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We present IMRPHenomTPHM, a phenomenological model for the gravitational-wave signals emitted by
the coalescence of quasicircular precessing binary black holes systems. The model is based on the “twisting
up” approximation, which maps nonprecessing signals to precessing ones in terms of a time-dependent
rotation which can be described by three Euler angles and which has been utilized in several frequency-
domain waveform models that have become standard tools in gravitational-wave data analysis as well as in
several time-domain models. Our model is constructed in the time domain, applying the twisting up
approximation to the nonprecessing multimode model IMRPhenomTHM, which allows several improvements
over the frequency-domain models; we do not use the stationary phase approximation, we employ a simple
approximation for the precessing Euler angles for the ringdown signal, and we implement a new method for
computing the Euler angles through the evolution of the spin dynamics of the system, which is more
accurate and also computationally efficient.
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I. INTRODUCTION

A number of complementary strategies have been
developed to model the gravitational-wave (GW) signal
of coalescing compact binaries (CBCs), giving rise to
several families of waveform models which are routinely
used for GW data analysis. Most notably, these include two
families of effective-one-body (EOB) descriptions,
SEOBNR [1–4], and TEOBResumS [5–8], reduced-order
methods for parameter space interpolation of numerical
relativity (NR) datasets commonly referred to as
NRSURROGATE models [9–11], and the IMRPhenom family
[12–23], which is based on piecewise closed-form phe-
nomenological models, which are particularly computa-
tionally efficient due to the closed-form expressions.
These models are continuously being improved with the

goal to minimize systematic errors when estimating the
source parameters of detected GWevents with the methods
of Bayesian inference [24,25], while reducing at the same
time the computational cost of such analyses. Such
improvements are particularly urgent due to the advances
in sensitivity of the international network of advanced GW
detectors and the corresponding increase in the number of
detected sources. The Advanced LIGO detectors [26] and
Advanced Virgo detector [27] have already provided three
catalogs of GW transients: GWTC-1 [28], GWTC-2 [29]
(and an extension of the latter, GWTC-2.1 [30]), and

GWTC-3 [31], which include a total of 90 CBC signals,
in addition to several catalogs published by independent
groups [32–35]. Furthermore, a significantly higher num-
ber of events is expected for the upcoming O4 observation
run [36].
For the subspace of quasicircular binary black hole

(BBH) coalescence without spin precession, waveform
models have reached a certain level of maturity: the
waveform modeling programs mentioned above have all
provided models that are calibrated to NR simulations and
include several subdominant harmonics of the signal,
resulting in very good agreement in the region of parameter
space where NR simulations are available; see, e.g.,
Refs. [37,38]. Interesting questions remain, e.g., concern-
ing unequal-mass ratios or spins close to the Kerr limit, and
models are expected to be further improved, in particular as
more high-quality NR simulations become available for
large mass ratios and spins. When adding precessing spins,
such a level of maturity has not yet been reached. Not only
is the morphology of waveforms much more complicated,
but also the larger parameter space is by far not as well
sampled by NR waveforms. Different modeling programs
have made different types of compromises: NR surrogate
models have been constructed to interpolate NR datasets
but are restricted in coverage of mass ratio, spin magni-
tudes, and length of the waveform [11]. The main models in
the EOB and phenomenological waveform programs have
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taken a complementary path, using approximations to
model precession without calibration to numerical wave-
forms, which is in principle less accurate but allows the
construction of models that can be used for large parts of
the parameter space and without limitations on the length of
waveforms. Nevertheless, the first attempt to calibrate
precession in the phenomenological program has been
achieved in Ref. [39].
The crucial approximation that allows us to construct

precessing waveform models that are not calibrated to NR
is based on the fact that at least during the inspiral the
precessing motion is much slower than the orbital motion,
so in consequence, the precessing motion contributes
relatively little to the loss of energy due to gravitational
radiation, and therefore contributes relatively little to the
phasing of the inspiral. The main effect of precession is
then an amplitude modulation as the orbital plane precesses
and radiates GWs predominantly in the direction orthogo-
nal to the orbital plane [40]. These arguments [41,42] can
be extended to a drastic simplification of the waveform, by
describing it not in an inertial frame, as is appropriate for
observation, but rather in a coprecessing noninertial frame,
where the waveform is close to a nonprecessing one. One
can then construct an approximate precessing waveform in
the following way, which is often referred to as “twisting
up” a nonprecessing signal [42]: an appropriate nonpre-
cessing waveform is rotated into the inertial frame with a
time-dependent rotation, described by three Euler angles
(or alternatively quaternions [43]). To account for the
change of final spin due to precession, the ringdown of
the nonprecessing waveform also needs to be modified. A
standard way to obtain the Euler angles is from post-
Newtonian equations, which could be solved directly as
time evolution equations, or approximated further in terms
of analytic solutions, utilizing orbital averaging [44] or the
multiple scale analysis (MSA) [45]. These ideas have been
developed in a series of papers [41–43,46,47] that have
resulted in a number of frequency-domain precessing
IMRPhenom waveform models [12–16] which have become
standard tools in GW data analysis. A recent discussion of
the approximations used and their shortcomings has been
given in Ref. [48].
For data analysis methods based on matched filtering, it

is particularly convenient and computationally efficient to
use waveform models in the frequency domain. In the
context of phenomenological waveforms in the frequency
domain, the twisting-up approach does, however, cause
several problems: first, in order to obtain closed form
expressions for the “twisted” spherical harmonic modes in
the frequency domain, the stationary phase approximation
has been employed, which is not well suited for the merger
and ringdown. Second, it has not yet been achieved to
obtain a closed-form ansatz that computes the Euler angles
during ringdown from known information about the qua-
sinormal modes of the final Kerr black hole, which is

straightforward in the time domain [49]. Somewhat sur-
prisingly, it has turned out that precessing IMRPhenom

waveform models in the frequency domain are still rather
accurate, and they have proven essential tools for GW data
analysis. For high-mass systems like GW190521 [50,51],
where only the merger and ringdown can be observed, these
shortcomings are, however, important.
In this work, we will therefore treat precession in the

time domain. For a starting point, we take IMRPhenomTHM ,
the nonprecessing multimode NR-calibrated model that we
have presented in the preceding paper [17], and we will
generalize it to the precessing IMRPHenomTPHM model
employing the twisting-up procedure. We will then discuss
the gain in accuracy of describing the merger and ringdown
and new directions of waveform modeling which our
approach opens up. A key element is that as an alternative
to closed-form expressions for the Euler angles we can also
apply a fast numerical time integration of the post-
Newtonian spin evolution equations, similar to the strategy
followed in the TEOBRESUMS framework [5], which we
hope to develop further in the future.
The paper is organized as follows. In Sec. II, we discuss

the model construction; in Sec. III, we evaluate the
accuracy and computational efficiency of the model; and
we conclude in Sec. IV.

II. MODEL CONSTRUCTION

A. Notation and conventions

Quasicircular BBH systems can be described by
eight intrinsic parameters: the individual masses mi and
individual dimensionless spin vectors χ i ¼ Si=m2

i of
each black hole component. The total mass of the system
M ¼ m1 þm2 is a scale parameter and can be used to
define geometric units G ¼ c ¼ M ¼ 1. We define the
mass ratio q ¼ m1=m2 ≥ 1 and the symmetric mass ratio
η ¼ q=ð1þ qÞ2. We denote dimensionless component spin
vectors by χ i, dimensionful spins by Si ¼ m2

i χ i and the
orbital angular momentum by L.
The emitted GW signal in a direction ðΘ;ΦÞ on the

celestial sphere of the source can be expressed in a
polarization basis in terms of two independent polarizations
or decomposed in a basis of spherical harmonics of spin
weight −2,

hðt; λ;Θ;ΦÞ ¼ hþðt; λ;Θ;ΦÞ − ih×ðt; λ;Θ;ΦÞ

¼
X
l

Xl

m¼−l
hlmðt; λÞ−2YlmðΘ;ΦÞ; ð1Þ

which disentangles the extrinsic orientation parameters
ðΘ;ΦÞ from the intrinsic parameters λ ¼ fq; χ 1; χ 2g.
For nonprecessing systems, the spherical harmonic

modes are naturally defined with respect to an axis that
is orthogonal to the preserved orbital plane. In the presence
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of spin precession, the orbital plane also precesses. There is
then no natural definition of a fixed frame in which to
define the spherical harmonic modes, and indeed the
complexity of their morphology depends greatly on the
definition of the (inertial) frame.
A particularly simple form of the GW signal can be

achieved when the axis of the inertial reference frame is
aligned with the total angular momentum of the system

