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In line with a recent proposal for the study of asymptotic gravitational charges, we investigate higher
derivative asymptotic charges. We show that the higher derivative Bondi-Metzner-Sachs (BMS) charges are
related to the two-derivative BMS charges. Significantly, we find that internal Lorentz transformations are
relevant in the higher derivative case in contrast to the two-derivative case. We give a prescription for their
precise definition and derive the associated charges, finding, again, a relationwith two-derivativeBMScharges.
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I. INTRODUCTION

Recently, it has been argued that all gravitational
charges, including asymptotic dual charges [1,2], may be
investigated using the first order tetrad formalism, includ-
ing any terms in the action that do not contribute to the
equations of motion [3]. For example, asymptotic dual
charges may be derived from the Holst term or the Nieh-
Yan term in the presence of fermions.
In this paper, we continue this investigation by consid-

ering the higher derivative terms that may be added to the
action, namely the Pontryagin and Gauss-Bonnet terms, in
the context of asymptotically flat spacetimes. In Ref. [3], it
was shown that asymptotic Bondi-Metzner-Sachs (BMS)
charges derived from such terms would be subleading at
null infinity. Higher derivative terms have been considered
in various settings in the literature [4–11]. While the
importance of higher derivative terms has been stressed
in much of the literature connected to the anti–de Sitter case
starting with Ref. [4], their relevance as far as defining
asymptotic charges are concerned has largely1 been dis-
missed, due to the fact that the charges are at subleading
orders. However, as argued in Refs. [2,12], charges that
appear at subleading orders may be important and ought
not be dismissed. The plethora of potentially observable
gravitational memory effects [13–17] and their relation to
asymptotic symmetries and charges [18] makes it all the

more important to investigate all the possible asymptotic
charges.
Another interesting aspect of higher derivative terms is

the role of internal Lorentz symmetries. In the first order
tetrad formalism, the gauge symmetries of the theory are
extended beyond diffeomorphisms to include the Lorentz
transformations that one may apply to Lorentz indices.
This poses a dilemma, because we may have potentially
enlarged our set of asymptotic symmetry, or improper
gauge, generators, hence, changing the theory. Some
[3,8,9,19–25] have argued that the asymptotic diffeomor-
phisms fix (or ought to fix) the asymptotic internal Lorentz
transformations, rendering them trivial, while others more
recently [26–28] have argued that internal Lorentz sym-
metries are physically nontrivial and do contribute to
asymptotic charges. In fact, they propose a further exten-
sion of the asymptotic symmetry algebra. From a purely
agnostic point of view, the fact that putative internal
Lorentz charges derived from the two-derivative (Palatini
plus Holst) action are in any case trivial2 [24] makes this
discussion rather moot. Moreover, the treatment of the
internal Lorentz symmetry does not affect the result for the
diffeomorphism charges [29]. Therefore, it is worth con-
sidering this issue for the higher derivative terms.
Interestingly, we find that the asymptotic charges derived

from asymptotic diffeomorphisms and internal Lorentz
transformations are both related to expressions derived from
the asymptotic diffeomorphisms for the two-derivative
terms. The result for the asymptotic diffeomorphisms relies
on a judicious choice of splitting between integrable and
nonintegrable terms informed by their BMS transformation
properties. This provides further clues as to how one can
define this splitting, which is in principle arbitrary.
Our results regarding the importance of internal Lorentz

symmetries are in agreement with Ref. [28]. Moreover, we
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1In Ref. [8], the contribution of the Gauss-Bonnet term at the
bifurcate horizon of a black hole is important.

2This result relies on the Bondi-Sachs gauge.
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give a prescription for handling internal Lorentz transforma-
tions in the asymptotic context.Whereas in the case of global
symmetries, the combined actionof thediffeomorphisms and
internal Lorentz transformations (the Kosmann derivative)
on the vierbein is chosen so that it vanishes for Killing
symmetries [8], for asymptotic symmetries, the action on the
gauge-fixed vierbein must be chosen to match the action of
the diffeomorphisms on the gauge-fixed metric. The residual
internal Lorentz transformations then correspond to the
improper internal Lorentz transformations and are, therefore,
physically relevant.
In Sec. II, we review properties of asymptotically flat

spacetimes and the necessary Einstein equations, as well
as introduce the higher derivative terms that will be the
focus of this paper. In Sec. III, we derive the asymptotic
symmetries of asymptotically flat spacetimes in the tetrad
formalism. This requires an analysis of the internal Lorentz
symmetry and a judicious Lorentz gauge fixing of the
zweibein. We find that the asymptotic symmetry group is
given by the BMS group, as well as another function on
the 2-sphere that corresponds to residual internal Lorentz
transformations. In Sec. IV, we derive the BMS charges
associated with the higher derivative terms, concentrating
on BMS supertranslations. In particular, we find that
conserved quantities arise in the absence of Bondi
news. In Sec. V, we derive the charges associated with
the internal Lorentz symmetry generator. In particular,
these charges are integrable. We conclude with some
discussion in Sec. VI.
Notation: Latin indices ða; b;…Þ denote internal Lorentz

indices and are raised and lowered with respect to the
Lorentz metric ηab. We use greek letters ðμ; ν;…Þ to denote
the spacetime indices. The vierbein ea ¼ eaμdxμ. The
spacetime metric can be expressed in terms of the vierbein
as ds2 ¼ gμνdxμdxν ¼ ηabeaeb. Finally, we define the
curvature 2-form as RabðωÞ ¼ dωab þ ωac ∧ ωc

b.
Indices I; J;… will denote spacetime indices on the round
2-sphere and will be lowered and raised using the round
2-sphere metric γIJ and its inverse, respectively, except
where explicitly stated otherwise.

