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A problem which has now come to a head in general relativity, primarily as a result of the many recent
detections of gravitational waves from the coalescence of compact binaries, is that there are very few viable
theories against which to “test” it. To perform realistic tests of theories of gravity, we need to be able to look
beyond general relativity and evaluate the consistency of a parametrized, physically acceptable, family of
black hole metric alternatives with observational data from, especially, gravitational wave detections using,
for example, an agnostic Bayesian approach. In this paper we further examine properties of one class of
such metrics, which in fact arise as solutions of ungauged supergravity. In particular, we examine the
massless, neutral, minimally coupled scalar wave equation in a general stationary, axisymmetric
background metric such as that of a charged rotating black hole, when the scalar field is either time
independent or in the low-frequency, near-zone limit, with a view to calculating the Love numbers of tidal
perturbations, and of obtaining harmonic coordinates for the background metric. For a four-parameter
family of charged asymptotically flat rotating black hole solutions of ungauged supergravity theory known
as STU black holes, which includes Kaluza-Klein black holes and the Kerr-Sen black hole as special cases,
we find that all time-independent solutions, and hence the harmonic coordinates of the metrics, are identical
to those of the Kerr solution. In the low-frequency limit we find the scalar fields exhibit the same SLð2; RÞ
symmetry as holds in the case of the Kerr solution. We point out extensions of our results to a wider class of
metrics, which includes solutions of Einstein-Maxwell-dilaton theory.
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I. INTRODUCTION

The era of gravitational wave detection has arrived. So
far, gravitational waves from the mergers of neutron stars
and black holes have been observed, but it is also true that
these have waveforms which we best know how to
calculate. In practice, waveforms may be obtained by a
variety of methods—analytical, numerical, and perturbative
—often in some hybrid combination. Unless one looks
back in the literature written more than half a century ago,
one could easily forget how important was the study of
stability of both black holes and neutron stars, in a variety
of mass and spin configurations, for their acceptance in the
domain of observable physics: If slightly perturbed com-
pact objects could explode rather than radiate away
relatively small quantities of gravitational wave energy,
and settle down to another equilibrium configuration,
observations of merging black holes or neutron stars would
be dramatically different from what we are now able to
detect. To date, most analyses of compact objects and their
merging has taken place within the framework of general

relativity. In this paper we shall look beyond general
relativity, further examining a parametrized, physically
acceptable, family of black hole metric alternatives against
which it might be tested.
For now more than a century, tests of general relativity

have typically attempted to show that predictions of the
theory have been borne out by observation. Thus, the
default assumption in interpreting such observations as
gravitational waves by LIGO [1] or the proposed space-
borne LISA mission [2], the apparent black hole shadow in
M87 by EHT [3,4], the black hole at the center of the
Milky Way [5], and x-ray emission from black hole
accretion discs [6], is in terms of the Kerr metric. In the
era to come there will be growing interest in attempting to
show, or to exclude, the possibility that the results of
observations may be better described by some alternative
theory of gravity. Thus, in accessing the reliability of
present-day interpretations, or in looking for physics
beyond the standard model, it is important to compare
with the predictions for alternative metrics; or, to adapt the

PHYSICAL REVIEW D 105, 084035 (2022)

2470-0010=2022=105(8)=084035(11) 084035-1 © 2022 American Physical Society

https://orcid.org/0000-0002-8401-2564
https://orcid.org/0000-0002-8501-8669
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.105.084035&domain=pdf&date_stamp=2022-04-20
https://doi.org/10.1103/PhysRevD.105.084035
https://doi.org/10.1103/PhysRevD.105.084035
https://doi.org/10.1103/PhysRevD.105.084035
https://doi.org/10.1103/PhysRevD.105.084035


terminology introduced in [7], with Kerr metric foils, that
is, asymptotically flat, axisymmetric, stationary metrics that
are regular outside a nonsingular event horizon.1

A foil is not meant to be a full-blown alternative theory
of gravity. Rather it is intended to provide a parametrized,
physically acceptable, family of black hole metric alter-
natives to the more extensively studied Kerr class of
metrics, against which potential departures from general
relativity might be reasonably tested. To be useful for such
purposes, one might require at the least that:

(i) The Hamilton-Jacobi equation for null geodesics is
Liouville integrable.

(ii) The energy momentum tensor of all fields other than
the metric satisfies acceptable positive-energy con-
ditions.

(iii) The metric is a solution of a well-defined set of field
equations, having a well-posed initial value problem.

(iv) The propagation of time-dependent solutions is
causal.

(v) The spacetime of the foil has positive energy.

