

F⃗N ¼ 4πρG2Λ
ð1þ v2Þ2
ð1 − v2Þ

v⃗
v3

; ð76Þ

where Λ≡ lnðbmax
bmin

Þ is the Coulomb logarithm. The maxi-
mum impact parameter bmax is set by the size of the matter
field, while the minimum impact parameter bmin is deter-
mined by the effective size of the perturber, the largest of
either the perturber physical size or the capture impact
parameter. In the latter case, bmin will depend on v, and for
impact parameters smaller than bmin, accretion will occur
(see Sec. V B).
Expression (76) was first obtained in [14] and more

recently in the weak-field limit of [93]. Compared to the
Newtonian result for a dust medium [12], Eq. (76) is
corrected by the factor ð1þ v2Þ2=ð1 − v2Þ ¼ γ2ð1þ v2Þ2.
Its origin can be dissected into the ð1þ v2Þ2 relativistic
correction to the weak-field gravitational cross section (74),
a γ factor due to Lorentz contraction of the medium
density in the perturber’s rest frame, and a further γ
factor coming from the (relativistic)momentum shift in (65).
From (49) we read off b and, from (52) and (51), we find

the covariant dynamical friction coefficient

B ¼ 4πρG2Λ
½2ðu · UÞ2 − 1�2
½ðu · UÞ2 − 1�32 ; ð77Þ

with corresponding 4-force, which follows from con-
tracting (53) with uν,

fμ ¼ 4πρG2Λ
½2ðu · UÞ2 − 1�2
½ðu · UÞ2 − 1�32 ðuμðu ·UÞ þ UμÞ: ð78Þ

This is consistentwith the tangential drag considered in [47].

2. Radiation

If the medium consists of null particles like photons, and
they are scattered by the test particle, then there should also
be a backreaction on the test particle. However, the argu-
ment must be adapted due to the absence of a rest frame
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for the photons. There is no concept of proper photon
density.
Instead, one often has information in the rest frame of the

radiation source (e.g., a star). In this frame, each photon has
energy E, and we can write the photon momentum as

Pμ ¼ EUμ ð79Þ

with

Uμ ¼ ð1; n⃗Þ; ð80Þ

where n⃗ is a unit vector that specifies the travel direction of
the photons.
Uμ is a 4-vector with only 2 degrees of freedom

(the angles on a sphere). One of the initially 4 degrees of
freedom is removed by the fact that Uμ is a null vector. The
other is removed by the normalization U0 ¼ 1 in the rest
frame of the source. IfuS is the 4-velocity of the source, these
constraints can be written covariantly as

U2 ¼ 0; uS ·U ¼ −1: ð81Þ

It is easy to check that, in the source rest frame uμS ¼ ð1; 0⃗Þ,
the above restricts Uμ to be of the form (80).
Now, in the particle’s instantaneous rest frame

uμ ¼ ð1; 0⃗Þ, we parametrize

uμS ¼ γSð1; v⃗SÞ; γS ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2S

q
; ð82Þ

Uμ ¼ ðU0; U⃗Þ: ð83Þ

If, for example, we let the photons move collinearly with
the source, U⃗ · v⃗S ¼ jU⃗jvS, conditions (81) then fix

U0 ¼ jU⃗j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ vS
1 − vS

s
; ð84Þ

which is the relativistic longitudinal Doppler factor corre-
sponding to a blueshift. Indeed, according to Eq. (84), the
energy and momentum of the photon (79) will be blue-
shifted with respect to the energy E it is originally emitted
with by the source (i.e., in its rest frame). This is expected
given that the test particle sees the source moving toward it
with speed vS.
In fact, regardless of the relative orientation of the

velocity v⃗S of the source and the radiation direction U⃗,
in the test particle’s frame, U0 ¼ jU⃗j will always be the
Doppler shift factor. This simply follows from repeating the
previous argument with generic U⃗ and v⃗S.

18

Therefore, in conclusion, we find that the collision rate,
in the test particle’s frame, will still be given by Eq. (64)
where now n is the photon number density in the rest frame
of the source and the jU⃗j factor accounts for the Doppler
shift of the collision rate.19 Equation (65) will also retain
the same form, whereΔp⃗ is (minus) the momentum shift of
an individual photon. Finally, the formulas for the elastic
and inelastic momentum shift (67) and (68) will also hold
provided M is replaced by E,

Δp⃗el ¼ EU⃗ð1 − cos θÞ: ð85Þ

Δp⃗inel ¼ EU⃗: ð86Þ

The only difference lies in the fact thatUμ is constrained by
(81), instead of being timelike, as in the massive case.
Hard-sphere scattering.—As with the dust case, we first

consider the test particle to be a hard sphere of radius R
with differential cross section given by Eq. (70). Either
of the elastic and inelastic models (85) and (86) integrate
in (65) to

F⃗N ¼ eσjU⃗jU⃗; ð87Þ

with σ ¼ πR2 and e≡ nE, the energy density in the source
rest frame.20

We then read off, from Eq. (49),

b ¼ eσjU⃗j ¼ eσU0; ð88Þ

which, from (52) and (51), yields the covariant coefficient

B ¼ −eσðu · UÞ: ð89Þ

This result matches the ðu ·UÞ2 → ∞ limit of the dust drag
coefficient (73) (recall that u ·U < 0).
The Poynting-Robertson 4-force [29] follows from

contracting (53) with uν,

18In this case, we find U0 ¼ 1=γSð1 − vS cos θÞ, where θ is the
angle between v⃗S and U⃗.

19This follows from a typical Doppler analysis: If every ΔtS
seconds a photon is produced by the source, then consecutive
photons will be separated by a distance d ¼ cΔtS, in the source
rest frame. If the test particle is moving toward the source at speed
v, the time Δt that elapses between two photons being received
by the test particle follows from cΔtþ vΔt ¼ d=γ, where γ ¼
1=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p
accounts for the Lorentz contraction of the distance d

in the test particle’s rest frame. We then find Δt ¼
ffiffiffiffiffiffiffi
1−v
1þv

q
ΔtS or

Δt−1 ¼ jU⃗jΔt−1S .
20For the reader familiar with the literature on the Poynting-

Robertson effect, note that e ¼ I=c, where c is the speed of light
(assumed c ¼ 1 in this work) and I is the radiation energy flux
density, also sometimes known as intensity.
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fμ ¼ −eσðu · UÞ½ðu ·UÞuμ þ Uμ�: ð90Þ

Note that, due to the term proportional to uμ, the force
(90) will always have a term opposing the particle’s
velocity, even if photons flow orthogonally to the particle’s
velocity. This would occur, for example, in a circular orbit
of a test particle around a star, a radially emitting source.
To be concrete, we may choose the following para-

metrization on the star’s rest frame, for which radiation is
being emitted in the y direction and the particle is moving
along x:

uμ ¼ γð1; v; 0; 0Þ; γ ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p
; ð91Þ