II. PRELIMINARIES

A. Gauge choices

Let ðu; r; xI ¼ fθ;ϕgÞ be coordinates on our spacetime
manifold such that the metric takes the form

ds2 ¼ −Fe2βdu2 − 2e2βdudr

þ r2hIJðdxI − CIduÞðdxJ − CJduÞ: ð2:1Þ

This is our diffeomorphism gauge choice. Here r is a radial
coordinate. The spacetimes we are considering here are
asymptotically flat and we use the Bondi definition of
asymptotic flatness where the metric functions obey the
following falloff conditions [30,31]

Fðu; r; xIÞ ¼ 1þ F0ðu; xIÞ
r

þ F1ðu; xIÞ
r2

þ oðr−2Þ;

βðu; r; xIÞ ¼ β0ðu; xIÞ
r2

þ oðr−2Þ;

CIðu; r; xIÞ ¼ CI
0ðu; xIÞ
r2

þ CI
1ðu; xIÞ
r3

þ oðr−3Þ;

hIJðu; r; xIÞ ¼ γIJ þ
CIJðu; xIÞ

r
þ C2γIJ

4r2
þDIJðu; xIÞ

r3

þ oðr−3Þ; ð2:2Þ
wherewehave additionally assumed an analytic expansion to
the order required for our calculations. Here C2 ¼ CIJCIJ

and γIJ is the roundmetric on the 2-sphere.We have assumed
an expansion where the coefficient of r−2 in the hIJ expan-
sion has a vanishing traceless part. Relaxing this assumption
results in logarithmic terms appearing in the expansions after
consideration of the Einstein equations, thus breaking our
assumption of analyticity to this order. As a further conse-
quence, the Weyl scalars do not satisfy the peeling property
[32]. There is residual gauge freedom allowing us to fix the
radial distance by setting deth ¼ det γ which determines the
trace of each term in the hIJ expansion. To this order, traces
simply vanish, trC ¼ trD ¼ 0.
It is also a requirement for the calculations in this paper, that

we explicitly pick a Lorentz gauge. Let our frame fields be

e0¼1

2
Fduþdr; e1¼e2βdu and ei¼ rEi

IðdxI−CIduÞ;
ð2:3Þ

where Ei
I is a zweibein associated with the 2-metric hIJ:

ðh−1ÞIJEi
IE

j
J ¼ ηij and ηijEi

IE
j
J ¼ hIJ. Contrary to all other

fields, I; J;… indices on Ei
I will be raised and lowered with

hIJ. For more details, we refer the reader to Refs. [12,24].

B. Einstein equations

The energy-momentum tensor for many physically
relevant spacetimes has strong falloff conditions and the
expressions for the charges drastically simplify when
assuming this to the appropriate order in the Einstein
equations. In particular, for the components of interest
for us here, one finds that [12]

G00 ¼ oðr−4Þ ⇒ β0 ¼ −
1

32
C2;

G0i ¼ oðr−3Þ ⇒ CI
0 ¼ −

1

2
DJCIJ;

Gij ¼ oðr−4Þ ⇒ ∂uDIJ ¼
1

8
CIJ∂uC2 −

1

4
F0CIJ

−
1

2
DhIC1Ji −

1

8
CIJDKDLCKL þ 1

32
DhIDJiC2

þ 1

2
DhIðCJiKDLCKLÞ − 1

8
DhICKLDJiCKL; ð2:4Þ
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where DK denotes a covariant derivative associated with
the round 2-sphere metric γIJ and angled brackets h; i on
pairs of indices denote the symmetric, trace-free part. We
shall be assuming the above equations in this paper.

C. Higher derivative terms

References [3,24] advocate the use of the first order
tetrad formalism for defining gravitational asymptotic
charges. In the first order tetrad formalism the gravitational
fields are given by the vierbein and spin connection:
fea;ωabg, which are taken to be independent. The
Einstein tensor that contributes to the left-hand side of
the Einstein equation is then obtained by the inclusion of
the Palatini term in the action

IP ¼ 1

32π

Z
M

εabcdRabðωÞ ∧ ec ∧ ed: ð2:5Þ

More precisely, if this is the only contribution to the total
action, one can show the equations of motion are the
vacuum Einstein equations and the vanishing of torsion

Ta ¼ dea þ ωa
b ∧ eb ¼ 0: ð2:6Þ

Applying the covariant phase space formalism [33–38]
to this action, one obtains3

