
A scalable elliptic solver with task-based parallelism
for the SpECTRE numerical relativity code

Nils L. Vu ,1,* Harald P. Pfeiffer ,1 Gabriel S. Bonilla ,2 Nils Deppe ,3 François Hébert ,3 Lawrence E. Kidder ,4

Geoffrey Lovelace ,2 Jordan Moxon ,3 Mark A. Scheel ,3 Saul A. Teukolsky ,3,4 William Throwe ,4

Nikolas A. Wittek ,1 and Tom Włodarczyk1
1Max Planck Institute for Gravitational Physics (Albert Einstein Institute),

Am Mühlenberg 1, Potsdam 14476, Germany
2Nicholas and Lee Begovich Center for Gravitational-Wave Physics and Astronomy,

California State University, Fullerton, California 92831, USA
3Theoretical Astrophysics, Walter Burke Institute for Theoretical Physics,
California Institute of Technology, Pasadena, California 91125, USA

4Cornell Center for Astrophysics and Planetary Science, Cornell University, Ithaca, New York 14853, USA

(Received 15 November 2021; accepted 8 February 2022; published 18 April 2022)

Elliptic partial differential equations must be solved numerically for many problems in numerical
relativity, such as initial data for every simulation of merging black holes and neutron stars. Existing elliptic
solvers can take multiple days to solve these problems at high resolution and when matter is involved,
because they are either hard to parallelize or require a large amount of computational resources. Here we
present a new solver for linear and nonlinear elliptic problems that is designed to scale with resolution and
to parallelize on computing clusters. To achieve this we employ a discontinuous Galerkin discretization, an
iterative multigrid-Schwarz preconditioned Newton-Krylov algorithm, and a task-based parallelism
paradigm. To accelerate convergence of the elliptic solver we have developed novel subdomain-
preconditioning techniques. We find that our multigrid-Schwarz preconditioned elliptic solves achieve
iteration counts that are independent of resolution, and our task-based parallel programs scale over
200 million degrees of freedom to at least a few thousand cores. Our new code solves a classic initial data
problem for binary black holes faster than the spectral code SpEC when distributed to only eight cores, and
in a fraction of the time on more cores. It is publicly accessible in the next-generation SpECTRE numerical
relativity code. Our results pave the way for highly parallel elliptic solves in numerical relativity and
beyond.

DOI: 10.1103/PhysRevD.105.084027

I. INTRODUCTION

Solving elliptic partial differential equations (PDEs)
numerically is important in many areas of science, includ-
ing numerical relativity [1]. All numerical time evolutions
begin with initial data that capture the physical scenario to
be evolved, and the initial data must typically satisfy a set
of constraint equations formulated as elliptic PDEs.
Specifically, to construct initial data for general-relativistic
simulations of black holes and neutron stars we must solve
the Einstein constraint equations, which admit formulations

as elliptic PDEs [2,3]. Binary configurations of black holes
and neutron stars enjoy particular prominence as primary
sources for gravitational-wave detectors, and numerical
simulations of these systems play an essential role in their
observations [4–9].
To construct initial data for general-relativistic simula-

tions, the numerical relativity (NR) community has put
considerable effort towards developing numerical codes
that solve elliptic problems. Most of the existing codes
employ spectral methods to discretize the elliptic equations,
such as LORENE [10,11] and TwoPunctures [12,13],
Spells [14–18] that is part of SpEC [19], as well as
SGRID [20,21], KADATH [22,23] and Elliptica [24].
The COCAL [25,26] code employs finite-difference meth-
ods, and NRPyElliptic [27] a hyperbolic relaxation
scheme [28]. All of these codes vary significantly in the
numerical methods employed to solve the discretized
equations. For example, SpEC uses the PETSc library
to perform an iterative matrix-free solve with a custom

*owls@nilsvu.de

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Open access publication funded by the Max Planck
Society.

PHYSICAL REVIEW D 105, 084027 (2022)

2470-0010=2022=105(8)=084027(26) 084027-1 Published by the American Physical Society

https://orcid.org/0000-0002-5767-3949
https://orcid.org/0000-0001-9288-519X
https://orcid.org/0000-0003-4502-528X
https://orcid.org/0000-0003-4557-4115
https://orcid.org/0000-0001-9009-6955
https://orcid.org/0000-0001-5392-7342
https://orcid.org/0000-0002-7084-1070
https://orcid.org/0000-0001-9891-8677
https://orcid.org/0000-0001-6656-9134
https://orcid.org/0000-0001-9765-4526
https://orcid.org/0000-0001-5059-4378
https://orcid.org/0000-0001-8575-5450
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.105.084027&domain=pdf&date_stamp=2022-04-18
https://doi.org/10.1103/PhysRevD.105.084027
https://doi.org/10.1103/PhysRevD.105.084027
https://doi.org/10.1103/PhysRevD.105.084027
https://doi.org/10.1103/PhysRevD.105.084027
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


preconditioner [14], whereas KADATH and Elliptica
construct explicit matrix representations and invert the
matrices directly [22,24].
While successful in constructing initial data for many

general-relativistic scenarios, these codes can still take a
significant amount of time or require excessive computa-
tional resources to solve the elliptic problems. For example,
the SpEC and SGRID codes typically require a few hours to
days to solve for initial data that involves orbiting neutron
stars, at a resolution required for state-of-the-art simula-
tions, using Oð10Þ cores for the computation. KADATH, on
the other hand, quote a few hours to solve for low-
resolution initial data involving orbiting neutron stars on
about 128 cores, and “a larger timescale” and more cores
for higher resolutions, with high memory demands for the
explicit matrix construction [22,23], and assuming sym-
metry with respect to the orbital plane [23]. Elliptica
also quote a few days to solve an initial data problem for a
black hole–neutron star binary (BHNS) on 20 cores [24].
Despite the time required to solve the elliptic initial data

problem, simulations of merging black holes and neutron
stars are currently dominated by their time evolution, which
can take weeks to months. However, significant efforts are
underway to develop faster and more accurate evolution
codes for next-generation numerical relativity. The open-
source SpECTRE [29,30] code aims to evolve general-
relativistic multiphysics scenarios on petascale and future
exascale computers, and is the main focus of this article.
Other recent developments include the CarpetX driver for
the Einstein Toolkit [31] that is based on the AMReX
framework [32], and the Dendro-GR [33], Nmesh [34],
bamps [35],GRAthena++ [36], andExaHyPE [37] codes.
To seed these next-generation evolutions of general-

relativistic scenarios with initial data, we have developed a
highly scalable elliptic solver based on discontinuous
Galerkin methods, matrix-free iterative algorithms, and
task-based parallelism. We focus strongly on parallelization
to take advantage of the increasing number of cores in high-
performance computing (HPC) systems. These systems
have at least Oð10Þ, but often closer to 50–100, physical
cores per node, often with many thousand interconnected
nodes. Therefore, even routine compute jobs that request
only a few nodes on contemporary HPC clusters, and hence
spend little to no time waiting in a queue, have tens to
hundreds of cores at their disposal. Larger compute jobs
with thousands of cores and more are also readily available,
and the amount of available computational resources is
expected to increase rapidly in the future.
The SpECTRE code embraces parallelism as a core

design principle [29,30]. It employs a task-based parallel-
ism paradigm instead of the conventional message passing
interface (MPI) protocol. MPI-parallelized programs typi-
cally alternate between computation and communication at
global synchronization points, meaning that all threads

must reach a globally agreed-upon state before the program
proceeds. Global synchronization points can limit the
effective use of the available cores when some threads
reach the synchronization later than others, thus holding up
the program. The effect becomes more pronounced with
increasing core count, often limiting the number of cores
that MPI-parallelized programs can efficiently scale to.
Task-based parallel programs, on the other hand, aim to
avoid global synchronization points as much as possible.
They partition the computational work into interdependent
tasks and distribute them among the available cores. Tasks
can migrate to undersubscribed cores while the program is
running to balance the computational load. SpECTRE
builds upon the Charm++ [38] task-based parallelism
and CPU-abstraction library. Reference [30] describes
SpECTRE’s task-based parallism paradigm in more detail.
Our new elliptic solver in the SpECTRE code is based

on the prototype presented in Ref. [39] and employs the
discontinuous Galerkin discretization for generic elliptic
equations developed in Ref. [40], which makes it appli-
cable to a wide range of elliptic problems in numerical
relativity and beyond. In this article we present the task-
based iterative algorithms that we have developed to
parallelize the elliptic solver effectively on computing
clusters, including novel subdomain-preconditioning
techniques. We demonstrate that our new elliptic solver
can solve a classic initial data problem for binary black
holes faster than SpEC when running on as few as eight
cores, and in a fraction of the time on a computing cluster.
In particular, the number of iterations that our new elliptic
solver requires to converge remains constant with increas-
ing resolution. The additional computational work needed
to solve high-resolution problems manifests in subpro-
blems that become either more numerous or more expen-
sive, but that can be solved in parallel to offset the increase
in runtime.
This article is structured as follows. Section II summa-

rizes the discontinuous Galerkin scheme that was presented
in Ref. [40] and that we employ to discretize all elliptic
equations in this article. Section III details the stack of task-
based algorithms that constitutes the elliptic solver, and that
we have implemented in the SpECTRE code. In Sec. IV we
assess the performance and parallel efficiency of our new
elliptic solver by applying it to a set of test problems. We
conclude in Sec. V.

II. DISCONTINUOUS GALERKIN
DISCRETIZATION

We employ the discontinuous Galerkin (DG) scheme
developed in Ref. [40] to discretize all elliptic problems in
this article and summarize it in this section.
Schematically, the discretization procedure translates a

linear elliptic problem to a matrix equation, such as

NILS L. VU et al. PHYS. REV. D 105, 084027 (2022)

084027-2



−∂i∂iφðxÞ ¼ 4πρðxÞ ⟶
Ref:½40�

Au ¼ b; ð1Þ

where u ¼ ðu1;…; uNDOF
Þ is a discrete representation of all

variables on the computational grid, b ¼ ðb1;…; bNDOF
Þ is a

discrete representation of the fixed sources in the PDEs,
and A is an NDOF × NDOF matrix that represents the
discrete Laplacian operator in this example. Equation (1)
represents the Maxwell constraint equation for the electric
potential φðxÞ in Coulomb gauge, written here in Cartesian
coordinates, where ρðxÞ is the electric charge density
sourcing the field. We employ the Einstein sum convention
to sum over repeated indices.
The subject of this section is to define the matrix

equation (1) for a wide range of elliptic problems, as
detailed in Ref. [40]. Then, the remainder of this article is
concerned with solving the matrix equation numerically for
u, and doing so iteratively, in parallel on computing
clusters, and without ever explicitly constructing the full
matrixA. Instead, we only need to define the matrix-vector
product Au. We solve nonlinear problems AðuÞ ¼ b by
repeatedly solving their linearization.
The discontinuous Galerkin scheme detailed in Ref. [40]

applies to a wide range of elliptic problems. Specifically, it
applies to any set of elliptic PDEs that admits a formulation
in first-order flux form

−∂iF α
i½uA; vA; x� þ Sα½uA; vA; x� ¼ fαðxÞ; ð2Þ

where the fluxesF α
i and the sources Sα are functionals of a

set of primal variables uAðxÞ and auxiliary variables vAðxÞ,
and the fixed sources fαðxÞ are functions of coordinates.
The index α enumerates both primal and auxiliary equa-
tions. The primal variables can be scalars, such as the
electric potential φðxÞ in the Maxwell constraint (1),
higher-rank tensor fields such as the displacement vector
in an elasticity problem, or combinations thereof such as in
Eq. (4) below. The auxiliary variables are typically gra-
dients of the primal variables, such as vi ¼ ∂iφðxÞ for the
Maxwell constraint. For example, the Maxwell constraint
(1) can be formulated with the fluxes and sources

F v
i
j ¼ φδij; Svj ¼ vj; fv j ¼ 0; ð3aÞ

Fφ
i ¼ vi; Sφ ¼ 0; fφ ¼ 4πρðxÞ; ð3bÞ

where δij denotes the Kronecker delta. Note that Eq. (3a) is
the definition of the auxiliary variable, and Eq. (3b) is the
Maxwell constraint (1).
In particular, the flux form (2) also encompasses the

extended conformal thin-sandwich (XCTS) formulation of
the Einstein constraint equations [3],

∇̄2ψ ¼ 1

8
ψR̄þ 1

12
ψ5K2

−
1

8
ψ−7ĀijĀij − 2πψ5ρ; ð4aÞ

∇̄2ðαψÞ ¼ αψ

�
7

8
ψ−8ĀijĀij þ 5

12
ψ4K2 þ 1

8
R̄

þ 2πψ4ðρþ 2SÞ
�
− ψ5∂tK þ ψ5βi∇̄iK;

ð4bÞ

∇̄iðL̄βÞij ¼ ðL̄βÞij∇̄i lnðᾱÞ þ ᾱ∇̄iðᾱ−1ūijÞ

þ 4

3
ᾱψ6∇̄jK þ 16πᾱψ10Sj; ð4cÞ

with ∇̄2 ¼ γ̄ij∇̄i∇̄j, Āij ¼ 1
2ᾱ ððL̄βÞij − ūijÞ, and ᾱ ¼ αψ−6.