Uμ ¼ ð1; 0; 1; 0Þ: ð92Þ

Then, making use of dt ¼ γdτ, we get for the force
components,

dpx

dt
¼ −eσγ2v;

dpy

dt
¼ eσ: ð93Þ

The component along y is the expected radiation pressure
force, while the component along x is the Poynting-
Robertson drag.
As with the dust drag case, here we have assumed the

elastic and inelastic models (85), amounting to perfect
(specular) reflection and absorption/emission,21 respec-
tively. In reality, this is mostly not the case and the drag
coefficient (89) should be multiplied by some “efficiency
factor,” which may be determined by a microscopic model
of the interaction between radiation and the precise
chemical composition of the test particle [25].
Gravitational scattering.—As for the dust case, we

assume the test particle to be a sufficiently heavy
Schwarzschild black hole to affect a massless medium.
Scattered photons will follow null geodesics in a
Schwarzschild spacetime. To lowest order in G, the
deflection angle can be computed and, from there, the
scattering cross section.
Alternatively, the result can be directly obtained by

taking the limit v → 1 in Eq. (74),

dσ
dΩ

¼ G2

sin4ðθ=2Þ : ð94Þ

Plugging the above into (65) and choosing the elastic
momentum shift (85) yields

F⃗N ¼ 16πeG2ΛjU⃗jU⃗: ð95Þ

To our understanding, this result is consistent with the
massless weak-field computation of [93]. It differs, how-
ever, by a factor of 4=3 from the ultrarelativistic expression
of [32], which assumes an isotropic distribution of veloc-
ities for the medium (here we consider a collimated flow of
photons, i.e., null dust).
From (95) we read off the drag coefficient

b ¼ 16πeG2ΛU0, which generalizes to

B ¼ −16πeG2Λðu · UÞ: ð96Þ

The covariant dynamical friction coefficient due to
radiation has the same functional form as the Robertson-
Poynting coefficient (89). It also matches the ultrarelativ-
istic limit ðu · UÞ2 → ∞ of the dynamical friction dust
coefficient (77).

3. Gas

One has to be slightly more sophisticated if the medium
is collisional, i.e., a gas. Instead of moving in a collimated
flow, the particles of the medium will be dispersed in
4-velocity kμ (with k2 ¼ −1) according to some distribu-
tion function Wðk⃗Þ. The test particle will see Wðk⃗Þd3k⃗
particles per unit volume with momentum Mk⃗. The differ-
ential collision rate is then generalized from Eq. (64) to

dν ¼ jk⃗j
k0

Wðk⃗Þdσd3k⃗; ð97Þ

with k0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jk⃗j2

q
. The force on the test particle, due to

scattering in the gas, instead of (65) now reads

F⃗N ¼
Z

jk⃗jWðk⃗Þ
�
dσ
dΩ

�
Δp⃗ðk⃗;ΩÞdΩ d3k⃗

k0
; ð98Þ

where Δp⃗ is the momentum shift on the test particle, and
dΩ is the solid angle element.
Here we will make use of the Maxwell-Boltzmann

distribution

Wðk⃗Þ ¼ n

�
β

2π

�3
2

exp

�
−
β

2
ðk⃗ − U⃗Þ2

�
; ð99Þ

where

β≡ M
kBT

; ð100Þ

with M as the mass of a single gas molecule, kB ascthe
Boltzmann constant, and T as the gas temperature. Note,
however, thatWðk⃗Þ should be Lorentz invariant in order for

21Again we emphasize that we need not consider any particular
thermodynamical model for the emission. Even though the
photon momentum is completely absorbed by the test particle,
we do not allow for its rest mass m to increase. We make,
however, the relatively safe assumption that there exists some
emission process that allows for this (isotropic emission of
thermal radiation is one possibility).
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Wðk⃗Þd3k⃗ to transform as a number density. This means that
(99) is only applicable if the gas is nonrelativistic. One
alternative is to use a relativistic equilibrium distribution
[94,95] such as the Maxwell-Jüttner distribution [96]
[see Eq. (C1)]. It is known, however, that at ultrarelativistic
temperatures the Maxwell-Jüttner distribution becomes
inadequate due to quantum effects becoming relevant, such
as pair production and particle indistinguishability [89].
Nonetheless, most astrophysical gases have nonrelativistic
temperatures. For example, accretion disks can reach
temperatures up to ∼108 K [97]. Letting M be the mass
of the electron, one has β ∼ 103 ≫ 1. Having β ≫ 1 makes
a gas nonrelativistic in its own rest frame. However,
Eq. (98) is in the rest frame of the particle, which may
observe the gas moving relativistically. The Maxwell-
Boltzmann distribution will be valid to a good approxi-
mation if the relative motion is nonrelativistic as
well, jU⃗j ≪ 1. Covariantly, this can be expressed as
condition (61).
Hard-sphere scattering.—Plugging the hard-sphere

scattering cross section (70) into (98) and making use of
either the elastic or inelastic models (67) and (68), we get

F⃗N ¼ Mσ

Z
k⃗jk⃗jWðk⃗Þ d

3k⃗
k0

; ð101Þ

with σ ¼ πR2. Essentially, this is an average of the dust
expression (69) over the momentum distribution Wðk⃗Þ.
Plugging (99) leads to the Newtonian result [98],22

F⃗N ¼ ρσU⃗

β2jU⃗j3
� ffiffiffiffiffi

2β

π

r
jU⃗jð1þ βjU⃗j2Þe−βjU⃗j2

2

þ erf

� ffiffiffi
β

2

r
jU⃗j

�
ðβ2jU⃗j4 þ 2βjU⃗j2 − 1Þ

�
; ð102Þ

where “erf” is the error function. From (102) we find the
covariant drag coefficient

B ¼ ρσ

β2X3

� ffiffiffiffiffi
2β

π

r
Xð1þ βX2Þe−βX2

2

þ erf

� ffiffiffi
β

2

r
X

�
ðβ2X4 þ 2βX2 − 1Þ

�
; ð103Þ

with

X ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðu ·UÞ2 − 1

q
: ð104Þ

Expression (103) is valid in the nonrelativistic regime
X ≪ 1 and β ≫ 1.

For a slow moving gas compared to its thermal agitation,
where X ≪ 1=

ffiffiffi
β

p
, also known as the Epstein regime [21],

expression (103) reduces to the constant Epstein coefficient

B ¼ 4

3
ρσ

ffiffiffiffiffiffi
8

πβ

s
: ð105Þ

In the zero-temperature limit β → 0, the gas becomes
pressureless and the covariant drag coefficient (103) goes to
the dust expression (73). Note that the fully relativistic
result is recovered, while (103) is only valid nonrelativisti-
cally. This may be traced back to the fact that the hard-
sphere differential cross section (70) has the same form in
both regimes. The same does not happen for gravitational
scattering (see below).
In Appendix C we repeat the computation of (103) using

instead the Maxwell-Jüttner distribution with arbitrary
relativistic momentum jU⃗j in the saddle point approxima-
tion β → ∞ (corresponding to a nonrelativistic gas in its
rest frame, but with arbitrary average speed).
Gravitational scattering.—Making use of the gravita-

tional scattering cross section (74) and the elastic momen-
tum transfer (67), we get

F⃗N ¼ 4πG2MΛ
Z

½2ðk0Þ2 − 1�2 k⃗

jk⃗j3
Wðk⃗Þ d

3k⃗
k0

; ð106Þ

which convolutes the dust dynamical friction (76) over the
distribution Wðk⃗Þ. This is a relativistic version of
Chandrasekhar’s dynamical friction [12] over a generic
relativistic Wðk⃗Þ momentum distribution.
Plugging the Maxwell-Boltzmann distribution (99)

leads, however, back to Chandrasekhar’s expression [12],22

F⃗N ¼4πρG2ΛU⃗
jU⃗j3

�
erf

� ffiffiffi
β

2

r
jU⃗j

�
−

ffiffiffiffiffi
2β

π

r
jU⃗je−βjU⃗j2

2

�
; ð107Þ

from which we read off

B ¼ 4πρG2Λ
X3

�
erf

� ffiffiffi
β

2

r
X

�
−

ffiffiffiffiffi
2β

π

r
Xe−

βX2

2

�
; ð108Þ

with X given by Eq. (104). As with the previous case, this
expression is valid in the nonrelativistic regime X ≪ 1 and
β ≫ 1.
In the slow gas regime (compared to the thermal speed),

i.e., where X ≪ 1=
ffiffiffi
β

p
, expression (108) reduces to the

constant coefficient

B ¼ 4

3

ffiffiffiffiffiffi
2π

p
ρG2Λβ3=2: ð109Þ

In the zero-temperature limit β → 0, the gas becomes
pressureless and the covariant drag coefficient (108) goes to

22Since the integrand has support over nonrelativistic values of
k⃗, we let k0 → 1 in (101) and (106).
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the dynamical friction dust expression (77) [in the non-
relativistic regime (61)].

