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In this paper we provide new examples of anti–de Sitter black holes with a planar base manifold in four-
dimensional critical gravity by considering nonlinear electrodynamics as a matter source. We find a general
solution characterized by the presence of only one integration constant where, for a suitable choice of
coupling constants, we can show the existence of one or more horizons. Additionally, we compute its
nonzero thermodynamical quantities through a variety of techniques, testing the validity of the first law of
thermodynamics as well as a Smarr formula. Finally, we analyze the local thermodynamical stability of the
solutions. To our knowledge, these charged configurations are the first example with critical gravity where
their thermodynamical quantities are not zero.
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I. INTRODUCTION

Since its introduction in the late 1990s, the idea of the
AdS=CFT correspondence [1] has gained momentum in
different areas due to its potential to shed light on
phenomena that range from superconductivity to quantum
computing. This correspondence has also generated the
need for the study of theories other than General Relativity
due to two main reasons: first, the necessity to have theories
that exhibit desired symmetries and properties that match
the nonrelativistic systems in the context of the correspon-
dence, and second, the possibility that these enhanced
theories may support a variety of thermodynamically rich
anti–de Sitter (AdS) black holes, whose holographic role
will be to introduce the nonrelativistic behavior at finite
temperature.
In this context, quadratic curvature gravities have been

very successful in providing a plethora of new black hole
configurations [2–7]. A notable example within these
theories in 2þ 1 dimensions is new massive gravity [8],
a parity-even, renormalizable theory that, at the linearized
level, is equivalent to the unitary Fierz-Pauli theory for free

massive spin-2 gravitons, where AdS solutions have been
previously found [9,10]. A four-dimensional analog to this
theory is critical gravity (CG) [11], which is a ghost-free,
renormalizable theory of gravity with quadratic corrections
in the curvature.1 A particularity of CG is that its vacuum
admits an AdS black hole solution given by

ds2 ¼−
r2

l2

�
1−

Ml3

r3

�
dt2þ l2

r2
dr2�

1−Ml3

r3

�þ r2

l2
ðdx21þdx22Þ;

ð1Þ
where M is an integration constant. However, as empha-
sized by the authors in [11], this solution is massless and
has a vanishing entropy. This is also highlighted in [12,13]
in four and six dimensions, where the entropy, as well as
global conserved charges of their black holes solutions,
vanish identically.
Because of the interest of obtaining black hole solutions

that can be framed in the context of the gauge/gravity
correspondence, in this work we aim to find new AdS black
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1In general, a theory with quadratic corrections in curvature
will propagate massive scalar and spin-2 ghost fields. In CG, the
relation between the coupling constants and the cosmological
constant leads to a theory in which the scalar field is zero and the
spin-2 field becomes massless and with vanishing energy.
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hole configurations that can be supported by CG and
exhibit nonvanishing thermodynamical properties. To
achieve this, a nonlinear electrodynamics (NLE) source
is employed [14]. The origin of NLE dates back to 1912
when Mie G. explored this formalism for the first time [15].
Some years later, in the 1930s, Born and Infeld [16–18]
proposed new research motivated in part to avoid the well-
known singularity of the field of a point particle, giving rise
to the Born-Infeld (BI) theory [19–21]. Given the complex-
ity to carry out an extension of BI towards solutions of
nonlinear equations, this formalism had a stage of stagna-
tion for almost three decades. Nevertheless, in the 1960s,
J. F. Plebánski presented an outstanding work for NLE in a
medium, in which the theory is developed through an anti-
symmetric conjugate tensor Pμν (known of as the Plebánski
tensor) and a structure-function H ¼ HðP;QÞ, where P
and Q are the invariants that are formed with the anti-
symmetric conjugate Plebánski tensor. Here, the structure
function HðP;QÞ is associated with the Lagrangian func-
tion LðF;GÞ, that depends on the invariant quadratics
constructed from the Maxwell tensor Fμν, which can be
determined by a Legendre transformation. At the end of the
1980s, H. Salazar, A. García, and J. Plebánski found solu-
tions for the equations of NLE coupled to gravity using the
formalism [14], in which the BI theory appears as a special
case [22]. Some of the benefits provided by the Plebánski
formalism is the ability to obtain regular black hole solu-
tions [23–27], Lifshitz black hole configurations that exist
for any value of the dynamic exponent z > 1 [28], and
recently an exact solution of a massive, electrically and
magnetically charged, rotating stationary black hole has been
found [29–31]. In General Relativity, NLE has been a
valuable tool in order to build exact black hole configura-
tions, some of which exhibit nonstandard asymptotic behav-
ior in Einstein gravity or in its generalizations, as can be
verified in [32–38]. It is relevant to mention that, in these
works, charged black hole solutions that come from non-
linear theories possess interesting thermodynamic properties
[39–44]. All the above shows NLE as an interesting and
motivating study field that we aim to explore with the
addition of CG. As such, our action of interest will be
given by

S½gμν; Aμ; Pμν� ¼
Z

d4x
ffiffiffiffiffiffi
−g

p ðLCG þ LNLEÞ; ð2Þ

with

LCG ¼ 1

2κ
ðR − 2Λþ β1R2 þ β2RαβRαβÞ;

LNLE ¼ −
1

2
PμνFμν þHðPÞ;

where Λ is the cosmological constant. As stated above, CG
allows for the massive spin-0 field to vanish if the coupling
constants β1 and β2 are restricted to obey the relations