Although not essential, it is also highly desirable that the
equations of motion, which might reasonably be assumed
to contain only massless scalar and vector fields in addition
to the metric, may be derived from an action principle, thus
admitting a Hamiltonian formulation and therefore a well-
defined notion of total energy and angular momentum.
Moreover, progress would be facilitated if, at least to some
degree, separability of the equations for linear perturbations
of the solutions holds, analogous to the case for the Kerr
metric, and also that the analysis of magnetic fields around
the foil solutions be tractable. A final desirable requirement
is that the foil solutions have some degree of uniqueness, to
provide reassurance that predictions made using them are
robust.
Various parametrized classes of metrics have been

employed previously as foils, in order to probe the extent
to which observational predictions would change as the
spacetime geometry is modified away from that of the
standard Kerr geometry. In some of these modified metrics
may not necessarily obey basic natural requirements such
as being free of naked singularities, or being free of closed
timelike curves outside the horizon. Later proposals have
addressed some of these issues. (See [8–10] for some
examples.) These classes of metrics commonly involve
arbitrary functions of one or more of the spacetime
coordinates in order to parametrize the departure from
the Kerr metric.
Another proposed class of foils that have been exten-

sively considered are the Kerr-Sen black holes of string
theory [11]. These are charged rotating black holes that
arise as solutions of the low-energy limit of string theory,
which reduce to the Kerr black hole if the charge is set to
zero. They have the merit of being solutions of a known

theory with well-posed field equations, they satisfy pos-
itive-energy conditions, have no pathologies such as closed
timelike curves, and the massless wave equations for scalar
and higher-spin fields are separable, thus allowing rela-
tively straightforward calculation of certain important
physical properties. Their use as foils has been discussed,
for example, in [3–5,12,13].
Viewed as foils, the Kerr-Sen black holes have just one

parameter of freedom that parametrizes deviations from the
Kerr black hole, namely the electric charge. We have
previously proposed that a convenient larger family of
foils is provided by the rotating black holes of STU
supergravity. In previous work we studied the electrody-
namics [14]; the initial value problem [15]; the photon
sphere and sonic horizons [16]; the equatorial timelike
geodesics [17]; and the stability of massless, minimally-
coupled scalar fields [18], for a six-parameter family of
rotating black holes of STU supergravity. These solutions
admit a separation of variables for the scalar wave equation
[19,20]. In particular, this class of black hole spacetimes
contains as special cases: (i) the Kerr-Newman metric,
(ii) its analogue in Kaluza-Klein theory [21], and (iii) the
Kerr-Sen analogue in string theory [11].
With this in mind, in this paper we shall study a class of

rotating black hole solutions in STU supergravity as foils
against which results for the Kerr black hole can be
compared. STU supergravity is N ¼ 2 supergravity
coupled to three vector supermultiplets, and its bosonic
sector therefore comprises gravity coupled to four
Maxwell-type gauge fields and six scalar fields [22].
Our focus will be on the rotating black holes in which
each of the four gauge fields carries an independent
electric charge, so the solutions are characterized by six
independent parameters (the mass, the angular momen-
tum, and four electric charges). If the electric charges are
turned off the solution reduces to the Kerr metric. We
emphasize that we are not proposing these STU super-
gravity black holes as physically realistic solutions in the
observed universe; rather, we are proposing that they
constitute a useful and convenient multiparameter family
of foils whose properties can be compared with those of
the Kerr metric itself. Importantly, these metrics satisfy all
of the desiderata that we highlighted above. They provide
a wider class of foils than some that have been considered
previously (such as the Kerr-Sen black hole that was
employed as a foil in [3–5,12,13], and which is contained
as a special case within the STU black holes that we are
considering).
In this work, our main focus will again be on scalar fields

in the STU supergravity black hole backgrounds, since they
are easier to work with than the full gravitational pertur-
bations while still carrying the expectation that they will be
indicative of behaviors that would be manifested also in a
more extensive analysis. One aim in the present paper is to
extend our previous work to an examination of tidal effects1The “foils” of [7] were wormholes; ours are black holes.
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induced on rotating STU black holes by orbiting black
holes or neutron stars. These effects are characterized by
dimensionless numbers analogous to those introduced by
Love in his purely Newtonian study of tidal distortions of
the shape of the earth by the moon [23]. The definition of
tidal Love numbers2 for static SOðdÞ invariant asymptoti-
cally flat vacuum black holes in dþ 1 dimensions is given
in [24], where the reader will find an extensive list of
references to earlier work. Using the equations for static
gravitational perturbations of such metrics given in [25],
the remarkable result was obtained that the Love numbers
vanish if d ¼ 3 but are nonvanishing for d > 3.
Recently [26–28], it was shown that the vanishing of the

tidal Love numbers also holds for the Kerr solution. This
may be seen [28] by taking an appropriate limit of the
Teukolsky equation [29] that governs scalar, spinor, vector
and tensor perturbations. This achievement has sparked off
attempts to provide an underlying explanation for this
remarkable phenomenon [30–33].
The paper is organized as follows. In Sec. II, we show

by considering an arbitrary stationary metric written in the
form of a time fibration over a spatial 3-dimensional base
metric, that static (time independent) solutions of the
scalar wave equation are governed by an equation that
depends only on the spatial 3-metric. In particular, this
means that not only for the charged rotating STU super-
gravity black holes, which we discuss explicitly, but also
more generally in much broader classes of charged black
holes, the static scalar wave functions obey the same
equation in the charged metrics as they do in the
uncharged ones. In Sec. III we show that this means
the static Love numbers for the scalar field in the charged
supergravity black holes are the same as those in an
uncharged Kerr black hole. We also comment on the
distinction between the static Love numbers, which there-
fore vanish, and the dynamical response that arises as a
consequence of tidal interactions. In Sec. IV, we show that
if one looks at the properties of the scalar wave equation
for nonzero but low frequency fields, then just as occurs in
the Kerr background, one finds an SLð2;RÞ symmetry in
the near-zone regime.
In Sec. V, we study the time-independent solutions