B. Variable-mass systems

We now allow for the test particle to accelerate (decel-
erate) due to mass loss (gain). Now we can no longer set the
test particle’s mass m ¼ 1. We may reinstate the mass by
multiplying the lhs of the equations of motion (20) by m.
Instead, we reabsorb m into Fμν by redefining

Fμν →
Fμν

m
: ð110Þ

We work in the instantaneous rest frame of the test
particle, where we let it capture (eject) a particle of mass
M ≪ m with 4-velocity Uμ ¼ ðU0; U⃗Þ. Energy conserva-
tion implies that the test particle’s mass will change by

dm ¼ �MU0; ð111Þ

where (þ) is for capture and (−) is for ejection. Momentum
conservation then requires that the test particle will get a
velocity shift dv⃗ given by

mdv⃗ ¼ �MU⃗: ð112Þ

Making use of (111) in (112) and dividing by dτ we get

_v⃗ ¼ _m
m

U⃗
U0

: ð113Þ

Given that γ ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p
¼ 1 in the instantaneous rest

frame, we see that the above is in the form of Eq. (49) with

b ¼ _m
m

1

U0
; ð114Þ

and covariant coefficient

B ¼ −
_m
m
ðu ·UÞ−1; ð115Þ

which is valid both for mass capture and ejection, depend-
ing on the sign of _m.
Variable-mass rocket.—The variable-mass rocket pro-

pels itself by ejecting part of its mass (propellant). For the
variable-mass rocket, one usually has information on the
rocket’s comoving frame, namely, the mass depletion rate
_m=m, the rate at which the rocket loses mass, and the
exhaust velocity ve, the velocity at which the propellant
exits the rocket, both measured by instruments comoving
with the rocket.
Now, the exhaust velocity ve constrains the form of Uμ.

Noting that jU⃗j=U0 ¼ ve on the comoving frame, we can
write this covariantly as

v2e ¼
ðu ·UÞ2 − 1

ðu ·UÞ2 : ð116Þ

There is still twofold freedom in the choice of Uμ

corresponding to the direction of propellant ejection.
We may now plug (115) into F μν given in Eq. (53) and

then contract with uν to get the 4-acceleration,

aμ ¼ F μνuν ¼ −
_m
m

�
uμ þ Uμ

u ·U

�
ð117Þ

in a generic frame.
Choosing the metric to be the Minkowski metric and

letting u⃗ and U⃗ be collinear leads to the relativistic rocket
equation [99].
Also note that the proper acceleration a2 ¼ aμaμ is

uniquely determined by the depletion rate and the exhaust
velocity,

a2 ¼
�
_m
m
ve

�
2

; ð118Þ

where we made use of Eq. (116).
We thus see that if the product of the depletion rate and

the exhaust velocity is constant, the rocket will measure a
constant acceleration. The rocket will then follow hyper-
bolic motion [36,100], as seen from an outside inertial
observer. The force F μν on the variable-mass rocket can
thus be seen as a “constant force,” in the sense of the proper
acceleration (118) being constant.
Knowing the value of a one can instead find how the

rocket mass decreases by integrating over (118)

mðτÞ ¼ mð0Þe−aτ=ve ð119Þ

in agreement with [101].
Accretion.—Accretion is the process via which an object

increases its mass by capturing surrounding particles.
Knowing the proper accretion rate _m=m > 0 one may
directly make use of Eq. (115). Now, B > 0, indicating that
accretion leads to an effective drag force on the test particle,
which is expected given that the test particle is increasing
its inertia.
We may compute the accretion rate as follows.

Equation (111), with the (þ) sign, gives how the mass
shifts due to capture of a single particle of mass M ≪ m.
Multiplying by the collision rate,

ν ¼ nσcjU⃗j; ð120Þ

where n is the proper density of the medium and σc is the
“capture cross section,” we get the accretion rate

_m ¼ MU0ν ¼ ρcσU0jU⃗j; ð121Þ

COVARIANT FORMULATION OF RELATIVISTIC MECHANICS PHYS. REV. D 105, 084041 (2022)

084041-15



with ρ ¼ nM, which reads covariantly

_m ¼ −ρcσðu · UÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðu ·UÞ2 − 1

q
: ð122Þ

The covariant coefficient (115) will then read

B ¼ ρσc
m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðu ·UÞ2 − 1

q
; ð123Þ

with mðτÞ evolving according to (122).
The 4-acceleration on the test particle also follows from

(117). In terms of the 4-force, we have instead

fμ≡DðmuμÞ
dτ

¼−
_m

u ·U
Uμ¼ρσUμ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðu ·UÞ2−1

q
: ð124Þ

Note that f · p ∝ f · u ≠ 0 since the rest mass m of the test
particle is variable. The 4-acceleration aμ and 4-velocity uμ

are still orthogonal, however, since u2 ¼ −1 is preserved.
Hard-sphere capture.—If the interaction with the

medium is via hard-sphere collisions, then the capture
cross section σc can be taken as σc ¼ πR2 with R as the
radius of the sphere, due to particles of the medium sticking
to the sphere after colliding. We see that the accretion drag
coefficient (123) will then match the dust drag coefficient
(73) with the difference that the test particle’s mass m now
evolves according to (122).23

Gravitational capture.—In the case of gravitational
capture, one also must specify some inelastic mechanism
under which scattering medium constituents (which start
off unbound) become bound to the test particle, i.e., the
perturber. Contact with the event horizon or a hard physical
surface are obvious candidates. In fact, accretion occurs at a
much higher rate. As first pointed out by Hoyle and
Lyttleton [17], incoming particles get focused behind the
perturber, giving rise to a density wake. In this wake,
molecules are likely to collide, leading to loss of kinetic
energy and for a portion of them to become gravitationally
bound to the perturber. This qualitatively explains why the
gravitational capture cross section should be much larger
than the physical size of the perturber.
To get a quantitative estimate we compare the cross

sections for hard-sphere and gravitational scattering (70)

and (74). We may assign an effective gravitational “radius”
to the perturber given by

RðθÞ ¼ Gmð1þ v2Þ
v2 sin2ðθ=2Þ : ð126Þ

Note that we reinstated the perturber mass m, since m is
now dynamical.
When arriving at the wake, medium constituents grazing

closer to the perturber will have large tangential momentum,
which will be lost due to inelastic collision with the wake.
The constituent will be captured if the remaining (radial)
kinetic energy is smaller than the gravitational potential
energy. Therefore, hard scattering angles, corresponding to
smaller impact parameters, should lead to capture.
Hoyle and Lyttleton [17] analyzed this problem

in Newtonian mechanics where the relativistic factor
ð1þ v2Þ2 in the gravitational cross section (74) is absent.
Their result is that capture occurs for θ ≥ π=2.24 Taking the
same assumption for (126), we find a “capture radius”