=δQξ ¼
1

16π
εabcd

Z
∂Σ

ιξecδωab ∧ ed; ð2:7Þ

which at leading order gives rise to the BMS charges and at
lower orders, the subleading BMS charges [12], when
appropriate boundary conditions are assumed.
Adding another possible contribution to the action, the

Holst term4

IH ¼ iλI
16π

Z
M

RabðωÞ ∧ ea ∧ eb ð2:8Þ

does not change the equations of motion. However, the
covariant phase space formalism does give the dual BMS
charges obtained in Refs. [1,2]:

=δQ̃ξ ¼
1

8π

Z
∂Σ

ιξeaδωab ∧ eb: ð2:9Þ

The inclusion of the Holst term in the action gives rise to
important physics, namely the dual charges. It is therefore
natural to consider other possible contributions to the action
that do not affect the equations of motion and test whether
these give rise to new charges in the same way as the Holst
term does. The terms we consider here are the Gauss-
Bonnet and Pontryagin terms given by

IGB ¼
1

2
εabcd

Z
M

Rab ∧Rcd and IP ¼
i
2

Z
M
Rab ∧Rab

ð2:10Þ

which can be combined as

I ¼ Pabcd

Z
M
Rab ∧ Rcd ð2:11Þ

where Pabcd ¼ 1
2
εabcd þ 1

2
iηa½cηd�b. The presymplectic

potentials are given by

θGB ¼ εabcdδω
ab ∧Rcd and θP ¼ δωab ∧Rab: ð2:12Þ

III. GAUGETRANSFORMATIONSOF THE FIELDS

In the metric formulation, we know that the metric
transforms under diffeomorphisms ξ that act on the metric
via a Lie derivative

δξgμν ¼ Lξgμν: ð3:1Þ

Furthermore, we know that the set of diffeomorphisms fξμg
preserving the form of the metric (2.1) form the BMS group
[30,31] and are given by

ξu ¼ f; ξr ¼ r
2
ðCI∂If −DIξ

IÞ;

ξI ¼ YI −
Z

∞

r
dr0

e2β

r02
ðh−1ÞIJ∂Jf ð3:2Þ

with f ¼ sðxIÞ þ u
2
DIYI. Here sðxIÞ are scalars on the

2-sphere parametrizing supertranslations and YIðxIÞ are
conformal Killing vectors on the 2-sphere corresponding to
the SLð2;CÞ part of the BMS group.5

Unlike the metric, the vierbein will transform under
internal Lorentz transformations, as well as diffeomor-
phisms. In particular,

δξ;Λeaμ ¼ Kξ;Λeaμ ¼ Lξeaμ þ Λa
bebμ; ð3:3Þ

where Kξ;Λ denotes the Kosmann derivative, the combined
effect of both types of gauge transformations. For a general
internal Lorentz transformation Λab, this is consistent
with the definition of the metric in terms of the vierbein.
Thus we have an extra set of gauge parameters. However,
when considering particular gauge transformations that
correspond to Killing or asymptotic symmetries, the action
of the diffeomorphism generators will act differently on the
vierbein compared with the metric. Thus, for consistency,
we may wish to constrain the internal Lorentz generators.

3The slash on the variational symbol δ on the lhs is to indicate
that the variation is not, in general, integrable.

4The parameter λI is known as the Barbero-Immirzi [39,40]
parameter.

5In this paper, we shall restrict ourselves to supertranslations,
i.e., set YI ¼ 0, as the supertranslations are the most novel feature
of the BMS group.
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Before considering the asymptotic case, we review the
treatment in the fully covariant case.

A. Kosmann derivative

In the case where the theory remains fully covariant, i.e.,
where we have not fixed any of the diffeomorphism
freedom, the only relevant generators are those that gen-
erate an isometry defined by the condition that

Lξgμν ¼ 0: ð3:4Þ
Given such a Killing vector field, it is not only desirable,
but necessary, in order to define Noether charges, that the
Kosmann derivative acting on the vierbein along such a
Killing direction vanishes too [8]. This is achieved by
writing Kξ;Λeaμ in terms of Lξgμν. In particular, following
[8], one can choose

Kξ;Λeaμ ¼
1

2
eaνLξgμν: ð3:5Þ

This then fixes the Lorentz transformation generator Λ in
terms of the diffeomorphism generator ξ,

Λab ¼ eμ½aLξeb�μ: ð3:6Þ
The fact that the Lorentz transformation generator is not
independent implies that the Lorentz transformations intro-
duced by the tetrad formalism are spurious; there ought not
be any notions of symmetry or charges associated with their
generators.
Under Lorentz rotations Lab of the vierbein

ea → ðLeÞa ¼ La
beb; ð3:7Þ

Λab transforms as a connection6

ΛðLeÞ
ab ≡ ðLeÞμ½aLξðLeÞb�μ ¼ La

cLb
dΛðeÞ

cd þ L½acLξLb�c

ð3:8Þ
so that the Kosmann derivative remains covariant under
Lorentz transformations

Kξ;ΛðLeÞ ðLeÞaμ ¼ La
bKξ;ΛðeÞebμ: ð3:9Þ

Similarly,

Kξ;Λω
ab
μ → La

cLb
dKξ;Λω

cd
μ ð3:10Þ

under a Lorentz transformation L. This means that the
Kosmann derivative can be used as a diffeomorphism and
Lorentz covariant structure to construct charges.