β2 ¼ −3β1; β1 ¼ −
1

2Λ
: ð3Þ

Moreover, the Lagrangian density, LNLE, describes the
nonlinear behavior of the electromagnetic field Aμ with field
strengthFμν ≔ ∂μAν − ∂νAμ. The introduction ofPμν,which
is an antisymmetric secondary field function of the original
field Fμν, arises from the need to establish a relationship
between standard electromagnetic theory with Maxwell’s
theory of continuous media.
The source, described by the structure function HðPÞ

is, of course, real and depends on the invariant formed
with the conjugated antisymmetric tensor Pμν, which is
P ≔ 1

4
PμνPμν. In general, the structural function also

depends on the other invariant Q ¼ − 1
4
Pμν

�Pμν where �
represents the Hodge dual. Here, this invariant is zero
because we are interested in static configurations.
The field equations that result from the variation of

Eq. (2) are

∇μPμν ¼ 0; ð4aÞ

Fμν ¼
∂H
∂P Pμν ¼ HPPμν; ð4bÞ

Eμν ≔ Gμν þ Λgμν þ KCG
μν − κTNLE

μν ¼ 0; ð4cÞ

where the tensors KCG
μν and TNLE

μν are defined as follows:

KCG
μν ¼ 2β2

�
RμρR

ρ
ν −

1

4
RρσRρσgμν

�

þ 2β1R

�
Rμν −

1

4
Rgμν

�
þ β2

�
□Rμν þ

1

2
□Rgμν

− 2∇ρ∇ðμR
ρ
νÞ

�
þ 2β1ðgμν□R −∇μ∇νRÞ;

TNLE
μν ¼ HPPμαPα

ν − gμνð2PHP −HÞ;

with β1 and β2 given previously in (3). Note that equa-
tion (4a) represents the nonlinear version of Maxwell’s
equations, while the constitutive relations are encoded in
Eq. (4b)) and Einstein’s equations are given by (4c).
These equations of motion, (4a)–(4c), will lead us to find

new AdS black hole configurations in CG coupled with
nonlinear electrodynamics in Sec. II. Then, in Sec. III, we
will show the analysis and characterization of these
solutions in terms of the maximum number of horizons.
In Sec. IV, the thermodynamical quantities and local
stability of the solutions are calculated, and the first law
of thermodynamics as well as the Smarr formula are
verified. Finally, in Sec. V we present our conclusions
and perspectives of this work.
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II. SOLUTION TO THE EQUATIONS
OF MOTION

We start the search of new AdS black hole solutions by
considering the following asymptotically AdS metric
ansatz

ds2 ¼ −
r2

l2
fðrÞdt2 þ l2

r2
dr2

fðrÞ þ
r2

l2
ðdx21 þ dx22Þ; ð5Þ

where t ∈ ð−∞;þ∞Þ, r > 0, the planar coordinates both
are assumed belong to a compact set (this is 0 ≤ x1 ≤ Ωx1
and 0 ≤ x2 ≤ Ωx2) and the gravitational potential must
satisfy the asymptotic condition

lim
r→þ∞

fðrÞ ¼ 1:

In our case, we propose the structure functionH, determin-
ing the nonlinear electrodynamics, to be given by

HðPÞ ¼ ðα22 −3α1α3Þl2P
3κ

−
2α1ð−2PÞ1=4

lκ
þα2

ffiffiffiffiffiffiffiffiffi
−2P

p

κ
; ð6Þ

where α1, α2, and α3 are coupling constants.
For the purposes of this article, we consider purely

electrical configurations, such that Pμν ¼ 2δt½μδ
r
ν�DðrÞ. If

we replace the previous ansatz in the nonlinear Maxwell
equation [(4a)] we obtain

Pμν ¼ 2δt½μδ
r
ν�
M
r2

: ð7Þ

Therefore, the electric invariant P is negative definite, since
we only consider purely electrical configurations, which
reads

P ¼ −
M2

2r4
; ð8Þ

where M is a constant of integration related to the electric
charge, and HðPÞ from Eq. (6) is a real function. The
electric field is obtained from the constitutive relations (4b),
E≡ Ftr ¼ HpD. Using expression (6) for HðPÞ, the
electromagnetic field strength results in

Fμν ¼ 2δt½μδ
r
ν�EðrÞ

¼ 2δt½μδ
r
ν�

�
rα1

lκ
ffiffiffiffiffi
M

p −
α2
κ
−
l2Mð3α1α3 − α22Þ

3κr2

�
: ð9Þ

Notice that in order to recover the AdS spacetime asymp-
totically, the cosmological constant must take the following
value,

Λ ¼ −
3

l2
: ð10Þ

Let us bring our attention to the fact that the difference
between the temporal Et

t and radial diagonal Er
r compo-

nents of the mixed version of Einstein’s equations (4c) is
proportional to the following fourth-order Cauchy-Euler
ordinary differential equation

r4fð4Þ þ 12r3f000 þ 36r2f00 þ 24rf0 ¼ 0: ð11Þ

Therefore, the solution of the gravitational potential is

fðrÞ ¼ 1 − C1

l
r
þ C2

l2

r2
− C3

l3

r3
; ð12Þ

where the fourth integration constant is fixed to comply with
the asymptotic behavior limr→þ∞ fðrÞ ¼ 1. Additionally,
through a linear combination of Et

t and E
xi
xi , with i ¼ f1; 2g,

and expressing the radial coordinate r in term of the electric
invariant P from (8), one can determine HP, which can be
later integrated to obtain HðPÞ, given previously in (6).
Finally, the remaining equations of motion are satisfied if the
previous integration constants Ci’s from (12) are fixed in
terms of the chargelike parameter M through the structural
coupling constants as follows:

C1 ¼ α1
ffiffiffiffiffi
M

p
; C2 ¼ α2M; and C3 ¼ α3M3=2; ð13Þ

where the αi’s are in the appropriate units in order to the
integration constants Ci’s be dimensionless.
Here it is important to note that the structural function

HðPÞ from (6) appears naturally from the field equa-
tions (4). The addition of the NLE yields to a rich structure
for the metric function f obtained previously in (12) and
(13), where the uncharged case is recovered when
α1 ¼ α2 ¼ 0. This also shows that the linear Maxwell field
scenario [that is HðPÞ ¼ P] is not allowed, which reinfor-
ces the necessity to explore other charged theories such as
NLE. Moreover, from a physical perspective, this new
structure for the metric function f constructed via CG and
NLE (2), will allow us to explore solutions with different
numbers of horizons, in addition to nonzero thermody-
namic quantities, as we will see below. These solutions are,
to our knowledge, the first example of solutions in four-
dimensional CG where their thermodynamic parameters do
not vanish.

III. ANALYSIS OF THE SOLUTIONS

We have established that the introduction of nonlinear
electrodynamics when considering CG, results in AdS
solutions of the form (5) where

fðrÞ ¼ 1 − α1
ffiffiffiffiffi
M

p l
r
þ α2M

l2

r2
− α3M3=2 l

3

r3
; ð14Þ

provided that HðPÞ and Λ are given by (6) and (10),
respectively. However, this set of expressions only
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represents a black hole solution if a horizon can be formed;
that is, if there exists rh > 0 such that fðrhÞ ¼ 0.
To this effect, in the following subsections, we study the

conditions in which Eq. (14) can vanish, through the
analysis of its asymptotic behavior as well as its maxima
and minima.
First, let us notice that when r → þ∞, fðrÞ will

approach 1 asymptotically and, in this regime, fðrÞ≃
1 − α1

ffiffiffiffiffi
M

p
l
r. As a result, the sign of α1 will determine

whether the function fðrÞ approaches the horizontal
asymptote from above or from below. Next, let us observe
that when r → 0þ, fðrÞ ≃ −α3M3=2 l3

r3, that is, the sign of α3
will determine if the function fðrÞ starts increasing from
−∞ or decreasing from þ∞ in the region r ∈ ð0;þ∞Þ.
Moreover, we can perform an analysis of the extreme

values of fðrÞ. From the calculation of f0ðrÞ we find that
fðrÞ admits two extreme values which are located at

rexti ¼
ffiffiffiffiffi
M

p ðα2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2

2 − 3α1α3
p

Þl
α1

; ð15Þ

where the nature of these extreme values (whether they are
a maximum or a minimum) will depend on the sign of their
evaluation in f00ðrÞ, that is

f00ðrextiÞ ¼ � 2α41
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α22 − 3α1α3

p
ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α22 − 3α1α3

p
� α2Þ4Ml2

; ð16Þ

with i ¼ f1; 2g. Here, rext1 (rext2) is associated with
positive (negative) sign in Eqs. (15) and (16). Let us notice
that from Eqs. (15) and (16), the existence of real extreme
values is limited to the fulfillment of the condition

α22 − 3α1α3 > 0: ð17Þ

At this point, we are ready to analyze each case
independently.

A. Black holes with one horizon:
The case α1 < 0 and α3 > 0

As previously mentioned, one can start by analyzing the
asymptotical behavior of the function fðrÞ in Eq. (14). If
one considers the limit r → 0þ, the dominating term of
fðrÞ is −α3M3=2 l3

r3. Assuming M > 0 and r > 0, then it is
clear to see that for α3 > 0, limr→0þ fðrÞ ¼ −∞. On the
other hand, if we analyze the regime r → þ∞, we note that,
in this limit, the dominant term of fðrÞ is 1 − α1

ffiffiffiffiffi
M

p
l=r

which shows that, as r increases, the function fðrÞ will
asymptotically approach a horizontal asymptote fðrÞ ¼ 1.
In short, for the case α3 > 0, considering only positive
values for r, the function fðrÞ starts in the fourth quadrant
and it increases for small values of r, since the function
fðrÞ asymptotically approaches the value of 1 as r
approaches infinity, it must cross the horizontal axis,

ensuring the existence of an event horizon rh > 0.
Moreover, if we consider α1 < 0, the function fðrÞ will
asymptotically approach the horizontal asymptote fðrÞ ¼ 1
from above. Also, after analyzing the first and second
derivatives of fðrÞ, we note that the choice for the sign of
α1 < 0 and α3 > 0 will result in the function fðrÞ display-
ing an absolute maximum in the regime r > 0, and the
existence of a single horizon, regardless of the sign of α2, as
seen in Fig. 1. This analysis is deeply studied in the
Appendix A 1.