Rc ¼ R

�
π

2

�
¼ 2Gmð1þ v2Þ

v2
: ð127Þ

Note that Rc is much larger than the Schwarzschild radius
for small velocities v, which is consistent with a large
effective size of a gravitational perturber. The correspond-
ing capture cross section then reads

σc ¼ πR2
c ¼

4πG2m2ð1þ v2Þ2
v4

; ð128Þ

which, in the nonrelativistic limit v → 0, reduces to the
Hoyle-Lyttleton expression [17].
Plugging cross section (128) into Eq. (122) leads to an

accretion rate given by

_m ¼ −4πG2ρm2ðu ·UÞ ½2ðu ·UÞ2 − 1�2
½ðu ·UÞ2 − 1�32 : ð129Þ

The corresponding covariant drag coefficient (123) reads

B ¼ 4πρG2m
½2ðu ·UÞ2 − 1�2
½ðu ·UÞ2 − 1�32 : ð130Þ

Note the similarities with the dynamical friction coefficient
(77),where only theCoulomb logarithmΛ is absent from the
above and the mass m is now evolving according to (129).

23Given the finite size of a dust particle, one should also expect
the test particle to eventually increase its volume Ṽ and its capture
cross section σc. If we assume that the test particle keeps a
spherical shape on average and that each particle has volumeM=ρ̃,
where ρ̃ is the (proper) mass density of a dust grain, then the

volume increases at a rate _̃V ¼ Mν=ρ̃. GivenV ¼ 4πR3=3wehave

_R ¼ ρ

4ρ̃

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðu ·UÞ2 − 1

q
: ð125Þ

Since typically ρ ≪ ρ̃, we expect the cross section increase to be
negligible.

24Therefore, in this model, accretion occurs for θ ∈ ½π
2
; π�,

while for θ ∈ ðθmin; π2Þ matter gets gravitationally deflected,
which leads to dynamical friction on the perturber. θmin is fixed
by bmax, the maximum impact parameter, i.e., the length span of
the medium.
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VI. APPLICATIONS

In this section we apply some of our covariant formulas
in specific curved backgrounds. We will mostly consider
the Schwarzschild metric,

ds2¼−wðrÞdt2þ 1

wðrÞdr
2þr2dθ2þr2 sin2θdϕ2 ð131Þ

with

wðrÞ≡ 1 −
2GM
r

; ð132Þ

where M is the mass of the black hole.

A. Free-falling spring

Let us consider an elastic spring to which to one end we
attach the test particle and to the other end another massive
object, the force applier. The system falls gravitationally in
a generic curved background. We let the test particle and
force applier be very close to each other so that the spring
does not extend very much compared to the curvature scale
of the background metric. We may then set a locally flat
coordinate system (26) where we can make use of the
Lorentz covariant expression for Hooke’s law (37).
Following the discussion at the start of Sec. IV, the

covariant formulation of Hooke’s law (37) is only expected
to be physically accurate for a force applier in uniform
motion in flat spacetime. According to the equivalence
principle, this generalizes, in curved spacetime, to the free-
falling condition for the force applier,

DUμ

dτ̃
¼ 0; ð133Þ

where Uμ is the 4-velocity of the force applier with proper
time τ̃. In practice, we may further assume the force applier
to be a much heavier object than the test particle, meaning
that the force applier is unaffected by the elastic reaction of
the spring and remains in free fall. For example, the force
applier can be a free-falling spaceship to which a spring is
somewhere attached inside.
If there was no spring, the test particle would also have to

be in free fall, and xμ would be the so-called “deviation
vector,” whose evolution would be determined by the
geodesic deviation equation [36]. Instead, the test particle
is forced out of its geodesic by the elastic force. Thegeodesic
deviation equation will need correction due to the spring.
Let us find this correction explicitly. We start by noting

that if xμ ¼ 0, particle and applier will sit on top of each
other and the force (37) vanishes. The elastic force is thus
like a tidal force in this regard (we will confirm this
explicitly in a second). In this case, both objects will follow
the same geodesic, which implies

uμ ¼ Uμ þOðxμÞ: ð134Þ

Thus, at leading order in xμ, the elastic 4-force reads

F μνuν ¼ kðxμUν − xνUμÞUν ¼ −Rμ
αβνUαxβUν ð135Þ

with

R̄μαβν ¼ −kðgμβgαν − gμαgβνÞ; ð136Þ

which one may recognize has the form of the Riemann
tensor of anti–de Sitter (AdS) spacetime with

AdS radius ¼ 1ffiffiffi
k

p : ð137Þ

Plugging (135) into the equations of motion (20) and
letting the applier be in free fall, Eq. (133), we find, at
leading order in xμ,

D2xμ

dτ2
þ ðRμ

αβν þ R̄μ
αβνÞUαxβUν ¼ 0; ð138Þ

whereRμ
αβν is the Riemann curvature tensor of the spacetime

metric gμν [36] evaluated at the applier’s worldline. When
k ¼ 0, the above reduces to the geodesic deviation equation.
We see that for small displacements the elastic force can

be interpreted as an AdS tidal force. This is not surprising
because AdS geometry embodies many properties of the
(Newtonian) harmonic potential. Free-falling particles in
AdS spacetime follow harmonic motion [102], in the same
way that for small amplitudes, xμ → 0, the relativistic
harmonic oscillator becomes nonrelativistic and therefore
harmonic [33,37–39].
Importantly, gμν in Eq. (136) is an arbitrary metric. It is

not the AdS metric with radius (137). The metric gμν
contributes with its own curvature Rμ

αβν to the deviation
equation (138).
For example, in a de Sitterpi universe we have

Rμαβν ¼
Λ
3
ðgμβgαν − gμαgβνÞ; ð139Þ

where Λ is the cosmological constant. Plugging into (138)
we see that for

k ≥
Λ
3

ð140Þ

the test particle and force applier will not be spread apart by
the cosmological expansion.25

25Using concrete numbers taken from [103], we have
Λ ∼ 10−35 s−2, meaning, unsurprisingly, that an electrically
bound electron-proton system, for which k ∼ 1033 s−2, or the
Earth-Sun system, for which k ∼ 10−14 s−2, would remain bound.
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Let us now consider the spring free falling radially onto a
Schwarzschild BH, as described by the metric (131). A
radial geodesic will have 4-velocity given by [36]

UμðτÞ ¼
�

1

1 − 2GM=r
;

ffiffiffiffiffiffiffiffiffiffiffi
2GM
r

r
; 0; 0

�
; ð141Þ

where the radius r ¼ rðτÞ goes from ∞ to 0 as τ increases
(its precise dependence on τ does not concern us here). We
now let

xμ ¼ ðx0; xk; x⊥; 0Þ ð142Þ

and fix x0 so that xμ is orthogonal to Uμ, i.e., so that in the
free-falling observer’s rest frameUμ ¼ ð1; 0⃗Þ, xμ is a purely
spatial vector.26

Note that xk is the deviation along the radial direction,
while x⊥ is the deviation orthogonal to the radial direction,
which we have chosen, without loss of generality, to be
along θ.
We now make use of the Riemann tensor components of

the Schwarzschild metric, which can be found in any
textbook [36], on Eq. (138). We find, by components,