B. Asymptotic symmetries in the tetrad formalism

The discussion above assumes that one is interested in
global symmetries. In this case, the background diffeo-
morphism and Lorentz covariance may be retained and no
further issues arise. When dealing with asymptotic sym-
metries, however, the situation is more subtle. In order to
define asymptotic symmetries one must break the back-
ground diffeomorphism symmetry by fixing a particular
coordinate system, such as Bondi coordinates, and like-
wise, the Lorentz symmetry by choosing a tetrad corre-
sponding to the coordinate system.
In Ref. [3], the criterion used to fix Λab was different

from that elaborated above. Having chosen the basis
1-forms (2.3), we require that the Kosmann derivative
Kξ;Λeaμ gives an expression that matches the variations of
the metric components coming from Lξgμν. In particular,
we require an additional Lorentz transformation in order
to restore the Lorentz gauge that we have fixed when
choosing the null tetrad:

Kξ;Λe0r ¼ 0 ⇒ Λ01 ¼ −∂rξ
r; ð3:11Þ

Kξ;Λe0I ¼ 0 ⇒ Λ1i ¼
1

2r
EI
iðF∂Iξ

u þ 2∂Iξ
rÞ; ð3:12Þ

Kξ;Λe1I ¼ 0 ⇒ Λ0i ¼
e2β

r
EI
i∂Iξ

u ð3:13Þ

since we require that δe0r ¼ δe0I ¼ δe1I ¼ 0. Finally,
the expression for Λij is derived by considering
δξ;ΛeiI ¼ rδξ;ΛEi

I ,
7

Λij ¼
1

r
EI ½iLξej�I − EI ½iδξEj�I; ð3:14Þ

which can be expanded in orders of 1=r, with [3]

Λij ¼ γIJÊ
I
½iLYÊ

J
j� þOð1=rÞ; ð3:15Þ

where ÊI
i are the zweibeins associated with the unit round-

sphere metric γIJ so that ηijÊ
I
i Ê

J
j ¼ γIJ. Clearly, the precise

formof the subleading terms in (3.15)will depend on howwe
choose to parametrize the zweibeinEi

I . The transformationof
the other components of the vierbein are consistent with the
expressions for Λab given in Eqs. (3.11)–(3.14).
To reiterate, the criterion for fixing Λab in the asymptotic

case is very different from that used in the global case. In
the former case, the criterion is that once a vierbein has
been chosen, we require that Λab be such as to keep it in its
Lorentz frame. However, we have kept a residual internal
Lorentz symmetry in the i direction. Since we have
(partially) fixed the Lorentz frame, an analysis of the

6Infinitesimally with L ¼ δþ λ,

ΛðλeÞ ¼ −Lξλþ ½λ;ΛðeÞ�:

7To be clear, δξEi
I represents an explicit transformation of the

metric component functions that appear in Ei
I using the pre-

scription derived from δξgμν ¼ Lξgμν. In particular, δξÊ
i
I ¼ 0.

MAHDI GODAZGAR and GEORGE MACAULAY PHYS. REV. D 105, 084037 (2022)

084037-4



transformation of Λab under an arbitrary Lorentz trans-
formation Lab as we did in the global case is meaningless.
However, the residual internal Lorentz symmetry in the i
direction means that we now need to consider Lorentz
rotations of the zweibein:

Ei
I → Li

jE
j
I: ð3:16Þ

Under the transformation above, Λab for ab ≠ ij trans-
forms as a tensor. However, as is clear from Eq. (3.14), Λij

will not transform as a connection [cf. Eq. (3.8)]. Thus, the
Kosmann derivative will not transform covariantly under
Lorentz transformations acting on i; j;… indices. In
particular, this means that the BMS charge will depend
on the choice of zweibein Ei

I .
In summary, we find that breaking the diffeomorphism

invariance in order to define the background of interest
means that Lorentz covariance cannot be maintained and
must too be broken. The higher derivative charges will then
depend on the choice of internal Lorentz gauge. Our choice
for thevierbein is given in (2.3). Furthermore, we require that

Ei
I ¼ XI

JÊi
J; ð3:17Þ

where XIJðu; r; xIÞ is a tensor on the 2-sphere. While this
choice may seem arbitrary, one advantage is that all expres-
sions remain tensors on the 2-sphere; i.e., one does not break
diffeomorphisms along the 2-sphere directions.
Thus, we have two sets of asymptotic symmetry gen-

erators: the BMS generators (3.2) and a residual internal
Lorentz transformation that corresponds to internal Lorentz
transformations of the round 2-sphere zweibein Êi, which
we shall denote by

λij ¼ λðxIÞεij: ð3:18Þ

Note that the gauge choice (3.17) means that λ depends
only on the coordinates on the 2-sphere. A different gauge
choice would lead to an internal Lorentz transformation
parameter λðu; r; xIÞ.