JðtÞ ¼ LðtÞ þ S1ðtÞ þ S2ðtÞ; ð2Þ

at some given reference time ẑ ¼ ĴðtrefÞ. We will refer to
such a reference frame as the J frame. The direction of J is
approximately constant but under certain conditions can
flip, which is known as “transitional precession” [40],
although these cases are expected to be rare due to the
required fine-tuning of the initial conditions.
Another type of frame that is commonly employed

chooses the orbital angular momentum L as the z axis.
We can consider L as a time-dependent quantity, giving rise
to a noninertial frame usually called the coprecessing
frame, or define an inertial frame in terms of a reference
time, where LðtrefÞ ¼ L0. We will refer to these choices as
the L frame or L0 frame. The L frame has the advantage that
the spin components parallel and orthogonal to L are
approximately preserved; see, e.g., the discussion in
Ref. [46]. For this reason, the frames associated to the
orbital angular momentum are preferred when defining the
spin vectors for initial datasets in NR—the spins will then
typically change little over time. Because of the precession
of L around the total angular momentum J, this simplicity
is, however, paid for in a more complex morphology of the
spherical harmonic modes in the L0 frame.
An alternative to tying the frame axis to L is to use

instead the Newtonian angular momentum LN, which
points in the direction of the instantaneous angular fre-
quency vector. We will implement our twisting-up
approach to modeling precessing by mapping the preserved
axis of the nonprecessing system to the time-dependent LN
of the precessing system.
At some reference time tref , we then define a Cartesian

coordinate system with the axes

ẑ ¼ L̂NðtrefÞ; x̂ ¼ r1ðtrefÞ − r2ðtrefÞ; ð3Þ

as the direction between the larger and the smaller black
hole at that reference time, and ŷ constructed orthonormally
to the other two following the right-hand-side rule. In this
frame, the angles that specify the position in the source sky
sphere are commonly called inclination ι and reference
orbital phase ϕref . To simplify our notation, we will refer to
this frame as the L0 frame, neglecting the differences
between LN and L.

B. Twisting-up approximation

We will construct our precessing waveform models in
terms of rotating the spherical harmonic modes of non-
precessing systems into the inertial precessing systems as
discussed above. This time-dependent rotation can be
characterized by three Euler angles ðα; β; γÞ describing
the three-dimensional (3D) rotation between both frames,
and then the relation between the modes can be expressed
as [42,52]

hIlmðtÞ ¼ Dl
mm0 ðα; β; γÞhcoplm0 ðtÞ; ð4Þ

where Dl
mm0 are the Wigner D matrices. Our conventions

for the Euler angles and D matrices are consistent with
those used in Ref. [16], in which we also provide further
details on the D matrices.
The Euler angles can be expressed in the inertial

reference frame fx̂; ŷ; ẑg defined by Eq. (3) as

α ¼ arctanðL̂y=L̂xÞ; ð5aÞ

cos β ¼ ẑ · L̂ ¼ L̂z; ð5bÞ

_γ ¼ − _α cos β: ð5cÞ

As discussed in Sec. I, we will approximate the spherical
harmonic modes of the precessing waveform in a copre-
cessing frame by the modes of the corresponding non-
precessing [aligned spin (AS)] system [42,53]:

hcopreclm ðt;q; χ 1; χ 2Þ ≈ hASlm ðt; q; χ1l; χ2lÞ: ð6Þ

Here, we will employ this approximation to map the
nonprecessing modes from the NR-calibrated model
IMRPhenomTHM [17] into the precessing inertial modes of
the IMRPHenomTPHM model, and we set

hTPHMlm ðtÞ ¼ Dl
mm0 ðα; β; γÞhTHMlm0 ðtÞ: ð7Þ

In our construction, the spherical harmonic modes
resulting from Eq. (7) are given in the inertial J frame,
since in this frame the morphology of the Euler angles is
simplified. To construct the GW polarization time series,
which are the measurable quantities at the detectors, we
first rotate the spherical harmonic modes to the L0 frame
with a global time-independent rotation,

hL0

lmðtÞ ¼ Dl
mm0 ð−γref ;−βref ;−αrefÞhJlm0 ðtÞ; ð8Þ

since in this frame the polarizations can be constructed as

hþðtÞ − ih×ðtÞ ¼
X
l

Xl

m¼−l
hL0

lmðtÞ−2Ylmðι;ϕrefÞ: ð9Þ
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C. Coprecessing modes

The IMRPhenomTHM model employed in Eq. (7) is a
nonprecessing phenomenological multimode model [17]
that has been calibrated to 531 nonprecessing BBH NR
simulations. In our approximation, as discussed above, we
neglect the contribution of the spin components within the
orbital plane to the frequency evolution; likewise, the
evolution of the projection χiL ¼ χ iðtÞ · L̂ðtÞ is not taken
into account for describing the frequency evolution of the
precessing system. This approximation has been used in all
models from the IMRPhenom family to date. See Ref. [48] for
a further discussion of the approximations used in the
twisting-up approximation.
The GW multipoles hlm are also described by the

IMRPhenomTHM model as piecewise expressions defined on
a three-region partition of the time domain: inspiral, merger,
and ringdown, as described in Ref. [17], and similar to the
decomposition used in the construction of the IMRPhenomX

frequency-domain models [16,21]. We then modify the
ringdown region to account for the final spin of the actual
precessing system, which differs in general from the non-
precessing case; see our detailed discussion inRef. [16]. The
ringdown ansatz of IMRPhenomTHM is based on the phenom-
enological analytical proposal of Ref. [54], which employs
the quasinormal mode frequencies of the remnant black
hole. In IMRPhenomTHM, we describe the mode frequencies
and amplitudes as

ω̄lmðtÞ¼ωlmðtÞ−ωRD
1lm ¼ c1

c2ðc3e−c2tþ2c4e−2c2tÞ
1þc3e−c2tþc4e−2c2t

; ð10Þ

jh̄lmðtÞj ¼ eα1lmðt−t
peak
lm Þjhlmj

¼ d1 tanh½d2ðt − tpeaklm Þ þ d3� þ d4: ð11Þ

These expressions depend explicitly on the ground-state
damping frequency α1lm and ringdown frequency ωRD

1lm of
each mode, and also some of the coefficients (see Eqs. (31)
and (32) of Ref. [17]) depend on the damping frequency of
the first overtone α2lm. Damping and ringdown frequencies
are functions of the final spin of the remnant black hole, so
for the precessing situation, we evaluate them with our
prediction of the precessing final spin, which we discuss
below at the end of Sec. II E.

D. Description of inspiral-plunge
precessing Euler angles

For IMRPhenomXPHM, the state-of-the-art phenomenologi-
cal frequency-domain model, two alternative closed-form
expressions for the Euler angles have been used [16]. Here,
we inherit these prescriptions, but we add an additional
option, to numerically evolve the spin precession equations.

