PHYSICAL REVIEW D 105, 084031 (2022)

Self-force calculations with a spinning secondary
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We compute the linear metric perturbation to a Schwarzschild black hole generated by a spinning
compact object, specializing to circular equatorial orbits with an (anti-)aligned spin vector. We derive a two-
timescale expansion of the field equations, with an attendant waveform-generation framework, that
includes all effects through first postadiabatic order, and we use the Regge-Wheeler-Zerilli formalism in the
frequency domain to generate waveforms that include the complete effect of the spin on the waveform
phase. We perform the calculations using expansions at fixed orbital frequency, increasing the computa-
tional efficiency, and simplifying the procedure compared to previous approaches. Finally, we provide the
first fully relativistic, first-principles regularization procedure for gauge invariant self-force quantities to
linear order in spin. We use this procedure to produce the first strong-field, conservative self-force
calculation including the spin of the secondary—computing Detweiler’s redshift invariant.
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I. INTRODUCTION

The era of gravitational wave astronomy was beckoned
by the first detection of gravitational waves by the LIGO
and VIRGO Collaborations [1]. The Collaborations’
ground-based detectors now frequently detect signals from
the mergers of binary systems of neutron stars and stellar-
mass black holes [2]. The advent of future space-based
gravitational wave detectors will bring the ability to
observe gravitational waves in lower frequency bands.
The European Space Agency is currently scheduled to
launch LISA, a space-based gravitational wave detector, in
2034 [3]. Extreme mass ratio inspirals (EMRIs) are an
important source of gravitational waves for LISA, with
frequencies optimally placed in LISA’s sensitivity band [4].
EMRISs consist of a compact “secondary body” (of mass ),
such as a stellar mass black hole or neutron star, orbiting a
significantly more massive “primary body” (of mass M),
such as a supermassive black hole. The system radiates
energy as gravitational waves, leading the secondary’s orbit
to gradually inspiral before it eventually collides and merges
with the primary body. EMRI configurations evolve slowly
while the secondary body effectively surveys the primary’s
spacetime. This information is imprinted on the resulting
gravitational waveforms, including data in the strong gravi-
tational field as the separation of the bodies diminishes. Thus
the scientific potential of EMRI detection is particularly
alluring and can be used as an accurate test of general
relativity in the strong field, as well as giving insight into
compact object populations [4]. The detection of EMRI
waveforms and parameter estimation of the binary’s physical
attributes will require precise waveform models.
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The extreme mass ratio of EMRI systems can be
exploited by modeling their waveforms using the self-force
approach of black hole perturbation theory (see, for
example, [5-7]). In this approach, the primary body’s
spacetime is perturbed by the secondary and the resulting
perturbed spacetime metric is expanded in powers of the
mass ratio, 4/ M. The Einstein field equations can then be
solved order by order in the mass ratio for the metric
perturbations, which in turn can be used to calculate EMRI
inspirals and waveforms. Calculations involving the first
order in mass ratio metric perturbations are referred to as
first-order self-force (1SF) calculations, while calculations
involving the second-order metric perturbations are referred
to as second-order self-force (2SF) calculations, and so on.

Leading-order approximate EMRI waveforms, known as
“adiabatic” waveforms, require only partial 1SF calcula-
tions. The phase evolution of these adiabatic waveforms is
obtained from the 1SF dissipative gravitational self-force.
The remaining conservative 1SF contributes to the wave-
form at next-to-leading order or first postadiabatic order
(1PA). The other contributions to 1PA waveforms are the
dissipative part of 2SF (without spin effects) and terms
related to the spin of the secondary body. These additional
spin terms comprise the spin-curvature coupling contribu-
tions and the linear-in-spin, linear-in-mass ratio dissipative
self-force and self-torque. Detection of weaker EMRI
signals and accurate parameter estimation necessitates
1PA waveform modeling. Practical calculations of 1PA
waveforms take advantage of the slow evolution of EMRI
configurations compared to the timescale of the orbital
motion of the secondary—the two-timescale expansion
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[5,8]. In this paper we develop a two-timescale expansion
including all spin effects through 1PA order, in the special
case of quasicircular orbits and (anti-)aligned spin. This
expansion provides a practical method of solving the field
equations, a rapid, first-principles waveform-generation
framework, and a simple, modular way of including spin
effects in 1PA waveform calculations. When combined with
recent progress on 2SF calculations [9,10], this will enable
production of complete 1PA waveforms, including (anti-)
aligned spin for quasicircular inspirals into nonspinning (or
slowly spinning [10]) black holes.

Although the conservative linear-in-spin self-force only
contributes to the waveform at post-2-adiabatic order (and
is thus not required for 1PA waveform modeling), the
complete leading-order self-force including the leading
spin effects is interesting in its own right. Conservative
self-force dynamics can be used to inform the effective-
one-body formalism (EOB) [11] (see [12-18]), especially
with the discovery of the “first law of binary black hole
mechanics” [19] and the development of powerful scatter-
ing techniques [20]. As detector sensitivity improves, it will
become increasingly critical to make use of this SF
information to improve EOB models of spin effects,
eccentricity, and small mass ratios. Useful ingredients to
do so are gauge invariant quantities such as Detweiler’s
redshift invariant—first introduced for nonspinning secon-
dary bodies in circular equatorial orbits in Schwarzschild
spacetime in [21]—and the spin precession invariant [22].
The definition of the redshift invariant was generalized to
include spin effects in [23], and in the same work a post-
Newtonian (PN) approximation was calculated for the case
of an aligned-spin secondary in a circular equatorial orbit
around a Schwarzschild primary. This calculation was later
extended to include the body’s spin-induced quadrupole
moment [24]. There have been several calculations of the
spin precession invariant [22,25-27], though to our knowl-
edge these are yet to be extended to include the spin of the
secondary.

In black hole perturbation theory, a small extended “test”
body experiences an acceleration driven by perturbation
forces induced by the body’s own multipole moments
coupling to the background spacetime. The pole-dipole
approximation for a spinning test body assumes the body
can be described by its mass-monopole and spin-dipole
moments only, neglecting the quadrupole and higher
moments." Omitting perturbations to the background
spacetime, the motion of a spinning test body is governed
by the Mathisson-Papetrou-Dixon (MPD) equations
[28-30] with a supplementary spin condition (SSC). The
MPD equations assume that the length scale associated
with the spin of the test body is much smaller than the

'Note that the term “multipoles” is also used separately to refer
to spherical harmonic modes (such as “the low multipoles” in
completing the metric perturbation).

length scale of the curvature of the background spacetime
—this leads us to include only linear-in-spin effects. A
thorough study of motion governed by the MPD equations
was produced in [31,32]. The consistency of different
physical results for solutions of the MPD equations with
several common SSCs was investigated in [33,34]. The
results in [34] showed, for example, that varying the SSC
can change the expression for the orbital frequency of a
spinning body in a circular orbit at cubic and higher order in
spin. As the secondary’s spin is proportional to the square
of its mass, the leading linear spin terms enter the metric
perturbation at second order in the mass ratio, and
linearizing in spin is necessary to consistently satisfy the
equations of motion at each order in the mass ratio.
Defining the dimensionless spin parameter y = S/u”> where
S is the magnitude of the spin vector, S? = 5/ Sp = %SWS’”’,
this motivates us to work with the dimensionless spin
tensor, S = S¥ /2. If the compact secondary is a black
hole, for example, then [y| < 1. The spin-linearized metric
perturbation has the additional advantage that it can be
computed without fixing a value of y, making it a very
efficient way of filling the parameter space of y values.

First-order gravitational self-force calculations began by
examining specific EMRI models with a nonspinning
secondary body and progressed toward generic EMRI
configurations [35]. Recently, there has been progress on
incorporating the secondary’s spin in specific EMRI
configurations. The effect of the spin-curvature coupling
(MPD force) was incorporated into self-force calculations
in [36] for a Schwarzschild black hole primary, and
waveforms were produced including the coupling for
secondaries in eccentric equatorial motion with the spin
vector aligned to the orbital angular momentum. That work
neglected the spin contribution to the gravitational wave
fluxes. The spin-curvature coupling in a Kerr background
spacetime was studied in detail in the frequency domain in
[37] with a view to informing perturbative EMRI calcu-
lations. Fluxes for a Kerr black hole primary and an aligned
spinning secondary in a circular equatorial orbit were
produced in the frequency domain in [38] and in the time
domain in [39], without truncating quadratic and higher
order in spin terms. A flux balance law was derived in [40]
that holds for generic orbits in Kerr to linear order in spin,
and the law was demonstrated for aligned-spin circular
equatorial orbits in Schwarzschild spacetime, truncating at
linear order in spin. Linearized-in-spin fluxes were com-
puted for a secondary in a spin-aligned circular equatorial
orbit around a Kerr primary in [41] and used to calculate
waveforms. That work was later extended to investigate
aspects of the detectability of the spin of the secondary in
[42]. Flux calculations including spin effects for the most
general EMRI configuration that we are aware of were
performed in [43], with a Kerr primary and an aligned-
spinning secondary in an eccentric equatorial orbit, without
truncating quadratic in spin and higher terms.
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Of all the self-force flux calculations including spin
effects, we are not aware of any that generalize the spin of
the secondary away from the (anti-)aligned case. The
numerical calculations in this work will continue this
legacy, specializing to secondaries with (anti-)aligned spin
in circular equatorial orbits around a Schwarzschild pri-
mary black hole. We calculate both the dissipative and the
conservative leading self-forces including the next-to-
leading-order spin effects, and we derive from first prin-
ciples a fully relativistic regularization procedure for gauge
invariant self-force quantities to linear order in spin. In
doing so, we provide a covariant expansion of the corre-
sponding singular field. We also introduce a fixed fre-
quency parametrization where the (quasi)circular motion of
the spinning body can be parametrized by a spin indepen-
dent frequency. In frequency domain calculations, this has a
distinct advantage in linearizing numerical results in spin—
the numerically integrated perturbation equations depend
on the frequency and if there is spin dependence in the
frequency, then one must find a way to truncate numerical
results at linear order in spin. Typically this has been done
by numerically fitting the spin dependence [40,41] (sig-
nificantly increasing the computational cost) or more
recently by linearizing the perturbation equations and
solving a coupled system with an extended source [42].
Removing the spin dependence from the frequency (and
therefore from the numerical integration) entirely avoids
the issues that come with a noncompact source, and
produces results that are readily comparable with their
post-Newtonian equivalents (calculated at fixed frequency)
and that are simple to implement in the two-timescale
expansion for producing waveforms.

In this paper we adopt the metric signature — + ++ and
work with geometrized units such that G=c =1.
Symmetrization of indices is denoted using parentheses
while square brackets represent antisymmetrization. We
use ¢ as a formal order-counting parameter to keep track of
powers of the mass ratio. Finally, when referring to gauge
invariance, we mean invariance within a class of gauges
that do not interfere with the helical symmetry of the
perturbed spacetime.

In Sec. I we review the equations of motion for a
spinning secondary body. In Sec. IIl we specialize the
motion to circular equatorial orbits in Schwarzschild
spacetime with the secondary body’s spin vector (anti-)
aligned to its total angular momentum. In Sec. IV we
develop the two-timescale expansion of the field equations
and equations of motion. In Sec. V we review the Regge-
Wheeler-Zerilli formalism for solving the perturbation
equations to obtain the leading-order metric perturbation
(including subleading spin effects) and the gravitational
energy and angular momentum fluxes associated with a
spinning body. In Sec. VI we review Detweiler’s redshift
invariant for a spinning secondary. In Sec. VII we derive a
regularization procedure for the treatment of the singular

field associated with a spinning point particle and produce
regularization parameters for the redshift invariant. In
Sec. VIII we present our numerical results and some
gravitational waveforms.

II. EQUATIONS OF MOTION WITH A SPINNING
SECONDARY

A. Mathisson-Papapetrou-Dixon-Harte equations

The equations of motion for a generic, spinning compact
body are well established through order e [7] but only
partially known at order 2. The most far-reaching results
are due to Harte [44], who showed that in fully nonlinear
gravity, a self-gravitating material body obeys the same
equations of motion as a test body, but a test body in an
effective metric §,4. If we ignore the effects of the body’s
quadrupole and higher moments, then these test-body
equations, referred to as the MPD equations [28-30], take
a simple form:

A

Dp* 1

i = RS, (1a)
Dsr

= 2plrpd, (1b)
dzr

where p# is the body’s linear momentum, i#i# = dz*/d7 is
its four-velocity, $7° is its spin tensor, and D/d% = ﬁ“@a.
# and V are the proper time and covariant derivative
compatible with g,;. Several decades earlier, Thorne and
Hartle [45] showed that these equations also hold for a
black hole. However, the results of both Harte and Thorne
and Hartle (particularly the latter) are limited by an
incomplete characterization of g,;. One of our ancillary
goals will be to partly solidify their status (which we
discuss further toward the end of Sec. II B).

For any given g,4, Eq. (1) is an underdetermined system
of 10 equations for 13 unknowns: the six components of the
antisymmetric tensor S7°, the four components of p*, and
the three independent components of i#*. A SSC is therefore
required to uniquely determine the solution. Common
spin supplementary conditions are §,8%S”” =0 and
@aﬁp"Sﬁ}’ =0. We opt for the latter “Tulczyjew-Dixon
SSC” which, while working to linear order in spin, simply
implies that p* = pii®. The MPD equations in .z then
reduce to

D>z Dae Hoag  npavs
T = g = Kt (22)
DSre

—=0. (2b)

where we have used $* = 25",
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B. Effective metric, self-force, and self-torque

In self-force theory, the physical metric of the spacetime
is expanded in the form

8ap = Yap T oy + 2Ny + O(E), (3)

where € is an order-counting parameter that counts powers
of u. In our context, g, is the metric of the central black
hole and h,5 =73 €"hy is the perturbation due to the
presence of the secondary. Since S ~ y?, the secondary’s
spin contributes (linearly) to hiﬂ. Higher moments would
contribute at order &* and above.