of the massless scalar wave equation in two classes of
static black hole backgrounds, showing how in each case
the 3-dimensional spatial metric is conformal to the metric
on 3-dimensional hyperbolic space. This provides a geo-
metrical insight into the SLð2;RÞ symmetries of the static
wave functions in these cases. One of the classes of static
black holes we study here are 4-charge black holes in STU
supergravity. The other class comprises charged black holes
in Einstein-Maxwell-dilaton (EMD) gravity. We consider
these black holes for arbitrary values of the constant

characterizing the coupling of the dilaton to the Maxwell
field. Only in certain special discrete cases do these EMD
black holes coincide with black holes in the STU super-
gravity class.
In Sec. VI, we apply some of our previous results to the

construction of harmonic coordinates for the charged black
hole metrics. These are of interest because the Einstein
equations then become a semilinear symmetric hyperbolic
system, which can be useful for studying certain math-
ematical properties of the solutions. They can also be
used in order to define the energy and momentum in terms
of the Landau-Lifshitz energy-momentum pseudotensor.
The paper ends with conclusions in Sec. VII.

II. SCALAR WAVE EQUATION IN CHARGED
ROTATING BLACK HOLE BACKGROUNDS

A. Charged from uncharged black holes

It was observed in [34] that the charged rotating black
holes of four-dimensional ungauged STU supergravity can
be conveniently constructed by starting from the neutral
Kerr black hole as a seed solution,3 written in the time-
fibered Kaluza-Klein form

ds24 ¼ gμνdxμdxν ¼ −e2UðdtþAidxiÞ2 þ e−2Uγijdxidxj;

ð2:1Þ

where the base metric γij, the Kaluza-Klein vector Ai and
the scalarU depend only on the three spatial coordinates xi.
By performing a Kaluza-Klein reduction of the STU
supergravity theory on the time coordinate, using a general
ansatz of the form (2.1) for the metric and

Âμdxμ ¼ Aidxi þ χdt; ð2:2Þ

for each of the four STU supergravity gauge potentials,
the resulting three-dimensional theory has an Oð4; 4Þ
global symmetry that can be used to introduce up to eight
charges (independent electric and magnetic charges for the
four gauge fields), after lifting back to four dimensions
again.
An important point about this procedure of starting with

a neutral seed solution and introducing charges by using the
global symmetries of the three-dimensional reduced theory,
is that the charge parameters enter the final four-
dimensional metric only via the scalar function U and
the Kaluza-Klein vectorAi in Eq. (2.1). This is because the
metric γij in the three-dimensional reduced theory is
invariant under the Oð4; 4Þ global symmetry. In other

2There has also been introduced a notion of dissipative Love
numbers, about which we will say more below.

3To be more precise, the seed solution should be taken to be the
Kerr-NUT metric in general, with the seed NUT parameter
eventually enabling the cancellation of a further NUT charge
that can arise when certain combinations of sufficiently many
charges are introduced using the generating procedure.
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words, in the final four-dimensional charged solution,
taking the form (2.1), the three-dimensional base metric
γij is unchanged from the form it took in the original seed
solution.
It is worth emphasizing that this procedure for generating

charged solutions from an uncharged seed solution can be
applied much more generally than in the specific case of the
charged STU supergravity black holes we are considering
in this paper. For any theory whose Kaluza-Klein reduction
to three dimensions yields a theory with global symmetry
groupG, one can (i) reduce from a stationary solution using
the metric ansatz (2.1); (ii) act with the symmetry G; and
then (iii) lift it back to four dimensions again. Quite
generally, since the three-dimensional metric is invariant
under G, the charge parameters in the lifted solution enter
only via the scalar function U and the Kaluza-Klein vector
Ai. Extensive discussions of the three-dimensional global
symmetries for rather general higher-dimensional starting
points can be found, for example, in [35,36].
As can easily be seen from Eq. (2.1), the determinant of

the four-dimensional metric gμν is related to that of the
three-dimensional metric γij by

ffiffiffiffiffiffi−gp ¼ e−2U
ffiffiffi
γ

p
, and so

ffiffiffiffiffiffi
−g

p � ∂
∂s4

�
2

¼ ffiffiffiffiffiffi
−g

p
gμν∂μ⊗∂ν

¼−
ffiffiffi
γ

p
e−4U∂2

t þ ffiffiffi
γ

p
γijð∂i−Ai∂tÞð∂j−Aj∂tÞ:

ð2:3Þ

This means that the four-dimensional D’Alembertian wave
operator □ on scalar functions is given by