1. Numerical evolution of the spin precession equations

When the individual spins S1;2 are misaligned with
respect to the orbital angular momentum L, both the spins
and the orbital angular momenta directions evolve in time,
producing a precessional motion of the orbital plane.
Under the assumption of conserved direction of the total
angular momentum J, and neglecting radiation reaction,
the evolution equations for the precessing spins and the
orbital angular momentum can be obtained in post-
Newtonian (PN) theory to a given order in the PN
expansion parameter v [55–59]:

dL̂
dt

¼ ΩL̂ðvðtÞ; q; S1; S2Þ × L̂; ð12aÞ

dS1
dt

¼ Ω1ðvðtÞ; q; S1; S2Þ × S1; ð12bÞ

dS2
dt

¼ Ω2ðvðtÞ; q; S1; S2Þ × S2: ð12cÞ

Note that these equations are subject to the constraint

_L ¼ − _S1 − _S2: ð13Þ

The radiation reaction can be introduced by letting the
PN parameter vðtÞ ¼ ð _ϕorbðtÞÞ1=3 evolve in time, which
implies another ordinary differential equation (ODE) to be
solved for _v, which in general will depend on the time-
dependent individual spin vectors. In this work, however,
we approximate the spin evolution by inheriting the
evolution of vðtÞ from the nonprecessing analytical orbital
frequency from the IMRPhenomT model [17,23], which is
defined as half of the wave frequency of the l ¼ 2, m ¼ 2
nonprecessing mode:

ϕT
orbðtÞ ¼ ϕT

22ðtÞ=2: ð14Þ
This has several advantages. First, the description of the
orbital frequency of IMRPhenomT has been calibrated against
a set of 531 NR waveforms from Ref. [60] in the late
inspiral and merger along with 63 intermediate-mass-ratio
waveforms from the adiabatic solution of the Teukolsky
equation [61]. Thus, while we neglect precession effects as
is consistent with our twisting-up approximation, vðtÞ
remains regular up to the coalescence time across parameter
space. Second, this avoids solving an extra ODE for _vðtÞ,
which is typically the most expensive ODE in the system,
accelerating substantially the numerical integration of our
system of ODEs. In the future, we plan to revisit this
construction and investigate how to best incorporate
information about the evolution of the individual spins
and about the spin projections perpendicular to the orbital
angular momentum.
For the implementation of the PN spin evolution equa-

tions (12), we rely on the SpinTaylor insfrastructure [59] in
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the LALSimulation module of the LALSuite framework for GW
data analysis [62]. This implementation includes correc-
tions in the spin equations up to next-to-next-to-next-to-
next-to-leading order, including both instantaneous terms
and orbit averaged terms. The implementation of the
evolution equations in Ref. [59] returns the evolution
equation for the Newtonian orbital angular momentum
direction L̂NðtÞ, which up to next-to-leading order agrees
with L̂ðtÞ. However, at higher order, linear terms in L
contaminate L̂ðtÞ, causing the directions to differ. Although
physically it would be desirable to enable these terms, in
the implementation of this model, it was decided to disable
them, since technical problems were observed in the rotated
modes when enabling these contributions. We will revisit
this decision after further investigation in the future.
Solving the equations (12), we obtain the evolution of

L̂ðtÞ, and from Eq. (5), the Euler angles defined in Eqs. (5),
which twist the coprecessing modes into the inertial
precessing modes.

2. Analytical expressions: Next-to-next-to-leading order
effective single-spin and double-spin multiscale analysis

Besides the default implementation of the precessing
Euler angles discussed in the previous subsection, the
model inherits the analytical options included in
IMRPhenomXP and IMRPhenomXPHM: the next-to-next-to-lead-
ing-order (NNLO) effective single-spin approximation
[44,57] and the double-spin MSA approximation [45].
We briefly outline here the main features of both
descriptions.
The NNLO effective single-spin description is based on

the introduction of the triad fn; λ;lg, where n is the unit
separation vector between both black holes, l is the
direction of the unit vector normal to the instantaneous
orbital plane, and λ completes the triad following the right-
hand rule: λ ¼ l × n. The evolution equations for the Euler
angles in the single-spin case are

dα
dt

¼ −
ω̄

sin β
Jnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

J2n þ J2λ

q ; ð15aÞ

dβ
dt

¼ ω̄
Jλffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

J2n þ J2λ

q ; ð15bÞ

where Jn;λ are the components of the total angular momen-
tum J ¼ Lþ S1 in this triad. These equations can be solved
analytically to next-to-next-to-leading order in the spin-orbit
coupling [57] [and then γ could be obtained analytically
fromEq. (5c)], assuming a single spinning black hole, where
the spin degrees of freedom of the full problem are mapped
to an effective single spin aligned with the direction of the
orbital angular momentum [63]

χeff ¼
m1χ1;L þm2χ2;L

m1 þm2

; ð16Þ

and a precessing spin parameter [46]

χp ¼
1

A1m2
1

maxðA1S⊥1 ; A2S⊥2 Þ; ð17Þ

where A1 ¼ ð2þ 2=3qÞ and A2 ¼ ð2þ 3q=2Þ, that cap-
tures the averaged total in-plane spin (see Ref. [64] for a
discussion on the shortcomings of this quantity). This
description was employed in the IMRPhenomP and
IMRPhenomPv2 models [13,46], and it is also available in
the IMRPhenomXP and IMRPhenomXPHM models as an alter-
native option [16].
The MSA double-spin description exploits the natural

separation among different timescales intervening in the
evolution of a precessing binary systems [65]: the orbital
timescale torb, the precession timescale tprec, and the
radiation reaction timescale tRR, which during most of
the evolution satisfy

torb ≪ tprec ≪ tRR: ð18Þ

Based on this separation of timescales, radiation reaction
effects can be included as a perturbation on a closed-form
solution for the conservative case [66], where the precess-
ing angle αðtÞ can be split into two contributions,

αðtÞ ¼ α−1ðtÞ þ α0ðtÞ; ð19Þ

where α−1ðtÞ is the leading-order term averaged over the
precession timescale (which is fast compared with the
radiation-reaction timescale) and then integrated over
radiation reaction, while the term α0ðtÞ is a first-order
correction that includes information about the relative
orientation between the individual spins (and hence it
incorporates double-spin information).
The implementation of these analytical approximations

into the model relies on the existing infrastructure for the
IMRPhenomXP and IMRPhenomXPHM models [16], although
there is an important difference: for the present model, the
analytical expressions for the angles are evaluated employ-
ing the nonprecessing analytical orbital frequency of
IMRPhenomT [see Eq. (14) and related discussion in previous
section], instead of the Fourier frequency as in the Fourier-
domain models. This, together with the fact that the
model construction is native in the time domain, allows
us to dispense with the stationary phase approximation
employed for twisting up the modes in the Fourier-domain
models, which can enhance the validity of the description in
the strong-field regime.
We introduce several additional options for the treatment

of the NNLO and MSA analytical approximations. First,
our implementation allows us to replace the analytical
evaluation of the third Euler angle γðtÞ by the numerical
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evaluation of the minimal rotation condition [Eq. (5c)],
once the other two Euler angles αðtÞ and βðtÞ have been
computed. This is motivated by the realization that the
MSA approximation does not correctly satisfy the aligned-
spin limit; i.e., models twisted up with this description do
not reproduce the underlying nonprecessing model in the
limit of vanishing in-plane spins. We traced this problem to
the fact that the expression for the third Euler angle, which
is obtained by applying the MSA expansion to the minimal
rotation condition, does not satisfy this condition in this
regime. (And probably it does not satisfy it in general.)
With this addition, the model is able to reproduce the
underlying nonprecessing model in the aligned-spin limit.
See Fig. 1 for an illustrative example. In the bottom panel,
we show the noise-weighted inner product between a
nonprecessing waveform and a series of precessing wave-
forms varying the in-plane component of the secondary
spin. It can be seen how the analytical implementation of
the third Euler angle in the MSA implementation leads to a
disagreement of the waveforms in the nonprecessing limit
(a value of 1 for mismatch indicates equality between the
waveforms), while the numerical evolution of the third

Euler angle produces well-behaved matches towards
this limit.
Second, both the NNLO and the MSA approximations

lose accuracy before merger due to the breakdown of the
underlying PN approximation. In particular, the merger
time predicted by the PN approximations will generally be
different from the merger time predicted by the non-
precessing model, creating some tension. To smooth the
behavior in the strong-field regime, we implement an
option for substituting the angle description by a linear
continuation from the minimum energy circular orbit
(MECO) time (which sets the boundary of validity of
the underlying adiabatic approximation of the PN Taylor
approximants [67]) to the peak time:

αcoalðtÞ ¼ αðtMECOÞ þ t _αðtMECOÞ; ð20aÞ

βcoalðtÞ ¼ βðtMECOÞ þ t _βðtMECOÞ: ð20bÞ

It is evident that this treatment does not contain actual
physical information about the behavior during the strong-
field regime. But in any case, the complicated angle
morphology in this region does not correctly represent
the behavior, so we substitute our ignorance about the
behavior in this regime by a simpler well-behaved descrip-
tion. The actual usage of these options in the code is
explained in the Appendix.