The XCTS equations are a set of coupled nonlinear elliptic
PDEs that the spacetime metric of general relativity must
satisfy at all times.1 They are solved for the conformal
factor ψ, the product of lapse and conformal factor αψ, and
the shift vector βj. The remaining quantities in the
equations, i.e., the conformal metric γ̄ij, the trace of the
extrinsic curvature K, their respective time derivatives ūij
and ∂tK, the energy density ρ, the stress-energy trace S and
the momentum density Si, are freely-specifiable fields that
define the scenario at hand. In particular, the conformal
metric γ̄ij defines the background geometry of the elliptic
problem, which determines the covariant derivative ∇̄, the
Ricci scalar R̄ and the longitudinal operator

ðL̄βÞij ¼ ∇̄iβj þ ∇̄jβi −
2

3
γ̄ij∇̄kβ

k: ð5Þ

Reference [40] lists fluxes and sources for the XCTS
equations, and for a selection of other elliptic systems.
Once we have formulated the equations, we choose a

computational domain on which to discretize them. We
decompose the d-dimensional computational domain Ω ⊂
Rd into a set of blocks shaped like deformed cubes, as
illustrated in Fig. 1(a). Blocks do not overlap, but they
share boundaries. Each face of a block is either shared with
precisely one other block, or is external. For example, the
domain depicted in Fig. 1(a) has four wedge-shaped blocks.
Each block B ⊂ Ω carries a map from the coordinates
x ∈ B, in which the elliptic equations (2) are formulated, to
block-logical coordinates ξblock ∈ ½−1; 1�d representing the
d-dimensional reference cube, as illustrated in Fig. 1(b).
Blocks decompose into elements Ωk ⊂ Ω, by recursively

splitting in half along any of their logical coordinate axes (h
refinement). We limit the h refinement of our computational
domain such that an element shares its boundarywith atmost

1See, e.g., Ref. [1] for an introduction to the XCTS equations,
in particular Box 3.3.

A SCALABLE ELLIPTIC SOLVER WITH TASK-BASED … PHYS. REV. D 105, 084027 (2022)

084027-3



two neighbors per dimension in every direction (“two-to-one
balance”), both within a block and across block boundaries.
Each element defines element-logical coordinates ξ ∈
½−1; 1�d by an affine transformation of the block-logical
coordinates. The resulting coordinate map to the reference
cube of the element is characterized by the Jacobian

Jij ¼
∂xi
∂ξj ; ð6Þ

with determinant J and inverse ðJ−1Þji ¼ ∂ξj=∂xi.
On the reference cube of the element we choose a regular

grid of collocation points along the logical coordinate axes,
as illustrated in Fig. 1(c) (p refinement). Specifically, we
choose Nk;i Legendre-Gauss-Lobatto (LGL) collocation

points, ξpi
, in each dimension i, where the index pi ∈

f1;…; Nk;ig identifies the grid point along dimension i. We
also enumerate all Nk ¼

Q
i Nk;i d-dimensional grid points

ξp ¼ ðξp1
;…; ξpd

Þ in an element with a single index
p ∈ f1;…; Nkg, as illustrated in Fig. 1(c).
Then, fields are represented numerically by their values

at the collocation points. We denote the set of discrete field
values within an elementΩk as uðkÞ ¼ ðu1;…; uNk

Þ, and the
collection of discrete field values over all elements as u.
The field values at the collocation points within an element
define a d-dimensional Lagrange interpolation,

uðkÞðxÞ ≔
XNk

p¼1

upψpðξðxÞÞ with x ∈ Ωk; ð7Þ

where the basis functions ψpðξÞ are products of Lagrange
polynomials,

ψpðξÞ ≔
Yd
i¼1

lpi
ðξiÞ with ξ ∈ ½−1; 1�d: ð8Þ

based on the collocation points in dimension i of the
element. Since Eqs. (7) and (8) are local to each element,
fields over the entire domain are discontinuous across
element boundaries.
Finally, we employ the strong discontinuous Galerkin

scheme developed in Ref. [40] to discretize the equations in
first-order flux form, Eq. (2). To compute the matrix-vector
product in Eq. (1) we first compute the auxiliary variables
vA, given the primal variables uA, as

vA ¼ Di · F vA
i þ L · ððniF vA

iÞ� − niF vA
iÞ − S̃vA ; ð9aÞ

where we assume the auxiliary sources can be written in the
form SvA ¼ vA þ S̃vA ½uA; x� such that (9a) depends only on
the primal variables. We also assume fvA ¼ 0 for conven-
ience. All elliptic equations that we consider in this article
fulfill these assumptions. In a second step, we use the
computed auxiliary variables vA, as well as the primal
variables uA, to compute the DG residuals

−MDi ·F uA
i−ML ·ððniF uA

iÞ�−niF uA
iÞþM ·SuA ¼M ·fuA :

ð9bÞ
The operation · in Eq. (9) denotes a matrix multiplication
with the field values over the computational grid of an
element. We make use of the mass matrix

Mpq ¼
Z
½−1;1�d

ψpðξÞψqðξÞ
ffiffiffi
g

p
Jddξ; ð10Þ

the stiffness matrix

MDi;pq ¼
Z
½−1;1�d

ψpðξÞ
∂ψq

∂ξj ðξÞðJ
−1Þji

ffiffiffi
g

p
Jddξ; ð11Þ

FIG. 1. Top: Geometry of a two-dimensional computational
domain composed of four wedge-shaped blocks. Middle: The
coordinate transformation ξblockðxÞ maps a block to a reference
cube in block-logical coordinates ½−1; 1�2. A block is split into
elements Ωk along its logical coordinates axes. Bottom: The
element Ωk in element-logical coordinates ξ ¼ ðξ; ηÞ with its grid
of Legendre-Gauss-Lobatto collocation points. In this example
we chose Nk;ξ ¼ 3 and Nk;η ¼ 4. Each grid point is labeled with
its index ðpξ; pηÞ. The dotted line connects points in the order
they are enumerated in by the index p.

NILS L. VU et al. PHYS. REV. D 105, 084027 (2022)

084027-4



and the lifting operator

MLpq ¼
Z
½−1;1�d−1

ψpðξÞψqðξÞ
ffiffiffiffiffi
gΣ

p
JΣdd−1ξ ð12Þ

on the element Ωk, as well as the associated “massless”
operators Di ≔ M−1MDi and L ≔ M−1ML. Here,

ffiffiffi
g

p
denotes the determinant of the metric on which the elliptic
equations are formulated, such as the conformal metric γ̄ij
in the XCTS equations (4). The integral in Eq. (12) is over
the boundary of the element, ∂Ωk, where ni is the outward-
pointing unit normal one-form, gΣ is the surface metric
determinant induced by the background metric, and JΣ is
the determinant of the surface Jacobian.
The quantities ðniF vA

iÞ� and ðniF uA
iÞ� in Eq. (9) denote

a numerical flux that couples grid points across nearest-
neighbor element boundaries. We employ the generalized
internal-penalty numerical flux developed in Ref. [40],

ðniF vA
iÞ� ¼ 1

2

�
ninti F vA

iðuintA Þ − nexti F vA
iðuextA Þ

�
; ð13aÞ

ðniF uA
iÞ� ¼ 1

2

h
ninti F uA

ið∂jF vA
jðuintA Þ − S̃vAðuintA ÞÞ

− nexti F uA
ið∂jF vA

jðuextA Þ − S̃vAðuextA ÞÞ
i

− σ
h
ninti F uA

iðnintj F vA
jðuintA ÞÞ

− nexti F uA
iðnextj F vA

jðuextA ÞÞ
i
; ð13bÞ

with the penalty function

σ ¼ C
ðmaxðpint; pextÞ þ 1Þ2

minðhint; hextÞ : ð14Þ

Here, uintA denotes the primal variables on the interior side
of an element’s shared boundary with a neighbor, and uextA
denotes the primal variables on the neighbor’s side, i.e., the
exterior. Note that nexti ¼ −ninti for the purpose of this
article, since we only consider equations formulated on a
fixed background metric, but the scheme does not rely on
this assumption. For Eq. (14) we also make use of the
polynomial degree p, and a measure of the element size, h,
orthogonal to the element boundary on either side of the
interface, as detailed in Ref. [40].
We impose boundary conditions through fluxes, i.e., by a

choice of exterior quantities in the numerical flux, Eq. (13).
Specifically, on external boundaries we set

ðniF α
iÞext ¼ ðniF α

iÞint − 2ðniF α
iÞb; ð15Þ

wherewe choose the boundary fluxes ðniF α
iÞb depending on

the boundary conditions we intend to impose. ForNeumann-
type boundary conditions we choose the primal boundary
fluxes ðniF uA

iÞb directly, e.g., ðniFφ
iÞb ¼ ni∂iφjb for the

Maxwell constraint (1), and set the auxiliary boundary fluxes
to their interior values, ðniF vA

iÞb ¼ ðniF vA
iÞint. For

Dirichlet-type boundary conditions we choose the primal
boundary fields ubA, e.g., φjb for the Maxwell constraint (1),
to compute the auxiliary boundary fluxes ðniF vA

iÞb ¼
nbiF vA

iðubAÞ, and set the primal boundary fluxes to their
interior values, ðniF uA

iÞb ¼ ðniF uA
iÞint.

In summary, the DG residuals (9) are algebraic equations
for the discrete primal field values uA on all elements and
grid points in the computational domain. For linear PDEs,
the left-hand side of Eq. (9b) defines a matrix-vector
product with a set of primal field values on the computa-
tional domain. The right-hand side of Eq. (9b) is a set of
fixed values on the computational domain. Therefore,
Eq. (9b) has the form of Eq. (1).

III. TASK-BASED ITERATIVE ALGORITHMS

Once the elliptic problem is discretized, it is the
responsibility of the elliptic solver to invert the matrix
equation (1) numerically, in order to obtain the solution
vector u over the computational grid. For large problems on
high-resolution grids it is typically unfeasible to invert the
matrix A in Eq. (1) directly, or even to explicitly construct
and store it.2 Instead, we employ iterative algorithms that
require only the matrix-vector product Au be defined, and
that parallelize to computing clusters.
The discontinuous Galerkin matrix-vector product Au is

well suited for parallelization. As Sec. II summarized, it
decomposes into a set of operations local to the elements that
make up the computational domain. Figure 2 illustrates a
computational domain composed of elements, as well as the
dependence of the elements on each other for computing the
matrix-vector product. The matrix-vector product requires
only data local to each element and on both sides of the
boundary that the element shares with its nearest neighbors.
Therefore, it can be computed in parallel, and requires only a
single communication between each pair of nearest-neighbor
elements to exchange data on their shared boundary. The
matrix-vector product acts as a “soft” global synchronization
point, meaning that it requires all elements have sent data to
their neighbors before all elements can proceed with the
algorithm, but individual elements can already proceed once
they receive data from their nearest neighbors.
The decomposition of the domain into elements also

admits a strategy to distribute computation across the
processors of the computer system. We distribute elements
among the available cores in a way that, ideally, minimizes

2The KADATH [22] code explicitly constructs, stores and
inverts the matrix A, which it obtains by a spectral discretization,
by distributing its columns over the available cores. Referen-
ces [22,23] quote the high memory demand of storing the explicit
matrix and list iterative approaches to solve the linear system as a
possible resolution. Such iterative approaches, and their paralle-
lization, are the main focus of this article.

A SCALABLE ELLIPTIC SOLVER WITH TASK-BASED … PHYS. REV. D 105, 084027 (2022)

084027-5



the number of internode communications and assigns an
equal amount of work to each core. In this article we
employ a Morton (“z-order”) space-filling curve [41] to
traverse the elements within a block of the computational
domain and fill up the available cores. We weight the
elements by their number of grid points to approximately
balance the amount of work assigned to each core. With
this strategy, neighboring elements tend to lie on the same
node, though more effective element-distribution and load-
balancing strategies based on, for example, Hilbert space-
filling curves [42] are a subject of future work.
Once elements have been assigned to the available cores,

each element traverses the list of tasks in the algorithm.
When it encounters a task whose dependencies are not yet
fulfilled, e.g., when neighbors have not yet sent the data on
shared boundaries needed for the DG matrix-vector prod-
uct, the element relinquishes control of the core to another
whose dependencies are fulfilled. Reference [30] describes
SpECTRE’s task-based parallel runtime system based on
the Charm++ [38] framework in more detail.
Figure 3 provides an overview of the algorithms that

we employ to iteratively solve the discretized elliptic
problem (1), with details given in subsequent sections:
nonlinear equations are linearized with a Newton-Raphson
scheme with a line-search globalization (Sec. III A). The
resulting linear subproblems are solved with an iterative
Krylov-subspace method (Sec. III B), preconditioned with
a multigrid solver (Sec. III C). On every level of the

multigrid hierarchy we run a few iterations of an additive
Schwarz smoother, which solves the problem appro-
ximately on independent, overlapping, element-centered
subdomains (Sec. III D). Each subdomain problem is
solved by another Krylov-type method, which carries a
Laplacian-approximation preconditioner with an incom-
plete LU explicit-inversion scheme to accelerate the solve
(Sec. III E). All algorithms are implemented in the open-
source SpECTRE code and take advantage of its task-based
parallel infrastructure [29,30].