IV. GAUSS-BONNET AND PONTRYAGIN
BMS CHARGES

In this section, we consider the set of charges arising from
the Gauss-Bonnet and Pontryagin terms generated by the
BMS generators (3.2). In general, the charge variations
resulting from the higher derivative terms are of the form [3]

=δQP ¼
Z
S
δωab ∧ Kξ;Λωab and

=δQGB ¼ εabcd

Z
S
δωab ∧ Kξ;Λω

cd: ð4:1Þ

We will now derive these expressions in the asymptotically
flat case with the asymptotic symmetry generators corre-
sponding to supertranslations.

A. Derivation of Λij

First, we need to derive Λij defined by Eq. (3.14), to
lower orders than that given in Eq. (3.15). This expression
will depend on the gauge choice (3.17). This gauge choice
combined with the condition EI

iE
J
jη

ij ¼ ðh−1ÞIJ implies
that

XI
KXJ

Lγ
KL ¼ ðh−1ÞIJ: ð4:2Þ

Viewed as matrices, this is just a change of basis. Solving
this equation for X as an r−1 expansion given that

ðh−1ÞIJ ¼ γIJ −
1

r
CIJ þ 1

4r2
C2γIJ −

1

r3
DIJ þ oðr−3Þ ð4:3Þ

gives

XIJ ¼ γIJ −
1

2r
CIJ þ

1

16r2
C2γIJ þ

1

r3

�
1

32
C2CIJ −

1

2
DIJ

�

þ oðr−3Þ: ð4:4Þ
Now, we can derive Λij to the order required for the

calculation. Using (3.17), Eq. (3.14) reduces to

Λij ¼ γIJÊ
I
½iξ

K∂KÊ
J
j� þ

1

2
εijϵ

I
Jð∂Iξ

J − CJ∂Iξ
uÞ

þ 1

2
εijϵ

JKXI
Jðξμ∂μXIK − δξXIKÞ; ð4:5Þ

where ε23 ¼ i and ϵθϕ ¼ sin θ.8 Note that δξXIK denotes the
variation of the metric components in XIK derived from the
equation δξgμν ¼ Lξgμν. Thus, [12]

δξF0 ¼ s∂uF0 −
1

2
∂uCIJDIDJs−DI∂uCIJDJs;

δξCI
1 ¼ s∂uCI

1 þ
1

16
∂uC2DIsþF0DIs−

1

4
CJKDIDJDKs

−
1

2
CIJDJ□sþ 1

2
DJCIKDJDKs−

3

4
DICJKDJDKs

−
1

2
DJCJKDKDIs−

1

2
DIDJCJKDKs

þ 1

2
DJDKCKIDJs−CIJDJs;

δξCIJ ¼ s∂uCIJ − 2DhIDJis;

δξC2 ¼ s∂uC2 − 4CIJDIDJs;

δξDIJ ¼ s∂uDIJ − 2C1hIDJis−
1

4
CIJCKLDKDLs

−
1

8
C2DhIDJisþ

1

8
DhIC2DJisþDKCKLCLhIDJis:

ð4:6Þ

8The fact that ε23 is imaginary is a consequence of the fact that
we have chosen a complex null tetrad on the 2-sphere.
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Denoting the expansion9

Λ23 ¼ Λð0Þ
23 þ Λð1Þ

23

r
þ Λð2Þ

23

r2
þ oðr−2Þ ð4:7Þ

we find

Λð0Þ
23 ¼ ÊI½2LYÊ

I
3�;

Λð1Þ
23 ¼ VIDIf;

Λð2Þ
23 ¼ 1

2
DIfðiDJC̃IJ − VJCIJÞ ð4:8Þ

where VI ¼ 1
2
ðÊJ

3D
IÊ2J − ÊJ

2D
IÊ3JÞ. The leading order

term matches Eq. (3.15), as expected.

B. Charge expansion

This puts us in a position to obtain an expression for the
Pontryagin and Gauss-Bonnet charge expansions in the
form

=δQP ¼
Z
S
dΩ

�ð=δIPÞ0
r2

þ ð=δIPÞ1
r3

þ ð=δIPÞ2
r4

þ oðr−4Þ
�

ð4:9Þ

and

=δQGB ¼
Z
S
dΩ

�ð=δIGBÞ0
r2

þ ð=δIGBÞ1
r3

þ ð=δIGBÞ2
r4

þ oðr−4Þ
�
:

ð4:10Þ

Note that it can be deduced almost immediately from (4.1)
by considering the falloff of each term in the sum and
noting each Kξ;Λω

ab
I has a falloff at least as fast as δωab

I for
a general variation, that the leading order terms are Oðr−2Þ
in the charge expansions. In the following calculations, we
will assume the energy-momentum tensor obeys the falloff
conditions T00 ¼ oðr−5Þ, T0i ¼ oðr−3Þ and Tij ¼ oðr−4Þ
so we can use the Einstein equations (2.4). A calculation
then shows

ð=δIGBÞ0 ¼ 0 and ð=δIPÞ0 ¼ 0: ð4:11Þ

This result holds in the full BMS case, i.e., for YI ≠ 0.