The effective metric is given by §o5 = gop + hgﬂ, where
hyy = > €"hyy is a certain piece of the physical perturba-
tion h,. We can expand the MPD equations (2) in powers
of h}}ﬂ following Sec. IIIA of Ref. [46] (for example).
Defining the difference between the connections on g, and
Jap 88 C%p, = fgy - F;y, we have the standard relations

1,
Copr =30 @Iy — M) (4)

R%g5 = Ry + 2C% 15 + 2C%, CP )5, (5)
where a semicolon denotes the covariant derivative com-
patible with g,;. The proper times in the two metrics are

related by d#/dr = /1= hizu®u’, where u® = dz*/dr.

Substituting these relations into Eq. (2) and expanding, we
obtain®

—hR

== _P//w(gl/1 - hy)(ZhR poiA

Apio )up u’

1 -
- gRﬂaﬁy (1 -3 h},guﬂuﬂ> ues

* gpﬂy(zh'}}(a;ﬁ)y - hgﬁ;w)”asﬁy + O<€3)
= F¥, (6a)
D§™ (pSo)lu M2 (2 R R 2\ — nuv
o = uS§7¥g¥ (ZhAp;G—hpg;l)%—O(e )=N*, (6b)

where P = ¢" + uu”. The spin-independent terms in F*
are referred to as the self-force (per unit 4) and N* as the
self-torque (per unit x?). Note that Eq. (6b) is expanded to
one order lower than Eq. (6a) because the spin itself enters
into the metric at one order higher than the trajectory z*.

“This corrects the analogous equations in Ref. [40]. Since
those equations were the starting point for Ref. [40]’s derivation
of the flux-balance law, we have independently re-derived the
balance law, including the key intermediate result (69).

We can also extract an evolution equation for the
scaled spin vector $¥ = —%e"aﬁyuaSﬂV. Substituting S* =
—e ,58“u” into Eq. (6b), multiplying each side by uze’,,
and contracting the equation with Pj (to project out
components tangent to u*), we find

DS’
Pi—— = N“ 7
bdr ’ ( )

where N* = —%eﬂwmu”N/’”.

The secondary’s spin contributes to the above equations in
three ways: through the standard MPD terms, which are
independent of /y,; through terms of the form A® - S, which
can be considered as spin-induced self-forces and self-
torques; and by contributing to h}}f (via the spin’s contri-
bution to h,%,,). We can write these contributions explicitly as

2
Fl, = =5 Pr I - iy

- '%R"aﬁy (1 - %h}}al uﬂu"> u®SPr

£ o
+ %Pﬂp(zhzl?(;;ﬂ)r - hsﬂl;w)uasﬂy + 0(83)’ (88')
NI = eulb 3G QREL — HRL) 1 O(), (8b)

where we introduce h,ljy(l) as the linear-in-spin piece of h}},,z.

However, we note that the system of equations (6) is
incomplete for two reasons: it omits terms of the same order
as it keeps, specifically test-body spin-squared and quadru-
pole terms that first appear at O(e?); and we have not
defined h,lfy. Since we restrict our attention in this paper to
linear spin effects, we freely skip over the first omission.
The definition of h}}v is thornier. Harte defines a class of
effective metrics in which the MPD equations hold, but the
specific choice he makes becomes singular on z# at order &’
in a perturbative expansion.3 Thorne and Hartle effectively
define g, as the metric that exerts tidal fields on the body,
leaving it open how to determine the body’s own contri-
bution to those fields. In Ref. [47], one of us (A. P.) defined
a g, that is a smooth vacuum metric on z* and is well
defined for both material bodies and black holes. For a
nonspinning body, the equation of motion (6a) is valid for
A.P’s definition of g, [48,49]. But in the case of a

3This can be deduced from Egs. (82)—(84) in Ref. [44], which
express §,, as the solution to §,, = 8,, — (9,p0u0 — %gﬂbgﬂﬂ)Hﬂ“,
where H”? is a solution to a linear differential equation in the
spacetime §,,. For g, to be regular on the particle’s worldline,
H" must cancel any singularities in g,,. This is impossible
beyond linear order because if we substitute g, = g,, + ehk' +
€%, + O(¢?) and Eq. (3), we find that j;, cannot contain terms
any more singular than ~h/,hf', while hj, contains terms as

: 1 gl
singular as h,, h,,.

po >
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spinning body, it has not been shown that the O(e*) and
O(e) terms in Eqgs. (6a) and (6b) (respectively) are correct
for A.P’s g,,.

To skirt this issue, we note that Harte’s definition is well
defined and smooth for the effects we focus on: linear
effects, whether linear in g or linear in spin. For those
contributions to Afy,! and /%, Harte’s definition reduces to
the more familiar Detweiler-Whiting definition [50].4 We
can therefore assume with some confidence that the linear-
in-spin terms in (6) are correct with this definition of h,lfy.

We return to the regular field in Sec. VII. There, as a by-
product of our concrete calculations, we show that Harte’s
definition of h,lf,,w agrees with A. P’s, giving us additional
confidence in our assumption.

C. Stress energy of a spinning body

Since we are only interested in the gravitational field on
scales much larger than the body’s size, we can replace the
body with a “gravitational skeleton” [28]—a point singu-
larity equipped with the body’s multipole moments.
Concretely, through second order in ¢, a generic compact
object can be modeled as a spinning point particle in g,,,
with a stress-energy tensor

T = €T

0+ T +O(), (9)

where T%
(w)

dipole term. Explicitly, the two contributions are

is a mass-monopole term and TO(f) is a spin-

HxH — ZH (!

T (x) = / d%/ﬂifd()]ﬁ“@’)ﬁﬂ(ﬂ), (10a)
4t — o1 (!

T )=V, U w2 /—Zq()] ule(e)$Pr (') |, (10b)

where &* is the four-dimensional Dirac delta function and
the covariant derivative V, is with respect to the arbitrary
field point x* and not the worldline point z#. Note that both
Tl()f) and To(f) have subleading dependence on y (and on hsﬂ)

via their dependence on the worldline. However, the

R ()

quantity h,;"" defined in the previous section corresponds

only to the regular field associated with Taﬁ). Also note that
no hats appear on quantities in T‘(;f) since the difference

would only contribute at order .
Unlike the equations of motion (6), the stress-energy
tensor (9) has been rigorously derived from the method of

“The only quantity in (6) that is not covered by this definition
is the spin-independent piece of h}sz, for which one can use A. P.’s
definition.

matched asymptotic expansions [47,51]. It holds for black
holes, material bodies, and exotic compact objects.

ITII. CIRCULAR ORBITS AND ALIGNED SPINS:
TEST-SPIN EFFECTS

Before considering the full system of equations (6), we
consider the orbit and spin with h,, set to zero. The
equations of motion are then given by the MPD equations
in Eq. (2) with all hats removed; the orbit is accelerated in
9w by the MPD spin force on the right-hand side of
Eq. (2a), and the spin is parallel-propagated in g,,. The
results for this case will carry over directly to the full
problem.

A. Fixed-frequency parametrization

We specialize to the case of a nonspinning black hole
primary, in which case the background is the Schwarzschild
spacetime with line element

ds* = —fd* + f~'dr* + r’dQ?, (11)

where f = 1— 2" and dQ* = d6* + sin® d¢?. The space-
time admits two Killing vectors, 5’(‘t> =0, and 5’(‘ 5 = Ops
which in turn give rise to two constants of motion preserved
by the MPD equations. In terms of a generic Killing vector
&, the corresponding constant of motion is given by

E = ué, + 557V, (12)

Ité = 5’(‘ 0’ then E is (minus) the particle’s specific energy;
if & = 5’(’(/)>, then it is the particle’s angular momentum.
When the secondary’s spin vector is aligned (or anti-
aligned) with its orbital angular momentum, the MPD
equations admit a solution for circular equatorial orbits.
Specializing to that case, the orbit is described by

7
r=r 0=—,

2 > ¢ = Q1 (13)

where Q = % is the constant orbital frequency and where
the radial and polar components of the secondary’s four-
velocity vanish, u” = 0 = u?.

For a nonspinning test body in circular, equatorial
geodesic motion, the orbital radius and frequency are

related by

Q=0 = (14)

BV

rp:ro,

The MPD spin force accelerates the orbit, altering this
relationship. To determine the change, one can fix the
orbital radius and examine how the spin alters the orbital
frequency, or one can fix the frequency and examine how
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the spin alters the radius. Previous numerical self-force
calculations which included the spin of the secondary
parametrized the test-body motion with a fixed-radius
parametrization [38—42]

r, = I, Q(ry.e) = Qy+eQ,(r,) + O(e2). (15)
However, as illustrated in Sec. V, it is better to instead adopt
a fixed-frequency parametrization,

ry(Q.e) = rq + er, (Q) + O(&?), Q=0Q, (16)
To emphasize that rqy = ry(Q) in Eq. (16), we have labeled
it as rq. Throughout this paper we work exclusively with
the fixed-frequency parametrization, allowing us to refer
simply to the physical frequency  without a 0 adornment.
(The notable exception is Appendix C, where we discuss
the alternative fixed-radius parametrization.)

To derive the fixed-frequency parametrization from the
equations of motion (2a) and (2b) (with hats removed), we
take advantage of the fact that we are only looking for
solutions valid through order ¢ (i.e., linear order in the spin
force). We hence seek a solution of the form

2%(t,€) = 28(1) + €25 + O(?), (17)

where zi = (t,rq,7/2,Qt) and z{ = r,6.
Substituting this ansatz into (2a) and solving order by
order in &, we obtain the relations

M —Fiy

o = (MQ)2/3 ’ Ty = 3(”6)2f992 g

(18)

where f o= f(ra), ”o is the zeroth-order four-velocity, and
F’]’(X =-5R ﬁy(sMOSylSéa is the (purely radial) leading-
order spin force. The first equality in (18) is simply a
restatement of the geodesic relationship (14).

The nonzero components of the four-velocity are given
by the circular-orbit condition, u? = u'Q, along with the
normalization u®u, = —1. Conveniently, this implies that
when parametrized at a fixed frequency the four-velocity of
the spinning secondary is equal to the corresponding
nonspinning geodesic four-velocity, u® = ug + O(&?).

Writing Eq. (18) more explicitly requires an explicit
form for the spin tensor. In the aligned-spin case, the spin
vector is given by S¥ = §9), and the corresponding scaled
spin vector §* has only one nonzero component, $¢ = — r”—ﬂ

Introducing a unit vector 2% = — rln along the zeroth-order

worldline, we write
SH = y2t. (19)

The scaled spin tensor S = —e"”"/’S’au/} then has two
independent nonzero components [40],

G _l”z/) — 5,
ro ro

and we can evaluate the spin force to get
Fi, = 3uy faraS¥ (uh)>52. (21)

Given this spin force, we find that in the aligned-spin
case with a fixed-frequency parametrization, we have
motion described by

= (t.rg — puyQrq.n/2,Q1t) + O(&?), (22)

u =) _3M(1009)+(9( 2).  (23)

where we note that the sole spin dependence is in the radial
position of the worldline, and where the contravariant
components of the four-velocity are independent of y.
Note that the covariant components u, are not spin
independent as y enters via the metric components evalu-
ated on the worldline.

Evaluating Eq. (12) for the two conserved quantities
associated with the timelike and angular Killing vectors
yields the specific energy and specific angular momentum,
which are given, respectively, by

e, (MN\3?
E:Eo"‘SE;(:f(rQ)uo_M”(t)( ) . (24)
ro

M
J=1Jy +8J){ = ‘/Mrgué) +'b]€[(u0< >(7'Q —4M), (25)
ra
omitting O(&?) terms.
B. Stress-energy tensor

The stress-energy tensor for the circular-orbit, aligned-
spin case can be written in the form

K

wo _ HB0

T(ﬂ) r? sm95 500, (262)

T = F o KI5 603+ K5,605) + KE5,603,)
(26b)

where we use the shorthand notation 6, =4&(r—r,),
89 =06(0—35), and 65 = 6(¢p — ¢,,). The nonzero compo-
nents of the constant tensors K}, , K", K", and K%" are the
same as those defined in Ref. [40] with the identification
» < rq (along with an additional factor of M~" in our
definition of Ki", K%", and K%"); for completeness we give
their full expressions in Appendix A.

r
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When we substitute the expansions r, = rq + ér, +
O(¢?) and u® = uf + O(?) into T{, and T{}), we can
make the trivial replacements r, — rq in (26b) (and we
have preemptively done so in the expressions in

Appendix A) but we must keep the subleading term in
(26a), yielding

v HKG
Tl(lﬂ) - 730565415(’95«: —2er,5,,—¢€r, 8, )+ O(e), (27)
o)

where 6,, = d(r —rq) and &, = 0,8(r —rg). The total
stress-energy (9) then becomes

T = T + &T5 + O(&%), (28)
where
K
" HB g
=———0,.6004, 29
1T 2 sing Y (29a)
v HT K}(;D v
T = - ’; : 8904(20,, + 87,) + (- (29b)

IV. TWO-TIMESCALE EXPANSION

When the metric perturbations £, are accounted for, the
binary system slowly evolves due to dissipation. In this
section we show how the linear effects of the particle’s spin
can easily be incorporated into the two-timescale evolution
scheme of Ref. [8]. We closely follow the particular
formulation in Appendix A of that reference.