A. Newton-Raphson nonlinear solver

The Newton-Raphson scheme iteratively refines an
initial guess u0 for a nonlinear problem AðuÞ ¼ b by
repeatedly solving the linearized problem

FIG. 2. Parallelization structure of the matrix-vector product
Au. Top: Decomposition of a two-dimensional rectangular
domain into four elements. Arrows illustrate the dependence
between nearest-neighbor elements to compute the matrix-vector
product Au. Bottom: Tasks involved to compute the matrix-
vector product Au. Each element performs a task that prepares
and sends data to its neighbors (upper half of the rectangle), and
another that receives data from its neighbors and performs the
computation (lower half of the rectangle). The arrows between
elements are the same as in the top panel.

FIG. 3. Overview of the technology stack we employ to solve
the discretized elliptic problem (1). All algorithms above the
dotted line follow SpECTRE’s task-based parallelism paradigm.
The algorithms below the dotted line run within a task, and on all
elements independently.

NILS L. VU et al. PHYS. REV. D 105, 084027 (2022)

084027-6



δA
δu

ðuÞΔu ¼ b −AðuÞ ð16Þ

for the correction Δu, and then updating the solution as
u → uþ Δu [43,44].
The Newton-Raphson method converges quadratically

once it reaches a basin of attraction, but can fail to converge
when the initial guess is too far from the solution. We
employ a line-search globalization strategy to recover
convergence in such cases, following algorithm 6.1.3 in
Ref. [44]. It iteratively reduces the step length λ until the
corrected residual kb −Aðuþ λΔuÞk2 has sufficiently
decreased, meaning it has decreased by a fraction of the
predicted decrease if the problem was linear. This fraction
is the sufficient-decrease parameter controlling the line
search. The line search typically starts at λ ¼ 1 in every
Newton-Raphson iteration, but the initial step length can be
decreased to dampen the nonlinear solver. Although the
line-search globalization has proven effective for the cases
we have encountered so far, alternative globalization
strategies such as a trust-region method or more sophisti-
cated nonlinear preconditioning techniques can be inves-
tigated in the future.3

Figure 4 illustrates our task-based implementation of the
Newton-Raphson algorithm. The sufficient-decrease con-
dition, and the necessity to check the global residual
magnitude against convergence criteria, introduce a syn-
chronization point in the form of a global reduction to
assemble the residual magnitude kb −Aðuþ λΔuÞk2. The
algorithm requires one nonlinear operator application
Aðuþ λΔuÞ per iteration, plus one additional nonlinear
operator application for every globalization step that
reduces the step length. Since a typical nonlinear elliptic
solve requires ≲10 Newton-Raphson iterations, the

parallelization properties of this algorithm are not particu-
larly important for the overall performance.
Exactly once per iteration the Newton-Raphson algo-

rithm dispatches a linear solve of Eq. (16) for the correction
Δu. This iterative linear-solver algorithm is the subject of
the following section.

B. Krylov-subspace linear solver

We solve the linearized problem (16) with an itera-
tive Krylov-subspace algorithm. We generally employ a
GMRES algorithm, but have also developed a conjugate
gradients algorithm for discretized problems that are
symmetric positive definite [47,48]. These algorithms solve
a linear problem Au ¼ b iteratively by building up a basis
of the Krylov subspace Kk ¼ fb;Ab;A2b;…;Ak−1bg.
Krylov-subspace algorithms are guaranteed to find a
solution in at most NDOF iterations, where NDOF is the
size of the matrix A.
Figure 5 illustrates our task-based GMRES algorithm,

which is based on algorithm 9.6 in Ref. [48]. It requires one
application of the linear operator A per iteration. Then, the
algorithm is characterized by an Arnoldi orthogonalization
procedure to construct a new basis vector z of the Krylov
subspace that is orthogonal to all previously constructed
basis vectors. The orthogonalization procedure requires a
global reduction to assemble the inner product of the new
basis vector with every existing basis vector, meaning the
GMRES algorithm needs to perform k reductions in the kth
iteration. Every reduction constitutes a global synchroni-
zation point, since it requires that all elements send data to a
single core on the computer system and wait for a broadcast
from that core back to all elements. A conjugate gradients
algorithm also requires a global reduction per iteration, but

FIG. 4. Parallelization structure of the task-based Newton-
Raphson nonlinear solver (Sec. III A).

FIG. 5. Parallelization structure of the task-based GMRES
Krylov-subspace linear solver (Sec. III B).

3See, e.g., Ref. [45] for an overview of nonlinear precondi-
tioning techniques in the context of the PETSc [46] library.

A SCALABLE ELLIPTIC SOLVER WITH TASK-BASED … PHYS. REV. D 105, 084027 (2022)

084027-7



avoids the additional reductions from the orthogonalization
procedure.
Due to the global synchronization points involved in

every iteration of the Krylov-subspace solver, it is essential
to keep the number of iterations to a minimum in order to
achieve good parallel performance. To this end, we invoke a
preconditioner in every iteration of the Krylov-subspace
algorithm and place particular focus on its parallelization
properties. The preconditioner is responsible for solving the
linear problem approximately to accelerate the convergence
of the Krylov-subspace algorithm.4 Effective parallel pre-
conditioning techniques for our DG-discretized elliptic
problems are the main focus of this article. Since we
employ the flexible variant of the GMRES algorithm, the
preconditioner may change between iterations [48]. While
the flexible GMRES algorithm with a variable precondi-
tioner is not mathematically guaranteed to converge in at
most NDOF iterations anymore, in practice, it converges in
much fewer than NDOF iterations (see test problems in
Sec. IV, in particular Figs. 12 and 15).5

Typically, the number of iterations needed by an unpre-
conditioned Krylov-subspace algorithm increases with the
size of the problem. The convergence behavior is often
connected to the condition number of the linear operator,

κ ¼ λmax

λmin
; ð17Þ

where λmax and λmin denote the largest and smallest
eigenvalue of the matrix, respectively. However, note that
rigorous convergence bounds for the GMRES algorithm in
terms of the condition number exist only when the matrix is
normal [48]. Nevertheless, the condition number can
provide an indication for the expected rate of convergence.
For the discontinuous Galerkin discretization we employ in
this article, the condition number scales as κ ∝ p2=h, where
p denotes a typical polynomial degree of the elements and
h denotes a typical element size [39,40,49,50]. This scaling
is related to the decrease of the minimum spacing between
Legendre-Gauss-Lobatto collocation points, which scales
quadratically with p near element boundaries and linearly
with the element size.
More specifically, Krylov-subspace methods struggle to

solve large-scale modes in the solution. The algorithm
solves modes on the scale of the grid-point spacing or the
size of elements in just a few iterations, but it needs a lot
more iterations to solve modes spanning the full domain.
Such large-scale modes carry, for example, information
from boundary conditions that must traverse the entire
domain. The test problem presented in Fig. 11 below

illustrates this effect. Therefore, we precondition the
Krylov-subspace solver with a multigrid algorithm that
uses information from coarser grids, where the large-scale
modes from finer grids become small scale.

C. Multigrid preconditioner

We employ a geometric V-cycle multigrid algorithm, as
prototyped in Ref. [39].6 Our multigrid solver can be used
standalone, or to precondition a Krylov-type linear solver
as described in Sec. III B (“Krylov-accelerated multigrid”).

1. Grid hierarchy

The geometric multigrid algorithm relies on a strategy to
coarsen the computational grid. We primarily h-coarsen the
domain, meaning that we create multigrid levels l > 0 by
successively combining two elements into one along every
dimension of the grid, as illustrated in Fig. 6. We only
p-coarsen the grid in the sense that we choose the smaller
of the two polynomial degrees when combining elements
along an axis. This strategy follows Ref. [39] and ensures
that coarse-grid field approximations always have an exact
polynomial representation on finer grids.
The coarsest possible grid that our domain decomposition

can achieve has a single element per block that make up the
domain. For example, the two-dimensional shell depicted in
Fig. 6 has four wedge-shaped blocks, each of which is a
deformed cube.Ourmultigrid algorithmworks bestwhen the
domain is composed of as few blocks as possible.

2. Intermesh operators

To project data between grids we use the standard L2-
projections (or Galerkin projections) detailed in Ref. [40].7

Fields on coarser grids are projected to finer grids with the
prolongation operator

Plþ1→l
p̃p ¼

Yd
i¼1

lpi
ðξ̃p̃i

Þ; ð18Þ

where p enumerates grid points on the coarser grid, p̃
enumerates grid points on the finer grid, and ξ̃p̃i

are the

FIG. 6. Multigrid hierarchy based on the domain depicted in
Fig. 1(a).

4See, e.g., Ref. [48] for an introduction to iterative linear
solvers and preconditioning techniques.

5See also Sec. 9.4.1 in Ref. [48] for a discussion of the flexible
GMRES algorithm.

6See, e.g., Ref. [51] for an introduction to multigrid methods.
7See also Ref. [52] for details on the intermesh operators.

NILS L. VU et al. PHYS. REV. D 105, 084027 (2022)

084027-8



coarse-grid logical coordinates of the fine-grid collocation
points. For fine-grid (child) elements that cover the full
coarse-grid (parent) element in dimension i the coarse-grid
logical coordinates are just the fine-grid collocation points,
ξ̃p̃i

¼ ξp̃i
. For child elements that cover the lower or upper

logical half of the parent element in dimension i they are
ξ̃p̃i

¼ ðξp̃i
− 1Þ=2 or ξ̃p̃i

¼ ðξp̃i
þ 1Þ=2, respectively. Note

that the prolongation operator (18) is just a Lagrange
interpolation from the coarser to the finer grid. The
interpolation retains the accuracy of the polynomial
approximation because the finer grid always has sufficient
resolution.
To project data from finer to coarser grids we employ the

restriction operator

Rl→lþ1 ¼ ðPlþ1→lÞT; ð19Þ

which is the transpose of the prolongation operator (18).
Contrary to the restriction operator listed in Ref. [40] the
multigrid restriction involves no mass matrices because it
applies to DG residuals, Eq. (9b), which already include
mass matrices.

3. Algorithm

Figure 7 illustrates our task-based implementation of
the multigrid V-cycle algorithm to solve linear problems
Au ¼ b. On every grid l we approximately solve the linear
problem

AluðlÞ ¼ bðlÞ; ð20Þ

where the operator Al is the discretization of the elliptic
PDEs on the grid l. At the beginning of a V-cycle, on the
finest grid l ¼ 0, we select uð0Þ ¼ u and bð0Þ ¼ b; hence,
approximately solving the original linear problem (“pre-
smoothing”). Then, the remaining residual

rðlÞ ¼ bðlÞ −AluðlÞ ð21Þ

is restricted to source the linear problem (20) on the next-
coarser grid,

bðlþ1Þ ¼ Rl→lþ1rðlÞ: ð22Þ

Oncepresmoothing is complete on the coarsest grid (the “tip”
of the V-cycle), we approximately solve Eq. (20) again
(“postsmoothing”). The solution of the postsmoothing step is
prolongated to the next-finer grid as a correction,

uðlÞ ← uðlÞ þ Plþ1→luðlþ1Þ: ð23Þ

Prolongation, correction, and postsmoothing proceed until
we have returned to the finest grid, where the correction and
postsmoothing apply to the original linear problem. Our
choice of presmoother and postsmoother to approximately
solve Eq. (20) is detailed in Sec. III D below. Note that
on the coarsest level we apply both presmoothing and
postsmoothing.
The restriction of residuals to the next-coarser grid and

the prolongation of corrections to the next-finer grid incur
soft synchronization points. Specifically, only once all
elements on the finer grid have restricted their residuals

FIG. 7. Parallelization structure of the task-based multigrid algorithm (Sec. III C). Elements on all grids perform the same set of tasks,
with some tasks skipped on the finest grid and other tasks skipped on the coarsest grid.

A SCALABLE ELLIPTIC SOLVER WITH TASK-BASED … PHYS. REV. D 105, 084027 (2022)

084027-9



to the coarser grid can all elements on the coarser grid
proceed, though individual coarse-grid (parent) elements
can already proceed once only their corresponding fine-grid
(child) elements have sent the restricted residuals. The
same applies to the prolongation of corrections from the
parent elements back to their children. Therefore, parent
elements on coarser grids ideally follow their children when
distributed among the available cores, initially and at load-
balancing operations.
In contrast to Krylov-subspace algorithms, the multigrid

algorithm involves no global synchronization points. In
particular, for diagnostic output we perform a reduction to
compute the global residual norm krðlÞk on every grid, but
do so asynchronously in order to avoid a synchronization
that is not algorithmically necessary. Therefore, we do not
use the global residual norm as a convergence criterion for
the multigrid solver. Instead, we run a fixed number of
multigrid V-cycles, and typically only a single one to
precondition a Krylov-subspace solver.

D. Schwarz smoother

On every level of the grid hierarchy the multigrid solver
relies on a smoother that approximately solves Eq. (20).
In principle, the smoother can be any linear solver,
including a Krylov-subspace solver as detailed in
Sec. III B. However, to achieve good parallel performance
we have developed a highly asynchronous additive
Schwarz smoother [39,53,54], that we employ for pre-
smoothing and postsmoothing on every level of the
multigrid hierarchy. Note that we also apply it on the
coarsest grid, where some authors apply a dedicated bottom
smoother instead [55,56]. Since our coarsest grids are
rarely reduced to a single element (see Sec. III C 1), we
have, so far, preferred the asynchronous Schwarz smoother
over direct bottom smoothers. Our Schwarz smoother can
be used standalone, as a preconditioner for a Krylov-type
linear solver, or as a smoother for the multigrid solver
(which may, in turn, precondition a Krylov-type solver).
The additive Schwarz method works by solving many

subproblems in parallel and combining their solutions as a
weighted sum to converge towards the global solution. The
decomposition into independent subproblems makes this
linear solver very parallelizable. The Schwarz solver is
based on our prototype in Ref. [39], with variations to the
subdomain geometry and weighting to take better advan-
tage of our task-based parallelism, and with novel sub-
domain preconditioning techniques.