□Ψ≡ 1ffiffiffiffiffiffi−gp ∂μð
ffiffiffiffiffiffi
−g

p
gμν∂μΨÞ

¼−e−2U∂2
tΨþe2Uγijð∇i−Ai∂tÞð∇j−Aj∂tÞΨ; ð2:4Þ

where ∇i is the covariant derivative in the three-
dimensional base metric γij. In particular, this means that
if the wave function4 Ψðt;xÞ is taken to be independent of
time, Ψðt;xÞ ¼ ΨðxÞ, then

□ΨðxÞ¼e2Uγij∇i∇jΨðxÞ¼
e2Uffiffiffi
γ

p ∂ið ffiffiffi
γ

p
γij∂jΨðxÞÞ: ð2:5Þ

Thus a time-independent solution of the massless wave
equation obeys

γij∇i∇jΨðxÞ ¼ 0; ð2:6Þ

and this depends only on the metric γij of the three-
dimensional base. As already observed, this is identical in

the original neutral seed solution and in the charged
solution.

B. Charged rotating black holes in STU supergravity

Written in the Kaluza-Klein form (2.1), the neutral
Kerr solution is given by the three-dimensional base
metric

γijdxidxj¼ðρ2−2MrÞ
�
dr2

Δ
þdθ2

�
þΔsin2θdϕ2; ð2:7aÞ

ρ2 ¼ r2 þ a2cos2θ; Δ ¼ r2 þ a2 − 2Mr; ð2:7bÞ

together with the vector Ai and scalar U:

Aidxi ¼
2Mar sin2 θ
ρ2 − 2Mr

dϕ; e2U ¼ 1 −
2Mr
ρ2

: ð2:8Þ

(Note that we can write Aidxi ¼ aðe−2U − 1Þ sin2 θdϕ in
the seed solution.)
Charged rotating STU black holes carrying just four

charges in total were obtained originally in [22], and were
obtained in the Kaluza-Klein formulation in [34]; for these
solutions, the metric is given by (2.1) with the base 3-metric
again given by (2.7), and the 1-formAð1Þ and scalar U now
given by

Aidxi ¼
2Ma½rΠc − ðr − 2MÞΠs�sin2θ

ρ2 − 2Mr
dϕ;

e2U ¼ ρ2

W

�
1 −

2Mr
ρ2

�
; ð2:9Þ

where

W2 ¼ r1r2r3r4 þ 2a2
�
r2 þMr

X
i

s2i þ 4M2ΠsðΠc − ΠsÞ

− 2M2
X
i<j<k

s2i s
2
js

2
k

�
cos2θ þ a4cos4θ;

ri ¼ rþ 2Ms2i ; si ¼ sinh δi; ci ¼ cosh δi;

Πs ¼ s1s2s3s4; Πc ¼ c1c2c3c4: ð2:10Þ

As already remarked, the charge parameters (the boost
parameters δi) enter only in the expressions for Ai and U,
and thus the scalar wave operator for time-independent
wave functions, given by (2.5), remains unchanged from
that for the original Kerr metric.5

4Note that in this paper we are using the term “wave function”
in a purely classical sense.

5Note that for the particular combination of four charges that
are introduced in this example, it suffices to take just the Kerr
metric as the seed solution, since no NUT charge is generated in
this case.
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More generally, the full eight-charge rotating black hole
family of solutions was obtained using these methods in
[37].6 As can be seen from the expressions given there, the
charge parameters again enter only in the Kaluza-Klein
vector Ai and the scalar U in the metric (2.1), and so
again the massless wave equation for the case of time-
independent wave functions is independent of the charge
parameters.

III. TIME-INDEPENDENT SCALAR WAVE
FUNCTIONS AND LOVE NUMBERS

Consider a time-independent solution Ψðr; θ;ϕÞ of the
massless scalar wave equation in the background of a
charged rotating STU supergravity black hole. From
Eqs. (2.5) and (2.7), it will obey

∂rðΔ∂rΨÞþ
1

sinθ
∂θðsinθΨÞ−

ðρ2−2MrÞm2

Δsin2θ
Ψ¼0: ð3:1Þ

From the expressions for ρ and Δ in Eqs. (2.7) we have

ρ2 − 2Mr
Δ sin2 θ

¼ 1

sin2 θ
−
a2

Δ
; ð3:2Þ

and so for factorized solutions with Ψðr; θ;ϕÞ ¼
RðrÞSðθÞeimϕ, the massless scalar wave equation separates,
giving

1

sin θ
∂θðsin θ∂θSÞ þ

�
λ −

m2

sin2θ

�
S ¼ 0; ð3:3Þ

implying that SðθÞ is just the associated Legendre function
Pm
l ðcos θÞ, and the separation constant λ is

λ ¼ lðlþ 1Þ; l ¼ 0; 1; 2;…; ð3:4Þ

and therefore the radial equation is

∂rðΔ∂rRÞ þ
a2m2

Δ
R − lðlþ 1ÞR ¼ 0: ð3:5Þ

A. Love numbers

In nonrelativistic gravity the Newtonian potential U of a
tidally distorted body of massM and mean radiusR is given
in spherical coordinates by [26,39]

U¼M
r
−
X
l;m

ðl−2Þ!
l!