Our method assumes the particle’s trajectory, its spin, and
the spacetime metric only depend on ¢ through the ¢
dependence of a set of mechanical variables (¢,,J).
The slow evolution is captured by the parameters
J1 = (Q,x,6M,8J), which evolve on the radiation-reaction
timescale ~Q/Q ~ 1/¢. (Though we find below that y is
constant at 1PA order.) Here (u6M, udJ) represent correc-
tions to the central black hole’s mass and spin, which evolve
due to the flux of energy and angular momentum into the
black hole; we pull out an overall factor of y to make
(6M, 8J) order unity. During the slow evolution, the system
is assumed to retain a periodic dependence on the particle’s
orbital phase ¢, which evolves on the fast timescale ~1/€.

Given that the method requires a choice of time
coordinate, it will be convenient to adopt the 3+ 1
split x# = (z,x').

A. Orbit, spin, and metric
We first consider the particle’s orbit. In place of Eq. (17),
we write the coordinate trajectory as z#(t, &) = (¢, 7'(t, €))
and assume that z'(r,€) = Z'(¢,(1, €). T (1, €). €).
Expanding in powers of ¢ at fixed (d)p, J1), we write

(b Ti€) = 2(p- Q) + €2 (T)) + O(e%).  (30)

where the leading-order trajectory is

2(¢p. Q) = (ro(Q).7/2,9,), (31)
and the subleading term is a purely radial correction
2(T1) = (n(J1),0,0). (32)
We continue to define the frequency as

dg,
—L=Q (33)

The above ansatz represents an orbit that remains in the
equatorial plane, with a slowly evolving radius and fre-
quency. Accordingly, we seek a solution in which the spin
remains orthogonal to the equatorial plane,

$T 1) = x2%(Q) + O(e), (34)

in analogy with (19).

Following the same pattern, we expand the metric as’

gﬂl/ = gﬂl/(xi) + gh}llb(xiv ¢p»Qv 5M7 6-])
+ 22, (x'. ¢, T1) + O(&%), (35)

with the assumption that each term is periodic in
¢, = ¢,(t.€). For simplicity, we suppress dependence
on M and u, with the understanding that A4y, is equal to
" times a p-independent function of (x', ¢,, 7).

The first-order perturbation hj,(x',¢,.Q,6M,56J) is
linear in 6M and oJ, and it will be convenient to peel
off that dependence, writing

hly = hly(xi, 4, Q,0,0) + MR (xi)
+8IhE) (x1). (36)

If we replaced ¢, with its geodesic expression €z, then the
first term would be the standard perturbation due to a point
mass on a circular geodesic with frequency Q. The terms

SMRSM™ (xi) and 8715 (x') are linear perturbations toward
a Kerr black hole with mass M + uéM and angular
momentum udJ. We show below that at 1PA order, 6M
and 0J do not couple to the spin y.

When substituting these expansions into the equations of
motion and field equations, we apply the chain rule

e2Ine terms also appear, at least in the Lorenz and similar
gauges. We hide that logarithmic dependence in hﬁy. As dis-
cussed in Ref. [8], it is also preferable to adopt a hyperboloidal
time coordinate s =t — k(r*). We elide that detail here, as it is

not important for the spin contributions at 1PA order.
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o _ 0 dg, 0
2 g2 (2e

47, o
o i og,  dr ) (37)

dt 0J;

where ¢/, = 5)xa and t, = J,t. This implies the expansion
V, = V0 + et,0y + O(e2), (38)

where the zeroth-order covariant derivative is

-0 0
Vo = eé’@ 8 s, + Christoffel terms. (39)
V= (F g),F él),FfS}‘,),,F(EIJ)) is the leading-order velocity
through parameter space, and
> 0
Oy =V — 40
v=Vigr (40)
®9  pn 0 e 9 p) 9
=F F, —+F 41
2 50" G T v aan T ger (41)

VY acts at fixed parameter values; its action on
h;ﬂ(x" .¢,.Q.0,0) is identical to the action of V, on the
linear metric perturbation from a point mass on a circular

geodesic. The directional derivative 0y, then accounts for
the system’s slow movement through the parameter space.

B. Evolution equations

The rates of change of the parameters 7; are likewise
expanded in powers of ¢ at fixed (¢,.J):

‘2_? = eFY)(Q) + 2F)(T) + O(),  (42)
% = eFV(T)) + O(e), (43)
"Z_Zt” = eF)(Q) + O(e2), (44)
% = eF{)(Q) + O(e?). (45)

From these expansions we obtain the expansion for the
coordinate velocity,

% = 2(Q) + e29(Q) + O(2),  (46)

a

where
=(1,0,0,Q) (47)

and

z¢ = (0, 79,0,0), (48)

with  7(Q) :%F g); the proper four-velocity is

u® = uf(Q) + euf(Q)z5(Q) + O(e?), with ul = u)z% as
in (23). The driving forces F g/"), which govern the evolu-
tion, are to be determined from the equations of motion (6)
and from the Einstein field equations.

In the above expansions, the numerical labels within
parentheses denote the postadiabatic order at which the
quantity enters, while the numeric labels without paren-
theses correspond to the explicit powers of £ We have
foreshadowed the structure of the solution by indicating
that OPA quantities only depend on (¢,.Q), and that
dJ/dt is independent of ¢, (an essential requirement
for the separation between slow and fast evolution).

To expand the equations of motion (6), we also expand
the forces and torque as

F* = eF{(J)) +eF3(J)) + O(£%), (49)

N = eN{(T)) + O(e?). (50)

Here the numeric labels correspond to the explicit powers
of g, following the usual nomenclature for “first-order” and
“second-order” self-forces. The spin-dependent contribu-
tions are given by the expansions of (8). More precisely, the
first-order spin force F{ ( ,x) is given by the test-body

force (74); F§ 50)
and N is given by Eq. (21) evaluated at r, = ro and
u® = ug. We will not require a more explicit expression for
F "(X) The torque reduces to

(J;) is given by the remainder of Eq. (8);

N = _g 2 (g — 2P VORR) = 0. (1)

To see why this vanishes, note that it can be written as

22 ugV[(g*” — 2°2P)hi4]. For our quasicircular, spin-
aligned system, the quantity in square brackets is constant
along the zeroth-order worldline zg (at fixed Q). The
derivative therefore vanishes.

Substituting all of the above expansions into Egs. (6a)
and (6b), we can straightforwardly solve order by order in
&, equating coefficients of powers of ¢ at fixed J; rather
than at fixed 7. We obtain

%This statement assumes that we calculate F, g) ) using the local

self-force. If we instead calculate it from energy fluxes to infinity

and into the horizon, then the leading horizon fluxes F’ 22(9) and

F fslj) (Q) enter at OPA order, and the first subleading horizon fluxes
enter at 1PA order. However, M and 6J themselves only enter at
1PA order in either approach.
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Fi(J1)

ro(Q) = rq, 3(u) ol

"1(«71):— (52)

from the conservative sector [the radial component of
Eq. (6a)], in perfect analogy with Eq. (18). From the
dissipative sector [Eq. (6b) and the ¢ or ¢ component of
(6a)], we obtain

0 _ _ 3faQF|(Q)

o == -6y >3

S __ 3faQFT)) _ 20yFi(T))

C ) (1 -6y)  /y(uh)fa(l—6y)

(1—6y+12y )F{(jl)Ftl(Q) (54)

Y2 up)ofo(1-6y)* 7
F = N: =o0. (55)

Here

y=M/rg = (MQ)*>. (56)

Equation (55) shows that the spin magnitude is constant at
1PA order.

The equatlons of m0t10n do not determine the driving
forces F 5M(Q) and F\, Y (Q) However, as shown in Ref. [8],
the second-order Einstein equations [in (64¢)] dictate that
these are the usual fluxes of energy and angular momentum
through the horizon due to a point mass on a circular
geodesic orbit of frequency Q (reviewed in Sec. V D).

It is easy to see that if we rewrite Eqs. (33) and (42)—(45)
in terms of a “slow time” variable 7 = et, then the equations
have asymptotic solutions

$p =9, (D) + ) (D +O).  (57)
Q = QO(7) + QW (7) + O(?), (58)
D+ 0(e), (59)

M = MD(F) + O(e), (60)

8J = JW(7) 4+ O(e), (61)

with constant y(1), with d¢ » / di = QU"(%), and with easily
worked out equations for dQ") /di. These expansions in
powers of ¢ at fixed slow time make clear the structure of
the solution on the radiation-reaction timescale t ~ M/¢
(i ~ M). However, they are primarily useful at the final
waveform-generation stage, where they allow one to solve

for the coefficients gbﬁ,"), QW MO and JU without
specifying a value of the mass ratio. Prior to that stage,

we treat (¢, Q. y.5M, 6J) as independent variables on the
binary’s phase space.

C. Stress-energy tensor

Substituting the expansions (30)—(48) into the stress-
energy (9), we obtain
" = TV (x', . Q) + T4 (X', ¢,. T 1) + O(e*).  (62)
The leading term is still given by the leading term in
Eg. (28) except that in 6, we do not replace ¢, with €2z. The
subleading term is now

Ty = _g [2(rozy2)) = 2620r1)8, — 252r0m1 6,180, + T,
o

(63)

which is identical to Eq. (29b) except for (i) the change
r, = ry, (ii) the addition of the Z/]} term, and (iii) the fact
that we again do not replace ¢, with Qz. In this expression,
ry receives a contribution from the first-order self-force as
well as from the first-order spin force (21). Since the spin
does not contribute to Zf , its total contribution to Tgﬂ
therefore remains precisely (29b).

D. Field equations and Fourier expansions

Substituting the expansions (35) and (62) into the
Einstein equations G,,[g] = T, and equating coefficients
of powers of ¢ at fixed (¢,.J,), we obtain the hierarchy

Gulg =0, (64a)
G [h'] = 82T}, (64b)
G2 = 8272, — GV, '] = G '], (64c)

The operators G,(]z'j ) act on functions of (x, ¢, T ,). If
we first expand G, [g+ h] in powers of h,, as

G, + Gl [h) + Ga,[h, h] + - - -, then Go7) is derived from
Gy, using the expansion of Vu in Eq. (38). Using that
0)

is the standard linearized

Einstein tensor with V,, — V2. G\ is given by the terms
in Gy, that are linear in the velocity V;; since these do not
couple to spin terms at 1PA order, we will not display them
here, but they can be extracted from Ref. [8].

The linear-in-spin equations are

. 1,
expansion, we see that wa

GAO [n2W) = 8272, (65)

where T,%,(f() is given by Eq. (29b) as described around

Eq. (63). Note that hz(f), and the associated regular field
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hﬁyz(l), includes the effect of r, in addition to the effect of

X
T** . This means that A, differs from the field k") in

Sec. IIB by terms proportional to r, (plus order-&3
differences).

Since all functions of ¢, are periodic, we can expand
them in Fourier series. For example,

hg(xh by T0) = 3 i (L T e (66)
m=-—o0o
We then have % — —im when acting on individual modes,
P
implying

.0
VY — el“ﬁ — ityw,, + Christoffel terms,  (67)
where ®,, = mQ. The label m here also serves as the
azimuthal mode number, such that

W, T = Y B (.0, T e @00 (68)

m=—oo

(n,m)
aff

(We abuse notation by using & for the coefficients in

both decompositions.)

The action of VY in Eq. (67) is identical to the action of
an ordinary covariant derivative acting on a Fourier series
S h((;;;m) (x')e~m! even though ¢, in Eq. (66) is not
equal to Qr. Analogously, when acting on a Fourier
expansion of the form (66), the leading-order linearized
Einstein tensor Gf,ly'o) is identical to the ordinary linearized
Einstein tensor acting on an ordinary Fourier series with
modes e~ Equations (64b) and (64c) therefore reduce
to the familiar form of linearized Einstein equations in the
frequency domain.

E. Summary: Two-timescale evolution with spin

Our analysis has shown that linear-in-spin effects are
easily incorporated into the two-timescale evolution and
waveform-generation scheme of Ref. [8]. That scheme can
be summarized in two conceptually simple steps7:

"There are also two simplifications that are important in
practice but not conceptually essential. First, the off-line com-
putations are done on the one-dimensional space of Q values
rather than the three-dimensional space of (Q,5M,8J) values
because we only require effects linear in M and dJ, allowing us
to compute the coefficients of those effects without specifying
values of (6M,5J). Second, by assuming the ansatzes (57)—(61),
we can convert Egs. (33) and (42)—(45) into equations for the

coefficients (/)5,0 ) (7), (/)5,1) (7), etc., which can be solved for and
stored without specifying y. The inspiral trajectory and waveform
for a given u can then be generated effectively instantly using the
stored solutions.

(1) Off-line computations. On a grid of Q values, solve the
field equations (64b) and (64c) for the mode ampli-

tudes h((;;m). From them, compute the forcing func-

tions FU'(Q), FO)(Q), FY(Q), and FY)(Q.y =0,
6M.57). These calculations only involve the coef-
ficients of the phase factors e~ ™y never the orbital
phase ¢, (t, €) itself; the orbital phase factors out of
the computations.

(2) Online simulation. Using the stored forcing func-
tions, choose a value of y and solve Egs. (33) and
(42)—(45) for the phase-space trajectory

(¢,(t.€).Q(t.€),y =0,6M(t,¢€),6J(t.€)).