1. Subdomain geometry

We partition the computational domain into overlapping,
element-centered subdomains Sk ⊂ Ω, which have a one-
to-one association with the DG elements Ωk. Each sub-
domain Sk is centered on the DG element Ωk. It extends by
Noverlap collocation points into neighboring elements across
every face of Ωk, up to, but excluding, the collocation

points on the face of the neighbor pointing away from the
subdomain. Figure 8 illustrates the geometry of our
element-centered subdomains.
The subdomain does not extend into corner or edge

neighbors, which is a choice different to both Ref. [54] and
Ref. [39]. We avoid diagonal couplings because in a DG
context information only propagates across faces, as
already noted in Ref. [54]. Elimination of the corner and
edge neighbors reduces the complexity of the subdomain
geometry, the number of communications necessary to
exchange data between elements in the subdomain, and
hence the connectivity of the dependency graph between
tasks. This element-centered subdomain geometry based
solely on face neighbors has proven viable for the test
problems presented below, and for our task-based parallel
architecture.
The one-to-one association between elements and sub-

domains allows to store all quantities that define the
subdomain geometry local to the central element, i.e., on
the same core. The same applies to all data on the grid
points of the subdomain. Therefore, operations local to the
subdomain require no communication, but communication
between overlapping elements is necessary to assemble
data on the subdomains, and to make data on subdomains
available to overlapped elements.

FIG. 8. An element-centered subdomain Sk with Noverlap ¼ 2
(dashed line) associated with the element Ωk in a two-
dimensional computational domain. The domain is composed
of elements (black rectangles) with their mesh of grid points
(black dots) and depicted here in block-logical coordinates. The
diagonally-shaded region to the left illustrates an external domain
boundary. The light gray lines between neighboring element
faces illustrate mortar meshes, which are relevant for the sub-
domain operator in a DG context but play no role in the Schwarz
algorithm [40]. Note that the empty space between the elements
in this visualization is not part of the computational domain.

NILS L. VU et al. PHYS. REV. D 105, 084027 (2022)

084027-10



2. Subdomain restriction

To restrict quantities defined on the full computational
domain Ω to a subdomain S ⊂ Ω the Schwarz solver
employs a restriction operator RS. Since our subdomains
are subsets of the grid points in the full computational
domain, our restriction operator simply discards all nodal
data on grid points outside the subdomain. Similarly, the
transpose of the restriction operator, RT

S , extends sub-
domain data with zeros on all grid points outside the
subdomain.8

The Schwarz solver also relies on a restriction of the
global linear operatorA to the subdomains. The subdomain
operator AS on a subdomain S is formally defined as
AS ¼ RSART

S . In practice, it evaluates the same DGmatrix-
vector product as the full operatorA, i.e., the left-hand side
of Eq. (9b), but assumes that all data outside the subdomain
is zero. It performs all interelement operations of the full
DG operator, but computes them entirely with data local to
the subdomain. Therefore, it requires no communication
between cores, as opposed to the global linear operator A
that must communicate data between nearest neighbors for
every operator application.

3. Subdomain problems

On every subdomain S we solve the restricted problem

ASΔuðSÞ ¼ rðSÞ ð24Þ

for the subdomain correction ΔuðSÞ. Here, AS is the
subdomain operator and rðSÞ ¼ RSr is the global residual
r ¼ b −Au restricted to the subdomain.
The subdomain problems (24) are solved by means of a

subdomain solver, detailed in Sec. III E. The choice of
subdomain solver affects only the performance of the
Schwarz algorithm, not its convergence or parallelization
properties, assuming the solutions to the subdomain prob-
lems (24) are sufficiently precise.

4. Weighting

Once we have obtained the subdomain correction ΔuðSÞ
on every subdomain S, we combine them as a weighted
sum to correct the solution,

u ← uþ
X
S

RT
SðwðSÞΔuðSÞÞ; ð25Þ

where wðSÞ is a weight at every grid point of the subdomain.
This is the additive approach of the algorithm, which has
the advantage over multiplicative Schwarz methods that
all subdomain problems decouple and can be solved in

parallel.9 The weighted sum, Eq. (25), is never assembled
globally. Instead, every element adds the contribution from
its locally centered subdomain and from all overlapping
subdomains to the components of u that resides on the
element.
The weights wðSÞ represent a scalar field on every

subdomain, which must be conserved as

X
S

RT
Sw

ðSÞ ¼ 1: ð26Þ

We follow Ref. [39] and Ref. [54] in constructing the
weights as quintic smoothstep polynomials, but must
account for the missing weight from corner and edge
neighbors. Specifically, we compute

wðSÞ
p ¼ WðξðSÞp Þ ð27Þ

by evaluating the scalar weight functionWðξÞ at the logical
coordinates ξðSÞp of the grid points in the subdomain. These
subdomain-logical coordinates coincide with the element-
logical coordinates of the central element, and extend
outside the central element such that ξðSÞ ¼ �3 coincides
with the sides of the overlapped neighbors that face away
from the subdomain (see abscissa of Fig. 9). The scalar
weight function

WðξÞ ¼
Yd
i¼0

wðξiÞ ð28Þ

is a product of one-dimensional weight functions,

wðξÞ ¼ 1

2

�
ϕ

�
ξþ 1

δ

�
− ϕ

�
ξ − 1

δ

��
ð29Þ

with ϕðξÞ ¼
� 1

8
ð15ξ − 10ξ3 þ 3ξ5Þ ξ ∈ ½−1; 1�

signðξÞ jξj > 1;
ð30Þ

where ϕðξÞ is a second-order smoothstep function, i.e., a
quintic polynomial, and δ ∈ ð0; 2� is the overlap width. The
overlap width is the logical coordinate distance from the
boundary of the central element to the first collocation point
outside the overlap region (see Fig. 9). With this definition
the overlap width is nonzero even when the overlap extends
only to a single LGL point in the neighbor, which coincides
with the element boundary. Furthermore, the weight is
always zero at subdomain-logical coordinates ξðSÞ ¼ �3,
even for δ ¼ 2 when the overlap region covers the full
neighbor in width. This is the reason we never include the
collocation points on the side of the neighbor facing away

8See also Sec. 3.1 in Ref. [54] for details on the subdomain
restriction operation.

9See also Sec. 3.1 in Ref. [54] for details on multiplicative
variants of Schwarz algorithms.

A SCALABLE ELLIPTIC SOLVER WITH TASK-BASED … PHYS. REV. D 105, 084027 (2022)

084027-11



from the subdomain (see Sec. III D 1). Figure 9 illustrates
the shape of the weight function.
To account for the missing weight from corner and edge

neighbors, we could add it to the central element, to the
overlap data from face neighbors, or split it between the
two. We choose to add it to the face neighbors that share a
corner or edge, since in a DG context that is where the
information from those regions propagates through.

5. Algorithm

Figure 10 illustrates our task-based implementation of
the additive Schwarz solver. In each iteration, the algorithm
computes the residual r ¼ b −Au, restricts it to all sub-
domains as rðSÞ ¼ RSr, and exchanges it on overlap regions

with neighboring elements. Once an element has received
all residual data on its subdomain, it solves the subdomain
problem, Eq. (24), for the correction ΔuðSÞ. Since all
elements perform such a subdomain solve, we end up with
a subdomain solution ΔuðSÞ on every element-centered
subdomain, and the solutions overlap. Therefore, the
algorithm exchanges the subdomain solutions on overlap
regions with neighboring elements and adds them to the
solution field u as the weighted sum, Eq. (25).
In order to compute the residual r that is restricted to the

subdomains to serve as source for the subdomain solves,
we must apply the global linear operator A to the solution
field u once per Schwarz iteration. This operator applica-
tion, as well as the steps to communicate the residuals and
the solutions on overlaps, incur soft synchronization points
through nearest-neighbor couplings. However, once the
residuals on overlaps are communicated, all subdomain
solves are independent of each other. This constitutes the
main source of parallelization in the elliptic solver.
The subdomain solves not only run in parallel, but also

scale with the problem size. Increasing the number of grid
points in the elements (p refinement) makes the subdomain
solves more expensive, but the effectiveness of a Schwarz
iteration ideally remains the same. Increasing the number of
elements (h refinement) leads to more subdomain solves
that can run in parallel. The Schwarz solver does not
resolve large-scale modes, so Krylov-type solvers still rely
on the multigrid algorithm to scale with h refinement.

E. Subdomain solver

Once overlapping subdomains have exchanged data we
can solve all subdomain problems (24) in parallel with data
local to each subdomain. Since the subdomain operator AS
is defined as a matrix-vector product, we solve Eq. (24)
with a preconditioned GMRES algorithm, or with con-
jugate gradients for symmetric positive definite problems.
The algorithm is the same as detailed in Sec. III B for our
task-based parallel Krylov-subspace linear solver, but
implemented separately as a serial algorithm. In future
work, we may opt to parallelize the subdomain solver over
a few threads with shared memory, but currently we prefer
to employ the available cores to solve multiple subdomain
problems in parallel. In particular, on coarse multigrid
levels where the number of elements can be smaller than
the number of available cores, parallelizing the subdomain
solves over otherwise idle cores may increase performance.
The iterative Krylov subdomain solves constitute the

majority of the total computational expenses, so a suitable
preconditioner for them can speed up the elliptic solve
significantly. To our knowledge, preconditioners for
Schwarz subdomain solvers have gotten little attention in
the literature so far. In some cases, the discretization
scheme allows to construct a matrix representation for
the subdomain operator explicitly, making it possible to
invert it directly with little effort [54]. In other cases, the

FIG. 9. The one-dimensional weight function wðξÞ for the
Schwarz solver. Depicted is an element-centered subdomain in
one dimension with Noverlap ¼ 2. Every element has Nk ¼ 6 LGL
collocation points, which includes grid points on the shared
element boundaries (black vertical lines). The overlap width δ is
the logical coordinate distance to the first point outside the
subdomain, where the weight becomes zero.

FIG. 10. Parallelization structure of the task-based Schwarz
smoother (Sec. III D).

NILS L. VU et al. PHYS. REV. D 105, 084027 (2022)

084027-12



subdomain operator is small enough to build the matrix
representation column-by-column (see Sec. III E 2), e.g.,
when solving the Poisson equation. However, when solving
sets of coupled elliptic equations the subdomain operator
can easily become too large to construct explicitly. For
example, the subdomain operator for the XCTS equa-
tions (4) (five variables) on a three-dimensional grid with 83

grid points per element and Noverlap ¼ 2 is a matrix of size
6400 × 6400. Stored densely, it requires over 300 MB of
memory per element, so typical contemporary computing
clusters with a few GB of memory per core could only hold
a few elements per core. Sparse storage reduces the
memory cost significantly, but still requires 6400 subdo-
main-operator applications to construct the matrix repre-
sentation and a nonnegligible cost to invert and to apply it.
With an iterative Krylov-subspace algorithm and a suitable
preconditioner we can solve the subdomain problems on an
element with significantly lower cost and memory require-
ments. For example, test problem IV B completes about an
order of magnitude faster with the subdomain precondi-
tioner laid out in this section, than with an unprecondi-
tioned GMRES subdomain solver.

1. Laplacian-approximation preconditioner

We support the iterative subdomain solver with a
Laplacian-approximation preconditioner. It approximates
the linearized elliptic PDEs with a Poisson equation for
every variable. A similar preconditioning strategy has
proven successful for the SpEC code [14], but in the
context of a spectral discretization scheme and a very
different linear-solver stack. Specifically, we approximate
the subdomain problem, Eq. (24), as a set of independent
Poisson subdomain problems

APoisson
S ΔuðSÞA ¼ rðSÞA ; ð31Þ

where the index A iterates over all primal variables (see
Sec. II). Here, APoisson

S is the DG-discretization of the
negative Laplacian − gij∇i∇j on the subdomain according
to Sec. II. For example, a three-dimensional XCTS problem
has five variables, so Eq. (31) approximates the lineariza-
tion (16) of the five equations (4) as

∇̄2δψ ¼ 0; ∇̄2δðαψÞ ¼ 0 and ∇̄2δβi ¼ 0: ð32Þ

Depending on the elliptic system at hand we either
choose a flat background metric gij ¼ δij, or the back-
ground metric of the elliptic system, such as the conformal
metric gij ¼ γ̄ij for an XCTS system. A curved background
metric reduces the sparsity of the Poisson operator but
approximates the elliptic equations better. In practice, we
have found little difference in runtime between the flat-
space and curved-space Laplacian approximations.