B. Black holes with up to two horizons:
The case α3 < 0

On the contrary, when α3 < 0, the gravitational potential
fðrÞ is initially decreasing in the region r > 0, one can face
three scenarios; having two horizons, the extremal case of
one horizon, or no horizon at all, which does not represent a
black hole. Landing on one case or another depends on the
relations between α1, α2, and α3. Equation (14) will
represent the gravitational potential of a black hole only
provided that

4α31α3 − α21α
2
2 − 18α1α2α3 þ 4α32 þ 27α23 ≤ 0: ð18Þ

When the strict inequality is met, the solution will have two
horizons [where the minimum fðrminÞ < 0 is situated at
rmin > 0]. Otherwise, when the equality is met, the solution
will correspond to an extremal configuration, in which the
minimum of fðreÞ ¼ 0 is located at re > 0. Moreover,
according to Eq. (16), when α1 > 0, the function fðrÞ will
showcase a minimum. On the other hand, when α1 < 0, the
function fðrÞ will have both a minimum and a maximum,
as seen in Fig. 2. This study is analyzed in Appendix A 2.

FIG. 1. Gravitational potential fðrÞ associated to black holes
with a single horizon when α1 < 0, α3 > 0.

ABIGAIL ÁLVAREZ et al. PHYS. REV. D 105, 084032 (2022)

084032-4



C. Black holes with up to three horizons:
The case α1 > 0 and α3 > 0

Finally, when we consider the case α1 > 0 and α3 > 0. For
very small but positive values of r, we notice that the function
fðrÞ is increasing from−∞while, for large values of r (that is
r → þ∞), the function fðrÞ approaches the value of 1 from
below. This ensures the existence of at least one horizon (in the
region r > 0). However, under certain circumstances we
observe that this case canadmit up to threehorizons, exhibiting
one maximum and one minimum in the region r > 0. The
conditions that will determine which case we will land in are
detailed in theAppendix (caseα3 > 0,α1 > 0,α2 > 0), but let
us now state, in advance, that when the conditions α1 > 0,
α2 > 0, α3 > 0 and α22 − 3α1α3 > 0 are met, we will have a
solution with three horizons. In Fig. 3, we show examples of
both cases for clarity. However, it is interesting to remark that,

this case also admits two horizons when the maximum
corresponds to the internal horizon or when the minimum
corresponds with the outer horizon, as seen in Fig. 5. This
scenario is fully explored in the Appendix A 3.

IV. THERMODYNAMICS AND LOCAL
STABILITY OF THE SOLUTION

Given the structure of these new nonlinearly charged
black hole solutions in four dimensions, it is interesting to
explore their thermodynamics. As a first step, we will
consider the electric charge which reads

Qe ¼
Z

dΩ2

�
r
l

�
2

nμuνPμν ¼
MΩ2

l2
¼ Ω2r2h

ζ2l4
; ð19Þ

where rh is the location of the event (or outer) horizon
which can be expressed as rh ¼ ζ

ffiffiffiffiffi
M

p
l, where ζ is a root of

the cubic polynomial

FIG. 2. The graphs represent the gravitational potential fðrÞ
when having a minimum. The black graphs represent two-
horizon black holes and the red graphs represent the extremal
configurations. Top: fðrÞ when α1 > 0, α3 < 0. Bottom: fðrÞ
when α1 < 0, α3 < 0.

FIG. 3. Gravitational potential fðrÞ associated to black holes
when α1 > 0, α3 > 0. Top: solution with a single horizon when
the condition α2 > 0, α22 − 3α1α3 > 0 is not met. Bottom:
solution with three horizons when the condition α2 > 0, α22 −
3α1α3 > 0 is met.
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ζ3 − α1ζ
2 þ α2ζ − α3 ¼ 0; ð20Þ

Ω2 is the finite volume of the compact planar base manifold
given by

R
dx1dx2 ¼

R
dΩ2 ¼ Ω2 ¼ Ωx1Ωx2, while n

μ and
uν are the unit spacelike and timelike normals to a sphere of
radius r given by

nμ ≔
dtffiffiffiffiffiffiffiffi−gtt

p ¼ l
r

ffiffiffi
f

p dt; uμ ≔
drffiffiffiffiffiffi
grr

p ¼ r
ffiffiffi
f

p
l

dr: ð21Þ

As a first step to calculate the electric potential we must
determine the 4-potential Aμ. We achieve this by integrating
Eq. (9) and taking into account that Fμν ¼ 2∂ ½μAν�. As a
result the only nonzero component of the four-potential is
given by

AtðrÞ ¼
r2α1

2
ffiffiffiffiffi
M

p
lκ

−
α2r
κ

þ l2Mð3α1α3 − α2
2Þ

3κr
; ð22Þ

where the integration constant in our case is null, and the
electric potential2 is given by

Φe ¼ −AtðrÞjr¼rh ¼ −
3α1r2h
2

ffiffiffiffiffi
M

p
lκ

þ ðα21 þ α2Þrh
κ

−
α1α2

ffiffiffiffiffi
M

p
l

κ
þ l2Mα22

3κrh
;

¼ rh
κ

�
α2 þ α21 −

3

2
α1ζ −

α1α2
ζ

þ 1

3

α22
ζ2

�
: ð23Þ

On the other hand, to compute the entropy we will consider
Wald’s formula [45,46] which, in our case, yields to

SW ≔ −2π
Z
H
d2x

ffiffiffiffiffiffi
jhj

p �
δLgrav

δRμνσρ
εμνεσρ

�
;

¼ 2ð3α1
ffiffiffiffiffi
M

p
rh − 2α2MlÞπΩ2

3κl
;