Elmrl
�
1þ2kl

�
R
r

�
2lþ1

�
Ylmðθ;ϕÞ;

ð3:6Þ

where Ylm are spherical harmonics, Elm are a measure of
the moments of an external tidal field and klElmR2lþ1 is a
measure of the deformation of the gravitational field of the
body. The quantity R is included on dimensional grounds,
and renders the coefficients kl, known as tidal Love
numbers, or TLNs, dimensionless. The name Love refers
to the elastician Augustus Edward Hough Love who
introduced the kl coefficients in [23]. The Love numbers
provide a characterization of the elasticity or rigidity of the
body, with larger Love numbers corresponding to greater
elasticity. However, as Love noted [23], tidal forces are
often dynamical, and (3.6) represents only the static part of
an elastic body’s response to tidal deformation.
In general relativity the situation is obviously more

complicated and, for black holes, even more so. In
particular, if the Love numbers are zero this does not
indicate, as has sometimes been supposed, that a black hole
has no response to an external tidal field. In fact, early
studies of perturbations of black holes found that their
surrounding spacetime would respond with quasinormal
ringing [40,41], and York [42] showed that these actually
resulted in changes in the area of the event horizon of a
black hole. In numerical relativity it was later demonstrated
that during black hole mergers, cross sections of the event
horizon could become singular [43]. Thus, the static Love
numbers being zero for black holes represents only part of
the full story.
In examining the Love numbers of the Kerr solution, the

approach usually taken has been to focus on the Teukolsky
equations [29], which govern gauge invariant parts of the
Weyl tensor arising from gravitational perturbations of the
metric, or some equivalent formulation. These equations
are necessarily rather complicated, and in any case so far
their generalizations are not available for all of the rotating
black holes we wish to consider. However, on the basis of
our results, some insight may be gained from the behavior
of static, i.e., time-independent, solutions of the wave
equation □f ¼ 0 where □ is the covariant D’Alembertian
of any metric of the form (2.1).
In [31], static Love numbers, which determine

the response to time-independent external fields, were
found to vanish in four-dimensional Einstein theory
both for spherical and spinning black holes (see also
[24,28,30,32,44–46]). Although this might appear to be
at variance with [26,27], it is clear from [28] that dynamics
is at the root of this apparent discrepancy. Specifically,
while the static Love number is indeed zero for the Kerr
black hole, there is a dissipative response (in the Weyl
tensor) proportional to a superradiance factor, namely

6Because of the existence of an SLð2;RÞ3 global symmetry of
the STU theory in four dimensions, it actually suffices from the
point of view of generality to construct a five-charge solution,
since the remaining three charges can then be introduced in four
dimensions by acting with the Uð1Þ3 maximal compact subgroup
of SLð2;RÞ3. This technique was employed for the case of the
static STU black holes in [38].
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−iðmΩH − ωÞ
�
2Mrþ
rþ − r−

�
νKerrlm

which, except for the axisymmetric m ¼ 0 mode, does not
vanish in the zero-frequency limit (nor, indeed, in
Schwarzschild with nonzero frequency). Here r− and rþ
label the inner and outer horizons, ΩH is the angular
momentum of the outer horizon, and the νlm are new,
dissipative, Love numbers. Note that the sign of this term
changes in the superradiant regime. This discrepancy is
specifically addressed in [27], and in its discussion of the
papers [30,47].
As implied by our earlier discussion, the radial equation

arising from the separation of variables for time-independent
solutions of the massless scalar wave equation in the
background of any charged rotating STU supergravity black
hole is given by (3.5). Since this is identical in form to the
corresponding radial equation in the Kerr black hole back-
ground, the same analysis given in [31,33] carries over
identically to the charged supergravity black hole cases.

IV. NEAR-ZONE SLð2;RÞ SYMMETRY

It was shown in [48] that the massless scalar wave
equation for low-frequency wave functions in the
Schwarzschild geometry exhibits a “hidden” SLð2;RÞ
symmetry. This observation was subsequently extended
to more general black hole backgrounds, including the Kerr
black hole in [31]. In this section, we show that the hidden
SLð2;RÞ symmetry is present also for the low-frequency
massless wave equation in the background of the 4-charge
rotating STU supergravity black holes. This is noteworthy
because, unlike the zero-frequency results that we dis-
cussed earlier, which were insensitive to any of the details
of the charge parameters, here the low-frequency massless
wave equation does involve dependence on the charge
parameters.
Considering now time-dependent massless scalar wave

functions Φ ¼ RðrÞSðθÞe−iωtþimϕ, one can see from the
expressions in Eqs. (2.7), (2.9), and (2.10) that the scalar
wave operator (2.4) separates, giving the angular equation

1

sinθ
∂θðsinθ∂θSÞþ

�
λþa2ω2cos2θ−

m2

sin2θ

�
S¼ 0; ð4:1Þ

and the radial equation

∂rðΔ∂rRÞ þ ðV0 þ V1ÞR ¼ λR; ð4:2Þ

where

V0¼
4M2ðΠcrþþΠsr−Þ2

Δ

�
ðω−mΩÞ2−4mωΩ

r−rþ
rþ−r−

�
;