We choose homogeneous Dirichlet or Neumann boun-
dary conditions forAPoisson

S . For variables and element faces
where the original boundary conditions are of Dirichlet
type we choose homogeneous Dirichlet boundary condi-
tions, and for those where the original boundary conditions
are of Neumann type we choose homogeneous Neumann
boundary conditions. This may lead to more than one
distinct Poisson operator on subdomains with external
boundaries, one per unique combination of element face
and boundary-condition type among the variables.
Subdomains that have exclusively internal boundaries only
ever have a single Poisson operator, which applies to all
variables. Note that the choice of homogeneous boundary
conditions for the Poisson subdomain problems is com-
patible with inhomogeneous boundary value problems,
because the inhomogeneity in the boundary conditions is
absorbed in the fixed sources when the equations are
linearized [40].
To solve the Poisson subdomain problems (31), one per

variable, we can (again) employ any choice of linear solver,
such as a (preconditioned) Krylov-subspace algorithm.10

However, at this point we have reduced the full elliptic
problem down to a single Poisson problem limited to a
subdomain that is solved for all variables, or a few Poisson
problems on subdomains with external boundaries.
Therefore, it becomes feasible, and indeed worthwhile,
to construct the Poisson subdomain-operator matrix explic-
itly and to invert it directly. In particular, the approximate
Poisson subdomain-operator matrix remains valid through-
out the full nonlinear elliptic solve, as long as the grid, the
background metric, and the type of boundary conditions
remain unchanged, so that its construction cost is amortized
over many applications.

2. Explicit-inverse solver

We solve the Poisson subproblems of the Laplacian-
approximation preconditioner, Eq. (31), with an explicit-
inverse solver. It constructs the matrix representation of a
linear subdomain operatorAS column-by-column, and then
inverts it directly by means of an LU decomposition. Once
the inverse A−1

S has been constructed, each subdomain
problemASΔuðSÞ ¼ rðSÞ is solved by a single application of
the inverse matrix,

ΔuðSÞ ¼ A−1
S rðSÞ: ð33Þ

This means that subdomains have a large initialization cost,
but fast repeated solves.
When the explicit-inverse solver is employed as a

preconditioner, e.g., to solve the individual Poisson prob-
lems of the Laplacian-approximation preconditioner
(Sec. III E 1), the inverse does not need to be exact.

10The absurdity of adding a third layer of nested precondi-
tioned linear solvers was not lost on the authors.

A SCALABLE ELLIPTIC SOLVER WITH TASK-BASED … PHYS. REV. D 105, 084027 (2022)

084027-13



Therefore, we construct an incomplete LU decomposition
with a configurable fill-in and store it in sparse format.
Then, each subdomain problem reduces to two sparse
triangular matrix solves. We use the Eigen [57] sparse
linear algebra library for the incomplete LU decomposition,
which uses the ILUT algorithm [58]. The Poisson sub-
domain-operator matrices APoisson

S have a sparsity of about
90%, which translates to a sparsity of about 90% for the
incomplete LU decomposition as well, since we use a fill-in
factor of one. The sparsity of the inverse reduces the
computational cost for applying it to every subdomain
problem, as well as the memory required to store the
inverse.
Note that the explicit matrix must be reconstructed when

the linear operator changes. The Poisson operators of the
Laplacian-approximation preconditioner do not typically
change, which makes the explicit-inverse solver very

effective (see Sec. III E 1). However, in case we apply
the explicit-inverse solver to the full subdomain problem
directly, the linearized operator typically changes between
every outer nonlinear solver iteration. In such cases, we can
choose to skip the reconstruction of the explicit matrix to
avoid the computational expense, at the cost of losing
accuracy of the solver. When the reconstruction is skipped,
the cached matrix only approximates the subdomain
operator, but can still provide effective preconditioning.

IV. TEST PROBLEMS

The following numerical tests demonstrate the accuracy,
scalability, and parallel efficiency of the elliptic solver on a
variety of linear and nonlinear elliptic problems.
All computations were performed on our local comput-

ing cluster Minerva. It is composed of 16-core nodes,

FIG. 11. Intermediate errors of the 2D sinusoidal Poisson problem (Sec. IVA) with different components of the elliptic solver.
Panel (a) shows the error of the random initial guess. Panels (b)–(d) show the error after six applications of the linear operator.

NILS L. VU et al. PHYS. REV. D 105, 084027 (2022)

084027-14



each with two eight-core Intel Haswell E5-2630v3 pro-
cessors clocked at 2.40 GHz and 64 GB of memory,
connected with an Intel Omni-Path network. We distribute
elements evenly among cores following the strategy
detailed in Sec. III, leaving one core per node free to
perform communications.

A. A Poisson problem

As a first test we solve the flat-space Poisson equation in
two dimensions,

−∂i∂iuðxÞ ¼ fðxÞ; ð34Þ

for the solution

uanalyticðxÞ ¼ sin ðπxÞ sin ðπyÞ ð35Þ

on a rectilinear domainΩ ¼ ½0; 1�2 with Dirichlet boundary
conditions. This problem is also studied in the context
of multigrid-Schwarz methods, with slight variations, in
Refs. [53,54]. To obtain the solution (35) numerically we
choose the fixed source fðxÞ ¼ 2π2 sin ðπxÞ sin ðπyÞ, select
homogeneous Dirichlet boundary conditions ub ¼ 0, and
solve the DG-discretized problem (9) with penalty param-
eter C ¼ 1. We have evaluated the properties of the DG-
discretized operator for this problem in Ref. [40]. To assess
the convergence behavior of the elliptic solver for this test
problem we choose an initial guess u0, where each value is
uniformly sampled from ½−0.5; 0.5�.
Figure 11 illustrates the effectiveness of our algorithm in

resolving small-scale and large-scale modes in the solution.
Plotted is the error to the analytic solution, u − uanalytic.
Figure 11(a) depicts the initial error on a computational
domain that is partitioned into 8 × 8 quadratic elements
with 9 × 9 grid points each. Figures 11(b) to 11(d) present
the error after six applications of the linear operator, but
with different components of the elliptic solver enabled.
Figure 11(b) employs no preconditioning at all, thus
reaches six operator applications after six iterations of
the GMRES algorithm. It resolves some of the random
fluctuations, but retains the large-scale sinusoidal error.
Figure 11(c) preconditions every GMRES iteration with six
Schwarz-smoothing steps, thus reaches six operator appli-
cations after a single GMRES iteration. The Schwarz
smoother uses Noverlap ¼ 2. It resolves most of the random
fluctuations, but retains the large-scale error. Note that the
six operator applications do not accurately reflect the
computational expense to arrive at Fig. 11(c), because a
significant amount of work is spent on the subdomain
solves. We employ the explicit-inverse subdomain solver
directly here to solve subdomain problems because the
Laplacian-approximation preconditioner is redundant for a
pure Poisson problem (see Sec. III E), but note that the
subdomain solver has no effect on the results depicted in
Fig. 11 as long as it is sufficiently precise. Finally,

Fig. 11(d) preconditions every GMRES iteration with a
single four-level multigrid-Schwarz V-cycle. The V-cycle
employs three Schwarz presmoothing and postsmoothing
steps on every level, thus reaches six operator applications
on the finest grid after a single GMRES iteration. Again,
the number of operator applications is not entirely repre-
sentative of the computational expense because it disre-
gards the work done on coarser levels. The V-cycle
successfully resolves the large-scale error.
Figure 12 presents the number of GMRES iterations that

the elliptic solver needs to reduce the magnitude of the
residual by a factor of 1010, for a series of h-refined
domains. We construct h-refinement levels L by repeatedly
splitting all elements in the rectangular domain in two
along both dimensions. All elements have 6 × 6 grid points.
Shown in Fig. 12 are an unpreconditioned GMRES
algorithm, a GMRES algorithm preconditioned with three
Schwarz-smoothing steps per iteration, and a GMRES
algorithm preconditioned with one multigrid-Schwarz
V-cycle per iteration. The number of multigrid levels is
equal to the number L of refinement levels, so that the
coarsest level always covers the entire domain with a single
element. Every level runs three presmoothing and post-
smoothing steps, and subdomains have Noverlap ¼ 2. The
Schwarz preconditioning alone reduces the number of
iterations by a factor of ∼10, but does not affect the scaling
with element size. However, the multigrid-Schwarz pre-
conditioning removes the scaling entirely, meaning the
number of GMRES iterations remains constant even when

FIG. 12. Number of linear-solver iterations for the Poisson
problem (Sec. IVA). The multigrid-Schwarz preconditioner
achieves scale independence.

A SCALABLE ELLIPTIC SOLVER WITH TASK-BASED … PHYS. REV. D 105, 084027 (2022)

084027-15



the domain is partitioned into more and smaller elements.
The multigrid algorithm achieves this scale independence
because it supports the iterative solve with information
from coarser grids, including large-scale modes in the
solution that span the entire domain. Each preconditioned
iteration is typically more computationally expensive than
an unpreconditioned iteration, but the preconditioner
reduces the number of iterations such that the solve
completes faster overall.11 We find that even for the simple
Poisson problem the unpreconditioned algorithm becomes
prohibitively slow around Oð103Þ elements (L ¼ 5),
approaching an hour of runtime and the memory capacity
of our ten compute nodes. In contrast, the Schwarz precondi-
tioner reduces the runtime to solve the same problem to
belowoneminute, and themultigrid-Schwarz preconditioner
reduces the runtime to only three seconds. Crucial to
achieving these runtimes at high resolution are the paralle-
lization properties of the algorithms. In particular, the addi-
tional computational expense that the preconditioner spends
Schwarz smoothing all multigrid levels is parallelizable
within each level. The following test problem IV B explores
the parallelization in greater detail.
Figure 13 gives a detailed insight into the convergence

behavior of the elliptic solver for the L ¼ 1 configuration.
Presented is both the linear-solver residual magnitude
kb −Auk2, and the error to the analytic solution,
ku − uanalytick2. The linear-solver residual (solid line) is
being reduced by a factor of 1010 by the GMRES algorithm,
equipped with the three different preconditioning configu-
rations explored in Fig. 12. With no preconditioning, the
convergence stagnates until large-scale modes in the
solution are resolved (see also Fig. 11). The Schwarz
preconditioner reduces the number of iterations by about an
order of magnitude, and the multigrid-Schwarz precondi-
tioner achieves clean exponential convergence. The error to
the analytic solution (dashed line) follows the convergence
of the residual magnitude. Once the discrete problem
Au ¼ b, Eq. (1), is solved to sufficient precision, the
remaining error u − uanalytic is the DG discretization error.
It is independent of the computational technique used to
solve the discrete problem, and determined entirely by the
discretization scheme on the computational grid, as summa-
rized in Sec. II and detailed in Ref. [40].12

B. A black hole in general relativity

Next, we solve a general-relativistic problem involving a
black hole. Specifically, we solve the Einstein constraint
equations in the XCTS formulation, Eq. (4), for a
Schwarzschild black hole in Kerr-Schild coordinates. To
this end we set the conformal metric and the trace of
the extrinsic curvature to their respective Kerr-Schild
quantities,

γ̄ij ¼ δij þ
2M
r

lilj ð36aÞ

and

K ¼ 2Mα3

r2

�
1þ 3M

r

�
; ð36bÞ

FIG. 13. Convergence of the elliptic solver for the linear
Poisson problem with h-refinement level L ¼ 1. The solid line
shows the relative linear-solver residual magnitude kb −Auk2,
and the dashed line shows the error to the analytic solution,
ku − uanalytick2 as a root mean square over grid points, which
approaches the DG discretization error.

11Note that the cost of unpreconditioned GMRES iterations is
eventually dominated by the orthogonalization procedure (see
Sec. III B), which slows down the unpreconditioned solve signifi-
cantly at large iteration counts. This effect can be remedied by
restarting GMRES variants, but at the cost of possible stagnation.
See Sec. 6.5.5 in Ref. [48] for a discussion. Conjugate gradient
algorithms avoid this issue for symmetric linear operators.

12For a study of the DG discretization error for this problem
see Fig. 7 in Ref. [40], where the configuration solved in Fig. 13
is circled.