From that trajectory and the mode amplitudes,

h((;;'m), generate the waveform lim, 7>, , €'

hg/t;m) (xi, jl(t» 8))e_i"’¢l’(t'8).
To incorporate the spin into this framework, we simply
add the following to the first step:
(1) * On the grid of Q values, solve the field equa-

tion (65) for the linear-in-spin contribution to the

(2.m)

mode amplitudes haﬁ . From them and hg},‘m),

compute the linear-in-spin contribution to F g ),

This can be done without specifying a value of . In Step 2,
we then simply set a freely specifiable nonzero value y,
which remains constant by virtue of Eq. (55), add the
linear-in-spin term to F’ g) and h((j;m), and proceed as above
to generate the waveform.

In principle, the spin contribution to F g) can be
computed directly from the local expression (54).
However, we can also extract it from the asymptotic fluxes
of gravitational waves. As shown in [40], the quantity =
defined in Eq. (12) (the energy or angular momentum)
satisfies a flux-balance law: neglecting higher-order spin
effects, and neglecting all other O(&?) terms in the equation
of motion, the rate of change of = due to the local force and
torque, which can be written as

DE 1 ~
<E> = E <u“uﬁ£§h§ﬂ -+ ﬂSaﬁuyv(l£§h§7>, (69)

is equal (with opposite sign and up to a factor of u’) to the
total flux of gravitational-wave energy (or angular momen-
tum) out to infinity and into the black hole.® For example,
with the caveats of what is being neglected, the rate of
change of the energy E is

The balance law holds for a generic bound orbit in Kerr
spacetime, in which case this statement applies on average, with
the average over radial and polar oscillations denoted by angle
brackets. For quasicircular, equatorial orbits, no average is
required.
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dE .
=BT+ E)=-F (70)

where £* and E™ are the gravitational-wave energy fluxes
(per unit u) to infinity and into the horizon, respectively.

The energy has the form E(J;) = Ey(Q)+
eE,(Q.x) + eEsp(Q,6M,5]) + O(&?), where the first
two terms are given by the test-body energy (24), and
the final term comes from the first-order radial self-force
term in —u®&, = f(r,)u’. Substituting this expression for
E into the balance law (70), applying the chain rule,
substituting dQ/dt = ng)) + O(e*) and E, = fqul(Q),

and rearranging for F g) ), we immediately find

3Q

(0) _
Fa (@) = i = 6y)

F1(Q). (71)

This is the standard adiabatic, flux-driven evolution of the
frequency, and F(Q) is identical to the standard leading-
order flux due to a point mass on a geodesic circular orbit of
frequency €.

We can similarly pick off the linear-in-spin, O(e?) terms
in the balance law (70). We write their contribution as

dE
— | =-F,, 72

( dt ) P “ (72)
noting that these denote coefficients of y rather than
including the linear factor of y. Since we are not neglecting
any linear-in-spin, O(¢?) terms, this formula is exact,
unlike (70). Again applying the chain rule, using
dy/dt = O(&*), and picking out the linear-in-spin terms,
we find the left-hand side of Eq. (72) evaluates to

dE)( 8E0 (1) aEZ (0)
—2) =_2F —Z) Fy). 7
<dt>x e T ), ° (73)

Substituting this into Eq. (72) and rearranging, we obtain
our desired result:

3Q
Y =6y
_ 3u(5 - 12y)
(i ey 71 09

L,
Fo (@) =

This is the most essential input for a 1PA evolution
including spin. Its main ingredient, 7, (), has the distinct
advantage of being more easily computable than the local
metric perturbation, as it is derived from the amplitudes

hfl'};m at infinity and the black hole’s horizon. It has been

calculated previously by several groups using a fixed-radius
formulation [40-42]; we review its computation using a

more efficient fixed-frequency formulation in the next
section.

Before moving to the next section, we note that although
we have not included quadratic-in-spin terms in our calcu-
lations, they would not enter into the 1PA waveform. This
follows from the fact that at O(&?), they only enter in the form
of test-body terms in the background spacetime. Such terms
are known to be purely conservative [52,53], and only
dissipative O(e?) terms can enter at 1PA (specifically,

through F g>).

V. REGGE-WHEELER-ZERILLI FORMALISM

The Regge-Wheeler-Zerilli (RWZ) formalism [54,55]
specializes the linearized Einstein field equations to per-
turbations of a Schwarzschild background spacetime. The
RWZ equations follow from a tensor spherical harmonic
decomposition of the field equations which separates the
odd and even parity perturbations. Physically speaking, the
even parity sector describes fields that are invariant under
the transformation (0, ¢) — (7 — 6, 7 + ¢) while the odd
parity sector describes fields that are changed by a factor of
—1 under the same transformation.

In the RWZ formalism, two master functions satisfying
the RWZ equations are defined in terms of the metric
perturbation amplitudes, one for the odd parity sector and
one for the even parity sector. The master functions can
then be used to reconstruct the metric perturbation ampli-
tudes and thus the metric perturbation. We make a gauge
choice in this final step: the odd parity perturbations are
fixed into the Regge-Wheeler gauge while the even parity
perturbations are fixed into the Zerilli gauge.

In this work we follow the gauge-invariant approach to
the RWZ formalism detailed in [56,57]. In the even parity
sector we use the Zerilli-Moncrief [58] master function,
while in the odd parity sector we use the Cunningham-
Price-Moncrief [59] master function.

A. The Regge-Wheeler-Zerilli equation

Both the Zerilli-Moncrief and the Cunningham-Price-
Moncrief master functions satisfy a wave equation (the
RWZ equation), which in the frequency domain is of the form

2
|:(§_r%_ Vf(r) +602:| mem(r) = Z;f’mw(r), (75)

where r, =r+2MIn(r/2M — 1) is the Schwarzschild
tortoise coordinate such that 4= = f(r), and where @ =

m& for circular orbits. The form of the potential V,(r) and
the source term Z,,,,, depends on the master function, y4,,,,,
and therefore is different in each parity sector, with the Zerilli
potential in the even sector and the Regge-Wheeler potential
in the odd sector. In each parity sector, the source term derives
from the stress-energy tensor due to a small spinning point
particle, Eq. (28), and is of the form
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mew = (Gfmwérg + Ffmwélrg + Hfmw(s/rlg)’ (76)

where as previously we use the shorthand 6, = 6(r — rq).
The functions Gy,,,, F me» and H 4,,,, depend only on rq, ¥,
p, and M’; explicit expressions for these and for the potentials
V,(r) are given in Appendix B.

B. Retarded solutions to the RWZ equations

The RWZ equation, Eq. (75), admits two linearly
independent homogeneous solutions. There is flexibility
in the particular choice of basis of homogeneous solutions.
For radlatlve (w # 0) modes we choose to work with “in”
and “up” solutions, which satisfy boundary conditions
representing radiation that is purely ingoing into the future
horizon and purely outgoing to future null infinity, respec-
tively. Using hats to signify that they are unit-normalized
homogeneous solutions, the in and up solutions therefore
have the asymptotic behavior

Rz, (r—2M) = e~i@n" (77a)

R}, (r = o0) = el (77b)
For the nonradiative (w = 0) modes we use analytic
solutions in terms of hypergeometric functions,

(I—s+1,1+s+1;1;f(r)), (78a)

i?;mO(r) = 2F1

R o(r) = oF1(I= s+ 11+ s+ 1201+ 1);2M/r),

(78b)

where s = 2 for the gravitational RWZ equations. Here, we
adopt the same notation as for the radiative modes but our
solutions are now chosen on the basis that they are regular
at the horizon and at infinity, respectively.

In this work we make use of the REGGEWHEELER
package from the Black Hole Perturbation Toolkit [60]
to obtain numerical solutions to the homogeneous RWZ
equations. We then use the method of variation of para-
meters to find the inhomogeneous solution of (75) in terms
of these homogeneous solutions,

Vemo(1) = oy (VR0 (1) + €2, (DR (1), (79)
where
L ("R (7) Z tmo (7))
C+ r) = / mw mw dl"/, 80a
fma)( ) mew f(r’) ( )

°In the nonspinning limit, 4 ,,,,, — 0. When writing the source
at fixed frequency, in the even parity sector it also turns out that
HCVeH — 0

‘mo
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1 / z,’mw(r )Zlfmw( )dr’,

Wp”mw r f(r)

and the factor of f(r) in the denominator of the integrand

comes from changing the integration variable from r, to r.
In the method of variation of parameters, the Wronskian

omo(T) = (80D)

. dR} A dR>
mea) = Rfmm dimw - R;mw % (81)

typically appears inside the integral. However, since there is
no first-derivative term in Eq. (75), by Abel’s identity the
Wronskian is a constant so it may be taken outside of the
integral and evaluated at any convenient radius.

Substituting the source, Z,,,(r), given by Eq. (76) into
Egs. (80a) and (80b), integrating by parts and paying
careful attention to the boundary terms, the inhomogeneous
solution in Eq. (79) becomes

mew(r) fma)( )®+ + R;mm(r)g:g + Xfmwérg’ (82)

where we have denoted the Heaviside step functions by
0, =0[r —rg| and ©;,

Hpme 3
. e jg

fa
a constant. In the above expressions we have introduced the
shorthand R, (r) = C},  RZ,. (r). The constant match-

ing coefficients are given by

= ®[r§2 - I"], and Xfmu) =

Ci _ 1 R?ma) ( rQ)
fme mem fQ

me(n d r f (}" )
1 & r
4 ( fmm( ))
mew di" f (r )
In addition to the delta singularity, the resulting master
function and its derivative have jump discontinuities at rg.

The expressions for the jumps are obtained by substituting
(82) and (76) into (75). Defining [[w(ra)ll me =

R;mw( ) Rgmw(rﬂ) and [[l///(rg)]]fmw = aVR;mu)(rQ)_
9 Rfmw(

Gf maw

Ffm(u
ra

ro

/

Ffmw+3f

Hypors 84
o He (84)

f&zl[[W(rQ)]]fmw
I:Ifmw
14

/
+ Gfma) + %Ffmwv (85)

fallw' (ro)lloma = (Vilre) — @ + 2(fo)* = fofd)

where quantities with the subscript € are evaluated at rq,

eg. fo=f(ro)
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Finally, obtaining the time domain master functions from
their frequency domain counterparts is trivial for the case of
circular equatorial orbits, since there is only a single
frequency per m mode and thus the time domain master
functions are given by

lef’m(t’ r) = l//fmw(r)e_iwmt' (86)

In our two-timescale expansion, this instead becomes

lIlfm(t’ I‘) = l//fmw(r)e_im¢P<t)' (87)

C. Metric reconstruction

We next obtain the actual metric perturbation sourced by
the stress-energy (28) due to a spinning point particle. This
metric perturbation has two components: a radiative piece
which can be reconstructed from the RWZ master func-
tions; and a completion piece that fully captures the mass
and angular momentum content of the perturbation.

1. Reconstruction from RWZ master functions

The radiative part of the metric perturbation can be
reconstructed by applying differential operators to the RWZ
master functions along with source terms involving the
stress-energy tensor. The metric perturbation one obtains is
in the Regge-Wheeler/Zerilli gauges. In terms of the
complex vector m! = L{O,O, 1,icscO} (with complex
conjugate m*) the Reggre-Wheeler gauge condition is
equivalent to the conditions #4,,,, =0 = h,,, = h,,, in the
even-parity sector and to the condition #,,,, = 0 in the odd-
parity sector. This reconstruction procedure is by now well-
established, and we omit the details here as they are given
in full in Refs. [5,57].

2. Metric completion at fixed frequency

The completion part of the metric perturbation can be
obtained by solving the harmonic decomposed linearized
Einstein equations directly for the # = 0 and # = 1 modes.
The previous RWZ gauge conditions do not fully fix the
gauge in this case since by definition 4,,,, = 0forZ =0, 1
and h;,, =0 = h,,, for £ = 0. Instead we fix the residual
gauge freedom by working in a “RWZ-like” gauge (see
Appendix G for further details).

The metric completion pieces for a secondary with
aligned spin in a circular orbit in a Schwarzschild back-
ground spacetime were first given in a RWZ-like gauge in
[23]. These results were derived at fixed radius, and their
contribution to the redshift was later rewritten at fixed
frequency. For completeness in Appendix G we derive the
completion pieces directly within a fixed frequency
calculation.

The key result from this derivation is that for £ = 0 the
only nonzero components of the metric perturbation for a

spin-aligned secondary in a circular orbit in a Zerilli-like
gauge are

o 2uE
hi=0 = - {®[r — rq)

rf ro —3M

" rofe [l _MLQ<’Q - 2M>]®[rg - r}}’

2uE
0 =0l = ral. (88)
Note that the expression in Ref. [23] for 4, featured a Dirac
delta that does not appear when expressed at fixed frequency.

The # =1 contribution is composed of the odd parity

m = 0 mode and the even parity m = 41 modes. The even
parity modes are pure gauge modes away from the world-
line and also do not contribute to the redshift gauge
invariant in Sec. VI. The odd parity mode does contribute
to the redshift invariant. In a Regge-Wheeler-like gauge, the
only nonzero retarded metric perturbation component for a
spin-aligned secondary in a circular orbit is

(89)

3. Evaluation on the worldline

There is a subtlety in the fixed-frequency formulation in
that when we wish to evaluate “on the worldline” (for
example, to compute the local force or Detweiler’s red-
shift), we must evaluate the metric perturbation at r = r,,.
When evaluating a given expression, we must therefore
substitute the expansion r, =rqoter, reexpand, and
truncate in order to obtain a consistent result involving
the metric perturbation and its derivatives evaluated at
r = ro. An example of this final step is given in Sec. VI
when computing Detweiler’s redshift.

D. Gravitational wave fluxes

The gravitational wave energy and angular momentum
fluxes at r, = oo (more formally, at future null infinity
and at the event horizon) are in general gauge invariant.
They also involve only dissipative contributions to the
metric perturbation and thus have the advantages of not
requiring regularization and of involving a rapidly con-
vergent sum over spherical harmonic modes.