ð4:3Þ

V1 ¼
2amωMðΠc þ ΠsÞ

κðr − r−ÞðΠcrþ þ Πsr−Þ
þ 8ω2M3ðΠ2

c − Π2
sÞ

r − r−
þ ω2ðb0 þ b1rþ r2Þ; ð4:4Þ

b0¼4M2

�
1þ

X
i

s2i þ
X
i<j

s2i s
2
j

�
; b1¼2M

�
1þ

X
i

s2i

�
:

ð4:5Þ

Here κ, the surface gravity of the outer horizon, and Ω, the
angular velocity of the outer horizon, are given by

κ¼ rþ−r−
4MðΠcrþþΠsr−Þ

; Ω¼ a
2MðΠcrþþΠsr−Þ

: ð4:6Þ

The decomposition of the potential in the radial equation
as the sum of the two terms V0 and V1 is motivated by the
analysis in [31] for the case of the Kerr metric. The term V0

contains all the terms that contribute at leading order in the
near-zone region defined by

ωðr − rþÞ ≪ 1; ð4:7Þ

while the term V1 is of subleading order in a near-zone
expansion.7

Following [31], and making the appropriate changes for
our case, we now define SLð2;RÞ generators as follows:

L0¼ κ−1∂t;

L�1¼e�κt

�
∓Δ1=2∂rþκ−1∂rðΔ1=2Þ∂tþ

a

Δ1=2∂ϕ

�
: ð4:8Þ

These obey the SLð2;RÞ algebra

½Lm;Ln�¼ðm−nÞLmþn; −1≤m≤1; −1≤n≤1: ð4:9Þ

Defining the quadratic SLð2;RÞ Casimir operator
C2 ≡ L2

0 − 1
2
ðL−1L1 þ L1L−1Þ, the scalar wave equation

in the near zone can (i.e., with the V1 term suppressed) be
written as

C2Φ ¼ λΦ; ð4:10Þ

with the radial function R satisfying the near-zone equation

7As noted in [31], there is some arbitrariness in the choice of
the decomposition into the terms V0 and V1. The important point
is that the terms in V0 with ðr − rþÞ in the denominator are the
dominant ones in the near zone. The last term in the expression
for V0 in (4.3) (for which the ðr − rþÞ factor coming from Δ ¼
ðr − rþÞðr − r−Þ in the denominator, is canceled by the factor in
the numerator), could just as well be assigned to V1. It is included
in V0 in order to give a precise formulation of the near-zone
equation that exhibits the SLð2;RÞ symmetry, in Eq. (4.11) as
seen below.
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∂rðΔ∂rRÞ þ V0R ¼ λR; ð4:11Þ

Thus, the near-zone massless scalar wave equation exhibits
an SLð2;RÞ symmetry in the 4-charge rotating black hole
background, extending the previous findings for the
Schwarzschild [48] and Kerr [31] black holes.

V. TIME-INDEPENDENT SCALAR FIELDS IN
STATIC BLACK HOLE BACKGROUNDS

It was observed in [32] that in the case of the
Schwarzschild black hole background, the symmetries of
the time-independent scalar wave functions, reflected in the
tower of ladder operators that related the solutions with
different values of l in the decomposition in spherical
harmonics Ylmðθ;φÞ, were related to the fact that the
massless time-independent wave operator was conformally
related to that on three-dimensional hyperbolic space. In
this section, we demonstrate that this feature extends to two
broad classes of static black hole solutions, namely those in
a general Einstein-Maxwell-dilaton (EMD) theory, and to
the static 4-charge black holes of STU supergravity.

A. Static Einstein-Maxwell-dilaton black holes

These black holes are solutions of the theory described
by the Lagrangian

L ¼ ffiffiffiffiffiffi
−g

p ½R − 2ð∂ϕÞ2 − e−2aϕF2�; ð5:1Þ

where the dimensionless constant, a, can be arbitrary. The
static black hole solutions were obtained in [49]. In a
convenient parametrization described in [16], the metrics
are given in terms of an isotropic radial coordinate ρ by

ds2 ¼ −e2Udt2 þΦ4ðdρ2 þ ρ2dΩ2Þ; ð5:2Þ
where

e2U ¼ V2W
2ð1−a2Þ
1þa2 ðCDÞ− 2

1þa2 ; Φ2 ¼ ðCDÞ 1

1þa2W
2a2

1þa2 ;

C ¼ 1þ u2

ρ
; D ¼ 1þ v2

ρ
; W ¼ 1þ uv

ρ
;

V ¼ 1 −
uv
ρ
; ð5:3Þ

where u and v are constants parametrizing the mass and the
charge.
It can be seen that

ffiffiffiffiffiffi
−g

p
gρρ ¼ ρ2VW sin θ;

ffiffiffiffiffiffi
−g

p
gθθ ¼ VW sin θ;

ffiffiffiffiffiffi
−g

p
gφφ ¼ VW

sin θ
; ð5:4Þ

and therefore a time-independent solution Ψ of the mass-
less scalar wave equation obeys