NILS L. VU et al. PHYS. REV. D 105, 084027 (2022)

084027-16



where M is the mass parameter, r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
is the

Euclidean coordinate distance, and li ¼ li ¼ xi=r.13 The
time-derivative quantities ūij and ∂tK in the XCTS equa-
tions (4) vanish, as do the matter sources ρ, S, and Si. With
these background quantities specified, the solution to the
XCTS equations is

ψ ¼ 1; ð37aÞ

α ¼
�
1þ 2M

r

�
−1=2

; ð37bÞ

βi ¼ 2M
r

α2li: ð37cÞ

Note that we have chosen a conformal decomposition with
ψ ¼ 1 here, but other choices of ψ and γ̄ij that keep the
spatial metric γij ¼ ψ4γ̄ij invariant are equally admissable.
We solve the XCTS equations numerically for the

conformal factor ψ, the product αψ , and the shift βi.
The conformal metric γ̄ij and the trace of the extrinsic
curvature, K, are background quantities that remain fixed
throughout the solve. Note that for this test problem the
conformal metric γ̄ij is not flat, resulting in a problem
formulated on a curved manifold.
We employ the DG scheme (9) with penalty parameter

C ¼ 1 to discretize the XCTS equations (4) on a three-
dimensional spherical-shell domain, as illustrated in
Fig. 14. The domain envelops an excised sphere that
represents the black hole, so it has an inner and an outer
external boundary that require boundary conditions. To
obtain the Schwarzschild solution in Kerr-Schild coordi-
nates we impose Eqs. (37a) to (37c) as Dirichlet conditions
at the outer boundary of the spherical shell at r ¼ 10M.
We place the inner radius of the spherical shell at r ¼ 2M
and impose mixed Dirichlet and Neumann conditions at
the inner boundary. Specifically, we impose the Neumann
condition ni∂iψ ¼ 0 on the conformal factor, and
Eqs. (37b) to (37c) as Dirichlet conditions on the lapse
and shift. The reason for this choice is to mimic apparent-
horizon boundary conditions, as employed in the following
test problem (Sec. IV C). Choosing apparent-horizon
boundary conditions for the Kerr-Schild problem is also
possible, but requires either an initial guess close to the
solution to converge, or a conformal decomposition differ-
ent from ψ ¼ 1. The reason is the strong nonlinearity in the
apparent-horizon boundary conditions that takes the sol-
ution away from ψ0 ¼ 1 initially. We have confirmed this
behavior of the XCTS equations with the SpEC code, and
have presented the convergence of the DG discretization
error with apparent-horizon boundary conditions for the
Kerr-Schild problem in Ref. [40]. With the simpler
Dirichlet and Neumann boundary condition we can seed

the elliptic solverwith a flat initial guess, i.e.,ψ0 ¼ 1,α0 ¼ 1

and βi0 ¼ 0, which allows for better control of the test
problem.
To assess the convergence behavior of the elliptic solver

for this problem we successively h-refine the wedges of the
spherical-shell domain into more and smaller elements,
each with six grid points per dimension. We iterate the
Newton-Raphson algorithm until the magnitude of the
nonlinear residual has decreased by a factor of 1010.
In all configurations we have tested, the nonlinear solver
needs five steps and no line-search globalization to reach
the target residual. The linear solver is configured to solve
the linearized problem, Eq. (16), by reducing its residual
magnitude by a factor of 104. Schwarz subdomains have
Noverlap ¼ 2, and we run three Schwarz presmoothing and
postsmoothing iterations on every multigrid level, includ-
ing the coarsest. Figure 15 presents the total number of
linear-solver iterations accumulated over the five nonlinear
solver steps. Just like we found for the simple Poisson
problem in Fig. 12, the multigrid-Schwarz preconditioner
achieves scale-independent iteration counts under h
refinement.
Figure 16 presents the convergence behavior of the

elliptic solver for the L ¼ 1 configuration (pictured in
Fig. 14) in detail. The convergence of the nonlinear residual
magnitude (dotted line) is independent of the precondi-
tioner chosen for the linear solver in each iteration (solid
lines), since the linearized problems are solved to sufficient
accuracy (10−4). Similar to the Poisson problem in Fig. 13,

FIG. 14. A cut through the uniformly-refined spherical-shell
domain used in the black hole problem (Sec. IV B). The domain
consists of six wedges with a logarithmic radial coordinate map
enveloping an excised sphere. In this example each wedge is
isotropically h-refined once, i.e., split once in all three dimen-
sions, resulting in a total of 48 elements. Note the elements are
split in half along their logical axes, so the element size scales
logarithmically in radial direction just like the distribution of
grid points within the elements. Each element has six grid point
per dimension, so fields are represented as polynomials of
degree five.

13See Table 2.1 in Ref. [1].

A SCALABLE ELLIPTIC SOLVER WITH TASK-BASED … PHYS. REV. D 105, 084027 (2022)

084027-17



the multigrid-Schwarz preconditioning achieves clean
exponential convergence, reducing the linear residual by
an order of magnitude per iteration. The nonlinear residual
magnitude decreases slowly at first, when the fields u are
still far from the solution, and begins to converge quad-
ratically, following the linear-solver residual, once the
fields are closer to the solution and hence the linearization
is more accurate (see Sec. III A). The error to the analytic
solution (dashed line) approaches the DG discretization
error, as detailed in Sec. IVA.14

To solve subdomain problems here we equip the GMRES
subdomain solver with the Laplacian-approximation pre-
conditioner, and solve the five Poisson subproblems on
every subdomain with the incomplete LU explicit-inverse
solver (see Sec. III E). Figure 17 illustrates the importance
of matching the boundary conditions of the approximate
Laplacian to the original problem. When we approximate all
five tensor components of the original XCTS problem with a
Dirichlet-Laplacian, ignoring that we impose Neumann-type
boundary condition on ψ at the inner boundary, some sub-
domains require a significantly larger number of subdomain-
solver iterations than others. We have confirmed that these
subdomains face the inner boundary of the spherical shell.
When we use a Laplacian approximation with matching

boundary-condition type for these subdomains, they need no
more subdomain-solver iterations than interior subdomains.
Specifically, the subdomain preconditioner constructs a
Poisson operator matrix with homogeneous Neumann boun-
dary conditions to apply to the conformal-factor component
of the equations, and another with homogeneous Dirichlet
boundary conditions to apply to the remaining four tensor
components. Therefore, subdomains that face the inner
boundary of the spherical shell domain build and cache
two inverse matrices, and all other subdomains build and
cache a single inverse matrix, in the form of an incomplete
LU decomposition. Furthermore, when the Laplacian-
approximation preconditioner takes the type of boundary
conditions into account, we find that it is sufficiently precise
so we can limit the number of subdomain-solver iterations to

FIG. 15. Number of linear-solver iterations for the black
hole problem (Sec. IV B). The multigrid-Schwarz precon-
ditioner achieves scale independence. The L ¼ 1 configuration
(48 elements) is pictured in Fig. 14.

FIG. 16. Convergence of the Newton-Krylov elliptic solver for
the black hole problem with h-refinement level L ¼ 1. The dotted
line shows the relative residual magnitude of the nonlinear solver,
kb −Auk2, which is driven by a linear solve in every iteration
(solid lines, see Eq. (16). The dashed line shows the error to the
analytic solution, ku − uanalytick2 as a root mean square over all
five variables of the XCTS equations, fψ ; αψ ; βig, and over grid
points. It approaches the DG discretization error.

14For a study of the DG discretization error for this problem
see Fig. 11 in Ref. [40], where the configuration solved in Fig. 16
is circled.

NILS L. VU et al. PHYS. REV. D 105, 084027 (2022)

084027-18



a fixed number. This further balances the load between
elements, decreasing runtime significantly in our tests.
Therefore, in the following we always limit the number
of subdomain-solver iterations to three. With this strategy we
find a reduction in runtime of about 50% compared to the
naive Dirichlet-Laplacian approximation.
Figure 18 presents the wall time and parallel efficiency

of the elliptic solves for the black-hole problem on up to
2048 cores, which approaches the capacity of our local
computing cluster. We split the domain into more and
smaller elements, keeping the number of grid points in each
element constant at six per dimension, and solve each
configuration on a variable number of cores. These con-
figurations are increasingly expensive to solve, involving
up to 42 million grid points, or ∼200 million degrees of
freedom. They all complete in at most a few minutes of
wall time by scaling up to a few thousand cores, until they
reach the capacity of our cluster. We compute their parallel
efficiency as

Parallel efficiency ¼ tserial
tCPU

; ð38Þ

where tCPU ¼ Ncorestwall is the CPU time of a run, i.e., the
product of wall time and the number of cores, and tserial is
the wall time of the configuration runing on a single core.
Since configurations with 24576 elements and more did not
complete on a single core in the allotted time of two hours,
we approximate tserial with the CPU time of the run with the
lowest number of cores for these configurations, meaning
that they begin at a fiducial parallel efficiency of one. The
parallel efficiency decreases when the number of elements
per core becomes small and falls below 25% once each core
holds only a few elements.
Figure 18 also shows that the parallel efficiency

decreases more steeply when filling up a single node, than
it does when we begin to allocate multiple nodes. We take
this behavior as an indication that shared hardware resour-
ces on a node currently limit our parallel efficiency, which
is an issue also found in Ref. [55]. We have confirmed this
hypothesis by running a selection of configurations on the
same number of cores, but distributed over more nodes, so
each node is only partially subscribed, and found that runs
speed up significantly. We intend to address this issue in
future optimizations of the elliptic solver. Possible reso-
lutions include better use of CPU caches, e.g., through a
contiguous layout of data on subdomains, or a shared-
memory OpenMP parallelization of subdomain solves, so
the cores of a node are working on a smaller amount of
data at any given time. The parallel efficiency also
decreases once we reach the capacity of our cluster, at
which point we expect that communications spanning the
full cluster dominate the computational expense. We intend
to test the parallel scaling on larger clusters with more
cores per node in the future. We also plan to investigate the

FIG. 17. Number of subdomain-solver iterations for the black
hole problem (Sec. IV B) with the Laplacian-approximation
preconditioner. The domain is isotropically h-refined thrice, so
the solve involves four multigrid levels. Dots illustrate the
average across all subdomains on the level, and shaded regions
the smallest and largest number of iterations. When approxi-
mating all equations with a Dirichlet-Laplacian (black), sub-
domains facing the inner excision boundary (see Fig. 14) require
more iterations than the average. Matching the Laplacian boun-
dary conditions to the problem (green) reduces the iteration count
and resolves the load imbalance.

FIG. 18. Parallel scaling of the black-hole problem (Sec. IV B).

A SCALABLE ELLIPTIC SOLVER WITH TASK-BASED … PHYS. REV. D 105, 084027 (2022)

084027-19



effect of hyperthreading on the parallel efficiency of the
elliptic solver.

C. A black hole binary

Finally, we solve a classic black hole binary (BBH)
initial data problem, which stands at the beginning of every
BBH simulation performed with the SpEC code. Again,
we solve the full Einstein constraint system in the XCTS
formulation, Eq. (4), but now we choose background
quantities and boundary conditions that represent two
black holes in orbit. Following the formalism for super-
posed Kerr-Schild initial data, e.g., laid out in Ref. [59,60],
we set the conformal metric and the trace of the extrinsic
curvature to the superpositions

γ̄ij ¼ δij þ
X2
n¼1

e−r
2
n=w2

nðγðnÞij − δijÞ; ð39aÞ

and

K ¼
X2
n¼1

e−r
2
n=w2

nKðnÞ; ð39bÞ

where γðnÞij and KðnÞ are the conformal metric and extrinsic-
curvature trace of two isolated Schwarzschild black holes
in Kerr-Schild coordinates as given in Eq. (36). They have
mass parameters Mn and are centered at coordinates Cn,
with rn being the Euclidean coordinate distance from either
center. The superpositions are modulated by two Gaussians
with widths wn. The time-derivative quantities ūij and ∂tK
in the XCTS equations (4) vanish, as do the matter sources
ρ, S and Si.
To handle orbital motion we split the shift in a back-

ground and an excess contribution [14],

βi ¼ βibackground þ βiexcess; ð40Þ

and choose the background shift

βibackground ¼ ðΩ0 × xÞi; ð41Þ

where Ω0 is the orbital angular velocity. We insert Eq. (40)
in the XCTS equations (4) and henceforth solve them for
βiexcess, instead of βi.
We solve the XCTS equations on the domain depicted in

Fig. 19. It has two excised spheres with radius 2Mn that are
centered at Cn, and correspond to the two black holes, and
an outer spherical boundary at finite radius R. We impose
boundary conditions on these three boundaries as follows.
At the outer spherical boundary of the domain we impose
asymptotic flatness,

ψ ¼ 1; αψ ¼ 1; βiexcess ¼ 0: ð42Þ

Since the outer boundary is at a finite radius, the solution
will only be approximately asymptotically flat. On the two
excision boundaries we impose (nonspinning) quasiequili-
brium apparent-horizon boundary conditions [61]

s̄k∂kψ ¼ −
ψ3

8α
s̄is̄jððL̄βÞij − ūijÞ

−
ψ

4
m̄ij∇̄is̄j þ

1

6
Kψ3; ð43aÞ

FIG. 19. A cut through the three-dimensional black hole binary
domain used in Sec. IV C. It involves two excised spheres
centered at Cn along the x-axis and extends to a spherical outer
surface at radius R. The domain is h-refined such that spherical
wedges have equal angular size, so the cube-to-sphere boundary
is nonconforming. All elements in this picture have eight angular
grid points, and f7; 8; 8; 9; 11; 11g radial grid points in the layers
ordered from outermost to innermost. (a) Black-hole binary
domain (b) Close-up.