E. Merger-ringdown treatment of
precessing Euler angles

The previous descriptions of the precessing Euler angles
apply up to the coalescence time, which we determine
according to the IMRPhenomT model as the peak time of the
l ¼ 2, m ¼ 2 dominant mode. After this time, the orbital
frequency is not well defined, as the orbiting binary
components have merged into a remnant black hole. For
the postmerger description of the Euler angles, we rely, as
discussed in Ref. [23], on the realization that the ringdown
signal exhibits an effective precessional motion [49]. An
analytical approximation to this behavior can be derived in
the limit of small opening angles, taking the leading
contribution of the twisting-up formula considering only
the twisting of the l ¼ 2; jmj ¼ 2 coprecessing modes:

hP2m ≃ e−imαe−i2γd22mðβÞhcoprec22 : ð21Þ

We then compute the complex ratio between the inertial
m ¼ 2 and m ¼ 1 modes as

hP22=h
P
21 ≃ −

1

2
e−iα tanðβ=2Þ: ð22Þ

Expressing the modes in the ringdown as a superposition of
quasi-normal modes states and considering only the leading
ground state, we obtain

FIG. 1. Recovery of the nonprecessing limit with analytical
MSA description of the Euler angles for the BBH configuration
q ¼ 3, χ1;z ¼ −0.5, χ2;x ¼ 10−3 (first two panels). Top: departure
of the analytical third Euler angle from the minimal rotation
condition. Middle: Plus-polarization amplitude for the nonpre-
cessing model IMRPhenomTHM, for the precessing extension with
full analytical MSA, and when computing the third Euler angle
from the minimal rotation condition. Bottom: similarity of the
nonprecessing model for small perturbations of the nonprecess-
ing case, in terms of the inner product in waveform space
(1 means equality).
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hRD2m ≃H0e−ω
damp
12m eiω

RD
12m: ð23Þ

Employing Eq. (22), the leading contribution to the Euler
angles α and β (and then γ employing the minimal rotation
condition) during the ringdown then becomes

αRDðtÞ ≃ ðωRD
122 − ωRD

121Þtþ αRD0 ; ð24aÞ

βRDðtÞ ≃ −2 arctanð2eðωdamp
121

−ωdamp
122

ÞtÞ þ βRD0 ; ð24bÞ

where αRD0 and βRD0 are the value of the angles at the time
of attachment, corresponding to the peak emission time of
the l ¼ 2, m ¼ 2 coprecessing mode in our case. The
expression for αRDðtÞ is in agreement with the expression
derived in Ref. [68]. While the expression for αRDðtÞ
qualitatively reproduces the NR behavior even for sit-
uations where the opening angle cannot be considered
small (see, for example, Fig. 2 top panel), further inves-
tigation to understand the caveats of βRDðtÞ is needed. For
the current implementation of the model, it was thus
decided to implement only the constant value at the
merger time. This will be revisited in future upgrades
of the model.
For evaluating the quasinormal frequencies ωRD=damp

nlm
employed in the previous expression, and also in the
construction of the coprecessing ringdownmodes amplitude
from Eq. (11) and frequency from Eq. (10), a prediction for
the final spin χf ¼ Sf=M2

f of the remnant black hole is
needed. In this model, we approximate the final spin of the
remnant black hole of the precessing system applying a

simple augmentation of the nonprecessing final spin based
on vector addition of the orbital angular momentum and the
component spins, and using approximations consistent with
our twisting procedure, as in done in other models like
IMRPhenomXP and IMRPhenomXPHM. As discussed in detail in
Sec. IV. D of Ref. [16], we approximate themagnitude of the
final spin as

χP;augmented
f ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
χ2f;AS þ S2⊥=M4

q
; ð25Þ

where χf;AS corresponds to the dimensionless final spin of
the equivalent nonprecessing configuration (the one
employed in the evaluation of the nonprecessing modes
for approximating the coprecessing modes) and S⊥ mea-
sures the in-plane spin contribution. For the nonprecessing
final spin, we employ the same formula as in the non-
precessing model IMRPhenomTHM, based on a hierarchical
data-driven fit of available NR data [69]. For the estimation
of S⊥, we allow the same options discussed in Ref. [16], but
the default description is based on the evaluation of the
evolved individual spins at the merger time, from the
evolution of Eqs. (12),

S⊥ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jS1;⊥ðtmergerÞ þ S2;⊥ðtmergerÞj2

q
; ð26Þ

where Si;⊥ðtmergerÞ are the projections of the individual spins
perpendicular to L̂ at the coalescence time. Also, in this
option, the nonprecessing final spin fit is evaluated employ-
ing the parallel spin components to L̂ from the evolved spins
at the coalescence time.
Equation (25) predicts the magnitude of the final spin. To

define the direction of the final spin, we proceed again as
discussed in Sec. IV. D in Ref. [16], tracking the direction
of the orbital angular momentum with respect to the
orbital plane.

III. MODEL PERFORMANCE

In this section, we validate the accuracy and computa-
tional efficiency of the model. We compare with NR
waveforms and other state-of-the-art precessing multimode
waveform models based on the mismatch between wave-
forms, recover the parameters of injected synthetic signals
corresponding to NR simulations, and apply Bayesian
inference to observed GW events and compare with results
for these events from the literature.
As discussed in the Appendix, the LALSuite [62] imple-

mentation of our model supports several options regarding
the choice of approximation for the Euler angle prescription
and for the final spin approximation. These options are
selected with parameters that take integer values, which we
will refer to as PV for precession version and FS for
final spin.

FIG. 2. Comparison of the different Euler angle implementa-
tions with a challenging NR simulation, SXS:BBH:0165 (the
worst case in the study detailed below in Sec. III A) with
parameters q ¼ 6, χeff ¼ −0.43, and χp ¼ 0.8. Top: comparison
of the precessing angle αðtÞ. Bottom: comparison of the plus
polarization for edge-on inclination.
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A. Comparison with numerical relativity

1. Mismatch comparison with LVCNR catalog

For checking the agreement between the model and NR
waveforms, which are the best source of information that
we have about coalescing BBH signals in the strong-field
regime, we follow the standard practice of computing the
mismatch between waveforms. Taking the standard defi-
nition of the inner product in the space of waveforms (see,
e.g., Ref. [70]),

hh1; h2i ¼ 4ℜ
Z

fmax

fmin

h̃1ðfÞh̃�2ðfÞ
SnðfÞ

; ð27Þ

where SnðfÞ is the one-sided power spectral-density (PSD)
of the detector noise, the matchMðh1; h2Þ is defined as the
normalized inner product maximized over relative time and
phase shifts between the given set of waveforms:

Mðh1; h2Þ ¼ max
t0;ϕ0

hh1; h2iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihh1; h1i
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihh2; h2i

p : ð28Þ

The mismatch MMðh1; h2Þ is defined as the deviation of
the match from unity,

MMðh1; h2Þ ¼ 1 −Mðh1; h2Þ: ð29Þ

For the results presented in this paper, we employ the zero-
detuned-high-power PSD [71], which models the advanced
LIGO [26] design sensitivity.
As done in Ref. [16], we analytically optimize over the

template polarization angle, following Ref. [72], and
numerically optimize over reference phase and rigid
rotations of the in-plane spins at the reference frequency.
To perform the numerical optimization, we use the dual
annealing algorithm as implemented in the SCIPY PYTHON

package [73]. We then compute the signal-to-noise ratio
(SNR-)weighted match Mw [74],

Mw ¼
�P

iM
3
i hhi;NR; hi;NRi3=2P

ihhi;NR; hi;NRi3=2
�

1=3

; ð30Þ

where the subscript i refers to different choices of polari-
zation and reference phase of the source.
We have computed mismatches for IMRPHenomTPHM

against 99 precessing SXS waveforms [60,75], picking
for each binary configuration the highest resolution avail-
able in the LVCNR catalog [76]. For a lower cutoff for the
match integration, we took the minimum between 20 Hz
and the starting frequency of each NR waveform and an
upper cutoff at 2048 Hz. We repeated the calculation for
three representative inclinations between the orbital angular
momentum and the line of sight ð0; π=3; π=2Þ and total
masses ranging from 50 M⊙ to 250 M⊙.