∂ρðρ2VW∂ρΨÞ þ VW∇2
ðθ;φÞΨ ¼ 0; ð5:5Þ

where ∇2
ðθ;φÞ ¼ csc θ∂θðsin θ∂θÞ þ csc2 θ∂2

φ is the scalar

Laplacian on the unit sphere. In terms of the standard radial
coordinate r defined by

r ¼ ρCD ¼ ρþ u2 þ v2 þ u2v2

ρ
; ð5:6Þ

the outer and inner horizons are located at r� ¼ ðu� vÞ2,
and defining Δ̄ ¼ ðr − rþÞðr − r−Þ we have

Δ̄ ¼ ρ2V2W2: ð5:7Þ

The time-independent wave equation (5.5) becomes

∂rðΔ̄∂rΨÞ þ∇2
ðθ;φÞΨ ¼ 0; ð5:8Þ

and this can be seen to be the Laplace equation in the
3-metric

ds23 ¼ dr2 þ Δ̄dΩ2: ð5:9Þ

Following the same steps as were described in [32] in the
case of the Schwarzschild metric, we find here for the static
EMD black holes that the conformally rescaled metric
ds̃23 ¼ Ω2ds23, with Ω ¼ L2=Δ̄, is given in terms of the
isotropic radial coordinate ρ by

ds̃23 ¼
L4

ðρ2 − u2v2Þ2 ðdρ
2 þ ρ2dΩ2Þ: ð5:10Þ

This can be recognized as the homogeneous metric on
three-dimensional hyperbolic space.

B. Static 4-charge STU supergravity black holes

These can be conveniently written, in terms of an
isotropic radial coordinate, in the form [16]

ds2 ¼ −Π−1=2f2þf2−dt2 þ Π1=2ðdρ2 þ ρ2dΩ2Þ;

Π ¼
Y4
I¼1

CIDI; f� ¼ 1� m
2ρ

; CI ¼ 1þme2δI

2ρ
;

DI ¼ 1þme−2δI

2ρ
; ð5:11Þ

where the constants m and δI parametrize the mass and the
four charges. The massless wave equation for a time-
independent function Ψ is therefore given by
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∂ρðρ2fþf−∂ρΨÞ þ fþf−∇2
ðθ;φÞΨ ¼ 0: ð5:12Þ

In terms of the radial coordinate r defined by

r ¼ ρþmþm2

4ρ
; ð5:13Þ

and defining Δ̄≡ rðr − 2mÞ ¼ ρ2f2þf2−, Eq. (5.12)
becomes

∂rðΔ̄∂rΨÞ þ∇2
ðθ;φÞΨ ¼ 0: ð5:14Þ

This is the Laplace equation in the metric ds23 ¼ dr2þ
Δ̄dΩ2. The conformally rescaled metric ds̃23 ¼ Ω2ds23, with
Ω ¼ L2=Δ̄, is recognizable as the metric

ds̃23 ¼
L4

ðρ2 − m2

4
Þ2 ðdρ

2 þ ρ2dΩ2Þ; ð5:15Þ

on three-dimensional hyperbolic space, when written in
terms of the isotropic coordinate ρ.
In summary, we have seen that both in the case of the

static EMD black holes and the static 4-charge STU black
holes, the massless time-independent scalar wave equation
reduces to the same form as was found in [32] in the case of
the Schwarzschild metric. Thus the construction of the
time-independent wave functions in terms of ladder oper-
ators proceeds in the same way as was seen in [32], with the
underlying conformally related hyperbolic metric provid-
ing a geometric understanding for the ladder structure.
In all the static backgrounds considered, the time-

independent solutions of the massless scalar wave equation
obey the Laplace equation

gij∇i∇jΨ≡∇2Ψ ¼ 0; ð5:16Þ

in a 3-metric of the form (5.9) with Δ̄ given by

Δ̄ ¼ ðr − rþÞðr − r−Þ: ð5:17Þ

In the conformally rescaled metric ds̃23 ¼ Ω2ds23 with
Ω ¼ L2=Δ̄, the conformally invariant three-dimensional
scalar operator ð∇̃2 − 1

8
R̃Þ is related to the corresponding

operator in the untilded metric by

�
∇̃2 −

1

8
R̃

�
Ψ̃ ¼ Ω−5=2

�
∇2 −

1

8
R

�
Ψ; ð5:18Þ

where

Ψ̃ ¼ Ω−1=2Ψ: ð5:19Þ

As can be easily verified, when Δ̄ is given by (5.17) the
Ricci scalar in the untilded metric (5.9) is given by

R ¼ ðrþ − r−Þ2
2Δ̄2

; ð5:20Þ

while the Ricci scalar of the tilded metric ds̃23 ¼ Ω2ds23 ¼
ðL4=Δ̄2Þds23 is given by