¼ 2Ω2π

κ

�
rh
l

�
2
�
α1
ζ
−
2α2
3ζ2

�
; ð24Þ

where

δLgrav

δRαβγδ
¼ 1

4κ
ðgαγgβδ − gαδgβγÞ þ β1

2κ
Rðgαγgβδ − gαδgβγÞ

þ β2
4κ

ðgβδRαγ − gβγRαδ − gαδRβγ þ gαγRβδÞ;

with β1 and β2 subject to (3), and the integral is evaluated
on a two-dimensional spacelike surface H (the bifurcation
surface) characterized by the fact that the timelike Killing

vector ∂t ¼ ξμ∂μ vanishes, jhj denotes the determinant of
the induced metric on H, εμν represents the binormal
antisymmetric tensor constructed via the wedge product
of the unit normal vectors nμ and uμ from Eq. (21),
normalized as εμνε

μν ¼ −2. Additionally, the Hawking
temperature takes the form

T ≔
k
2π

����
r¼rh

¼ 3rh
4πl2

−
α1

ffiffiffiffiffi
M

p

2πl
þ α2M
4πrh

;

¼ rh
4πl2

�
3 −

2α1
ζ

þ α2
ζ2

�
; ð25Þ

where k is the surface gravity which reads

k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
1

2
ð∇μξνÞð∇μξνÞ

r
:

Finally, to calculate the mass of these charged AdS black
hole configurations we will consider the approach
described in [47,48], corresponding to an off-shell pre-
scription of the Abbott-Desser-Tekin (ADT) procedure
[49–51]. The choice of this method to calculate conserved
charges is ideal for CG due to the presence of quadratic
curvature terms in its gravitational action.
The main elements of the quasilocal method are the

surface term

Θμ ¼ 2
ffiffiffiffiffiffi
−g

p ��
δLgrav

δRμαβγ

�
∇γδgαβ − δgαβ∇γ

�
δLgrav

δRμαβγ

�

þ 1

2

�
δLNLE

δð∂μAνÞ
�
δAν

	
; ð26Þ

and the Noether potential

Kμν ¼ ffiffiffiffiffiffi
−g

p �
2

�
δLgrav

δRμνρσ

�
∇ρξσ − 4ξσ∇ρ

�
δLgrav

δRμνρσ

�

−
�

δLNLE

δð∂μAνÞ
�
ξσAσ

	
: ð27Þ

With all the above, using a parameter s ∈ ½0; 1�, we
interpolate between the charged solution at s ¼ 1 and
the asymptotic one at s ¼ 0, resulting in the quasilocal
charge

MðξÞ ¼
Z
B
d2xμν

�
ΔKμνðξÞ − 2ξ½μ

Z
1

0

dsΘν�
�
;

where ΔKμνðξÞ≡ Kμν
s¼1ðξÞ − Kμν

s¼0ðξÞ is the difference of
the Noether potential between the interpolated solutions.
For this particular case the mass reads

2In this work we have used the same definition of the electric
potential as [42–44].
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M ¼ α1α2M
3
2Ω2

9lκ
¼ α1α2r3hΩ2

9l4κζ3
: ð28Þ

Notice that for the Wald entropy SW (24), as well as the
massM (28), the presence of the coupling constants α1 and
α2 is providential, reinforcing the importance of the non-
linear electrodynamic as a matter source with this gravity
theory. In fact, when α1 ¼ α2 ¼ 0, the vector potential
AtðrÞ [Eq. (22)] vanishes, recovering the well-known four-
dimensional Schwarzschild-AdS black hole with a planar
base manifold in CG, whose extensive thermodynamical
quantities M and SW are null, while the Hawking temper-
ature is T ¼ 3rh=ð4πl2Þ.
Just for completeness, from Eqs. (28), (24), and (19) we

have:

δM ¼ α1α2r2hΩ2

3l4κζ3
δrh;

δSW ¼ 4Ω2πrh
κl2

�
α1
ζ
−
2α2
3ζ2

�
δrh;

δQe ¼
2Ω2rh
ζ2l4

δrh;

and together with the electric potential Φe (23) as well as
the Hawking temperature T (25), a first law of the black
holes thermodynamics

δM ¼ TδSW þΦeδQe; ð29Þ

arises. Together with the above, through the thermody-
namical parameters (19), (23)–(25), we can express the
mass (28) as a function of the extensive thermodynamical
quantities SW and Qe in the following form

MðSW;QeÞ ¼
ffiffiffi
6

p ffiffiffi
κ

p
SW

3=2ð3ζ2− 2α1ζþα2Þ
12

ffiffiffiffiffiffi
Ω2

p
π3=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3α1ζ− 2α2

p
lζ

þQ3=2
e l2ζΨ
9

ffiffiffiffiffiffi
Ω2

p
κ

;

ð30Þ

with

Ψ ¼ 6α2 þ 6α21 − 9α1ζ −
6α2α1
ζ

þ 2α22
ζ2

; ð31Þ

where it is straightforward to verify that the intensive
parameters

T ¼
�∂M
∂SW

�
Qe

; Φe ¼
�∂M
∂Qe

�
SW

;

are consistent with the expressions (23) and (25) (where the
subindices stand for at constant electric charge Qe, and at
constant entropy SW respectively). Additionally, under a
rescaling with a nonzero parameter λ, Eq. (30) becomes

MðλSW; λQeÞ ¼ λ
3
2MðSW;QeÞ;

yielding to a four-dimensional Smarr formula [52]

M ¼ 2

3
ðTSW þΦeQeÞ; ð32Þ

which corresponds to a particular case of the higher-
dimensional situation [40]