Provided the homogeneous radial solutions I?jfmw(r) have
been normalized as unit ingoing/outgoing waves at
r, = Foo, the specific (per unit ) energy and specific
angular momentum fluxes (with respect to coordinate time ¢)
are [57]
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o) 14
Z Z Efm7 = Z Z ‘-]}m’

=2 m=—¢ =2 m=—¢
where
. 1 (£+2)!
Ef, =— C , 90
‘mw 6471'/4 (f 2), m| fma;' ( )
. m (£+2)!
3 = |Cfma)| (91)

‘mw 7@(0&—2)'

are the harmonic modes of the energy and angular momen-
tum fluxes at r, = +oo, respectively. The C%,  are those
given by Eq. (83) and also depend on x. Note that neither the
zero frequency m = 0 modes nor the conservative £ = 0 and
¢ = 1 modes contribute to the fluxes so the mode-sum starts
atf = 2.

VI. DETWEILER’S REDSHIFT INVARIANT

Detweiler’s gauge invariant redshift—z = dT =1/a'—
was generalized to the case of an (anti- )ahgned spinning
secondary in a circular orbit on a Schwarzschild back-
ground spacetime in Ref. [23]. Written in a “mixed” form in
terms of the invariant frequency variable y = M/rq and
orbital radius r, = pe + er,(y), the explicit form of the
redshift is given by

rp) + O(&%),
(92)

2y, rp.€) = 20(y) + €21 (y. 1)) + €222(y,

where we have defined

20(y) = /1 =3y, (93)

Z1(y, rp)E_ Rl(rp)’ (94)

1
——h
2T =3y

and as usual we restrict our analysis of the O(¢?) term to
spin effects only, which contribute

1

ZZ(y’rp)E_Z\/T—:Sy

R D (r,) + pry'20,hR 1 (r,)].
(95)

We have also defined the helical Killing vector k* = f‘(’t) +

Q&
(@)
Eq. (95) follows from the MPD equations in the perturbed
spacetime, and can be interpreted as ensuring the redshift is

gauge invariant through linear order in spin.

and ¥ = hgﬁk"‘kﬂ . The radial derivative term in

10my. - . . . . . L.
This expression is valid for (anti-)aligned spinning secon-
daries in a circular orbit parametrized at fixed frequency only.

From Eq. (92) we can obtain a simpler expression in
which z is fully expanded in powers of ¢ at fixed :

2(y.€) = 20(y) + e21(y) + €22(y) + O(e7).  (96)

The single-argument functions here are related to the two-
argument functions in Eq. (92) by z;(y) = z;(y, rq) and
2(y) = 22y, rq) +1,(y)0,,21(y. rq). To understand the
expansion in more detail, note that in the equations above,
hl(r,) and hgk(l)(rp) are evaluated at the field point
, but they also denote fields that are generated by a
particle at r,. We can make this explicit by writing the
metric perturbation’s dependence on the field point x* and
on the secondary body’s worldline z% as fy = Ay (2%, x%).
Substituting r, = rq + er, and expanding both arguments,
we obtain

r=r,

! (2%, 2%) = B (28, 28) + er, 0 B (26, 28)

+ er,0, W1 (28, z8) + O(€?). (97)
and h],fkw(z“/, %) = h],jk(’()(zg/, z3) + O(e).  Inspecting
Egs. (92), (94), and (95) again, and noting r, =

12 we see that the final term in Eq. (97) cancels

»)- The second
term in Eq. (97) combines with the A kk(’( term in z,(y, r,)
to give the total linear-in-spin contribution to AR?

—HXY
the term involving uyy!'/20,hR}! in z,(y, r

h 2()()(

R a ad a
25.25) = kk(l)(zg,zo)—i—r)(a,glhl,fkl(zo,zo). (98)

The two terms in hl,szm
from Eq. (29).
The explicit version of Eq. (96) is then simply

correspond to the two terms in 7%"

-3 [ehR (ro) + eh5 Y (ro),

1
Yo o3y
(99)

where we only keep the linear-in-spin second-order terms,

R2
P hyy v (ra)
0T Ty T=3y
This formula can also be deduced from Eq. (100) in

Ref. [61], which is valid for any radial perturbing force
and includes the complete order-¢> term.

(100)

VII. REGULARIZATION

A consequence of modeling a compact object by a Dirac
delta function and its derivatives is that the retarded metric
perturbation is singular on the worldline. This leads to
discontinuities in the RWZ master functions across the
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worldline, and the sum over spherical harmonic modes will
not converge there. In fact, Eq. (82) shows that for a
spinning body modeled in this way there is also a delta
singularity in the master functions on the worldline."!
These spurious divergences are not fundamental and can
be unambiguously avoided by a more careful treatment that
uses matched asymptotic expansions instead of distribu-
tions [5]. The net result of such an analysis is that at leading
order in perturbation theory (including subleading order
spin terms) we recover the point particle approximation
with distributional sources, along with a well-defined
regularization procedure that involves subtracting an appro-
priate singular field from the retarded field to produce a so-
called residual field. That is,

R __ pret S
hyy = hyy — hy,y,

(101)

where the superscripts R and S denote the regular and
singular pieces, respectively. It is this residual field that
appears in local quantities evaluated on the worldline.
The spin’s contribution to the local field A2 near the
particle was derived in Ref. [62] as a local expansion in
powers of distance from the worldline, through order
(distance)’, and in Ref. [47] through linear order in
distance. Reference [47] also defined a split into singular
and regular pieces. However, the field was expressed in a
local coordinate system; some additional work is required

to put h,‘j’f " ina practical form that can be used to calculate
h¥ . Moreover, as explained in Sec. 11, it was not shown that
the regular field defined in Ref. [47] is the one that enters
into the equations of motion.

Here, we instead adopt the Detweiler-Whiting [50]
approach to defining a singular-regular split. While it
has not been rigorously shown that the resulting regular
metric produces the correct force for a spinning body, we
again point out that Harte’s [44] choice of effective metric
has been shown to do so and is consistent with Detweiler
and Whiting’s choice through linear order in the secon-
dary’s mass and spin—to which our calculations are
restricted. The resulting approximated singular field is also
consistent with that of Ref. [47] at least through the orders
required for the calculation of Detweiler’s redshift.

A. Detweiler-Whiting singular field

In defining a singular-regular split our main criteria are
that the singular field has the same singular structure as the
retarded field in the vicinity of the secondary’s worldline,
and that it must not contribute to the equations of motion.
Detweiler and Whiting [50] have shown that in the non-
spinning case an appropriate singular field can be defined

"AS Xy =42 and HS™ =0 when parametrized at
fixed frequency, thé' delta singularity on the worldline vanishes

in the even parity master function.

in terms of a Green function decomposition, which is best
understood in the Lorenz gauge. Furthermore, the singular
field they identified has the property that when subtracted
from the retarded field, the residual regular field satisfies
the homogeneous Lorenz-gauge wave equation.

The trace-reversed Detweiler-Whiting singular field is
defined by

Sy (x) = 4 / GS (5 )T () /= d'x', (102)

where Giﬂa,ﬁ,(x, x') is the Detweiler-Whiting singular
Green function. Within a normal neighborhood the singular
Green function can be expressed in its Hadamard form
[7,50]

1
G(SI/)’(Z’/}’ = 5 [Ua/}a’ﬁ’ﬁ(g) + V(lﬁa’ﬁ’e(a)]’ (103)

where o(x,x’) is the Synge world function, and where
U(x,x") gy and V(x,x") 0y are symmetric bi-tensors.
The singular metric perturbation for a spinning body in the
Lorenz gauge can be expressed in terms of these funda-
mental bi-tensors by substituting the stress energy in
Egs. (9), (10a), and (10b), and the singular Green function
in Eq. (103) into Eq. (102). Considering the mass-
monopole and spin-dipole contributions to the singular
field separately,

RSy =1 + e

where

_S a/ 4
haﬂ(”/)()(x) = 4/ G(Slﬂa/ﬁ,(x, X\ TWNLP (x) /=g d*x'

and the mass-monopole contribution to the singular field is
well-known [50,63] and is given by

U(X, x’)aﬁa/ﬂ/u“] l/lﬁ/:|

W (x) =2 [ i
aff () M |O'},/My|

I
X _xA/R

T / /
+ 2,u/ ! V(x,2(¢)) gporpu® u’ di’. - (104)
R

Here, the shorthand [- - -]
[+*]ly—y, Where x, is the advanced point at which the
future light cone of x intersects the worldline and xj is the
retarded point at which the past light cone of x intersects
the worldline. We have also denoted the derivatives of the
Synge world function as Vo =06, and VyVyo =0yp.
The spin-dipole contribution (derived in Appendix D) is
given by

|v=x,, corresponds to [+ o_ +
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!
(75/146

- u”/VrU f’0/+U /ruK/Gr/
hzgn(x):zﬂz[( o Yapap 0 + Uaprp 4" 0
_(vp’Uaﬁa’ﬂ’+Vaﬁa’ﬁ’6p’)

YK N AP
— Uapap 0 Oyt U u@ 5P
5’)2

(05’ u |0y’ uJ/ | X=Xk

W / TV (02 (@) )y w5V de, (105)
TR

where this result is not yet specialized to a given spacetime,
spin alignment, or orbital configuration.

B. Tensor harmonic regularization parameters

The forms of Egs. (104) and (105) are not yet suitable to
subtract the singular metric perturbation from the retarded
metric perturbation on the worldline, since subtracting
infinity from infinity is not well-defined. Instead, we use
the mode-sum regularization approach originally pioneered
in the case of a scalar charged particle in Schwarzschild
spacetime in [64,65]. The idea behind the approach is that
while the mode-sum producing the retarded metric pertur-
bation is singular on the secondary body’s worldline, the
discrete modes in the sum are themselves finite. Thus, one
can subtract off the singular metric perturbation mode by
mode to leave a regular metric perturbation for which the
sum converges to a finite result.

In fact, in the mode sum approach only an approximation
to the singular metric perturbation is required. The mode
decomposed singular field can be represented as an infinite
series of so-called regularization parameters and only the
first few regularization parameters need to be included to
achieve a finite mode-sum; the inclusion of successive
regularization parameters (associated with higher-order
approximations to the singular field) only serves to speed
up the rate of convergence of the sum. In the case of the
redshift invariant for a spinning body discussed in Sec. VI,
the subtraction of the first two regularization parameters is
sufficient to render the mode-sum convergent.

In order to derive mode-sum regularization parameters,
we start from a suitable local expansion of the singular
field. High-order expansions of the singular field for a
nonspinning secondary in Schwarzschild spacetime were
produced in [63] and used to derive regularization param-
eters for various self-force quantities. That work was later
extended to Kerr spacetime [66] and then to accelerated
bodies in the scalar-field case [67]. Applying the covariant
expansion techniques developed in those earlier works to
the singular field in Egs. (104) and (105) and imposing the
condition u,S% = O(&?) lead to an approximation for the
Detweiler-Whiting singular field given by

A

s _ 4gffg€u5,u3
w = H 25 7

7
+ i 4 RN + 02, e2),

(106)

where 5 = (g, + uzu;)o®c”. Here, A is simply used as an
order counting parameter measuring distance from the
worldline. The bar over the indices represent evaluation
at X, an arbitrary point on the worldline. The leading-order
spin term, of order A2, has been independently derived
using matched asymptotic expansions [5], and the first
subleading term, of order A~!, derives purely from the mass
monopole and is already well-established [63]. The sub-
leading terms, of order A9 and A, are expressed in covariant
form here (see Appendix E) for the first time, though their
equivalents were produced in Ref. [47] in Fermi-Walker
coordinates.

The next step in deriving regularization parameters is to
perform a coordinate series expansion of Eq. (106) and to
decompose the result into a basis of spherical-harmonic
modes. As our retarded metric perturbation is decomposed
into a basis of scalar, vector, and tensor spherical harmon-
ics, to use the traditional mode-sum approach of using
scalar-harmonic regularization parameters would require us
to project our tensor harmonic modes onto a basis of scalar
spherical harmonics. To avoid this issue, Wardell and
Warburton [68] derived a tensor-harmonic mode-sum
regularization procedure and applied it to the nonspinning
case. We now follow their methodology to derive tensor-
harmonic regularization parameters for the case of a
spinning body. The process is technically involved, but
follows exactly the procedure described in Ref. [68], so we
only briefly summarize the key results here.

The final form of the tensor-harmonic-mode decom-
posed singular field is

nl =020+ D" + 1Y + 072),  (107)
where h,[fyl] and h,[,oy] are the leading two regularization
parameters. We then obtain the regular metric perturbation
via a mode-sum regularization procedure,

=" F 26+ DR~ hi). (108)
=0

At this point, it is important to point out that since
Egs. (104) and (105) are derived in the Lorenz gauge, the
regularization parameters for the components of the metric
perturbation are, in general, only suitable for self-force
calculations in the Lorenz gauge. It is possible to transform
the regularization parameters to the Regge-Wheeler and
Zerilli gauges [69], but in our case this is not necessary. We
are ultimately interested in computing the redshift invariant
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in the Lorenz gauge (and transforming to an asymptotically
flat gauge) though our retarded redshift modes are calcu-
lated in the RWZ gauge. That the RWZ retarded redshift
will be correctly regularized and produce the correct result
in the Lorenz gauge was originally discussed by Detweiler
in the nonspinning case in Sec. IV C of [21]. Much of the
same analysis holds in the spinning case as the redshift in
Eq. (99) still simply depends on hy(rg). There are
subtleties in Detweiler’s argument, which relies on the
gauge vector that transforms the RWZ gauge to the Lorenz
gauge being bounded at rg. Additionally, the argument
relies on restricting to a subset of gauges that respect the
manifest helical symmetry of the overall spacetime instead
of the most general set. With careful examination of the
gauge vector, we show that one may indeed use the RWZ
retarded redshift for the Lorenz gauge calculation (see
Appendix H)."

|

Inserting the regularization parameters for the Lorenz
gauge metric perturbation into the expression for the
redshift, Eq. (99), we arrive at a mode-sum formula for
the gauge-invariant redshift,

Z relf 2{_,’_ ) [-1] —Z[O]], (109)
=0
with regularization parameters given by
2, M2 (rg=3M)
H Z2rfl/2(r9—2M) ’ 4 2 2’
- = fozw_j £=1,  (110a)
Q
—ﬂzng;z’ =0,
Q

Wy

Z[O} N 2M’C(r522fg — 16MI"QfQA1 + 16M2A2)

B 7y (rq — 3M)(rq — 2M)1/? zM'/?