D2xk
dτ2

¼
�
2GM
r3

−k

�
xk;

D2x⊥
dτ2

¼−
�
GM
r3

þk

�
x⊥: ð143Þ

First, we note that there is no evidence of the event horizon
here. Indeed, nothing special should happen as the spring
crosses the event horizon, as it is a coordinate singularity.We
also see that there is a “stretching” tidal force along
the radial direction, while on the orthogonal direction there
is a “compressing” tidal force. The latter will add to the
restitution force of the spring, while the former will compete
with it. A comoving observer that sets up a local inertial
frame, i.e., a passenger of the free-falling spaceship, will see
the spring oscillate with frequencies27

ωk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2GM
r3

− k

r
; ω⊥ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GM
r3

þ k

r
: ð144Þ

We see that along the radial direction the spring will no
longer oscillate after a critical radius

r < rc ¼
�
2GMm

k

�1
3

; ð145Þ

wherewe reinstated the massm. Once the spring goes below
this radius, it will be inexorably spread apart by the
increasing gravitational tidal forces until it breaks. Taking
typical values m ∼ 1 kg, k ∼ 1 N=cm, we find, for a stellar
mass BH, that this happens at

rc ∼ 200rs; ð146Þ

where rs ∼ 10 km, the Schwarzschild radius of a stellar
mass BH.

B. Black hole infall with drag

We again consider a Schwarzschild background (131) on
which dustlike accretion orbits. We let an infalling test
particle be dragged by collisions with the dust constituents
and make use of the hard-sphere dust drag coefficient (73)
in Eqs. (53) and (14), leading to the following equations of
motion:

_uμþΓμ
αβuαuβ¼

ρσ

m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðu ·UÞ2−1

q
ðuμðu ·UÞþUμÞ: ð147Þ

For simplicity, we consider motion in the equatorial
plane θ ¼ π=2; i.e., the test particle is always immersed
inside the accretion disk.
In a dust model, there are no interparticle collisions and,

therefore, no shear stress along the disk.28 The disk
constituents will then follow circular geodesics, with
4-velocity [36]

UμðrÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 3GM

r

q ð1; 0; 0;�ΩðrÞÞ; ð148Þ

and Keplerian angular speed

ΩðrÞ ¼
ffiffiffiffiffiffiffiffi
GM
r3

r
: ð149Þ

The closest possible circular orbit is at the photosphere
where r ¼ 3GM. It is however the innermost stable circular
orbit (ISCO), r ¼ 6GM, that establishes the inner boundary
of the accretion disk. We may thus consider the simplified
density profile

26This choice is, in fact, arbitrary and preserved for any τ as
dðxμUμÞ=dτ ¼ 0, which follows from contracting (138) with Uμ,
using Eq. (133) with dτ̃ ≈ dτ and antisymmetry on the first two
indices of the Riemann tensor.

27Note that this is not the case in Schwarzschild coordinates as
D2xμ

dτ2 ≠ ẍμ. This is, however, indeed the case in the comoving free-
falling frame, i.e., a Fermi normal coordinate frame adapted to the
radial geodesic [104]. Applying the Fermi normal metric,
Eq. (79) of [104], and Uμ ¼ ð1; 0⃗Þ, because a free-falling
observer is at rest in this frame, into Eq. (138) leads to (143)
with indeed D2xμ

dτ2 ¼ ẍμ. The tidal forces remain invariant, which
can be explained from their invariance under Lorentz boosts (see
Sec. 31.2 of [36]), and Eqs. (144) follow. 28This is a good approximation for thin disks [9].
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ρðrÞ ¼ ρ0Θðr − 6GMÞ: ð150Þ

An obvious point is that, if the test particle is comoving
with the disk, uμ ¼ Uμ, we see that the rhs of Eq. (147)
vanishes and the test particle will follow a geodesic—in
particular, a circular geodesic with 4-velocity given by
Eq. (148). A deviation of uμ from Uμ leads to a net force on
the test particle, which Eq. (148) tends to dynamically
minimize. As we confirm numerically, at late times, any
orbit (that does not end up in the singularity) becomes
circularized; i.e., the test particle joins the accretion
flow.
In Fig. 1 we plot some trajectories (in blue) obtained

from numerically solving Eq. (147). The initial conditions
were chosen as to lead to a geodesic that ends up in the
singularity (plotted in dashed red). The parameter ρ0σ=m
takes the values ρ0σ=m ¼ 10−3; 10−2, and 10−1 from left to
right,29 while top and bottom rows have opposite rotations
[“�” signs in Eq. (148)] for the accretion disk.
As expected, we observe stronger deviation from geo-

desic motion as ρ0σ=m increases (left to right) and for
retrograde motion of the disk with respect to the initial
condition (bottom row). In the latter case, drag reduces the
orbital velocity of the infalling particle, leading to faster
plunge for ρ0σ=m ¼ 10−3 and 10−2 (bottom left and
center). However, for ρ0σ=m ¼ 10−1 (bottom right), the
accretion disk immediately reverses the orbital velocity of
the particle, leading to a retrograde stable orbit that
circularizes at a radius ∼8GM.
Similarly, in the top row, we observe that drag prevents

the plunge of the particle for ρ0σ=m ¼ 10−2 and 10−1 (top
center and right). In the top center case, the particle grazes
the ISCO and has a highly eccentric orbit, which becomes
circularized and comoving with the disk after ∼18 revo-
lutions at a radius of ∼10GM. In the top right case,
however, due to stronger wind, circularization of the orbit
occurs sooner after ∼5 revolutions and at the larger
radius ∼14GM.

VII. CONCLUSION

In this work, we proposed a covariant framework for
relativistic forces. Our goal was to find a general expression
for the 4-force fμ that satisfies the following requirements:

(i) fμ is manifestly covariant.
(ii) fμ is such that f · u ¼ 0 as to preserve the mass

shell u2 ¼ −1.
(iii) fμ is fixed in terms of the force, via a Newtonian

correspondence.

In Secs. II and III, we showed that

fμ ¼ UμðF · uÞ − FμðU · uÞ ð151Þ

obeys all three requirements. Compliance with require-
ments (i) and (ii) is evident. Requirement (iii) was shown to
hold via the equivalence principle. Concretely, in the local
Lorentz frame where Uμ ¼ ð1; 0⃗Þ, Newton’s second law is
recovered if F⃗ is identified with the force. As argued in
Sec. III, this uniquely fixes fμ.
To make practical use of (151), the 4-vector Uμ, which is

unit and timelike, should be identified with the 4-velocity
of some physical object. It follows, by the previous argu-
ment, that F⃗ is the force on the Lorentz rest frame of that
object. In most situations, there are two possibilities for
such an object. Either it is the test particle itself, in which
case uμ ¼ Uμ, or a second object that is responsible by the
force on the test particle, which we call the force applier.30

In Sec. IV, we applied Eq. (151) to conservative
forces. Concretely, we found covariant generalizations of
Coulomb’s law, given by Eq. (31), matching the Faraday
tensor of a point charge with 4-velocity Uμ; Hooke’s law,
given by Eq. (37), for which Gron’s [84] analysis of how
the spring constant k would change in different inertial
frames was reproduced [Eqs. (39) and (40)]; and the
constant force, which we considered to be of electrical
origin (in order to identify the force applier as the infinite
charged flat sheet that produces it). The corresponding
Faraday tensor was obtained and is given by Eq. (48).
An important remark is that the obtained formulas are