M ¼
�
D − 2

D − 1

�
ðTSW þΦeQeÞ; ð33Þ

whereD is the dimension of the spacetime, highly explored
in [53–55].
Given these thermodynamical quantities, it is interesting

to study this system under small perturbations around
the equilibrium. In our case, we will consider the grand
canonical ensemble, where the intensive thermodynamical
quantities are fixed. With this, we can express the entropy,
mass, and charge in functions of T and Φe in the following
form

SW ¼ 32

3

l2T2Ω2π
3ζ2ð3α1ζ − 2α2Þ

ð3ζ2 − 2α1ζ þ α2Þ2κ
; ð34Þ

Qe ¼
36Φ2

eκ
2Ω2

Ψ2ζ2l4
; ð35Þ

M ¼ 64

9

l2T3Ω2π
3ζ2ð3α1ζ − 2α2Þ

ð3ζ2 − 2α1ζ þ α2Þ2κ
þ 24Φ3

eκ
2Ω2

Ψ2ζ2l4
: ð36Þ

With this information, we are in a position to determine
the local thermodynamical (in)stability of this charged
black hole solution under thermal fluctuations through
the behavior of the specific heat CΦe

, given by

CΦe
¼

�∂M
∂T

�
Φe

¼ T

�∂SW

∂T
�

Φe

¼ 64

3

l2T2Ω2π
3ζ2ð3α1ζ − 2α2Þ

ð3ζ2 − 2α1ζ þ α2Þ2κ
: ð37Þ

Here we observe that for T ≥ 0 or in the same way,

Ψ1 ≔ 3ζ2 − 2α1ζ þ α2 ≥ 0; ð38Þ

the specific heat becomes non-negative when

Ψ2 ≔ 3α1ζ − 2α2 ≥ 0; ð39Þ

which can be interpreted as a locally stable configuration.
Nevertheless, it is worth pointing out that, to have a real and
well-defined mass according to expression (30) as well as
specific heat (37), only the strict inequalities from (38) and
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(39) are considered. Therefore, here we can conclude that
the introduction of the nonlinear electrodynamics to the
CG action induces rich thermodynamical properties. The
comment on stability above is consistent with the analysis
of the Gibbs free energy GðT;ΦeÞ ¼ M − TSW −ΦeQe,
given by

GðT;ΦeÞ ¼ −
32

9

l2T3Ω2π
3ζ2ð3α1ζ − 2α2Þ

ð3ζ2 − 2α1ζ þ α2Þ2κ
−
12Φ3

eκ
2Ω2

Ψ2ζ2l4
;

ð40Þ

where its Hessian matrix Hab ≔ ∂a∂bGðT;ΦeÞ, with
a; b ∈ fT;Φeg, satisfies the conditions

HTT ¼ −
64

3

l2TΩ2π
3ζ2ð3α1ζ − 2α2Þ

ð3ζ2 − 2α1ζ þ α2Þ2κ
≤ 0;

HΦeΦe
¼ −

72Φeκ
2Ω2

Ψ2ζ2l4
≤ 0;

jHabj ¼ HTTHΦeΦe
− ðHTΦe

Þ2

¼ 1536Ω2
2Tπ

3ð3α1ζ − 2α2ÞκΦe

l2ð3ζ2 − 2α1ζ þ α2Þ2Ψ2
≥ 0;

if T;Φe ≥ 0, this is if (38), (39) and

Ψ ¼ α1α2
ζ

−
Ψ1Ψ2

ζ2
≥ 0; ð41Þ

hold, where Ψ was defined previously in (31) and in order
to have a well-defined Gibbs free energy (40), we consider
only the strict inequality from (41). As an example, for
ζ ¼ 1, which implies that rh ¼

ffiffiffiffiffi
M

p
l, we have that the strict

inequalities (38), (39) and (41) are satisfied when the

constants α1 and α2 belong to the region R represented
in Fig. 4.
Additionally, it is interesting to note that for this new

charged black hole, we can analyze its response under
electrical fluctuations, represented by the electric permit-
tivity ϵT at a constant temperature, which reads as follows:

ϵT ¼
�∂Qe

∂Φe

�
T
¼ 72Φeκ

2Ω2

Ψ2ζ2l4
;

which is a non-negative quantity if the strict inequality (41)
holds, ensuring local stability [39,56].

V. CONCLUSIONS AND DISCUSSIONS

In this work we propose a nonlinear electrodynamics in
the ðH; PÞ formalism, which allows us to obtain charged
configurations of AdS black holes in four dimensions with
a planar base manifold in CG. These configurations have
only one integration constant, given by the chargelike
parameter M, and being parametrized by the structural
coupling constants (13).
As was explained at the beginning, to our knowledge,

these planar configurations are the first example of sol-
utions in four-dimensional CG where their thermodynamic
quantities do not vanish.
With respect to the metric function, the structural

coupling constants play a very important role in the
characterization of these charged solutions and when
analyzing condition (17), we conclude that there are five
different cases: one represents a black hole with three
horizons, two cases represent black holes with two horizons
and the other two are single horizon configurations.
Also, in order to find these new charged black holes, the

introduction of nonlinear electrodynamics to CG allows us
to obtain nonzero thermodynamic properties, thanks to the
contributions given by α1 and α2. Together with the above,
these configurations satisfy the four dimensional Smarr
relation (32) as well as the first law (29). Additionally, the
critical gravity nonlinear electrodynamics model enjoys
local stability under thermal fluctuations, thanks to the non-
negativity of the specific heat CΦe

as well as the Gibbs free
energy G analysis if Eqs. (38), (39), and (41) are satisfied.
Supplementing the above, the non-negativity of the electric
permittivity ϵT shows that our solution is also a locally
stable thermodynamic system under electrical fluctuations.
It is interesting to note the behavior of ϵT for these charged
configurations, as it is a non-negativity quantity if Φe > 0,
unlike other solutions found in the literature (see for
example [54]).
Some natural extensions of this work may include, the

exploration of other gravity theories with quadratic con-
tributions. In this sense, a theory that also showcases
critical conditions, is given in [57] where the square of
the Weyl tensor and the square of the Ricci scalar play the
main roles in the action, in the absence of the Einstein