In Fig. 3, we show results for two different versions
of the model, PV ¼ 223, which corresponds to the ana-
lytical MSA implementation, and PV ¼ 300, which is the
default numerical evolution implementation explained in
Sec. II D 1. The label FS indicates the final spin option,
taken as the default for each description (FS ¼ 3 corre-
sponds to the formula based on precession-averaged
couplings from MSA analysis, which is the default in
IMRPhenomXPHM, while FS ¼ 4 corresponds to the new

FIG. 3. Mismatch comparison against 99 precessing BBH
simulations from LVCNR catalog, for different inclinations, as a
function of total mass. Dotted black line: 0.03 mismatch. Dashed
black line: 0.05 mismatch.
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option explained in Sec. II E). We observe that the majority
of cases have mismatches between 0.001 and 0.01, and in
general, results improve for higher total mass, with a good
portion of cases below a mismatch of 0.001 for face-on
inclination. The strongest outlier in the comparison is SXS:
BBH:0165, a very short (6.5 orbits) simulation with
challenging parameters (q ¼ 6, χeff ¼ −0.43, χp ¼ 0.8).
We do observe, however, that the default version of the
model improves on the MSA-based twisted-up version
(which is more similar to IMRPhenomXPHM), especially for
zero inclination. A degradation of accuracy when lowering
the total mass can also be observed, especially in the top
and middle panels of Fig. 3. This could be related to several
reasons, from inaccuracies in the underlying nonprecessing
model, where the calibration strategy for the orbital phase
could be further improved toward low frequencies, to the
approximations of the precessing description, in particular
the approximation of the orbital frequency by the non-
precessing orbital frequency of IMRPhenomT, which may
have a cumulative effect for long waveforms in the low total
mass regime.

2. NR injection recovery

The main target of application of our waveform model is
the inference of the source parameters, in particular using
Bayesian inference methods to determine the posterior
distribution pðθjdÞ for the parameters θ that characterize a
binary, given some data d. From Bayes’s theorem, we have

pðθjdÞ ¼ LðdjθÞπðθÞ
Z

; ð31Þ

where LðdjθÞ is the Gaussian noise likelihood [24,77,78],
πðθÞ is the prior distribution for θ, and Z is the evidence

Z ¼
Z

dθLðdjθÞπðθÞ: ð32Þ

Before testing the model performance on real data from the
detectors, it is useful to study how well the model can
recover a synthetic signal where we know the parameter
values that it should recover. To this end, we have injected
synthetic signals into zero noise (i.e., the noise realization
corresponding to the average value for Gaussian noise),
employing two precessing NR simulations, SXS:
BBH:0143 (with parameters m2=m1 ¼ 0.52, χeff ¼ 0.25,
and χp ¼ 0.21) and SXS:BBH:0062 (with parameters
m2=m1 ¼ 0.2, χeff ¼ −0.18, and χp ¼ 0.45). These two
simulations are selected for having (i) a weak precessing
system with parameters compatible with the bulk of current
gravitational-wave observations (SXS:BBH:0143) and (ii) a
more demanding configuration, with mass asymmetry for
triggering subdominant harmonics and higher in-plane
spins, to test better the precessing descriptions (SXS:
BBH:0062). As for our studies of mismatches above, to
compute the likelihood function, we employ the zero-
detuned-high-power PSD [71]. We test different versions of
the model and inject the signal at different total mass values
(thus changing the number of observable cycles in band).
For the analysis here, we use the nested sampling algorithm
DYNESTY [79] as implemented in BILBY [80] and Parallel
Bilby [81] (the following results were obtained with
Parallel Bilby).
We have selected fixed extrinsic parameters for each

injection. In Table I, we list the parameters for each
injection and the recovered median values with 90% con-
fidence interval error estimates. In Fig. 4, we show the
recovered posterior distributions for the main intrinsic
parameters of both signals injected with a total mass of
100 M⊙. We compare the analytical MSA version of the

TABLE I. Injected parameters and recovered parameters (median and 90% confidence intervals) for the set of injections employed for
testing the model performance with the default (PV ¼ 300, FS ¼ 4) version of the model. All angle values are given in radians. ρNmf is
the network (Hanford-Livingston-Virgo) SNR.

SXS:BBH:0143 SXS:BBH:0062

Injected values Recovered values Injected values Recovered values

Mtot=M⊙ 100=200=300 99.78þ1.81
−1.77 196.98þ8.55

−8.01 292.66þ18.0
−17.33 100=200=300 101.72þ5.78

−5.1 220.59þ17.45
−17.45 335.31þ25.33

−26.86
Mc=M⊙ 40.88=81.76=122.64 40.71þ0.76

−0.75 79.76þ4.74
−4.79 116.78þ10.0

−12.39 30.84=61.17=91.75 30.84þ1.05
−0.99 82.69þ11.4

−13.95 125.57þ17.22
−22.51

q 0.52 0.52þ0.04
−0.04 0.5þ0.07

−0.07 0.47þ0.11
−0.12 0.2 0.2þ0.03

−0.02 0.36þ0.16
−0.12 0.36þ0.15

−0.12
χeff 0.25 0.26þ0.04

−0.04 0.23þ0.08
−0.08 0.24þ0.13

−0.14 −0.18 −0.15þ0.09
−0.09 −0.21þ0.16

−0.19 −0.19þ0.19
−0.26

χp 0.21 0.19þ0.12
−0.08 0.25þ0.15

−0.12 0.26þ0.18
−0.14 0.45 0.41þ0.1

−0.09 0.37þ0.26
−0.2 0.33þ0.33

−0.21
θJN 0.82 0.84þ0.12

−0.12 0.81þ0.19
−0.18 0.78þ0.23

−0.22 0.2 0.28þ0.13
−0.13 0.52þ0.54

−0.31 0.53þ2.01
−0.31

ϕref 1.5 0.95þ0.43
−0.43 3.89þ0.45

−0.46 3.31þ0.52
−0.64 0 0.86þ5.24

−0.7 3.46þ0.53
−0.56 1.34þ4.78

−1.19
ψ 0.33 0.31þ0.14

−0.14 0.38þ0.31
−0.23 0.35þ2.44

−0.25 0.33 1.8þ0.41
−0.41 1.15þ0.44

−0.48 1.37þ0.52
−0.47

α 1.375 1.38þ0.01
−0.01 1.38þ0.04

−0.04 1.38þ0.07
−0.08 1.375 1.38þ0.03

−0.04 1.38þ0.06
−0.08 1.39þ0.11

−0.12
δ −1.21 −1.21þ0.01

−0.01 −1.21þ0.04
−0.03 −1.21þ0.07

−0.06 −1.21 −1.21þ0.03
−0.03 −1.21þ0.06

−0.07 −1.22þ0.09
−0.28

ρNmf 60=35=25 57.45þ0.04
−0.06 33.11þ0.08

−0.11 23.29þ0.11
−0.16 32=25=25 30.0þ0.08

−0.11 23.3þ0.11
−0.16 22.82þ0.11

−0.15
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Euler angles (PV ¼ 223) with the new numerical integra-
tion implementation (PV ¼ 300). For SXS:BBH:0143,
recovery is better with the default numerical implementa-
tion. For SXS:BBH:0062 and most parameters, the small
deviations between the median value of the distribution and
the actual injected values are similar for both versions,
with, however, a better recovery of the precessing spin
parameter χp for version PV ¼ 300. In Fig. 5, we show the
recovery of the component masses for the different total
injected masses, employing the default version of the
model. It can be seen that the injected values for the
component masses lie inside the 90% confidence intervals

for all cases, while there is a degradation of the maximum
likelihood prediction as the total mass increases and the
observable cycles in the detector are fewer. In general, from
the results reported in Table I, it can be seen that the
parameter recovery for SXS:BBH:0143 is good for all
parameters and masses, while for SXS:BBH:0062, there is
some parameter bias at MT ¼ 200; 300 M⊙ injections,
where several source parameters are not recovered within
the 90% confidence limits. For the next LIGO-Virgo
observation run, O4, where SNR values as large as the
ones injected here can be expected, indeed further improve-
ments in the model are foreseen.