C. Gauss-Bonnet at Oðr− 3Þ
At the next order, we obtain the following expression for

the Gauss-Bonnet charge:

ð=δIGBÞ1 ¼ δð3D½IsDKCJ�KDIDLCJLÞ þ s

�
2ð∂uDIJ∂uδCIJ − δDIJ∂2

uCIJÞ þ 1

4
ð∂uC2δF0 − δC2∂uF0Þ

þ 3ð∂uCI
1D

JδCIJ − δCI
1D

J∂uCIJÞ þ
1

8
ð∂uC2DIDJδCIJ − δC2DIDJ∂uCIJÞ

þ 1

16
ðDI∂uCIJDJδC2 −DIδCIJDJ∂uC2Þ þ 3

2
DICIJðδCJKDL∂uCKL − ∂uCJKDLδCKLÞ

þ 1

32
ðδC2∂2

uC2 − ∂uC2∂uδC2Þ þ 1

8
ðδðC2CIJÞ∂2

uCIJ − ∂uðC2CIJÞÞ∂uδCIJ

�

þDIs

�
3F0DJδCIJ þ 3

2
DJCJKðDKDLδCIL −DIDLδCKLÞ − 3δC1J∂uCIJ

− 4C1J∂uδCIJ þ 5

4
DJC2∂uδCIJ þ 5

16
DJδC2∂uCIJ −

1

2
∂uCKLδðCIJDKCJLÞ

−
1

8
∂uC2DJδCIJ þ 1

2
CIJDKδCKL∂uCJL − 2CIJDKCJL∂uδCKL þ δCJKDLCKL∂uCIJ

�

−DIDJs

�
δF0CIJ þ 1

2
DKðCIJDLδCKLÞ þ 1

8
ðδC2∂uCIJ − CIJ∂uδC2Þ

�

−
1

2
DKDIDJsCIJDLδCKL þDIð□þ 2Þs

�
3δC1

I −
3

2
δCIJDKCJK −

3

2
CIJDKδCJK −

1

16
DIδC2

�

þ 1

8
□ð□þ 2ÞsδC2: ð4:12Þ

9The previous analyticity assumptions made up to this point mean Λ23 automatically has an analytic expansion to this order.
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It should be noted the choice of separation into the
integrable and nonintegrable pieces is somewhat arbitrary.
While Wald and Zoupas [38] give a formulation for a
canonical way of doing this at the leading order, there is
no such general formalism at subleading orders. The
choice of separation here is because it leads to nontrivial
charges. The integrable piece is conserved when the
nonintegrable piece vanishes for δ ¼ δξ;Λ. Focusing on
the nonintegrable piece and using the expressions for the
metric variations (4.6), as well as Einstein equations (2.4),
we find

ð=δIGBÞ1ðnon−intÞ ¼ 3D½IsDJ�□sDIDKCJK

þ 3D½IðDKðs∂uCJ�KÞDJDLCIL

þDKCJ�KDJDLðs∂uCILÞÞ: ð4:13Þ

For a general CIJ, the first and second lines cannot cancel
each other, so we need to consider them individually. The
first line is zero when sðxIÞ ¼ Yl;mðxIÞ, a spherical
harmonic, since then □s ¼ −lðlþ 1Þs and the term
vanishes since D½IsDJ�s ¼ 0. The second line vanishes
only when ∂uCIJ ¼ 0. Hence, we have a set of charges

ðQGBÞl;m1
ðintÞ ¼3

Z
S
dΩðDIYl;mDKCJKD½IDLCJ�LÞ ð4:14Þ

which are conserved in the absence of Bondi news,
∂uCIJ ¼ 0.