R̃ ¼ −
3ðrþ − r−Þ2

2L4
: ð5:21Þ

Thus it follows that − 1
8
R̃þ 1

8
Ω−2R ¼ − 1

6
R̃, and so from

Eq. (5.18) we see that if Ψ obeys ∇2Ψ ¼ 0 then Ψ̃ obeys

�
∇̃2 −

1

6
R̃

�
Ψ̃ ¼ 0: ð5:22Þ

In other words, in all the static metrics we are considering
here the time-independent solutions of the massless
scalar wave equation in the four-dimensional static black
hole background are conformally related to solutions of
Eq. (5.22) in three-dimensional hyperbolic space. Note that,
as was observed in [32] in the case of the Schwarzschild
metric, the coefficient of the Ricci scalar in this equation is
the one associated with the conformally-invariant scalar
wave equation of four dimensions, not three. As was
discussed in [32], the fact that the metric ds23 whose
Laplacian gives the time-independent scalar wave functions
is conformal to the ds̃23 hyperbolic metric, which has
SOð3; 1Þ as its symmetry group, provides one way to
understand the SLð2; RÞ symmetry and ladder structure of
thewave functions. In the conformal frame of the hyperbolic
metric the conformally rescaled wave functions Ψ̃ are eigen-
functions of the Laplace operator ∇̃2 shifted by the
constant − 1

6
R̃.

VI. HARMONIC COORDINATES

We turn, in this section, to an application of our previous
results, enabling the construction of harmonic coordinates,
also known as wave coordinates. Let

gμν ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det gαβ

q
gμν: ð6:1Þ

Then, by definition, a harmonic coordinate chart,
xμ ¼ ðx0; x1; x2; x3Þ ¼ ðx0; xiÞ, is one in which the De
Donder gauge condition

∂μgμν ¼ 0; ð6:2Þ

holds. It follows that in harmonic coordinates the
D’Alembertian of any scalar function f is given by

□f¼� gμν∂μ∂νf ð6:3Þ

where ¼� means “equal in harmonic coordinates.” In
particular, harmonic coordinates satisfy
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□xα ¼ 0: ð6:4Þ

The main interest of harmonic coordinates is that in these
coordinates the Einstein equations become a semilinear
symmetric hyperbolic system, since the highest derivative
term has the same form as the right-hand side of (6.3), with
f representing each component of the metric gαβ [50]. They
also permit a reformulation of the Einstein equations and
the definition of total energy and momentum in terms of the
Landau-Lifshitz energy momentum pseudo-tensor [39].
It is a standard result that for the Schwarzschild metric, a

set of harmonic coordinates is provided by [39,51]

xα¼ðt;ðr−MÞsinθcosϕ;ðr−MÞsinθsinϕ;ðr−MÞcosθÞ:
ð6:5Þ

This result has been extended to the case of the Reissner-
Nordström black hole in [52], the Kerr black hole in [53],
and the Kerr-Newman black hole in [54]. In view of the
universal form of the scalar D’Alembertian (2.4) for the
STU charged black holes we are considering in this paper, it
is evident that the procedure found in [53] for constructing
harmonic coordinates in the Kerr geometry can be immedi-
ately carried over to the general case of the charged rotating
STU black holes. Thus we define a new azimuthal
coordinate ϕ̃ by setting

ϕ̃ ¼ ϕþ
Z

r adr0

Δðr0Þ ; ð6:6Þ

and then it can be seen that the coordinates xα defined by

xα¼ðt; ½ðr−MÞcosϕ̃−asinϕ̃�sinθ;
½ðr−MÞsinϕ̃þacosϕ̃�sinθ;ðr−MÞcosθÞ ð6:7Þ

are harmonic in the charged black hole metric (2.1), where
the base 3-metric γij is given by that of the Kerr seed metric
in Eq. (2.7). In any stationary, axisymmetric metric for
which all metric components are independent of both ϕ

and t, and such that gtθ, gtr, gϕθ, and gϕr all vanish, so that
gϕt ¼ gtϕ gives the only nonvanishing cross term, then t
(and, in fact, ϕ too) is a harmonic function, and we can
seek the spatial harmonic coordinates by looking only at the
time independent part of (6.4). Thus, irrespective of Ai
and U, the coordinates xα given in Eq. (6.7) satisfy
□xα ¼ 0. It follows that, in complete generality,
Eq. (6.7) provides a set of harmonic coordinates for all
charged rotating black holes in the class (2.1) with the Kerr
seed 3-metric.

VII. CONCLUSIONS

We have studied the charged, asymptotically flat, rotat-
ing black hole solutions of ungauged STU supergravity,
which include Kaluza-Klein black holes and Kerr-Sen
black holes as special cases, and we find that the time-
independent solutions of the massless scalar wave equation
are identical to those of the Kerr solution. This implies that
the Love numbers for scalar perturbations, which had
previously been shown to vanish in the Kerr background,
vanish also for all these charged black holes. The harmonic
coordinates for the charged black holes also coincide with
those for the Kerr metric. In the low-frequency limit, we
find the scalar fields exhibit the same SLð2; RÞ symmetry as
holds in the case of the Kerr solution. We have pointed out
extensions of our results to a wider class of black-hole
metrics, including solutions of Einstein-Maxwell-dilaton
theory.
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