+ E(OM = 5rg)(2M — rq)] + 8A[E(2M — rq)(13M?
+ 2K (=14M3 + 16M?rq — TMr} + r3)] + 16A,M[E(11M?

Here,
IL’/Z (1 _

IC f”/z Ssin?x)72dx  and £ =
sin” x) !/ 2dx are elliptic integrals of the first

2M
and second kinds, respectively, and we have introduced

_ e _ (=) 1) (6+2)
A=z (1)(2f)+3) and A, = (2f—3)(2f—(1)(2f+3)(2f+5)'

VIII. NUMERICAL RESULTS

Our numerical results naturally divide into three sec-
tions. In Sec. VIII A we demonstrate the flux balance law,
showing agreement between the asymptotic gravitational
wave energy fluxes and the local rate of change of energy.
In Sec. VIII B we give results for the Detweiler’s redshift
invariant. In Sec. VIIIC we produce gravitational wave-
forms that are complete at adiabatic order and include
postadiabatic spin effects. Unless otherwise stated, all
numerical results are given adimensionalized in M, p,
and y.

“In general, it is not the case that one may use the RWZ
retarded redshift modes of a generic gauge invariant quantity in
the Lorenz gauge regularization scheme. Likewise, it is not the
case that one may use the retarded redshift modes computed in
any gauge with the Lorenz gauge regularization procedure—our
reasoning in Appendix H only holds for gauges which are related
to the Lorenz gauge by a gauge vector that is bounded at rq (or
bounded at rq after cancellations of singular expressions as we
lay out in the appendix).

rgz(rg —3M)(rq —2M)
—9Mrq +2r3)

73 {M[2K(2rq —3M)(4M — rq)

—9Mrg + 2r3) —2K(5M? — 5Mrq + r3)]}. (110b)

|
A. Flux balance

In Table I, we reproduce the flux balance law results of [40]
at fixed frequency, demonstrating Eq. (70) by comparing the
asymptotic energy flux at r, = oo with the rate of change of
local energy at the worldline. dE/dr, was calculated by
reconstructing the metric and using Eq. (69), reading off the
linear-in-spin part. Although the local (dissipative) expres-
sion in Eq. (69) is written in terms of the regularized metric
perturbation, the singular field does not contribute, and in this
instance one may use the retarded metric without a regu-
larization procedure. In all cases we have summed up to
Zmax = 30 and have set the tolerances in our numerical
integration of the retarded field equations such that the local
rate of change of energy is accurate in all digits shown. We
find that the flux balance law is satisfied to all significant
digits in our calculation, with the asymptotic fluxes agreeing
with the local rate of change of energy to an absolute
accuracy of 10728 or better.

B. Detweiler’s redshift invariant

In Table II, we give results for Detweiler’s redshift,
which is a conservative gauge invariant quantity and
requires regularization. While in Sec. VII B we have only
derived the first two regularization parameters analytically,
we can improve the convergence of the mode-sum by
fitting for higher regularization parameters (see Fig. 1)
whose successive ¢ dependence is well-known [68]. We
can confidently subtract the fitted parameters since we
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TABLE I. Total nonspin energy flux (Eo), linear-in-spin contributions to the asymptotic energy flux through the event horizon (E;)
and future null infinity (E;r), local rate of change of energy, dE/dr,, and relative error in the linear-in-spin flux balance,

A)'fl =|1- % , as a function of the frequency of the circular orbit (represented by y).

y E, E; E} dE/dz, A

0.2 2.79273701868 x 1073 3.77193403195 x 1077 —6.10406021099 x 10™*  —9.64540266941 x 10~* 1.210 x 10728
0.18 1.46844806236 x 1073 7.60541476292 x 108 —2.60585846715 x 10~*  —3.84100734136 x 10~* 1.029 x 10728
0.16 746754277822 x 10~* 1.08980506901 x 10~8 —1.05064301974 x 10~*  —1.45682859427 x 10~* 2.6 x 1073
0.14  3.58765894169 x 10~* 8.06926440798 x 10710 —3.89407471318 x 1075 —5.11306464414 x 1073 1.7713 x 10728
0.12 1.58228153292 x 10~*  —6.53905197867 x 10~11  —1.28067951208 x 10>  —1.60085756392 x 107> 1.144 x 107%°
0.1 6.15163167846 x 107> —2.66993570598 x 10~'!  —3.54917559346 x 107¢ —4.24210812069 x 10~° 4.627 x 1072
0.09  3.59063362311 x 1075 —1.01476993750 x 10~'"1  —1.71031987628 x 10~° —2.00178988091 x 10~¢ 4.20 % 10730
0.08 1.97579085327 x 10> —3.10096178158 x 10712 —7.62066085171 x 107 —8.74153307983 x 107  4.4989 x 10~%°
0.07 1.00797672995 x 10> —7.55072229184 x 10~13  —3.07211805328 x 1077 —3.45641134719 x 107 1.45815 x 1028
0.06  4.65287054407 x 107 —1.40588119661 x 10713  —1.08551794346 x 10~7  —1.19875558331 x 10~7 1.11333 x 10~28
0.05 1.87147091142 x 10°°  —1.85060798132 x 10~'*  —3.20089991680 x 1078  —3.47186542918 x 1078 4.890 x 10730
0.04  6.15791960326 x 1077 —1.49663127140 x 10~  —7.25545365705 x 107  —7.73434118125 x 10 2.074 x 107%
0.03  1.47265886605 x 1077 —5.67900033298 x 10~'7  —1.08380957000 x 10™° —1.13614119765 x 10~° 4.583 x 10730
0.02 196245785614 x 1078  —5.49135672040 x 1071 —7.55124235208 x 10~ —7.78851185422 x 10~ 3.2001 x 1072
0.015 4.69335489271 x 10~ —2.02390121354 x 1072 —1.14903370686 x 10~'! —1.17579357813 x 10~''  1.0545 x 10728
0.01  6.23820347340 x 10710 —1.91947958972 x 10722 —8.14067891602 x 10~13 —8.26560712092 x 10~13 9.494 x 10730
TABLE II.  Numerical results for the nonspin (z;) and the linear-in-spin (z,,)) contributions to the redshift invariant. The error on z;

and z,(,) are quantified by Al and A?m , respectively, which correspond to the error introduced for truncating the mode-sum at Z,,,. In

our calculations the truncation error was always greater than the numerical erro—we summed up to ¢y, = 40 and included the first
seven regularization parameters.

ro 4 2(y) Al N

4 3.0467428778824171300 x 10! —1.4586300570011681310 x 1072 —6.421372315 x 10! 1.040868132 x 1010
5 1.8666094967945293038 x 10~!  —1.4359997170303332565 x 107> —8.501492777 x 1013 6.285718934 x 10~!3
6 1.4801375464498224547 x 107! 1.2778851458222201614 x 10~ —8.494359409 x 10~*  4.205017886 x 10~
7 1.2619858710413698659 x 10~!  3.2895525026652979198 x 10~ —1.486953002 x 10~'*  6.440450797 x 10~1
8 1.1107483972099400145 x 10~!  3.0130832079882955894 x 10™*  —2.789239601 x 107! 1.538046174 x 101>
9 9.9573739278604293268 x 1072 2.4150088443239778085 x 10™*  —7.542900971 x 10717 4.914937959 x 10~1¢
10 9.0385592074434347608 x 1072 1.8779394202853647999 x 10~* 5.560967658 x 10716 1.940250420 x 10716
11 8.2817927552432716594 x 1072 1.4571779302612887645 x 10~* 6.457897963 x 10716 8.995489317 x 10~7
12 7.6451679289700237541 x 1072 1.1390103980806758238 x 10~ 5.909892489 x 10~16 4.722720931 x 10~
13 7.1010239380097475857 x 1072 8.9977582894836949305 x 1073 5.057588184 x 10~'6 2.730507042 x 10~7
14 6.6300106250377251019 x 1072 7.1894261756329048211 x 107> 4235268423 x 10710 1.701375794 x 107V
15 6.2180255400520542626 x 1072 5.8095022692680346999 x 103 3.528715259 x 10~'6 1.123780963 x 10717
16 5.8544734161342785070 x 1072 4.7448661525134242815 x 1073 2.945648894 x 10710 7.770696488 x 1018
17 5.5312035461636850090 x 1072 3.9141832229418841873 x 1073 2.471167798 x 10716 5.572694481 x 10718
18 5.2418249523532483206 x 1072 3.2588897056415252246 x 107> 2.086117042 x 10710 4.115745383 x 10~'8
19 4.9812462417061066657 x 1072 2.7365239308320767569 x 107> 1.772872625 x 10710 3.113963219 x 10~'8
20 4.7453560812119756566 x 107> 2.3160083573548132458 x 107> 1.516776702 x 10~'° 2403886377 x 10718
25 3.8367861668465180133 x 1072 1.1094904818711662769 x 107> 7.613023266 x 10717 8.160586074 x 10~1°
30 3.2200482214638454294 x 1072 6.0251503215045887450 x 107° 4.312790601 x 10~7 3.486595670 x 10~1°
35 2.7740018849300996376 x 1072 3.5788991032583934219 x 107° 2.666889209 x 10717 1.718004154 x 1071
40 2.4364201607676976872 x 1072 2.2730939533525315130 x 107° 1.759954961 x 10~V 9.349372617 x 10720
45 2.1720433941951952235 x 1072 1.5205343987439192133 x 10~° 1.220841693 x 1017 5.478475527 x 10720
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Al

A2

1.0599790877771606396 x 10~°
7.6418367844689967876 x 1077
5.6652220737162069625 x 1077
4.2998668462990765279 x 1077
3.3298551248965351373 x 1077
2.6238746624051624458 x 1077
2.0991759354724383914 x 1077
1.7019819208348517223 x 107’
1.3963904283654329585 x 1077
1.1578567408369181383 x 1077

TABLE II. (Continued)

ro <1 22(y)
50 1.9593977138759696222 x 1072
55 1.7846580120368287542 x 1072
60 1.6385213628045196549 x 1072
65 1.5144980956649394828 x 1072
70 1.4079232946219360584 x 1072
75 1.3153576784133680096 x 1072
80 1.2342099554180064613 x 1072
85 1.1624906883132949330 x 1072
90 1.0986471753831045984 x 1072
95 1.0414498580229646206 x 1072
100 9.8991242481267771860 x 1073

9.6924289089700379549 x 1078

8.808541368 x 10~'8
6.560715313 x 10~!8
5.016155327 x 1018
3.920290881 x 10~'8
3.121481287 x 10718
2.525601325 x 1018
2.072137298 x 10~'8
1.720986920 x 10~!8
1.444862734 x 10~'8
1.224760538 x 10~!8
1.047169541 x 10718

3.400305245 x 1020
2.210127995 x 10720
1.492031137 x 10720
1.039710466 x 10720
7.443015862 x 102!
5.453231584 x 102!
4.076764659 x 102!
3.102161030 x 102!
2.397815109 x 102!
1.879447870 x 102!
1.491706402 x 102!

know their contribution formally sums to zero in the
complete mode-sum.

Strong-field values of z; were computed in Refs. [69,70]
[although both give the values for —(u’)?z; and truncate the
mode-sum at a larger £,,.]; these agree with our non-
spinning result to within the errors given. Strong-field
values of the linear-in-spin contribution to the redshift,
Za(y)» have not been previously computed, although a post-
Newtonian expansion was produced in Ref. [23]. In Fig. 2,
we compare our numerical results for z,() against the
equivalent post-Newtonian series from Ref. [23]. As
expected, the absolute error between our fully relativistic
numerical results and the PN expanded redshift is higher
for large values of y (in the strong field) where the PN
expansion breaks down. The error improves significantly
further toward the weak field and improves again when

T T T T — T T

10_12 I M_
10716 | © 2" oy q
L e © 4

Z2(x) ©

= o
E 20 114] ®oo o
N 10720 @ 220 °s5 1
o
Hoa z200® °°°°o
0,
10721 v 220® %0, .
o
H o zap/M® oo
C4 B e —
107 "' . i . .
5 10 20

FIG. 1. An example of the mode-sum regularization procedure
used to calculate the linear-in-spin part of the redshift, 22(y)» for
rq = 100M. The data points show the absolute value of the
successively regularized £ modes of z,(,) when using different
numbers of regularization parameters; the joined lines are the
fitted regularization parameters. The leading behavior in # of the
regularized z,(,) modes goes as the next leading regularization
parameter that was not included in the regularization scheme.
Hence the joined lines overlay the plotted points and qualitatively
verify the fitted parameters.

adding higher-order terms in the PN expansion. Toward the
weak field, the leading contribution to the residual goes as
the next (unknown) PN term beyond the order where the
series was truncated. In Fig. 2, the solid green line
representing the y’- term and the solid red line representing
the y* term do not immediately line up with the residuals
to within the errors on the numerical redshift (e.g., as listed
in the last column of Table II). The difference between the
PN series, which is valid for small values of y, and the
numerical redshift is greater than the error on the numerical
calculation until the range of y values are sufficiently small.