Lorentz covariant but not general covariant. This is evident
from the fact that they depend on quantities, such as the
position xμ of the test particle, which, strictly, are 4-vectors
only on Minkowski spacetime. Such quantities involve two
separate points, viz. the test particle and force applier’s
positions, which have their own tangent spaces on a curved
manifold. Fortunately, when both objects are sufficiently
close to each other, local flatness applies and Lorentz
covariant expressions retain some use. This is shown
explicitly in Sec. VI Awhere the correction to the geodesic
deviation equation was computed due to an elastic spring
attached between neighboring “free-falling” wordlines. We
considered the simple case of a radially free-falling spring,
but it would be interesting to study other, more general,
solutions of Eq. (138), e.g., as done in [107,108].
One may wonder whether the Lorentz covariant expres-

sions obtained for the conservative forces in Sec. IV may be
written in a general covariant way, i.e., for a generic curved
background. Certainly, the relative position xμ of the test
particle with respect to the force applier must be replaced
by a general covariant object. One natural possibility is to
connect the test particle and force applier via a geodesic, in

29For comparison, taking data from [105], namely, ρ0 ∼
10−10 g cm−3 and M ∼ 100 M⊙, and letting the test particle be
a spherical asteroid of radius R and mass density ∼1 g cm−3

[106], we have ρ0σ=m ∼ 10−10=R, which for an R ∼ 1 cm
asteroid amounts to ρ0σ=m ∼ 10−3.

30The force applier may also be seen as the test particle itself,
as in the case of self-forces (see Appendix A).

COVARIANT FORMULATION OF RELATIVISTIC MECHANICS PHYS. REV. D 105, 084041 (2022)

084041-19



which case the geodesic length would be the distance
between both objects. There are, however, many geodesics
that connect both worldlines. Which geodesic is the most
appropriate?31

Another issue with at-a-distance forces is when the force
applier is accelerated, e.g., as due to backreaction by its
own effect on the test particle. Every Newtonian force that
was covariantly generalized in Sec. IV should be physically
inaccurate in this case, i.e., if _Uμ ≠ 0 (this is surely the case
for Coulomb’s law). A retardation effect, as due to causality
and the finiteness of the speed of light, should be accounted
for. However, as past efforts indicate (see Introduction), in
particular, the no-interaction theorem [76–79], a pure
particle description of relativistic two-body systems is
ill-fated.
Fortunately, these technical and fundamental hurdles

essentially go away for most forces of astrophysical
relevance, which are dissipative forces. Dissipative forces

typically arise due to relative motion of a test particle with
respect to some medium which “drags” its motion. Since
this effect is local, i.e., as due to direct contact, there is no
distance involved and, as shown in Sec. V, Eq. (151) yields
expressions that are general covariant and valid for variable
4-velocity Uμ of the medium.32

Nonetheless, caution must be used in covariantly gen-
eralizing Newtonian drag forces, as they are velocity
dependent and may not hold relativistically. For this reason,
before inserting them into Eq. (151), in Sec. VA we
rederived a class of drag forces using relativistic kinemat-
ics. Concretely, master formula (65) gives the drag on the
test particle’s instantaneous rest frame due to collisions off

FIG. 1. Equatorial orbits in a Schwarzschild background with an accretion disk (in gray). In units where G ¼ c ¼ M ¼ 1, the initial
data are rð0Þ ¼ 20, r0ð0Þ ¼ 0.06, ϕð0Þ ¼ 0, ϕ0ð0Þ ¼ 0.009, tð0Þ ¼ 0, and t0ð0Þ is fixed by the mass-shell condition u2ð0Þ ¼ −1. The
corresponding geodesic is plotted in dashed red. Trajectories obtained by numerically solving (147) until τ ¼ 500 are plotted in thick
blue. From left to right: ρ0σ=m ¼ 10−3; 10−2; 10−1. In the top row, the disk is rotating counterclockwise [“þ” sign in Eq. (148)], while in
the bottom row, the disk is rotating clockwise [“−” sign in Eq. (148)].

31It might be easier to generalize instead the potentials
(see Appendix B), since they are scalar invariants.

32In fact, fundamentally, there is no such thing as a contact
interaction. The assumption at work is that the interaction
between test particle and medium constituents is of much shorter
range as compared to the background curvature scale so that the
equivalence principle applies. This is the case for virtually all
aerodynamiclike drag forces, which are of electromagnetic
origin, and dynamical friction on small enough compact objects,
as in EMRIs.
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medium constituents. We considered two astrophysically
relevant interactions—hard-sphere and gravitational colli-
sions—with corresponding differential scattering cross
sections, Eqs. (70) and (74), in three different media: dust,
radiation, and gas. The corresponding covariant general-
izations are summarized in Table I.
Many well-known cases are recovered; namely, hard-

sphere scattering on radiation leads to the Poynting-
Robertson 4-force [29]. Gravitational scattering on dust
and gas leads, respectively, to the covariantly generalized
versions of the expressions of Petrich et al. [14] and
Chandrasekhar [12]. Hard-sphere scattering on gas leads
to the covariant generalization of Epstein’s result [21]. Drag
due to gravitational scattering on radiation and hard-sphere
scattering on dust do not match to any well-known force.
Moreover, note that none of the dust or gas drag coefficients
are functionally identical to Poynting-Robertson drag (hard
sphere, radiation), which has been used to describe the
latter [59–61]. The use of the hard-sphere dust drag
coefficient (hard sphere, dust) was illustrated in Sec. VI B
for the case of an infalling test particle into a Schwarzschild
black hole with an accretion disk.
We note also that the gas drag coefficients were computed

using the Maxwell-Boltzmann distribution, which only
applies for a nonrelativistic gas, i.e., with both nonrelativistic
temperature and average velocity. The former is typically the
case for most astrophysical gases [97], while the latter may
not be true depending on how fast a test particle moves with
respect to the gas. Even though this regime can be written
covariantly [Eq. (61)], it would be interesting to redo the
computation using a relativistic distribution.33

In Sec. V B we considered variable-mass effects. We
showed that these effects can be quantified in the same way
as drag forces. For the variable-mass rocket, we found the
following “drag” coefficient:

B ¼ −
dm
dτ

ðu ·UÞ−1; ð152Þ

where dm=dτ < 0 is the rocket mass depletion rate and Uμ

is the 4-velocity of the propellant, which is related to the
comoving propellant velocity ve by Eq. (116). The rela-
tivistic rocket equation [99] is recovered in flat spacetime.
Moreover, we find that, under the right conditions, the
rocket will feel constant acceleration, Eq. (118). Therefore,
the variable-mass rocket can covariantly define hyperbolic
motion. Rindler’s [62] requirement of planarity, which
amounted to two conditions, is replaced by the concrete
choice of direction of fuel ejection.
Taking instead dm=dτ > 0 allows one to describe the

force due to accretion. We considered a relativistic Hoyle-
Lyttleton model [17] and found the following accretion
rate:

dm
dτ

¼ 4πρG2m2
γ½2γ2 − 1�2
½γ2 − 1�32 ; with γ ≡ −u · U: ð153Þ

Plugging into (152) leads to the corresponding drag coef-
ficient due to Hoyle-Lyttleton accretion (130). The result
replicates the dust dynamical friction coefficient (bottom left
in Table I) apart from the Coulomb logarithm Λ.
We have not considered accretion of radiation, given that

photons do not self-interact (at least classically) and there is
no other inelastic mechanism that facilitates gravitational
capture. Accretion may still occur, albeit at a much smaller
rate, via direct contact with the physical surface of the
compact object or the event horizon, in the case of a BH.
This effect was recently quantified in the context of dark
matter accretion/dynamical friction [93,109] onto a BH,
where dark matter was modeled as a free scalar field. One
natural way to introduce inelasticity would be to add a self-
interaction term for the scalar field ϕ to the Lagrangian
(e.g., λϕ4). One expects for λ ≫ 1 the accretion rate to
increase dramatically.34