FIG. 4. Representation of the region R, where the constants α1
and α2 satisfy the strict inequalities (38), (39), and (41) with
ζ ¼ 1.
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gravity. Another interesting scenario would be to study the
higher-dimensional case [58], where now the CG
Lagrangian takes the form

L ¼ R − 2Λþ β1R2 þ β2RαβRαβ þ β3RαβμνRαβμν;

and the coupling constants are tied as [59]

β1 ¼ −
β2

2ðD − 1Þ ¼
2β3

ðD − 1ÞðD − 2Þ ¼
1

4ΛðD − 3Þ ;

where the four-dimensional case (2) and (3) can be recovered
imposing D ¼ 4 together with the transformation

ðβ1; β2; β3Þ ↦ ðβ1 − β3; β2 þ 4β3; 0Þ:

Given the power of the nonlinear electrodynamics as a
matter source to find new solutions with a planar base
manifold, it would be interesting to study charged black
holes where their event horizons enjoy spherical or hyper-
bolical topologies.
It would also be interesting to study charged black hole

configurations with nonstandard asymptotically behaviors,
such as Lifshitz black holes, which were first explored for
the uncharged case with CG in [60]. For spherically
symmetric metrics, it is possible, as was shown in [61],
to obtain a generalization of the Smarr relation as well as
the first law of black hole mechanics, being understood
from a dual holographic point of view and related to the
black hole chemistry [62–64], where now the cosmological
constantΛ takes the role as a dynamical variable, unlike the
expression found in (32) where we explored charged planar
black holes and Λ does not appear in an active way.
Finally, from a physical motivation, these nonzero

extensive thermodynamical quantities will allow us to
explore, from a holographic point of view, the connection
between black holes and quantum complexity [65,66], as
well as the effects on shear viscosity [67–69], where the
mass M and the entropy SW take a providential role.
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APPENDIX: ANAYSIS OF EXTREMA OF THE
BLACK HOLE SOLUTIONS

In this work, we find that CG admits black hole solutions
provided the existence of a nonlinear electrodynamics
described by Eq. (6), and that these solutions are

characterized by the gravitational potential (14), where,
in our context, r > 0. However, the nature of these
solutions and, in particular, the number of horizons that
they will exhibit, will depend on the signs and relations
between the constants αi’s. In this appendix, we make an
analysis of the extrema of the function fðrÞ to give a
general classification of the solutions. Let us recall, from
Eq. (15), that the existence of extreme values is limited to
the fulfillment of condition (17). Let us notice that when α1
and α3 have opposite signs, the condition above is met
immediately, regardless of the value or sign of α2. That is,
the existence of extreme values is assured. Let us then start
by analyzing both cases in detail.

1. Case α1 < 0, α3 > 0

Upon inspecting eqn. (16) when considering α1 < 0,
α3 > 0, we notice that rext1 corresponds to a minimum and
rext2 corresponds to a maximum. Moreover, from (15), we
notice that for these values of α1 < 0 and α3 > 0, the
maximum will always be on the interval r > 0 (while the
minimum will be in the region r < 0). Combining this
information with the asymptotical behavior of fðrÞ, we can
conclude that for the case α1 < 0, α3 > 0, the black hole
will always have one horizon, as seen in Fig. 1.

2. Case α1 > 0, α3 < 0

Likewise, condition (17) is always met when α1 > 0 and
α3 < 0, regardless of the sign of α2. This means that, in this
case too, there will always be extreme values. Again,
studying the second derivative of fðrÞ evaluated in the
extreme values [see Eq. (16)], we notice that rext1 and rext2
correspond to a minimum and a maximum respectively, and
that for these values of αi, the minimum will always be on
the interval r > 0 and the maximum in the region r < 0
(under our analysis, we suppose that r > 0). If we addi-
tionally consider the asymptotical behavior of fðrÞ [which
states that fðrÞ will be decreasing for small positive values
of r], we find that for this case the black hole will have a
minimum. This means that fðrÞ can display up to two
horizons, as seen in Fig. 2 (top black curve).
For this solution to display both horizons, the strict

inequality in (18) must be met, while the strict equality
would correspond to the extremal black hole (Fig. 2—top
red curve). On the contrary, if condition (18) is not met,
there will be no horizon and fðrÞ will not represent the
gravitational potential of a black hole.
Having established the configurations that arise when

α1α3 < 0, let us now analyze the case in which α1 and α3
have the same sign.