D. Pontryagin at Oðr− 3Þ
A similar calculation can be performed for the

Pontryagin charge

ð=δIPÞ1 ¼ δ

�
−
3

2
DIsF0DJC̃

IJ

�
þ s

�
ð∂uD̃IJ∂uδCIJ − δD̃IJ∂2

uCIJÞ þ 3

2
ðδCI

1D
J∂uC̃IJ − ∂uCI

1D
JδC̃IJÞ

þ 3

32
ðDIδC̃

IJDJ∂uC2 −DI∂uC̃
IJDJδC2Þ þ 1

2
DICIJðδC̃JKDL∂uCKL − ∂uC̃JKDLδCKLÞ

þ 1

8
ðDI∂uCIJδðC̃KLDJCKLÞ −DIδCIJ∂uðC̃KLDJCKLÞÞ −

1

32
δC̃IJ∂uCIJ∂uC2

þ 1

16
C2ðδC̃IJ∂2

uCIJ − ∂uC̃
IJ∂uδCIJÞ þ

3

32
C̃IJðδC2∂2

uCIJ − ∂uδCIJ∂uC2Þ

þDIs

�
3

2
δF0DJC̃

IJ þ 2C1J∂uδC̃
IJ þ 3

2
δC1J∂uC̃

IJ þ 3

4
DJδCIJDKDLC̃

KL

−
1

2
δCJKDLCKL∂uC̃

IJ þ 1

8
∂uCIJδðC̃KLDJCKLÞ − 1

8
DJδCIJC̃KL∂uCKL

þ 1

2
∂uδCIJC̃KLDJCKL −

3

8
DJC2∂uδC̃

IJ −
3

32
DJδC2∂uC̃

IJ

�

þDIDJs
�
1

4
DKCIJDLδC̃

KL þ 1

8
CIJδðC̃KL∂uCKLÞ þ

1

16
δC2∂uC̃

IJ

�

þ 1

4
DKDIDJsCIJDLδC̃

KL þDIð□þ 2Þsð3
2
ϵIJC1J −

7

32
ϵIJDJδC2 þ 3

8
δðCJKDIC̃JKÞÞ: ð4:15Þ

Once again, there is freedom in the choice of separation, but
with this choice, the integrable piece corresponds to a
conserved charge under sensible conditions on the metric
and nontrivial sðxIÞ. Using (4.6) and (2.4), we obtain

ð=δIPÞ1ðnon−intÞ ¼
3

2
F0ϵIJDI

□sDJsþ 3

2
F0DIsDJðs∂uC̃IJÞ

þ 3

8
sDIC̃

IJDJs∂uCKL∂uCKL

−
3

4
DIC̃

IJDJsDKDLðs∂uCKLÞ: ð4:16Þ

Again, the first line is zero when sðxIÞ ¼ Yl;mðxIÞ, a
spherical harmonic. For the second and third lines to

vanish, we require the absence of Bondi news,
∂uCIJ ¼ 0. Hence, we obtain a set of charges

ðQPÞl;m1
ðintÞ ¼ −

3

2

Z
S
dΩðDIYl;mF0DJC̃

IJÞ ð4:17Þ

which are again conserved when ∂uCIJ ¼ 0.

E. Physics of the charges

If one writes the Kerr metric in Bondi coordinates [41], it
can be shown that CIJ ¼ 0 and hence the charges are each
trivially zero. Doing the samewith the Taub-Newman-Unti-
Tamburino (Taub-NUT) metric
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ds2 ¼ −fðrÞðdtþ 2l cos θdϕÞ2 þ fðrÞ−1dr2
þ ðr2 þ l2Þðdθ2 þ sin2 θdϕ2Þ ð4:18Þ

where fðrÞ ¼ r2−2mrþl2

r2þl2 , we obtain nonvanishing expres-
sions for the charges when s is an axisymmetric spherical
harmonic (m ¼ 0) and l ¼ 2L > 0 given by

ðQGB
1Þ2L;0ðintÞ ¼ 48

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πð4Lþ 1Þ

p
l2;

ðQP
1Þ2L;0ðintÞ ¼ 24

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πð4Lþ 1Þ

p
ml ð4:19Þ

where l and m in these expressions are the Taub-NUT
parameters. It is unsurprising that the charges vanish for
Kerr and are nontrivial for Taub-NUT as we expected these
charges to encompass information about the topology of
the spacetime. Evidently, they contain information about
the NUT parameter.

F. Supertranslation invariance of the charges

The charges derived abovewith the conditions ∂uCIJ ¼ 0
(absence of Bondi news) and choice of s ¼ Yl;m are
conserved, but we have only demonstrated supertranslation
invariance of QGB

l;m and QP
l;m for the supertranslation

generated by s ¼ Yl;m. If one considers the variation of the
charges for general s, even with the vanishing of the Bondi
news tensor, the expression obtained is nonzero. However, it
is possible to modify the charges by adding an extra term
each, so that the new expressions enjoy full supertranslation
invariance. Let

ðQGBÞ1ðintÞ → 3

Z
S
dΩðDIsDKCJKD½IDLCJ�L

þ sDKCJKDID½IDLCJ�LÞ; ð4:20Þ

ðQPÞ1ðintÞ → −
3

2

Z
S
dΩðDIsF0DJC̃

IJ þ sDIF0DJC̃
IJÞ:

ð4:21Þ

The additional terms are each zero for the Taub-NUT
spacetime so the previous discussion is unaffected. The
addition of the new terms can be justified by adding their
negative counterparts to the nonintegrable pieces. Now for
any spherical harmonic sðxIÞ, in the absence of Bondi news,
applying (4.6), we find

ð=δQGBÞ1ðnon−intÞ ¼ 3

Z
S
dΩDJð□þ 3ÞsDIðsD½IDKCJ�KÞ;

ð4:22Þ

ð=δQPÞ1ðnon−intÞ ¼
3

2

Z
S
dΩ ϵIJDIð□þ 3ÞsDJðsF0Þ ð4:23Þ

where the Ricci identity has been used. In both cases, the
nonintegrable piece can be written as the sum of a total