TABLE I. Covariant drag coefficient B by interaction (row) and medium (column). In the table, ρ stands for the proper mass density
and e stands for the radiation energy density in the source (e.g., a star) rest frame. σ stands for the sphere cross section, G is the
gravitational constant, Λ is the Coulomb logarithm, which, depending on the effective size of the test particle, may also depend on γ.
Finally, β≡M=kBT, where M is the mass of a gas molecule, kB is the Boltzmann constant, and T is the gas temperature. In the case of
radiation, the medium is massless, so Uμ is a null vector. The expressions for the gas were computed using the Maxwell-Boltzmann
distribution. In the hot gas limit, i.e., when the thermal velocity largely exceeds the gas average speed, also known as the Epstein regime
[21], the drag coefficient becomes constant for either interaction. Several entries correspond to known forces. Namely, the dynamical
friction of Petrich et al. [14] (gravitational, dust), Chandrasekhar’s dynamical friction [12] (gravitational, gas), Poynting-Robertson drag
[28,29] (hard sphere, radiation), and Epstein drag [21] [hard sphere, gas (hot)].

Bðγ ≡ −u ·UÞ Dust Radiation Gas (hot) Gas

Hard-sphere ρσ
ffiffiffiffiffiffiffiffiffiffiffiffi
γ2 − 1

p
eσγ 4

3
ρσ

ffiffiffiffiffiffiffiffiffiffi
8=πβ

p
Eq. (103)

Gravitational 4πρG2m2Λ½2γ2 − 1�2½γ2 − 1�−3
2 16πeG2m2Λγ 4

3
ρG2m2Λ

ffiffiffiffiffi
2π

p
β3=2 Eq. (108)

33One possibility is to use the Maxwell-Jüttner distribution
(see Appendix C).

34In this regime, dark matter should resemble a strongly
collisional fluid which, in a scattering experiment, would lead
to negligible escape at infinity. By energy-momentum conserva-
tion, this, in turn, would imply considerable mass rate increase
dm=dτ on the BH.
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Bondi accretion [19], i.e., accretion on a gas/fluid at
nonzero temperature, was also not considered. In most
astrophysical situations, accretion flows are hydrodynam-
ical [110], for which a kinetic theory approach, as taken in
this work, does not exactly apply. Relativistic hydro-
dynamics [87] should be used instead (see, e.g., [111]
for a recent study).
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APPENDIX A: ABRAHAM-LORENTZ-DIRAC
FORCE

The Abraham-Lorentz force reads [81]

F⃗N ¼ q2

6π

d2v⃗
dt2

; ðA1Þ

while the relativistic generalization derived by Dirac [83]
reads

fμ ¼ q2

6π
ðüμ − uμ _u2Þ: ðA2Þ

Equation (A1) is only strictly valid in the comoving frame
of the point charge. Thus, direct application of (25) gives

Fμ ¼ q2

6π
üμ; ðA3Þ

and Eq. (23) reads

F μν ¼ q2

6π
ðuμüν − uνüμÞ; ðA4Þ

where we used Uμ ¼ uμ, which we can also interpret
as the test particle being its own force applier. Dirac’s
expression (A2) then follows from fμ ¼ F μνuν and the
relation u · ü ¼ − _u2 which comes from differentiating the
mass shell (12) twice.
A general covariant expression is obtained by replacing

_uμ → Duμ
dτ and üμ → D2uμ

dτ2 . However, this is not the correct
expression for the electromagnetic self-force in curved
space [5,6,112,113]. In curved spacetime, the Abraham-
Lorentz comoving force (A1) is not accurate. This is
because, in a curved background, the wave equation
Green’s function has support inside the light cone [112].
This is because radiation may scatter back to the point
charge, giving rise to so-called “tail” contributions to the

self-force. There is also the addition of the Ricci tensor to
the electromagnetic wave equation [113], which, in the
presence of matter, should also be accounted for.

APPENDIX B: LAGRANGIAN FORMULATION

We have described conservative forces (Sec. IV) by
covariantly generalizing the force F⃗N . However,
conservative forces can be written in terms of a potential

ϕ as F⃗N ¼ −∇⃗ϕ. According to Eq. (25), this implies

Fμ ¼ −∂μΦ ðB1Þ

with covariant potential fixed by

½Φ ¼ ϕ�U⃗¼0
: ðB2Þ

Moreover, if, as usual, the potential ϕ is independent of
time, we must have

Uμ∂μΦ ¼ 0: ðB3Þ

In this case, contracting the equation of motion (14) with
Uμ leads to conservation of the “mechanical energy,”

EM ¼ −u ·U þΦ ¼ constant; ðB4Þ

which, in the force applier’s rest frame, where Uμ ¼ ð1; 0⃗Þ,
amounts to EM ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p
þ ϕ, where v is the test

particle’s velocity.
The examples considered in Sec. IV have the following

potentials:

ΦCoulomb ¼
qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ ðU · xÞ2
p ; ðB5Þ

ΦHooke ¼
k
2
½x2 þ ðU · xÞ2�; ðB6Þ

ΦConstant ¼ −
σ

2
½n · xþ ðU · nÞðU · xÞ�: ðB7Þ

All the above examples satisfy (B3). Also note that
applying (B1) to the above leads to the corresponding
Fμ in Sec. IV with some extra term along Uμ, which,
however, do not contribute to F μν in Eq. (23).
The equations of motion (14) involving a conservative

force (B1) follow, equivalently, from the Euler-Lagrange
equations associated with the action

S ¼
Z

dτ

�
m_x2

2
þ ð_x ·UÞΦ

�
: ðB8Þ

According to Noether’s theorem [114,115], if τ → τ þ δτ
and xμðτÞ → xμðτÞ þ δxμ is a symmetry of the action, then
the combination
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Lδτ þ
�∂L
∂ _xμ

�
δxμ ¼ constant ðB9Þ

is a constant of motion. It is clear that translations in τ are
a symmetry of the action (B8). This corresponds to
δτ ¼ const and δxμ ¼ −δτ _xμ, which plugging into the
above yields the (super)Hamiltonian,

H ≡
�∂L
∂ _xμ

�
_xμ − L ¼ gμν _xμ _xν

2
¼ constant: ðB10Þ

Given the initial condition Hð0Þ ¼ 1=2, we see that the
mass shell (12) is preserved.
Conservation of the mechanical energy (B4) comes up as

a further symmetry of the Lagrangian. Note that if Eq. (B3)
is verified, then the action (B8) is invariant under spacetime
shifts along Uμ, i.e., time independence in the applier’s
rest frame. Plugging δxμ ¼ Uμ and δτ ¼ 0 into Eq. (B9)
yields

Uμ

�∂L
∂ _xμ

�
¼ −EM ¼ constant; ðB11Þ

with EM given by Eq. (B4).