3. Case α3 > 0, α1 > 0, α2 > 0

When analyzing the expression (16) that encodes the
concavity at the extreme values, we notice that condition
(17) is not always met for the intervals of interest of α1, α2,
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and α3. Therefore, it is important tomake a separate analysis.
If condition (17) is met we notice that rext1 corresponds to a
minimum and rext2 corresponds to a maximum. Moreover,
we notice that for thesevalues ofαi, both extremawill always
be on the interval r > 0 (the maximum followed by the
minimum). This will result in having three horizons (see
bottomofFig. 3).Anatural question can bewhether there can
be a combination of αi such that the maximum or the
minimum coincides with one of the horizons, thus resulting
in having only two horizons in total. In order to obtain an
affirmative answer to that question, onemust impose that one
of the following conditions is met,

0 ¼ 1 − α1
ffiffiffiffiffi
M

p l
rext1

þ α2M
l2

rext12
− α3M3=2 l3

rext13
;

0 ¼ 1 − α1
ffiffiffiffiffi
M

p l
rext2

þ α2M
l2

rext22
− α3M3=2 l3

rext23
;

which is equivalent to imposing

α3 ¼ −
α21α2 þ 2α21η� − 6α22 − 6α2η�

9α1
; ðA1Þ

with η� ¼ α2
1

3
− α2 � 1

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α41 − 3α21α

2
3

p
.

Choosing ηþ, in condition (A1), would correspond to the
case in which the minimum coincides with the outer
horizon, while choosing η− would correspond to the case
in which the maximum coincides with the inner horizon.
Both cases correspond to solutions with two horizons and
are displayed in Fig. 5.
On the contrary, if condition (17) is not met, then fðrÞ

will not display extreme values. Due to the asymptotic
behavior of fðrÞ [which states that for small positive values

of r, fðrÞ will be increasing, and that it will approach one
asymptotically as r → þ∞], fðrÞ will represent the gravi-
tational potential of a black hole with a single horizon as
seen in the top of Fig. 3.

4. Case α3 > 0, α1 > 0, α2 < 0

In a similar way, condition (17) is not necessarily met
when α3 > 0, α1 > 0, α2 < 0. When the choice of the αi
allows condition (17) to be met, then fðrÞ displays a
minimum at rext1 < 0 and a maximum rext2 < 0 corre-
sponds to a maximum. That is, for these values of αi, both
extrema are on the interval r < 0 of no physical signifi-
cance. However, we can still obtain important information
from the asymptotic behavior of fðrÞ. As mentioned above,
the signs of α1 and α3 will imply that the function fðrÞ, in
the interval r > 0 will start increasing from −∞ and
approach one asymptotically from below, representing a
black hole with a single horizon [see Fig. 3 (top)].
On the other hand, if condition (17) is not met, fðrÞ will

not display extreme values at all. Since the asymptotic
behavior of fðrÞ is the same as above, this configuration
will also represent a black hole with a single horizon with
the shape seen on the top of Fig. 3.

5. Case α1 < 0, α3 < 0, α2 < 0

Let us now consider the scenario in which all the αi are
negative, which means that condition (17) may or may not
be met. As such, it is important to make a separate analysis,
as in the previous cases. If the condition, is met we notice
that rext1 corresponds to a minimum and rext2 corresponds
to a maximum. Moreover, we notice that for these values of
αi, both extrema will always be on the interval r > 0 with
the minimum followed by the maximum. A quick analysis
of the asymptotic behavior shows that, even though we
have more extrema than in previous cases, the maximum
number of horizons will be two. The reason for this is that,
while the function fðrÞ starts decreasing in r > 0, then
showcases a minimum and then a maximum, there is not
additional crossing of the horizontal axis [since fðrÞ will
approach one from above as r approaches infinity]. For
clarity, see Fig. 2 (bottom).
Additionally, we can determine when this solution will

display two, one or no horizons through the inequality (18).
If the strict inequality is met, fðrÞ will represent the
gravitational potential of a black hole with two horizons
(Fig. 2—bottom black curve), while the case in which the
equality ismet strictlywould correspond to the extremal case
(Fig. 2—bottom red curve).On the contrary, if condition (18)
is not met, a horizon will not be formed and fðrÞwill not be
associated to a black hole configuration.
Lastly, if condition (17) is not met, then, fðrÞ will not

display extreme values. Due to the previously mentioned
asymptotic behavior of fðrÞ, there will be no rh > 0 such
that fðrhÞ ¼ 0. As a result, this case will not correspond to
a black hole solution either.

FIG. 5. Gravitational potential fðrÞ associated to black holes
when α1 > 0, α2 > 0, α3 > 0 with two horizons when the
conditions 3α1α3 − α22 > 0 and (A1) are met.
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6. Case α1 < 0, α3 < 0, α2 > 0 (no solutions)

Finally, if condition (17) is met and α1 < 0, α3 < 0,
α2 > 0, the analysis of expressions (15) and (16) yields to
rext1 being a minimum and rext2 corresponding to a maxi-
mum. However, this same set of equations shows that both
extrema will be on the interval r < 0 of no physical
significance [that is, fðrÞ will not display extreme values
in the interval r > 0]. Furthermore, the asymptotic behavior
of fðrÞ shows that, for small positive values of r, fðrÞ

decreases from infinity and eventually approaches one from
above as r approaches infinity. This asymptotic behavior
implies that, unless there aremaxima andminima in between
these regions of r, the function fðrÞ will not cross the
horizontal axis in r > 0. Sincewehave established that all the
extreme values are in the region r < 0, there is no rh > 0

such that fðrhÞ ¼ 0 (all intersections will occur at r < 0). As
a result, this case will not showcase any horizons and thus,
does not correspond to a black hole solution.
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