NILS L. VU et al. PHYS. REV. D 105, 084027 (2022)

084027-20



βi ¼ α

ψ2
s̄i; ð43bÞ

where m̄ij ¼ γ̄ij − s̄is̄j. Here, s̄i ¼ −ni ¼ ψ−2si is the
conformal surface normal to the apparent horizon, which
is opposite the normal to the domain boundary since both
are normalized with the conformal metric. For the lapse we
choose to impose the isolated solution, Eq. (37b), as
Dirichlet conditions at both excision surfaces. Note that
this choice differs slightly from Ref. [60], where the
superposed isolated solutions are imposed on the lapse
at both excision surfaces.
To assess the accuracy and parallel performance of the

elliptic solver for the black-hole binary initial-data problem
we solve the same scenario with the SpEC [14,19] code. In
SpECwe successively increment the resolution from Lev0
to Lev6, which correspond to domain configurations
determined with an adaptive mesh-refinement (AMR)
algorithm. In SpECTRE we simply increment the number
of grid points in all dimensions of all elements by one from
each resolution to the next, based on the domain depicted in
Fig. 19. To compare the solution between the two codes, we
interpolate all five fields uA ¼ fψ ;αψ ; βiexcessg to a set of
sample points xm. We do the same for a very high-
resolution run with SpECTRE that we use as reference,
uA;ref , for which we have split every element in the domain
in two along all three dimensions. Then, we compute the

discretization error for all SpEC and SpECTRE solutions as
an L2-norm of the difference to the high-resolution refer-
ence run over all fields and sample points,

ku − urefk ≔
�X

A;m
ðuAðxmÞ − uA;refðxmÞÞ2

�
1=2

: ð44Þ

We have chosen Mn ¼ 0.4229, Cn ¼ ð�8; 0; 0Þ,
Ω0 ¼ 0.0144, wn ¼ 4.8, R ¼ 300, and sample points along
the x-axis at x1 ¼ 8.846 (near horizon), x2 ¼ 0 (origin) and
x3 ¼ 100 (far field) here. This configuration coincides with
our convergence study in Ref. [40], where we list the
reference values uA;refðxmÞ at the interpolation points
explicitly.
Figure 20 compares the performance of the BBH initial

data problem with the SpEC code. Both SpEC and
SpECTRE converge exponentially with resolution, since
SpEC employs a spectral scheme and SpECTRE a DG
scheme under p refinement. SpECTRE currently needs
about 30% more grid points per dimension to achieve the
same accuracy as SpEC. To an extent this is to be expected,
since we split the domain into more elements than SpEC
does and hence have more shared element boundaries with
duplicate points. In particular, SpEC employs shells with
spherical basis functions that avoid duplicate points in
angular directions altogether. While the SpEC elliptic
solver always decomposes the domain into eleven

FIG. 20. Comparison of the black-hole binary initial-data problem (Sec. IV C) solved with our new elliptic solver in SpECTRE
(black), and with the SpEC elliptic solver (gray). Left: Both codes converge exponentially with resolution. SpECTRE needs about 30%
more grid points per dimension than SpEC to reach the same accuracy. Right: Parallel scaling of both codes. The SpEC elliptic solver
scales to at most eleven cores and reaches a speedup of at most a factor of two compared to the single-core runtime. Our new elliptic
solver in SpECTRE is faster than SpEC on eight cores, and scales the problem reliably to 120 cores, at which point it is seven times faster
than SpEC’s single-core runtime. The dotted line corresponds to a configuration with the same number of grid points as SpEC (but lower
accuracy), which is faster than SpEC on only two cores.

A SCALABLE ELLIPTIC SOLVER WITH TASK-BASED … PHYS. REV. D 105, 084027 (2022)

084027-21



subdomains, each with up to 34 grid points per dimension
in our test, our domain in SpECTRE has 232 elements with
up to 13 grid points per dimension. However, neither is our
black-hole binary domain in SpECTRE optimized as well
as SpEC’s yet, nor have we refined it with an AMR
algorithm. We are planning to do both in future work.
Furthermore, SpEC’s initial-data domain involves over-
lapping patches to enable matching conditions for its
spectral scheme, which our DG scheme in SpECTRE does
not need. Therefore, we expect to achieve domain con-
figurations that come closer to SpEC in their number of
grid points with future optimizations.
The right panel in Fig. 20 demonstrates the superior

parallel performance that our new elliptic solver achieves
over SpEC’s. We choose the runs marked with � in the left
panel because they solve the BBH problem to comparable
accuracy. We scale these runs to an increasing number of
cores and measure the wall time for the elliptic solves to
complete. Since the SpEC initial-data domain is composed
of eleven subdomains, it can parallelize to at most eleven
cores. The runtime decreases by a factor of about 1.5 to 2
when the solve is distributed to multiple cores, but shows
little reliable scaling. Some SpEC configurations at higher
resolutions have shown slightly better parallel performance,
but none that exceeded a factor of about two in speedup
compared to the single-core runtime. Our new elliptic
solver in SpECTRE, on the other hand, scales reliably to
120 cores, at which point each core holds no more than two
elements. On a single core it needs 1176 s where SpEC,
with fewer grid points, needs only 268 s, but it overtakes
SpEC on eight cores and completes in only 37 s on 120
cores. For reference we have also included a scaling test
with SpECTRE that uses the same number of grid points as
SpEC but does not yet reach the same accuracy (marked
with †). It overtakes SpEC on two cores and completes in
only 14 s on 120 cores. The configuration represents a
potential improvement in the domain decomposition with
future optimizations. We find the parallel efficiency for the
BBH configurations behaves similarly to the single black
hole configurations we investigated in Sec. IV B.

V. CONCLUSION AND FUTURE WORK

We have presented a new solver for elliptic partial
differential equations that is designed to parallelize on
computing clusters. It is based on discontinuous Galerkin
methods and task-based parallel iterative algorithms. We
have shown that our solver is capable of parallelizing
elliptic problems with ∼200 million degrees of freedom to
at least a few thousand cores. It solves a classic black hole
binary (BBH) initial data problem faster than the veteran
code SpEC [19] on only eight cores, and in a fraction of the
time when distributed to more cores on a computing cluster.
The elliptic solver is implemented in the open-source

SpECTRE [29] numerical relativity code, and the results
in this article are reproducible with the supplemental input-
file configurations [62].
So far we can solve Poisson, elasticity, puncture and

XCTS problems, including BBH initial data in the super-
posed Kerr-Schild formalism with unequal masses, spins
and negative-expansion boundary conditions [60] (in this
article we only explored an equal-mass and nonspinning
BBH). In the short term we are planning to add the
capability to solve for binary neutron star (BNS) and black
hole–neutron star (BHNS) initial data, which involve the
XCTS equations coupled to the equations of hydrostatic
equilibrium.
A notable strength of our new elliptic solver is the

multigrid-Schwarz preconditioner, which achieves iteration
counts independent of the number of elements in the
computational domain. Therefore, we expect our solver
to scale to problems that benefit from h refinement, e.g., to
resolve different length scales or to adapt the domain to
features in the solution. Such problems include initial data
involving neutron stars with steep gradients near the
surface, equations of state with phase transitions, or
simulating thermal noise in thin mirror coatings for
gravitational-wave detectors [63,64].
Our solver splits the computational domain into more

elements than the spectral code SpEC to achieve superior
parallelization properties. However, the larger number of
elements with shared boundaries also means that we need
more grid points than SpEC to reach the same accuracy for
a BBH initial-data problem. Variations of the DG scheme,
such as a hybridizable DG method, can provide a possible
resolution to this effect [65–67]. Even without changing the
DG scheme, we expect that optimizations of our binary
compact-object domain can significantly reduce the num-
ber of grid points required to reach a certain accuracy.
Possible domain optimizations include combining the
enveloping cube and the cube-to-sphere transition into a
single layer of blocks, equalizing the angular size of the
enveloping wedges in a manner similar to Ref. [24], or
more drastic changes that involve cylindrical or bipolar
coordinate maps, such as the domain presented in Ref. [68].
To retain the effectiveness of the multigrid solver it is
important to keep the number of blocks in the domain to a
minimum under these optimizations. We have shown that
our new elliptic solver reaches comparative single-core
performance to SpEC when using the same number of grid
points, with the added benefit of parallel scaling. Since
every contemporary computer has multiple cores, we
prioritize parallelization over single-core performance.
To put the grid points of the computational domain to

most effective use, adaptive mesh-refinement techniques
will be essential. All components of the elliptic solver,
including the DG discretization, the multigrid algorithm,
and the Schwarz subdomains, already support hp-refined

NILS L. VU et al. PHYS. REV. D 105, 084027 (2022)

084027-22



domains. The refinement can be anisotropic, meaning
elements can be split or differ in their polynomial degree
along each dimension independently. A major subject of
future work will be the development of an AMR scheme
that adjusts the refinement during the elliptic solve auto-
matically based on a local error estimate, distributing
resolution to regions in the domain where it is most needed.
Along with AMR, we expect load balancing to become

increasingly important. We currently approximately load-
balance the elliptic solver at the beginning of the program
based on the number of grid points in each element.
Charm++, and hence SpECTRE, also support dynamic
load-balancing operations that migrate elements between
cores periodically, or at specific points in the algorithm.
Charm++ provides a variety of load-balancing algorithms
that may take metrics such as runtime measurements,
communication cost and the network topology into account.
When the computational load on elements changes due to
p-AMR, or when elements get created and destroyed due to
h-AMR, we intend to invoke load balancing to improve the
parallel performance of the elliptic solves.
The elliptic solver algorithms can be improved in many

ways. The multigrid solver may benefit from an additive
variant of the algorithm, which smooths every level inde-
pendently and combines the solutions [55]. An additive
multigrid algorithm has better parallelization properties
than the multiplicative algorithm that we employ in this
article, since coarse grids do not need to wait for fine grids
to send data before the coarse-grid smoothing can
proceed. However, the additive multigrid algorithm typically
requires more iterations to converge than the multiplicative.
Furthermore, multigrid patterns other than the standard
V-cycle may accelerate convergence, such as a W-cycle or
F-cycle pattern [51].
Schwarz solvers also come in many variations, e.g.,

involving face-centered subdomains, that we have not
explored in this article. Our element-centered subdomains
that eliminate corner and edge neighbors have servedwell for
our DG-discretized problems so far, and we have focused
on accelerating the subdomain solves with suitable
preconditioners. Faster explicit-construction and approxi-
mate-inversion techniques for the subproblems in the
Laplacian-approximation preconditioner have the greatest
potential to speed up the elliptic solver. Possibilities include
constructing matrix representations analytically, either from
the DG scheme or from an approximate finite-difference
scheme, and fastermethods to solve the subproblems than the
incomplete LU technique we currently employ.
A possible avenue for a more drastic improvement of the

elliptic solver algorithm is to replace the multigrid-Schwarz
preconditioner, or parts of it, altogether. For example,
recent developments in the field of physics-informed neural

networks (PINNs) suggest that hybrid strategies, combin-
ing a traditional linear solver with a PINN, can be very
effective [69,70]. Hence, an intriguing prospect for accel-
erating elliptic solves in numerical relativity is to combine
our Newton-Krylov algorithm with a PINN preconditioner,
use the PINN as a smoother on multigrids, or use it to
precondition Schwarz subdomain solves.
Looking ahead, fast, scalable and highly-parallel elliptic

solves in numerical relativity not only have the potential to
accelerate initial-data construction to seed high-resolution
simulations of general-relativistic scenarios, and at extreme
physical parameters, but they may also support evolutions.
For example, some gauge constraints can be formulated as
elliptic equations, and solving them alongside an evolution
can allow the choice of beneficial coordinates, such as
maximal slicing [1]. The apparent-horizon condition is also
an elliptic equation, though current NR codes typically find
apparent horizons with a parabolic relaxation method [71].
Some NR codes employ a constrained-evolution scheme,
which evolves the system in time through a series of elli-
ptic solves, or employ implicit-explicit (IMEX) evolution
schemes [72]. Lastly, Einstein-Vlasov systems for colli-
sionless matter involve elliptic equations, as do simulations
that involve solving a Poisson equation alongside an
evolution, such as simulations of self-gravitating proto-
planetary disks [73–75]. Currently, elliptic solvers are
rarely applied to solve any of these problems alongside
an evolution because they are too costly. Fast elliptic solves
have the potential to enable these applications.

ACKNOWLEDGMENTS

The authors thank Tim Dietrich, Francois Foucart, and
Hannes Rüter for helpful discussions. N. V. also thanks the
Cornell Center for Astrophysics and Planetary Science
and TAPIR at Caltech for the hospitality and financial
support during research stays. Computations were per-
formed with the SpECTRE code [29] on the Minerva
cluster at the Max Planck Institute for Gravitational
Physics. Charm++ [38] was developed by the Parallel
Programming Laboratory in the Department of Computer
Science at the University of Illinois at Urbana-Champaign.
The figures in this article were produced with dgpy [76],
matplotlib [77,78], TikZ [79] and ParaView [80].
This work was supported in part by the Sherman Fairchild
Foundation and by NSF Grants No. PHY-2011961,
No. PHY-2011968, and No. OAC-1931266 at Caltech,
and NSF Grants No. PHY-1912081 and No. OAC-1931280
at Cornell. G. L. is pleased to acknowledge support from
the NSF through Grants No. PHY-1654359 and No. AST-
1559694 and from Nicholas and Lee Begovich and the Dan
Black Family Trust.

A SCALABLE ELLIPTIC SOLVER WITH TASK-BASED … PHYS. REV. D 105, 084027 (2022)

084027-23



[1] T. W. Baumgarte and S. L. Shapiro, Numerical Relativity:
Solving Einsteins Equations on the Computer (Cambridge
University Press, Cambridge, England, 2010).

[2] G. B. Cook, Initial data for numerical relativity, Living Rev.
Relativity 3, 5 (2000).

[3] H. P. Pfeiffer, The initial value problem in numerical
relativity, J. Hyperbolic Differ. Equ. 2, 497 (2005).

[4] B. P. Abbott et al. (LIGO Scientific, Virgo Collaborations),
Observation of Gravitational Waves from a Binary Black
Hole Merger, Phys. Rev. Lett. 116, 061102 (2016).