C. Waveforms

To produce a gravitational waveform incorporating
effects from a spinning secondary, we follow the two-
timescale evolution and waveform-generation procedure
summarized in Sec. IV E. On a grid of Q values, we solve

0.1F™

10°f

10—11 L

Az

10—16 L

10—21 L

-26 |

0001 0005 0.010 0.050 0.100

y
FIG. 2. The absolute error Azy(,) = |25(,) — ng)| between our
numerical results and the PN series on a logarithmic scale as a
function of y. Each set of plot markers shows the comparison
including increasingly high-order PN terms, with the highest
included order in y labeled in the plot legend. The joined lines
give the individual y>=, y7, y8>, and y*- terms in the PN series;
toward the weak field these approach the leading contributions to
the residuals, Azz(l), when the PN series is truncated to the

preceding order.
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the RWZ equations for the master functions and calculate
Cz,,,(Q) in doing so. From the C£,  values we obtain the
asymptotic energy fluxes via Eq. (90) (summing to some
¢ max determined by the accuracy requirements) and in turn

produce the forcing functions, F (Q) and F (Q) via
Egs. (71) and (74). We then fix the value of py and solve for
the orbital phase ¢, (¢) and frequency (7).

To obtain a waveform, we note that the gravitational
wave strain in the RWZ formalism is given by [5]

=> Z woe — i) Y, (0.9).
= 2m——f

(111)

where the equality holds in the limit » — co and the

constant D = /(£ —1)¢(¢ +1)(¢ +2). The function
Y (0, @) is the spin-weight s = —2 spherical harmonic.

Conveniently, y/;‘:s"/ odd _, crieven/odd y=img, (1)

defining h = r(h, —
Eq. (111) we can write

h— i; (1) Y (0. ),

=2 m—

asr — 00, SO
hy) and exphcrtly taking the limit in

(112)

where the spherical harmonic modes of the waveform are
given by

even,

D+ e—im (1) m
hfm()_{ 2C (1)) £+ (113)

Dt (Q)e ™0 £+m  odd.

In this section we have used tildes to indicate quantities
that have been calculated for equal mass binaries with
e = 1. In Figs. 3 and 4 we plot the (¢, m) = (2,2) mode of
the waveform for mass ratio 1:1 and 1:10° binaries,
respectively. Figures 5 and 6 demonstrate the impact of
the spin on the waveform’s phase. In our case, where we
have neglected all postadiabatic effects aside from the

Re[hy2]

0 500 1000 1500 2000 2500 3000

t
FIG. 3. Comparison of the (#,m) = (2,2) mode of the wave-
form with y =1 (blue curve) and y = 0 (orange curve) for an

equal mass binary. Both inspirals begin at the same orbital
frequency (ro = 20M) and phase before evolving.

107, x=0.9
1075, x=0

I3
M
L
9

5.x10°%} —

Reflhy ]
o

-5.x10°°

1.5x108 2.0x 108 25x108

t

0 5.0x 107 1.0x108

FIG. 4. Comparison as in Fig. 3 but for a binary with a more
realistic EMRI mass ratio of 1:103. The black line is actually a
very thin box representing the location of the smaller inset plot.

— y=1
50 X
40
S
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10
0 1 1 1 n
0.010 0.015 0.020 0.025 0.030
Q
FIG.5. Comparison of the waveform phase, ¢, as a function of

orbital frequency with y =1 (blue curve) and y = 0 (orange
curve) for an equal mass binary.

10 50 100 500 1000

t
FIG. 6. Phase difference (in radians) between the waveform
with a spinning secondary and with a nonspinning secondary,

Ag, for y =1 so that the y-axis may be simply rescaled to a
configuration with an arbitrary value of y.

secondary’s spin, the waveform phase may be written as

B, (1) = do(t) + 0, (1), where g(r) =L (er) and
)(451() ¢E,1)(et) from Eq. (57). We have defined

Ap = ¢y — gbp ;(gl;l Since the subleading contribution

to the phase goes as &, d’x ¢, and the leading phase
difference is independent of the mass ratio. Thus Fig. 6 can
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be rescaled for any mass ratio and y by simply multiplying

A¢ by y and 7 by 7!, giving the error to expect on the
waveform’s phase accumulated over time if neglecting the
spin of the secondary. This highlights the importance of
including the secondary’s spin in waveform models, as a
key requirement to test fundamental physics with EMRI
waveforms is to accurately track the phase over the full
inspiral.

IX. CONCLUSIONS

We have performed calculations of the leading-order
self-force including the subleading linear-in-spin effects in
the two-timescale expansion and demonstrated how these
spin effects can be included in 1PA waveforms. In doing so
we have produced waveforms complete at adiabatic order
and including the spin’s 1PA contribution. We have
developed a fixed frequency approach for solving the
perturbation equations which significantly improves the
computational efficiency of linear-in-spin self-force quan-
tities, including the asymptotic gravitational wave fluxes
and the metric perturbation. We provided the first fully
relativistic regularization scheme to treat the singular field
associated with a spinning secondary body, using a first
principles approach—having derived the spin-dipole con-
tributions to the Detweiler-Whiting singular field and
produced a covariant expansion of the approximated field.
We have performed the first fully relativistic calculations
of a conservative self-force quantity with a spinning
secondary—having computed the redshift invariant and
checked agreement with the equivalent PN expansion.

There are several obvious future extensions to this work.
First, we could repeat our calculations for more general
EMRI configurations, allowing for eccentric equatorial or
generic motion of the secondary body and performing the

computations in a Kerr background spacetime to include
the spin of the primary. Further generalization beyond
equatorial motion requires treatment of the secondary
body’s precessing spin (instead of the spin aligned/anti-
aligned case). Now that the regularization scheme has been
developed for a spinning body, we could extend current
calculations of other gauge invariants such as the spin
precession invariant to include the spin of the secondary.
We could also study more extended body effects, beginning
with including the secondary’s quadrupole moment in our
computations. Finally, as progress on 2SF calculations
continue, it would be natural to compute complete 1PA
waveforms, including all the conservative 1SF and dissipa-
tive 2SF effects as well as the spin effects highlighted in this
work. Aside from their immediate application for LISA,
complete 1 PA waveforms could be compared with numerical
relativity counterparts and used to establish the domain of
validity of perturbation theory in less extreme mass ratios.
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APPENDIX A: STRESS-ENERGY TENSOR FOR A
POINT MASS WITH ALIGNED SPIN ON A
CIRCULAR ORBIT

The coefficients appearing in Eq. (26) are given
explicitly by

K =u', K = u?, K = (u?)?/ut,
3/2

K = -M / Kt¢ — K¢t _ M

! —2M —3M’ ! 5/2

ro(re Wra o Vrq—3M

e M2 (rg = 2M)\/rq =3M K M"2(rg —2M)
Ktr_K”_\/rQ—?)M Kr¢ K¢r 1‘41/2 rQ—3M

2 — B2 7 3/2 ’ 2 2 2)’3 ’

ro Q

Ko M” K — gt —__re=M) gt — M (ra=2M) (A1)

’ Vre —3M } ’ 212 rq —3M 3 r?p/rg—3M

APPENDIX B: SOURCES FOR THE RWZ EQUATIONS AT FIXED FREQUENCY

1. Odd parity
The Cunningham-Price-Moncrief master function is defined in [56] and satisfies the RWZ equation with the Regge-

Wheeler potential:
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6—M] (B1)

Vodd5§|:f(f+l)_ p

For a spin-aligned secondary in a circular equatorial orbit parametrized at fixed frequency, the frequency domain source
(76) in the odd parity sector has the following coefficients of the distributional functions:

H2W —% 1 —i—f\/(f— m)(1+ €+ m)Y gmin) G,O),

Flnw = ;;['Lf% o ﬁgM\/(f —m)(1+ & +m)Y 1) (go>

F0 _ _ if(rfzﬁg; (M2 + 3ng - r3) - ZQ3M¢(,; —m)(1+ ¢ +m)Y (1) G : 0),
Gl = _z(jiff{?m ro ﬁ43M\/(f —m)(L £ m)Y ey (;’O>’

G _ 471'/42)(M(n;z/’1’§:— +1 )(3?2— 3m>)M) — 293M\/(f —m)(1+£€+m)Y i) (g,()),

where A= (¢—1)(£+2)/2 and we have separated the spin independent and linear-in-spin contributions as

- 2 = 2 = 2
Ffmw = Flfma) + Ff(n)q(r)m Gfmw = Gl"mw +G ) and Hfmw = Hf%?u‘

‘ma’

2. Even parity
The Zerilli-Moncrief master function is defined in [56] and satisfies the RWZ equation with the Zerilli potential:

f 5 3M\ | 18M? M
=—— |2 14+ — — 1. B2
Veven rzAQ[/l Atlt——)+—— {4+ (B2)

For a spin-aligned secondary in a circular equatorial orbit parametrized at fixed frequency, the frequency domain source
(76) in the even parity sector has the following coefficients of the distributional functions:

Hyl, =0,

Fl _ 877.'/,{7"9‘]‘?2 ro Y EO

o Qrg +3MYA+ 1)\ rq =3M" \2"" )

2 8’y fa(re —3M) M n M (=TM? = Mro + 13)

Ff%:_(zrﬁ;u)g(zul)rg i en(30) (B0 =) 7 ralt=m?) + = ),
8rpfq ro ps

Gl = Yo 2.0 ) (3BM3(5 + (3/4)(m? = 1)) + 2M%ro (24 + 3m> = 9

oo = G D)R0M + )t \ ra =m0 BMIG + (3/4)(m™ = 1)) +2Mrg 24+ 3m” =9)

+ AMry(A+m? —4) =24+ 1)r}),

2
2(z) 8muy M m 2 2 >
G =— \/ Yom|=.0)(B3Am*Mro(2M? +3Mrq —
me = A+ D)rhBM + arg)? \[rq —3M° " (2 ) ( ra(2M” +3Mrg = 15)

+ (AM = Q) (9(m* = 1)M? = 3AM(M? + Mrg + r}) + 21y (M — rg))
+ Pro(=m*ro(2M?* — 4Mrg + 1r3) +4M> — 10M?rg — 2Mr2, + 13)).
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APPENDIX C: FIXED-RADIUS APPROACHES TO
NUMERICAL RWZ SOLUTIONS

Earlier works that parametrize the secondary body at
fixed radius extract out the linear-in-spin terms from
numerical results by repeating the calculations for multiple
values of y and fitting a polynomial to the results [40,41].
This method is undesirable as it is very computationally
expensive. It is also possible to linearize the perturbation
equations themselves and solve a coupled system with an
extended source (as in Ref. [42]). That way, numerical
results relying on the integration of the perturbation
equations may be obtained directly to linear order in spin.
In the RWZ formalism, the linearized perturbation equa-
tions in the frequency domain are

£Ol)’/(}ma)(r) = Z(}mw(r)’ (Cl)

['Ol//);mm(r) = Z)f{’ma)(r) - 20)060)(1//2"1”)(7”), (Cz)

where we have defined the RWZ “nonspin” operator as

2
E()E |:a

P Ve(r) + a)%]

and separated the spin independent and linear-in-spin terms

as Yeno(r) = l//(}mw(l") + l//;mw(r)’ Zma(r) = Z(}mw(}")—l—
Z%,,(r), and @ = wy + ,. Equation (C1) is the usual
RWZ equation for a nonspinning secondary body.
Equation (C2) for the linear-in-spin master function has
the same differential operator as Eq. (C1) but is sourced by
both the compact spin source Z%, (r) and an extended
source term from the coupling to w% (7).

In general, we wish to avoid modeling with an extended
source. This becomes especially important when general-
izing to eccentric (or more generic) motion of the secondary
and using the method of extended homogeneous solutions
(EHS) to solve the perturbation equations [57,72] instead of
regular variation of parameters. Motivated by this, we split

the extended and compact parts of Eq. (C1) into two
|

separate equations—by linearity we can write y%, (r) =
LN () + ke (). Acting on the extended equation

again, having identified the RWZ operator as a “partial
annihilator” [73], we obtain

,Col//);;lw(r) = Z)z;mw(r)’ (C3)
Lo (1) = =200, (7). (C4)

where now the entire system involves only compact sources
and we have decoupled the equations. The trade-off is
having to solve the fourth-order Eq. (C4) which has four
homogeneous solutions to find numerically. Conveniently,
only two new homogeneous solutions are required in
practice as the other two are shared with Eq. (C1)—the
in and up solutions. The two new homogeneous solutions
to Eq. (C4) can be considered the extended in and up
solutions, and the boundary conditions are similarly posed
by considering their asymptotic behavior

k?}iﬁ_(r* — —00) ~r,e”" ", (Cs)
IAQJ);;Z);JF(r* — 00) ~ 1,0, (C6)

Once all the homogeneous solutions are obtained numeri-
cally, the general solutions for the spin-linearized master
functions are easily obtained via standard variation of
parameters. The method can be extended to eccentric orbits
using EHS.