FIG. 5. Component mass posterior inference for different total mass injections, recovered with the standard version of
IMRPHenomTPHM (PV ¼ 300). First panel: SXS:BBH:0143. Second panel: SXS:BBH:0062. Diamonds indicate the injected values,
and stars indicate the maximum likelihood values.

FIG. 4. Recovered posterior distributions for the key intrinsic parameters at injected mass MT ¼ 100 M⊙, comparing the
IMRPHenomTPHM standard version (PV ¼ 300) and the version with MSA Euler angles (PV ¼ 223). Top: SXS:BBH:0143. Bottom:
SXS:BBH:0062. Mc is the chirp mass.
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One should, however, be cautious to derive general
conclusions about inherent systematic biases from only a
few points in the high-dimensional parameter space of
CBCs. For a given set of intrinsic parameters, a represen-
tative subset of extrinsic parameters would have to be
selected to perform a systematic analysis, which becomes
prohibitively costly with current codes if a significant
portion of the intrinsic parameter space has to be studied.
Further studies toward understanding waveform modeling
caveats for preparing the next, more precise, observing runs
of the detectors will require the combination of full param-
eter estimation with cheaper techniques like fitting factor
estimates and Fisher matrix approaches. We leave the
development of these studies for future work. A further
issue is that for high total mass, when the available
information from the inspiral is smaller and only a few
cycles are present in the band, degeneracies between the
extrinsic parameters and combinations of the intrinsic
parameters can complicate the analysis, as we discuss in
detail in our reanalysis of the high-mass event
GW190521 [82].

B. Comparison with other state-of-the-art precessing
multimode waveform models

We also compute full strain matches, employing the
same definition and PSD as in Sec. III A, for
IMRPHenomTPHM against a number of other state-of-the-
art waveform models (SEOBNRv4PHM [2], NRSur7dq4 [11],
and IMRPhenomXPHM [16]), on two sets of 30,000 random
configurations, chosen so that the first set lies within the
training region for NRSur7dq4 (i.e., q ≤ 4 and spins isotropi-
cally distributed with the constraint a1;2 ≤ 0.8) while the
second set encompasses a wider region of parameter space,
allowing mass ratios up to q ¼ 20 as well as nearly
maximally spinning black holes (a1;2 ≤ 0.99). The total
mass distribution of the samples is in the range
ð50; 200Þ M⊙ for the second set and ð90; 350Þ M⊙ for
the first set. The mass-ratio distribution is uniform in
m2=m1 ≤ 1. We generate the random samples only once
and then repeat the match calculation on different pairs of
models to ensure a fair comparison. The upper left panel of
Fig. 6 shows that the bulk of the mismatch distribution

FIG. 6. Mismatch comparison with other state-of-the-art precessing multimode waveform models. Top left: mismatch distribution of
the default version of IMRPHenomTPHM (numerical evolution of spin equations) against different models (SEOBNRv4PHM: blue; NRSur7dq4
in training region: orange; NRSur7dq4 in wider region: green; AND IMRPHENOMXPHM: red). Top right: mismatch distribution of different
versions of the model with respect to IMRPhenomXPHM. Bottom left: mismatch distribution of different versions of the model with respect
to NRSur7dq4 (in its training region, see the main text for more details). Bottom right: mismatch distribution of different versions of the
model with respect to SEOBNRv4PHM. Dashed vertical lines: median value of each distribution.

NEW TWISTS IN COMPACT BINARY WAVEFORM MODELING: A … PHYS. REV. D 105, 084040 (2022)

084040-11



between IMRPHenomTPHM and SEOBNRv4PHM or NRSur7dq4

lies around 10−3; the median of the distribution (marked by
a dashed line) is shifted toward slightly higher values in the
comparison against IMRPhenomXPHM, which also shows a
broader tail toward poor matches. In the other panels of the
same figure, we compare the performance of different
IMRPHenomTPHM configurations against IMRPhenomXPHM,
NRSur7dq4 (in the training region), and SEOBNRv4PHM.
Versions incorporating a numerical evolution of the spin
dynamics (green and red curves) are in closer agreement
with SEOBNRv4PHM, while we do not observe significant
differences among versions when comparing to NRSur7dq4.
In Fig. 7, we show instead the distribution of matches
against other time-domain models as a function of the
primary spin magnitude and mass ratio. This plot allows us
to trace the origin of the tail of low matches observed in the
preceding histograms: the largest differences between
different waveform models are correlated with very
unequal masses and highly positive/negative spins. This
is expected since, due to the limited availability of
numerical waveforms in this region, extrapolation effects
are likely to prevail.

C. Parameter estimation on GW190412

After analyzing the performance of the model compared
with precessing waveforms from other state-of-the-art
waveform models and NR waveforms, in particular the
correct parameter recovery of synthetic injected signals, we
now examine the performance of the model analyzing a real
BBH event, GW190412 [37], which also has been recently
reanalyzed with the fourth generation of Phenomwaveform
models, including the nonprecessing version of our model,
IMRPhenomTHM, in Ref. [38] (see also a recent analysis of
this event, employing the NR surrogate model NRSur7dq4, as
well as the phenomenological models IMRPhenomXPHM and
IMRPhenomPv3HM, in Ref. [83]).
As done in Ref. [38], we employ version 2 of the strain

data [84] for GW190412 released through the Gravitational
Wave Open Science Center [85,86], with a default sampling
rate of 16384 Hz, for consistency with the official LIGO-
Virgo Collaboration (LVC) study. This version has non-
linear subtraction [87] of 60 Hz power lines applied to it. We
also use the PSDs [88,89] and calibration uncertainties [90]
included in version 11 of the posterior sample release [91]
for this event. We analyze 8 sec of strain data from each of
the Hanford, Livingston, and Virgo detectors around the
trigger time of the event, as reported in Gravitational-Wave
Candidate Event Database (GRACEDB) [92].
In Fig. 8, we compare the results for two versions of

IMRPHenomTPHM, analytical MSA angles (PV ¼ 223) and
the default numerical implementation (PV ¼ 300), with the
results for the model SEOBNRv4PHM released with the LVC
publication [37,91] and the preferred results for the
standard version of the model IMRPhenomXPHM from the
recent reanalysis in Ref. [38] (we note that the results for
SEOBNRv4PHM were obtained with a different parameter
estimation pipeline, RIFT [93], and without employing
marginalization over detector uncertainty). Recovery of
the parameters is consistent with the previous published
results, with median values inside the confidence intervals
of the combined LVC results [37] and the IMRPhenomXPHM

results from Ref. [38]. The mass ratio is constrained,
according to the 90% confidence intervals, to more unequal
values than the results for IMRPhenomXPHM, more in
accordance with the results from SEOBNRv4PHM. In a
similar way, both versions of the model have support for
higher values of the effective precessing spin parameter χp,
while χeff is the parameter showing greater difference
between both versions: PV ¼ 300 agrees better with
SEOBNRv4PHM, and PV ¼ 223 agrees better with
IMRPhenomXPHM. In Table II, we report the median and
90% confidence intervals for the main parameters recov-
ered with version PV ¼ 300, FS ¼ 4, showing that all
values are consistent with previous published results.
In Fig. 9, we compare the network matched filter SNR

for the different models. We can observe that both
IMRPHenomTPHM model versions are able to recover higher
values of SNR than the equivalent IMRPhenomXPHM run,

FIG. 7. Two-dimensional distribution of matches when com-
paring the default version of IMRPHenomTPHM with SEOBNRv4PHM
and NRSur7dq4, as a function of the primary spin magnitude and
mass ratio. In both cases, matches degrade for very unequal-mass
systems with a1 ≳ 0.6.