derivative and a second term which is zero by the torsion-
free property of DI ,

ð=δQGBÞ1ðnon−intÞ ¼ 3

Z
S
dΩDIðDJð□þ 3ÞsðsD½IDKCJ�KÞÞ

−D½IDJ�ð□þ 3ÞsðsDIDKCJKÞ; ð4:24Þ

ð=δQPÞ1ðnon−intÞ ¼
3

2

Z
S
dΩDJðϵIJDIð□þ 3ÞsðsF0ÞÞ

− ϵIJDJDIð□þ 3ÞsðsF0Þ: ð4:25Þ

If the total derivative term can be ignored, then we have
shown the charges are conserved in the absence of Bondi
news. It can be shown that even for the Taub-NUT
spacetime, the total derivative terms are zero for any regular
s. The alternative charge expressions (4.20) and (4.21) are
therefore conserved in the absence of Bondi news for any
supertranslation parameter sðxIÞ, provided this condition is
met. Furthermore, it can be shown that these expressions are
invariant under the transformation generated by any super-
translation parameter. A demonstration of this amounts to
replacing one sðxIÞ in (4.24) and (4.25) with another regular
arbitrary function on the 2-sphere and observing that both
expressions still vanish.
It is possible to argue that these expressions for the

charges are a more sensible choice given this property. It is
also interesting to observe from (4.20) and (4.21) that if
total derivatives can be ignored in the integrand, then the
charges can be written as

ðQGBÞ1ðintÞ ¼ −
3

2

Z
S
dΩ sðDIDJC̃

IJÞ2; ð4:26Þ

ðQPÞ1ðintÞ ¼
3

2

Z
S
dΩsF0ðDIDJC̃

IJÞ: ð4:27Þ

We observe that the integrand in the Gauss-Bonnet charge
is proportional to the square of the integrand of the two-
derivative dual BMS charge and the integrand of the
Pontryagin charge is proportional to the product of the
two-derivative BMS and dual BMS charges.

V. GAUSS-BONNET AND PONTRYAGIN
LORENTZ CHARGES

In Sec. IV, we derived the BMS charges associated with
the Gauss-Bonnet and Pontryagin charges. As we found in
Sec. III B, in addition to the BMS symmetry generators,
there is also an internal Lorentz symmetry generator
parametrized by a function λðxIÞ [see Eq. (3.18)], which
corresponds to the freedom in defining the zweibein
corresponding to the round 2-sphere metric.
Under the action of this residual internal Lorentz trans-

formation, the spin connection transforms as
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δλω01 ¼ 0; δλω0i ¼ λεi
jω0j; δλω1i ¼ λεi

jω1j;

δλωij ¼ −dλεij þ λðεikωkj − εj
kωkiÞ: ð5:1Þ

We evaluate the charge variations corresponding to the
Gauss-Bonnet and Pontryagin contributions in the action.
Using the expressions for the presymplectic potential in
(2.12) and the expressions above, we are able to obtain
charge variations associated with this Lorentz gauge
symmetry. The charges obtained are in fact integrable with

QP
Lorentz ¼

Z
S
λεijRij; ð5:2Þ

QGB
Lorentz ¼ 4

Z
S
λR01: ð5:3Þ

Then, using the asymptotic expansions in (2.2) and the
Einstein equations (2.4), we find

QP
Lorentz ¼

Z
S
dΩ λ

��
4F0 −

1

2
∂uC2

�
r−1 þ oðr−1Þ

�
;

ð5:4Þ

QGB
Lorentz ¼

Z
S
dΩ λfð2DIDJC̃

IJ þ CIJ∂uC̃IJÞr−1

þ oðr−1Þg: ð5:5Þ

Note the striking resemblance between these expressions
and the leading order charges coming from the two-
derivative action [24]. In fact, up to flux terms there is a
precise match between these sets of charges.10 This
suggests that the internal Lorentz charges are physically
meaningful.

VI. DISCUSSION

In this paper, we have focused on the higher-derivative
Gauss-Bonnet and Pontryagin contributions to the action in
the first order formalism, which do not affect the Einstein

equations. We have considered two sets of asymptotic
symmetries: the BMS symmetry and the residual internal
Lorentz symmetry.
The charges corresponding to the BMS symmetry group

arising from the Gauss-Bonnet and Pontryagin contribu-
tions to the action are combinations of the already known
BMS and dual charges [41]. It is difficult to comment on
what would happen at higher orders of r−1 in these charge
expansions, but it is likely that any further charges would
also be combinations of charges coming from the two-
derivative terms in the action. Perhaps the most prominent
point of discussion here is the choice of separation into the
integrable and nonintegrable pieces. The choice here is
such that the integrable piece can be made to vanish for
physically reasonable conditions on the metric with the
resulting charges invariant under all supertranslations. This
result suggests that requiring the nonintegrable terms to
vanish in the absence of flux, as well as requiring the
resulting integrable charge to be BMS invariant is a
reasonable criterion for distinguishing between the inte-
grable and nonintegrable pieces of the charge variation.
More generally, the relation between nonintegrability and
conservation requires more investigation. There are indi-
cations that these two concepts need not be related in
general, even though they are for BMS charges [42].
The residual internal Lorentz symmetry generators lead

to nontrivial charges, in contrast to the two-derivative case.
This suggests that in general, the internal Lorentz sym-
metry that appears in the tetrad formulation of GR is
important and should not be ignored. Furthermore, inter-
estingly, as with the BMS charges, the internal Lorentz
charges correspond to the charges coming from the two-
derivative terms in the action.
The implications of these results for the first law of black

hole mechanics is an interesting subject that we hope to
address in the future.
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