However, the issue of linearizing numerical quantities
such as the master functions is entirely avoided with the
fixed frequency parametrization where @, = 0. Then, the
homogeneous RWZ equation is independent of spin and
may be solved in the same way as for a nonspinning
secondary. The linearized inhomogeneous solution for the
retarded master function is obtained analytically from the
homogeneous solutions as described in Sec. VB in
Egs. (82) and (83)—in practice this is equivalent to solving

Egs. (C1) and (C3) with y%* (r) = 0.

maw

APPENDIX D: DERIVATION OF THE SPIN-DIPOLE SINGULAR FIELD

Substituting the stress energy in Eq. (10b) and the singular Green function in Eq. (103) into Eq. (102),

- 54 /_ d 1= A3AN A
h(sl/gl)(x)24/G2ﬁdﬁ/(x’X’)V// </df/7{x Z(,T )]L‘(a Sﬂ)p)\/—_g’d“f

-9

=2 / 5[0] [v/)/ Uaﬁo/ﬁ/ + Vaﬁa,ﬂ,gp,]u((ljS'/f’)//dT/ -2 / 5/ {0} Uaﬁa’ﬁ’ap’u(dsv/}/)h/drl ) / 9[0] v/}l Vaﬁa/ﬁ/u((l/sﬁl>/)/d7/s

(D1)

where in this context §[o] = §[o(x, z(7’))]. Considering the three different distributional integrals separately, the first

integral is
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St — S|t — 1= V’Uaa” Vaa” / (a’Sﬂ’)p’
—2/ ( [T 1/-A] + [T AL/-R]> (vp'Uaﬂa’ﬂ/ + Vaﬂa/ﬂ/dp/)u(a SPV a4y = =2 [< o Dapap + Vop ﬂap)u :|

o, u”| o, u”| o, u |

El

I
X —XA/R

(D2)

where §[c] was rewritten using Eq. (F3), the fact that the two simple roots of o(x, z(7')) along the worldline are x4 /xg, and
that -4 o(x, z(¢')) = o, u”". The second integral is

8o — 4] + 8¢ — 1] (8] = 1] + [’ —Ta))o 1" 1
(.

U gy 00w\ PP dt!
o logi® oy (o512 ) ol %

, (D3)

J_
)C*XA/R

ﬂ/ ! 4 / iy l/, s ] ) / /o]
_ 2[(14 Vo Uupap0y + Ugpuptt” 6,0, B U apat p 0 Oy ‘u )u(“'S’ ,)p,]
g 5 52
loju” |oyu lou”|(c5u®)

where the §'[o] has been rewritten using Eq. (F4). Also, although strictly %a(x, (7)) = o yuu’ + d", o, Eq. (2a) gives

that “Z‘”, = O(e) and thus four-acceleration can be neglected in terms that are already linear order in spin. Similarly, Eq. (2b)

implies that S* may be treated as a constant to first order in spin. Combining everything, the spin-dipole contribution to the
Detweiler-Whiting singular field is

' K
Ijls ) (x) =2 |: (u/’ V/JI U(l/)'a’ﬂ’d/)' + Uaﬂ(f/}'u Oy

af 5 - (vp’ Uaﬂa’[i’ + Va/}a’ﬂ’ 6/)’)
Os U

Uaﬂa’ﬁ’ Op'Opy! u'u > u(a/gﬁ/>p/:|
(o5u”)? o1’ |

| 2 / YV 2oy S e (D4)
X :xA/R
APPENDIX E: COVARIANT EXPANSION OF THE DETWEILER-WHITING SINGULAR FIELD

We have already given the expression for the covariant expansion of the Detweiler-Whiting singular field to linear order
in spin, for a particle under the pole-dipole approximation;

2 49595?(633)7& u 4g;,g_pu{,uﬂ
1253 15

hS, = + 150 4+ IR + 0(2).

The second two terms are given explicitly by
rso)_ Gl
hﬂf/ ) = _ﬂzT [31" 4(29}/ Rﬂ)uéu + zu(éRﬁ)yt_iu + 4”(&Rﬁ)u73>

- (3F2 - 3‘2)M(ézg[_)’);’/0-5Ru¢ma + 75 (29}7(&’4/_})R56u0 - 6g}7(&R/)’)uurr 6”( R[)’)yurf )

+ §4(6g7(&R/_})m—$r7 - 29}7(&”[3’)R5uu6 + 6”(?1R/_1;7{_3rf 6Ray/}u —6R —3u, u/iRyéua)

au/f’y
+ 7‘2§2(2u(&gﬁ)?R5uua + 3”(’1“/_3R73”‘7)] (El)

and

_ 2474,

s(1 9 = S
hﬂlg ) =Hu 3”3 Kr - 32>Ruauo'uauﬂ 6rs R“”“ auﬁ —6S4R5¢uﬁu]
zgzgll—/}g}_,(_s <2(52 <2
+u T[S (V +5 )(_49}7(&R5)u5u;u_4u(&Rﬁ)75u;u_6u(&Rﬁ)u75;u) r R}/éuauu(luﬂ+3s ( aypu ,SJFR&”:ET’;S)

+5 (2gy(aRﬂ)u5z7 T zu(aRﬂ)yéo- c 3Rayﬂu 05— 3Rauﬂy 05— 4gy(aRﬂ)uuzr u 4u(aRﬂ)yua u )
+ 75 (297(&( Budu;c — 2(Rﬁ)u56;u) + 2”(()( Bydue — 2<Rﬁ)}756;u> + 3(R&7Bu;u +R5{uﬁ}7;u>65 + 3R75uo‘;uu&uﬁ)]‘ (EZ)

Here indices labeled with a ¢ or u are contracted with ¢” or u“, respectively. For example, R, ;., = Rz ;;u’_la/_’ u'c®.
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APPENDIX F: USEFUL PROPERTIES OF THE
DIRAC DELTA DISTRIBUTION

As this work involves derivatives of the Dirac delta, the
idea of the derivative must be extended to these distribu-
tional functions. By integrating against a test function, one
can show that the derivative of the Dirac delta satisfies the

property
f)8x—a] = f(a)dx —a] - f(a)olx —a].  (F1)

Properties of higher derivatives of the delta distribution
may be found through the direct differentiation of
equation (F1), such that the second derivative of the delta
distribution satisfies

f(x)8"[x — a] = f(a)d"[x - a] = 2f'(a)d'[x — ]
+ f"(a)d[x - al. (F2)

The composition of a Dirac delta distribution with a
smooth and continuously differentiable function, g(x),
satisfies

dloto] = 355 (F3)

where x; are the roots of g(x) and it is assumed that
the roots are simple and ¢(x;) # 0. Differentiating
equation (F3) and making use of (F1) yields the equivalent
property for the composition of the derivative of the Dirac
delta function with a function g(x),

5[x - xi]g”(xi)
Tl ) ) (F4)

5/[9()()} _ Z( 6/[X - xi}

i |9'(xi)‘9/(xi)

As before it is assumed that the roots are simple

and ¢ (x;) # 0.

APPENDIX G: MONOPOLE METRIC
COMPLETION IN THE ZERILLI GAUGE

In this appendix we summarize the derivation of the
¢ = 0 perturbation presented in Sec. V C. Solving the
linearized and mode decomposed Einstein field equations
directly for # = 0 in a Zerilli-like gauge, we obtain the two
nonzero monopole metric perturbation components for an
aligned-spin secondary in a circular equatorial orbit in
Schwarzschild spacetime:

_ 21 KY8lr —r,) N 2uE®[r — 1, Lo

h SR
" rf TR

(G1)

2UE®|r—r,| r r,—r 2r, —3M
= a [ p] / L + pyQ L
r rpfp rf rp—2M
c
+c2f+71, (G2)

where ¢ and ¢, are constants of integration. Note that these
expressions are valid in either the fixed frequency or fixed
radius parametrization by substituting the corresponding £
and r, of either parametrization and expanding through
linear order in spin.

By ‘“Zerilli-like” gauge, we mean a gauge in which the
trace of the metric perturbation on the unit two-sphere
vanishes; K = 1/(2r2)(h% + sin> 0h??) = 0. ¢, character-
izes the residual freedom within this gauge after imposing
the additional gauge conditions A~ = 9,h/;* = 0. To see
this, first note that a monopole gauge vector has the form
gy ={&,£,0,0}. Under a gauge transformation, K
changes by 6:K = —%faf,‘, and thus fixing K =0 fixes
£,. Requiring the monopole to be static requires fixing
h,, = 0 which changes as J:h,, = —0,&, + fz—"}’f, under a

gauge transformation, limiting &, to be of the form
& = g(1)f(r). Finally as 6:h,, = —20,¢,, a static monopole
requires that the function g(r) is of the form g(r) = —4¢
where C is a constant. Then, 6:h, = Cf(r) and with the
identification C = ¢,, the remaining gauge freedom is
captured by the choice of ¢, in (G2).

The constant c¢; is not a gauge freedom—we have set
¢, = 0 to ensure the monopole perturbation has the correct
mass (it is a nice addition that this also ensures the
monopole is regular at the horizon). By correct mass, we
mean that every sphere of radius r < r,, contains a mass M;
for ¢; # 0, the mass enclosed by such spheres is instead
M + ¢, /2, meaning the background mass M differs from
the black hole’s physical mass M + ¢; /2. Since the mass is
gauge invariant [74], it is independent of c,.

The asymptotic behavior of the metric perturbation is

. 2UE 2r, —3M
rlfiih”*cz_rpfp {I_W M|
limh,, = 0,

r—oo

and requiring asymptotic flatness restricts our choice to a
unique ¢,:

(G3)

2uE 2r, —3M
cy = a {1—/4 LQ}

_rpfp )(rp—ZM

Selecting the gauge (i.e., ¢,) to impose asymptotic
flatness and expanding the monopole to linear order in
spin with r, = rq + r,, we obtain the monopole listed in
Eq. (88). In this form we have the retarded monopole in a
Zerilli-like gauge that is static, well-behaved at the horizon,
asymptotically flat, and has the correct mass-energy. The
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linear-in-spin discontinuity is a result of the spin-dipole
contribution to the Detweiler-Whiting singular field; the
regularized monopole is continuous. We have opted to use
this particular monopole in our numerical calculations so
that we may check our redshift results with those of
Ref. [23], who first derived and used this monopole for
a spinning secondary.

APPENDIX H: ON USING THE RETARDED
REDSHIFT MODES FROM THE RWZ GAUGE IN
THE LORENZ GAUGE REG

In this appendix we show that RWZ retarded field modes,
together with Lorenz-gauge regularization parameters, may
be used to calculate the redshift in the Lorenz gauge.

The retarded metric perturbation in the Lorenz gauge
sourced by the mass monopole and spin-dipole stress
energy has the form [40]

hem = e +hi ey . (H1)
The retarded metric perturbation in the RWZ gauges are
reconstructed from differential operators acting on master
functions that contain jump discontinuities and delta
singularities at r = rq. Therefore, the metric perturbation
in the RWZ gauge has the general form
hem = e+ er + ', (H2)
where h,ff," ) contains all the delta (and delta derivative)
singularities at r =rqg. Note that in standard
Schwarzschild coordinates, many of the components of
hﬁ,f" Q vanish due to cancellations in reconstructing the
metric (as shown explicitly in the nonspinning limit in
[57]) but we are keeping the discussion as general as
possible.

Suppose we perform a gauge transformation of the RWZ
gauge metric perturbation to the Lorenz gauge. Then we
have

hir = hi + AL (H3)
where the gauge difference is defined as
AZ;” = Legu (H4)

and is generated by the gauge vector &% Since we know
the left-hand side of Eq. (H3) is independent of any
delta singularities, we must be able to write the gauge
difference as

Afm = Aok 4 A Oer 4+ A (HS)
and we must have Afr'® = —p"® (0 ensure cancellation

of any delta terms. We are interested in calculating the

redshift and therefore h{". Combining Egs. (H1), (H2),
(H3), and (HS5) we get

hip =iy er, + b e

o rQ
‘m ‘m m(— ‘m(— _
= (hkk © + Ay (H)@;; + (hkk - + Akk< >)®"n'
(H6)

The two separate limits of the gauge difference are

‘m(+ ‘m(+ ‘m(+
Akk( >:hkk< >_hkk( )'

(H7)

Meanwhile, recall that we have restricted to the class
of gauges that preserve the manifest helical symmetry of
the perturbed spacetime. For # > 2, this implies that the
gauge vector satisfies £,£% = 0 (where & is the usual
helical Killing vector). For such gauges, Eq. (H4) in
Schwarzschild spacetime gives that

‘m(+ r(+ M
A >:2rg;m><92—r3),

where we have used that the gauge vector must also have
the form

(H8)

Lo =& On & O T (1)
So long as f;(,f) is bounded at rq, Egs. (H7) and (H8) imply
that

ra

‘m(+
kk h ( )|r9'

kk

(H10)

However, we know that 5;(:;) must be bounded at r = rq

since both hf;T () and h,'f:,"<i> (and therefore Aﬁ"(i)) are
bounded at r = rq. In fact, that the individual modes of the
respective MPs are bounded on the worldline is a key
requirement for the success of the mode sum regularization
schemes in their respective gauges. Due to the equality in
Eq. (H10), we conclude that we can safely use the retarded
redshift modes from the RWZ gauge in our Lorenz gauge
redshift calculation.

For the low multipoles (£ = 0, 1), the most general class
of gauges that respect the helical symmetry of the back-
ground spacetime do not satisfy £&% =0 [75] and
Eq. (H8) does not hold. It is already well-established in
the nonspinning case that the redshift takes different values
in a gauge with an asymptotically flat monopole from a
gauge in which it is not asymptotically flat [76]. The same
subtlety remains in the spinning case, and our final
asymptotically flat gauge choice is made precise by
Eq. (G3). We have checked that our “RWZ-like” low
multipole modes produce the same redshift result as the
Lorenz gauge low multipoles transformed to an asymp-
totically flat gauge.
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