HÉCTOR ESTELLÉS et al. PHYS. REV. D 105, 084040 (2022)

084040-12



though the width of the distribution (for the chirp mass in
this case) is wider than for SEOBNRv4PHM. In terms
of the Bayes factor for the different runs, we can see in
Table III that both IMRPHenomTPHM versions are slightly
preferred with respect to IMRPhenomXPHM, in agreement
with the SNR results. In terms of comparison with a
nonprecessing approximant, we employ the published
run for IMRPhenomTHM from Ref. [38], and we find
moderate support for the precessing hypothesis.
In addition to the analysis of this event, the model has

been employed in a reanalysis [94] of the more massive
events from the GWTC-1 catalog [28]. Contrary to our
results for GW190412, for several events in our reanalysis
results of GWTC-1 the IMRPhenomTHM and IMRPHenomTPHM

models recover slightly smaller SNRs and Bayes

factors than the corresponding frequency-domain models
IMRPhenomXHM and IMRPhenomXPHM. The notable excep-
tions are the most massive event, GW170729, and
GW170814, which shows mild support for precession.
A likely explanation for this behavior is that, while the
description of precession is in general more accurate with
the default version of IMRPHenomTPHM, due to the numerical
integration of the precession equations and the improved
treatment of the merger-ringdown regime, the underlying
nonprecessing description is in general still less accurate
than the IMRPhenomX* counterpart, especially in the descrip-
tion of the orbital frequency evolution. This tradeoff
complicates to some extent the analysis of the improve-
ments brought by this new model for smaller masses, and
we plan to upgrade the nonprecessing description toward

FIG. 8. Inferred posterior distributions for the parameters of the BBH event GW190412, comparing our new IMRPHenomTPHM results
with those for SEOBNRv4PHM from [37,91] and IMRPhenomXPHM from [38]. Stars indicate the maximum likelihood value for each run.

TABLE II. Inferred parameter values (median) for GW190412 and their 90% credible intervals, obtained using precessing models
including higher multipoles. Columns 2–4 correspond to the results from the LVC analyses [37], the fifth column gives the results from
the precessing higher-modes model IMRPhenomXPHM reported in Ref. [38], and the last column provides the results obtained with our
model, for the default version run.

Parameter SEOBNRv4PHM IMRPhenomPv3HM LVC combined IMRPhenomXPHM IMRPHenomTPHM

ms
1=M⊙ 31.7þ3.6

−3.5 28.1þ4.8
−4.3 29.7þ5.0

−5.3 30.0þ5.2
−4.3 30.9þ3.5

−3.2
ms

2=M⊙ 8.0þ0.9
−0.7 8.8þ1.5

−1.1 8.4þ1.8
−1.0 8.4þ1.3

−1.1 8.2þ0.8
−0.7

Ms=M⊙ 39.7þ3.0
−2.7 36.9þ3.7

−2.9 38.1þ4.0
−3.7 38.4þ4.2

−3.2 39.1þ2.8
−2.5

Ms=M⊙ 13.3þ0.3
−0.3 13.2þ0.5

−0.3 13.3þ0.4
−0.3 13.3þ0.5

−0.4 13.3þ0.3
−0.3

q 0.25þ0.06
−0.04 0.31þ0.12

−0.07 0.28þ0.13
−0.06 0.28þ0.09

−0.07 0.27þ0.06
−0.05

χeff 0.28þ0.06
−0.08 0.22þ0.08

−0.11 0.25þ0.08
−0.11 0.25þ0.1

−0.1 0.27þ0.07
−0.07

χp 0.31þ0.14
−0.15 0.31þ0.24

−0.17 0.30þ0.19
−0.15 0.23þ0.20

−0.13 0.28þ0.15
−0.13

χ1 0.46þ0.12
−0.15 0.41þ0.22

−0.24 0.43þ0.16
−0.26 0.39þ0.16

−0.17 0.44þ0.14
−0.15

DL=Mpc 740þ120
−130 740þ150

−190 730þ140
−170 734þ161

−187 723þ112
−124

z 0.15þ0.02
−0.02 0.15þ0.03

−0.04 0.15þ0.03
−0.03 0.15þ0.03

−0.04 0.15þ0.02
−0.02

θ̂JN 0.71þ0.23
−0.21 0.71þ0.39

−0.27 0.73þ0.34
−0.24 0.75þ0.36

−0.28 0.75þ0.26
−0.21

ρH 9.5þ0.1
−0.2 9.5þ0.2

−0.3 9.5þ0.1
−0.3 9.4þ0.2

−0.3 9.5þ0.1
−0.2

ρL 16.2þ0.1
−0.2 16.1þ0.2

−0.3 16.2þ0.1
−0.3 16.1þ0.2

−0.3 16.2þ0.1
−0.2

ρV 3.7þ0.2
−0.5 3.6þ0.3

−1.0 3.6þ0.3
−1.0 3.6þ0.3

−0.8 3.8þ0.3
−0.5

ρHLV 19.1þ0.2
−0.2 19.0þ0.2

−0.3 19.1þ0.1
−0.3 18.9þ0.2

−0.3 19.0þ0.2
−0.2
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the employment of the model in the future planned
observation run O4. We have also reanalyzed [82] the
very massive event GW190521 [95,96]. In this case, we
find that as expected IMRPHenomTPHM not only provides a
better fit to the data than IMRPhenomXPHM but also shows a
much more consistent behavior when varying the options
for precession approximation and final spin (PV and FS).

D. Benchmarks

In the previous sections, we have tested the accuracy of
the model with respect to the predictions of other state-of-
the-art waveform models as well as NR simulations,
showing also consistent parameter recovery for synthetic
and real GW signals. Another important aspect to be tested
is the computational efficiency of the model. Parameter
estimation runs typically involve hundreds of millions of
waveform evaluations, therefore models have to be com-
putationally efficient for being suitable for systematic
studies of events or for studying the performance of
parameter estimation methods.
In Fig. 10, we show the average evaluation time for the

polarizations evaluated ten times at a fiducial configuration
(q ¼ 3, a1 ¼ 0.5, and a2 ¼ 0.3), computed as in Eq. (9),
comparing current precessing multimode waveform mod-
els. In the top panel, we show the results for a fixed
sampling rate of 4096 Hz (or, equivalently, a fixed time
spacing of 1=4096 sec) varying the total mass of the system
(and hence the waveform length) for a fixed bandwidth
between 20 and 2048 Hz. In the bottom panel, we show the
results fixing the total mass of the system to 100 M⊙ and
varying the sampling rate from 2048 to 16384 Hz. Results

have been obtained on a Skylake node with a clock speed of
2401 MHz of the California Institute of Technology cluster.
From this, we can extract the conclusion than for masses
greater than 50 M⊙ and for typical sampling rates at these
masses (2048 and 4096 Hz), the IMRPHenomTPHMmodel has
the second fastest evaluation time from the analyzed set,
only after IMRPhenomXPHM, where extra optimizations have
been applied, such as the implementation of the multi-
banding technique [97].
We also show results for lowering the starting waveform

generation frequency, regulated by the LALSimulation

pn-amplitude-order parameter (here, we call it
amp-order),

FIG. 10. Average evaluation time for the polarizations of
different precessing multimode waveform models. Top: average
evaluation time at fixed sampling rate as a function of the total
mass of the system. Bottom: average evaluation time at fixed total
mass as a function of the sampling rate.

FIG. 9. Network matched filter SNR comparison between the
different results for the event GW190412. Dashed lines: maxi-
mum network matched filter SNR value.

TABLE III. Comparison of Bayes factor ratio between the
different IMRPHenomTPHM runs with the IMRPhenomXPHM results
and the nonprecessing IMRPhenomTHM results from Ref. [38].