APPENDIX C: RELATIVISTIC HARD-SPHERE
GAS DRAG

The Maxwell-Jüttner distribution [94–96] reads

Wðk⃗Þ ¼ nβ
4πK2ðβÞ

eβk·U; ðC1Þ

with n as the proper particle number density, Uμ as the
average 4-velocity of the gas, and KνðβÞ as the modified
Bessel function of the second kind.35 For β ≫ 1, as with

most astrophysical gases, we have K2ðβÞ →
ffiffiffiffi
π
2β

q
e−β and

the integral (98) will be dominated by the saddle point of
the exponent. Expanding k ·U to quadratic order around its
saddle point turns Wðk⃗Þ into a Gaussian,

Wðk⃗Þ ≈ n

�
β

2π

�3
2

exp

�
−
β

2
Mijðki −UiÞðkj −UjÞ

�
; ðC3Þ

but not quite a Maxwell-Boltzmann distribution, since

Mij ¼ δij −
UiUj

ðU0Þ2 ðC4Þ

is not proportional to the identity, a feature which intro-
duces anisotropy into the distribution of momenta. If the
gas also moves nonrelativistically on average, i.e., jU⃗j ≪ 1

and U0 → 1, then Mij → δij and (C3) turns into the
Maxwell-Boltzmann distribution. Note, however, that con-
trary to the Maxwell-Boltzmann distribution, Eq. (C3) is
Lorentz invariant (under the saddle point approximation).
In the zero-temperature limit β → ∞, distribution (C3) will
go to the Lorentz-invariant delta function

Wðk⃗Þ
n

→
δ3ðk⃗ − U⃗Þffiffiffiffiffiffiffiffiffiffiffi

detM
p ¼ k0δ3ðk⃗ − U⃗Þ; ðC5Þ

which leads Eq. (98) into the dust expression (65).
Let us now compute the force due to hard-sphere

collisions on a Maxwell-Jüttner gas at nonrelativistic
temperatures (β → ∞). For calculational purposes, we find
it simpler to apply the saddle point approximation β → ∞
at a later stage of the computation. Plugging distribution
(C1) into Eq. (98) reads

F⃗N ¼ ρσβ

4πK2ðβÞ
Z jk⃗jk⃗

k0
eβk·Ud3k⃗: ðC6Þ

To compute this integral, we use spherical coordinates for k⃗
with U⃗ aligned along the z direction. The integral over the
azimuthal angle averages to zero the components of k⃗
orthogonal to U⃗. We then get a force along U⃗,

F⃗N ¼ ρσβ

2K2ðβÞjU⃗j Iðβ; U⃗ÞU⃗; ðC7Þ

with

Iðβ; U⃗Þ ¼
Z

∞

0

e−βk
0U0 jk⃗j4 djk⃗j

k0

Z
1

−1
eβjk⃗jjU⃗jxxdx; ðC8Þ

where x is the cosine of the polar angle, the angle between k⃗
and U⃗. The integral over x is trivial and leads to

Iðβ; U⃗Þ ¼ 1

β2jU⃗j2
Z

∞

0

½e−βk0U0þβjk⃗jjU⃗jðβjk⃗jjU⃗j − 1Þ

þ e−βk
0U0−βjk⃗jjU⃗jðβjk⃗jjU⃗j þ 1Þ�jk⃗j2 djk⃗j

k0
: ðC9Þ

Parametrizing over the rapidities,

U0 ¼ cosh η; jU⃗j ¼ sinh η; ðC10Þ

k0 ¼ cosh χ; jk⃗j ¼ sinh χ; ðC11Þ

allows us to rewrite the integral as

35We use the “rapidity” integral representation,

KνðβÞ ¼
ffiffiffi
π

p
Γðνþ 1

2
Þ
�
β

2

�
ν
Z

∞

0

e−β cosh χ sinh2ν χdχ: ðC2Þ
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Iðβ; ηÞ ¼ 1

β2 sinh2 η

Z
∞

0

½e−β coshðχ−ηÞðβ sinh η sinh χ − 1Þ þ e−β coshðχþηÞðβ sinh η sinh χ þ 1Þ� sinh2 χdχ: ðC12Þ

We now shift the integration variable, χ → χ þ η and χ → χ − η in the first and second pieces, respectively, to get

Iðβ; ηÞ ¼ 2

β2sinh2η

�
−
Z

η

0

dχe−β cosh χsinh2ðχ − ηÞðβ sinh η sinhðχ − ηÞ þ 1Þ

þ sinh 2η
Z

∞

0

dχe−β cosh χ sinh χðβcosh2ηsinh2χ − 2 cosh χ þ 3βsinh2ηcosh2χÞ
�
: ðC13Þ

The shift of integration variables from (C12) to (C13) essentially amounts to a boost back to the rest frame of the gas, where
it should follow a Maxwell-Boltzmann distribution, since the gas is assumed to be nonrelativistic. Indeed, in the limit
β → ∞, both integrals will be dominated by the χ → 0 region due to the decaying exponential. In this limit, we have

sinhχ→ χ; coshχ→1; e−βcoshχ →e−βð1þ
χ2

2
Þ: ðC14Þ

Making use of (C10), we then get

Iðβ;U⃗Þ≈ 2e−β

β2jU⃗j2
�
−
Z

η

0

dχe−
βχ2

2 ðU0χ− jU⃗jÞ2ð1−βjU⃗j2þβU0jU⃗jχÞþU0jU⃗j
Z

∞

0

dχe−
βχ2

2 χðβðU0Þ2χ2−2þ3βjU⃗j2Þ
�
: ðC15Þ

Note that we cannot a priori discard the higher powers in χ in the above because we do not know how χ compares to jU⃗j or
U0. We wish to be completely agnostic about the magnitude of jU⃗j. Equation (C15) integrates to

Iðβ;U⃗Þ¼ 2e−β

β3jU⃗j2
�
U0e−

βη2

2 ð3βjU⃗j3þηU0−3βηU0jU⃗j2þβη2ðU0Þ2jU⃗jÞþ
ffiffiffiffiffi
π

2β

r
erf

� ffiffiffi
β

2

r
η

�
ðβ2jU⃗j4þ2βjU⃗j2−1Þ

�
: ðC16Þ

Plugging back into (C7) we get f⃗ ¼ bU⃗ with the drag coefficient given by

b ¼ ρσ

β2jU⃗j3
� ffiffiffiffiffi

2β

π

r
U0e−

βη2

2 ð3βjU⃗j3 þ ηU0 − 3βηU0jU⃗j2 þ βη2ðU0Þ2jU⃗jÞ þ erf

� ffiffiffi
β

2

r
η

�
ðβ2jU⃗j4 þ 2βjU⃗j2 − 1Þ

�
: ðC17Þ

The covariant drag coefficient B then follows from

jU⃗j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðU0Þ2 − 1

q
; η ¼ arccoshU0; ðC18Þ

and replacing U0 → −u · U in the above.
The computation with arbitrary β is difficult, but in the

limit where the gas is moving macroscopically slow, we
were able to do it. As with Epstein’s original approach [21],
we directly expand at leading order in U⃗ the distribution

function (C1). The integral (C7) can then be expressed in
terms of a Bessel function and is given by

bEpstein rel: gas ¼
4

3

ffiffiffiffiffiffi
8

πβ

s
ρσ

K5=2ðβÞ
K2ðβÞ

: ðC19Þ

For β → ∞, the ratio of the Bessel functions goes to 1 and
we recover Epstein’s result (105).
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