TPHM vs XPHM TPHM vs THM

TPHM PV ¼ 223 12.8 11.9
TPHM PV ¼ 300 10.5 9.8
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fstart ¼
2fmin

2þ AMP� ORDER
; ð33Þ

where fstart is the frequency for starting the waveform
generation and fmin is the starting frequency for the noise-
weighted inner product in Eq. (27). This is required for
consistently including all the subdominant mode content in
the band once the waveforms are Fourier transformed to
compute noise-weighted inner products, due to the fre-
quency scaling _ϕlm ≈ ðm=2Þ _ϕ22 of the subdominant har-
monics frequencies. For example, to have all modes in band
up tom ¼ 4 at fmin, one needs to set AMP� ORDER ¼ 2.
This translates into an increased waveform length. While
we can see that increasing the waveform length has a big
impact at low masses, we can see that differences are
reduced at high masses.
Besides waveform evaluation time, it is useful to

examine the mean likelihood evaluation time, since this
is a key value for parameter estimation applications: on
top of the waveform evaluation cost, this number incor-
porates the cost of conditioning and Fourier transforming
the polarizations. In Table IV, we can see the mean
likelihood evaluation time for several models, split into
different mass bins and for different durations of the
analyzed data segments. For each result, we have com-
puted the likelihood for 100 different total mass
values uniformly distributed in the indicated mass range,
for an equal-mass configuration with random spin mag-
nitudes and directions for each case, employing all the
available modes of each model. We can see that, while at
low masses (from 10 M⊙ to 60 M⊙) the model is five
times more expensive than the reference model
IMRPhenomXPHM (the same being true for the comparison
of dominant-mode models between IMRPhenomTPHM and
IMRPhenomXP), at high mass the difference is approxi-
mately only a factor 2, which is quite remarkable
taking into account that IMRPHenomTPHM needs a numeri-
cal Fourier transform before being applied in the like-
lihood evaluation. Noticeably, the model is almost 2
orders of magnitude faster than the time-domain model
SEOBNRv4PHM.

IV. CONCLUSIONS

In this paper, we have presented a precessing time-
domain model for the GW signal of coalescing black holes,
IMRPHenomTPHM, which can be considered to be a time-
domain companion to the IMRPhenomXPHM frequency-
domain model. Working in the time domain allows several
improvements over the accuracy of IMRPhenomXPHM: the
inspiral description is more accurate thanks to the numeri-
cal integration of the post-Newtonian spin evolution in
Eqs. (12). The merger is improved by only modifying the
nonprecessing waveforms, which we take from our
IMRPhenomTHM model, in the ringdown to adapt to the
precessing final spin value. In the time domain, this is
straightforward by only modifying the ringdown portion of
the waveform; however, this cannot be cleanly translated to
the frequency domain, due to the “smearing” effect of the
Fourier transform. Furthermore, we have included an
additional option to the analytical description of the
Euler angles to smooth the behavior at merger, substituting
our ignorance about the actual plunge dynamics by a well-
behaved simpler description, from the MECO time to the
coalescence time. Finally, in the ringdown, we can ensure a
consistent behavior with black hole perturbation theory by
determining the Euler angles from the quasi-normal modes
frequencies. Our approach opens up several avenues for
further improvements of the model. One natural avenue is
full calibration to numerical relativity precessing simula-
tions. While the first Fourier-domain phenomenological
model calibrated to precessing simulations has been
recently presented in Ref. [39], we believe that in the time
domain the procedure might be simpler, allowing comple-
mentary strategies for calibration. Another new possibility
is to analytically tune the information that enters the
numerical evolution of the spin equations (12), e.g., by
incorporating the in-plane spin components in the phasing
of the coprecessing modes.
The main application that we foresee for this new model

in GW data analysis is high-mass events, where the
additional accuracy in treating precession can play a crucial
role in the recovery of the source parameters. Indeed, in two
accompanying papers [82,94], we find that for the two
high-mass events GW170729 and in particular GW190521

TABLE IV. Mean likelihood evaluation time in milliseconds for several precessing models including higher-order modes for equal-
mass signals. The numbers represent averages over two different total mass ranges ½Mmin;Mmax� ¼ f½10; 60�; ½60; 100�g M⊙ and random
spin orientations and magnitudes. The first column indicates the total mass range in which the models are evaluated, and the second one
specifies the data analysis segment length in seconds used for the calculations.

½Mmin;Mmax� ΔT (s) IMRPhenomTP IMRPhenomXP SEOBNRv4PHM IMRPHenomTPHM IMRPhenomXPHM SEOBNRv4PHM NRSur7dq4

[60,100] 4 15.0 7.0 2006.0 55.0 24.2 4563.2 30.4
8 14.7 13.9 1968.2 55.8 39.6 4717.7 30.7

[10,60] 4 73.9 14.7 4614.6 271.6 54.2 4729.6 � � �
8 75.5 29.2 4672.2 267.3 84.8 5051.3 � � �
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with IMRPHenomTPHM we infer broadly consistent credible
regions as with IMRPhenomXPHM but achieve better matches
with the data (in the sense of higher maximum likelihood
and SNR). In general, the agreement in most of the events is
remarkably consistent between both phenomenological
models, so the employment of this new independent
time-domain model also brings confidence in the results
obtained with IMRPhenomXPHM.
In the future, we plan to improve both the frequency-

domain and time-domain IMRPhenom models and calibrate
them to precessing NR simulations. Beyond quasicircular
systems, we also expect that the development of eccentric
waveform models, and in particular precessing eccentric
ones, will benefit from the insights gained both from the
frequency and time-domain strategies. Finally, we note that
part of the original motivation for time-domain models was
to serve as an alternative baseline to develop tests of general
relativity, such as inspiral-merger-ringdown or parame-
trized tests [98–100]. To this end, different phenomeno-
logical parametrizations of frequency and time-domain
models will help to assess the robustness of such tests.
Moreover, we note that a time-domain treatment guarantees
a cleaner separation between the ringdown and the inspiral/
merger regimes, while this is not possible in the frequency
domain due to smearing effect of the Fourier transform.
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APPENDIX: USAGE OF THE LALSimulation

IMPLEMENTATION

The IMRPHenomTPHM model has been implemented as C
code in the LALSimulation package of the LALSuite [62]
software framework for GW data analysis. Time-domain
polarizations can be called through the standard interface
SimInspiralChooseTDWaveform. Also spherical harmonic modes
in the L0 frame satisfying LIGO Algorithm Library (LAL)
conventions can be called through the LALSimulation

SimInspiralChooseTDModes function.
For selecting the specific description of the precessing

Euler angles detailed in Secs. II D and II E, the user can
specify the parameters PhenomXPrecVersion (PV), in a three- or
five-digit format. The first three digits correspond to the
core specification of the Euler angles description: 102 for
NNLO, 223 for MSA, and 300 for numerical evolution
of the spin precession equations (alternative versions of
NNLO and MSA can also be specified; see Table III of
Appendix F in Ref. [16]). For the analytical descriptions,
the fourth digit selects the merger-ringdown treatment: 0
corresponds to disabling the ringdown angle approximation
from Eq. (24), 1 corresponds to enabling it, and 2
corresponds to enabling it with the addition of the linear
continuation from MECO time to coalescence time in
Eq. (20). The fifth digit corresponds to the treatment of
the third Euler angle: 0 corresponds to the analytical
expression, and 1 corresponds to numerical evaluation.
Our default implementation with PV ¼ 300 does not
include additional options, and it always enables the
ringdown angles approximation described in Eq. (24).
See Table V for a summary of available options.
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The final spin description can be selected via the
parameter PhenomXFinalSpinMod (FS). Available options
inherited from the IMRPhenomXP/PHM implementation
are described in Table V of Appendix F in Ref. [16].
In this model, we have incorporated a new default
option, described in Sec. II E, where the individual

spins are evaluated at coalescence time from
the evolution of Eqs. (12). This option is the
default and can also be explicitly specified with
option FS ¼ 4, but it is only available with PV ¼ 300
since it requires the numerical evolution of the individ-
ual spins.

[1] Y. Pan, A. Buonanno, A. Taracchini, L. E. Kidder, A. H.
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