[5] B. P. Abbott et al. (LIGO Scientific, Virgo Collaborations),
GW170817: Observation of Gravitational Waves from a
Binary Neutron Star Inspiral, Phys. Rev. Lett. 119, 161101
(2017).

[6] R. Abbott et al. (LIGO Scientific, VIRGO, KAGRA
Collaborations), Observation of gravitational waves from
two neutron star–black hole coalescences, Astrophys. J.
Lett. 915, L5 (2021).

[7] B. P. Abbott et al. (LIGO Scientific, Virgo Collaborations),
GWTC-1: A Gravitational-Wave Transient Catalog of
Compact Binary Mergers Observed by LIGO and Virgo
during the First and Second Observing Runs, Phys. Rev. X
9, 031040 (2019).

[8] R. Abbott et al. (LIGO Scientific, Virgo Collaborations),
GWTC-2: Compact Binary Coalescences Observed by
LIGO and Virgo During the First Half of the Third
Observing Run, Phys. Rev. X 11, 021053 (2021).

[9] R. Abbott et al. (LIGO Scientific, VIRGO, KAGRA
Collaborations), GWTC-3: Compact binary coalescences
observed by LIGO and Virgo during the second part of the
third observing run, arXiv:2111.03606.

[10] E. Gourgoulhon, P. Grandclément, J.-A. Marck, J. Novak,
and K. Taniguchi, LORENE, http://www.lorene.obspm.fr.

[11] P. Grandclement, Accurate and realistic initial data for black
hole-neutron star binaries, Phys. Rev. D 74, 124002 (2006).

[12] M. Ansorg, B. Bruegmann, and W. Tichy, A Single-domain
spectral method for black hole puncture data, Phys. Rev. D
70, 064011 (2004).

[13] M. Ansorg, A double-domain spectral method for black hole
excision data, Phys. Rev. D 72, 024018 (2005).

[14] H. P. Pfeiffer, L. E. Kidder, M. A. Scheel, and S. A.
Teukolsky, A multidomain spectral method for solving
elliptic equations, Comput. Phys. Commun. 152, 253
(2003).

[15] S. Ossokine, F. Foucart, H. P. Pfeiffer, M. Boyle, and B.
Szilágyi, Improvements to the construction of binary black
hole initial data, Classical Quantum Gravity 32, 245010
(2015).

[16] F. Foucart, L. E. Kidder, H. P. Pfeiffer, and S. A. Teukolsky,
Initial data for black hole-neutron star binaries: A flexible,
high-accuracy spectral method, Phys. Rev. D 77, 124051
(2008).

[17] N. Tacik et al., Binary neutron stars with arbitrary spins in
numerical relativity, Phys. Rev. D 92, 124012 (2015).

[18] N. Tacik, F. Foucart, H. P. Pfeiffer, C. Muhlberger, L. E.
Kidder, M. A. Scheel, and B. Szilágyi, Initial data for black
hole–neutron star binaries, with rotating stars, Classical
Quantum Gravity 33, 225012 (2016).

[19] L. E. Kidder, H. P. Pfeiffer, M. A. Scheel et al., Spectral
Einstein Code (SpEC), black-holes.org/code/SpEC.

[20] T. Dietrich, N. Moldenhauer, N. K. Johnson-McDaniel, S.
Bernuzzi, C. M. Markakis, B. Brügmann, and W. Tichy,
Binary neutron stars with generic spin, eccentricity, mass
ratio, and compactness—Quasi-equilibrium sequences and
first evolutions, Phys. Rev. D 92, 124007 (2015).

[21] W. Tichy, A. Rashti, T. Dietrich, R. Dudi, and B. Brügmann,
Constructing binary neutron star initial data with high spins,
high compactnesses, and high mass ratios, Phys. Rev. D
100, 124046 (2019).

[22] P. Grandclément, KADATH: A spectral solver for theoreti-
cal physics, J. Comput. Phys. 229, 3334 (2010).

[23] L. J. Papenfort, S. D. Tootle, P. Grandclément, E. R. Most,
and L. Rezzolla, New public code for initial data of unequal-
mass, spinning compact-object binaries, Phys. Rev. D 104,
024057 (2021).

[24] A. Rashti, F. M. Fabbri, B. Brügmann, S. V. Chaurasia, T.
Dietrich, M. Ujevic, and W. Tichy, Elliptica: A new pseudo-
spectral code for the construction of initial data, arXiv:
2109.14511.

[25] K. Uryū and A. Tsokaros, New code for equilibriums and
quasiequilibrium initial data of compact objects, Phys. Rev.
D 85, 064014 (2012).

[26] A. Tsokaros, K. Uryū, and L. Rezzolla, New code for
quasiequilibrium initial data of binary neutron stars: Coro-
tating, irrotational, and slowly spinning systems, Phys. Rev.
D 91, 104030 (2015).

[27] T. Assumpcao, L. R. Werneck, T. P. Jacques et al., NRPyEl-
liptic: A fast hyperbolic relaxation elliptic solver for
numerical relativity, I: Conformally flat, binary puncture
initial data, arXiv:2111.02424.

[28] H. R. Rüter, D. Hilditch, M. Bugner, and B. Brügmann,
Hyperbolic relaxation method for elliptic equations, Phys.
Rev. D 98, 084044 (2018).

[29] N. Deppe, W. Throwe, L. E. Kidder, N. L. Vu, F. Hébert, J.
Moxon, C. Armaza, G. S. Bonilla, P. Kumar, G. Lovelace, E.
O’Shea, H. P. Pfeiffer, M. A. Scheel, S. A. Teukolsky et al.,
SpECTRE v2022.02.17, 10.5281/zenodo.6127519 (2022).

[30] L. E. Kidder et al., SpECTRE: A task-based discontinuous
Galerkin code for relativistic astrophysics, J. Comput. Phys.
335, 84 (2017).

[31] E. Schnetter, CarpetX, 10.5281/zenodo.6131528 (2021).
[32] W. Zhang et al., AMReX: A framework for block-structured

adaptive mesh refinement, J. Open Source Softwaare 4,
1370 (2019).

[33] M. Fernando, D. Neilsen, H. Lim, E. Hirschmann, and H.
Sundar, Massively parallel simulations of binary black hole
intermediate-mass-ratio inspirals, SIAM J. Sci. Comput. 41,
C97 (2019).

[34] W. Tichy, A. Adhikari, and L. Ji, Numerical relativity with
the new Nmesh code, Bull. Am. Phys. Soc. 65 (2020).

[35] M. Bugner, T. Dietrich, S. Bernuzzi, A. Weyhausen, and B.
Brügmann, Solving 3D relativistic hydrodynamical prob-
lems with weighted essentially nonoscillatory discontinuous
Galerkin methods, Phys. Rev. D 94, 084004 (2016).

[36] B. Daszuta, F. Zappa, W. Cook, D. Radice, S. Bernuzzi,
and V. Morozova, GRAthena++: Puncture evolutions on

NILS L. VU et al. PHYS. REV. D 105, 084027 (2022)

084027-24

https://doi.org/10.12942/lrr-2000-5
https://doi.org/10.12942/lrr-2000-5
https://doi.org/10.1142/S0219891605000518
https://doi.org/10.1103/PhysRevLett.116.061102
https://doi.org/10.1103/PhysRevLett.119.161101
https://doi.org/10.1103/PhysRevLett.119.161101
https://doi.org/10.3847/2041-8213/ac082e
https://doi.org/10.3847/2041-8213/ac082e
https://doi.org/10.1103/PhysRevX.9.031040
https://doi.org/10.1103/PhysRevX.9.031040
https://doi.org/10.1103/PhysRevX.11.021053
https://arXiv.org/abs/2111.03606
http://www.lorene.obspm.fr
http://www.lorene.obspm.fr
http://www.lorene.obspm.fr
http://www.lorene.obspm.fr
https://doi.org/10.1103/PhysRevD.74.124002
https://doi.org/10.1103/PhysRevD.70.064011
https://doi.org/10.1103/PhysRevD.70.064011
https://doi.org/10.1103/PhysRevD.72.024018
https://doi.org/10.1016/S0010-4655(02)00847-0
https://doi.org/10.1016/S0010-4655(02)00847-0
https://doi.org/10.1088/0264-9381/32/24/245010
https://doi.org/10.1088/0264-9381/32/24/245010
https://doi.org/10.1103/PhysRevD.77.124051
https://doi.org/10.1103/PhysRevD.77.124051
https://doi.org/10.1103/PhysRevD.92.124012
https://doi.org/10.1088/0264-9381/33/22/225012
https://doi.org/10.1088/0264-9381/33/22/225012
black-holes.org/code/SpEC
black-holes.org/code/SpEC
https://doi.org/10.1103/PhysRevD.92.124007
https://doi.org/10.1103/PhysRevD.100.124046
https://doi.org/10.1103/PhysRevD.100.124046
https://doi.org/10.1016/j.jcp.2010.01.005
https://doi.org/10.1103/PhysRevD.104.024057
https://doi.org/10.1103/PhysRevD.104.024057
https://arXiv.org/abs/2109.14511
https://arXiv.org/abs/2109.14511
https://doi.org/10.1103/physrevd.85.064014
https://doi.org/10.1103/physrevd.85.064014
https://doi.org/10.1103/PhysRevD.91.104030
https://doi.org/10.1103/PhysRevD.91.104030
https://arXiv.org/abs/2111.02424
https://doi.org/10.1103/PhysRevD.98.084044
https://doi.org/10.1103/PhysRevD.98.084044
https://doi.org/10.5281/zenodo.6127519
https://doi.org/10.1016/j.jcp.2016.12.059
https://doi.org/10.1016/j.jcp.2016.12.059
https://doi.org/10.5281/zenodo.6131528
https://doi.org/10.21105/joss.01370
https://doi.org/10.21105/joss.01370
https://doi.org/10.1137/18M1196972
https://doi.org/10.1137/18M1196972
https://doi.org/10.1103/PhysRevD.94.084004


vertex-centered oct-tree adaptive mesh refinement, Astro-
phys. J. Suppl. Ser. 257, 25 (2021).

[37] A. Reinarz, D. E. Charrier, M. Bader, L. Bovard, M.
Dumbser, K. Duru, F. Fambri, A.-A. Gabriel, J.-M. Gallard,
S. Köppel, L. Krenz, L. Rannabauer, L. Rezzolla, P.
Samfass, M. Tavelli, and T. Weinzierl, ExaHyPE: An engine
for parallel dynamically adaptive simulations of wave
problems, Comput. Phys. Commun. 254, 107251 (2020).

[38] L. Kale et al., The Charm++ parallel programming system,
https://charm.cs.illinois.edu (2019).

[39] T. Vincent, H. P. Pfeiffer, and N. L. Fischer, hp-adaptive
discontinuous Galerkin solver for elliptic equations in
numerical relativity, Phys. Rev. D 100, 084052 (2019).

[40] N. L. Fischer and H. P. Pfeiffer, Unified discontinuous
Galerkin scheme for a large class of elliptic equations,
Phys. Rev. D 105, 024034 (2022).

[41] H. Sagan, Space-Filling Curves (Springer, New York, NY,
1994).

[42] R. Borrell, J. C. Cajas, D. Mira, A. Taha, S. Koric, M.
Vázquez, and G. Houzeaux, Parallel mesh partitioning based
on space filling curves, Comput. Fluids 173, 264 (2018).

[43] W. H. Press, W. T. Vetterling, S. A. Teukolsky, and
B. P. Flannery, Numerical Recipes, 3rd ed. (Cambridge
University Press, Cambridge, England, 2007).

[44] J. E. Dennis, Jr. and R. B. Schnabel, Numerical Methods for
Unconstrained Optimization and Nonlinear Equations
(SIAM, Philadelphia, 1996).

[45] P. R. Brune, M. G. Knepley, B. F. Smith, and X. Tu,
Composing scalable nonlinear algebraic solvers, SIAM
Rev. 57, 535 (2015).

[46] S. Balay et al., PETSc, https://www.mcs.anl.gov/petsc
(2021).

[47] Y. Saad and M. H. Schultz, GMRES: A generalized minimal
residual algorithm for solving nonsymmetric linear systems,
SIAM J. Sci. Stat. Comput. 7, 856 (1986).

[48] Y. Saad, Iterative Methods for Sparse Linear Systems,
2nd ed., Society for Industrial and Applied Mathematics
(SIAM, Philadelphia, 2003).

[49] J. S. Hesthaven and T. Warburton, Nodal Discontinuous
Galerkin Methods (Springer, New York, 2008).

[50] K. Shahbazi, An explicit expression for the penalty para-
meter of the interior penalty method, J. Comput. Phys. 205,
401 (2005).

[51] W. L. Briggs, V. E. Henson, and S. F. McCormick, A
Multigrid Tutorial, 2nd ed. (SIAM, Philadelphia, 2000).

[52] D. Fortunato, C. H. Rycroft, and R. Saye, Efficient operator-
coarsening multigrid schemes for local discontinuous
Galerkin methods, SIAM J. Sci. Comput. 41, A3913 (2019).

[53] J. W. Lottes and P. F. Fischer, Hybrid Multigrid/Schwarz
algorithms for the spectral element method, J. Sci. Comput.
24, 45 (2005).

[54] J. Stiller, Robust multigrid for high-order discontinuous
Galerkin methods: A fast Poisson solver suitable for high-
aspect ratio Cartesian grids, J. Comput. Phys. 327, 317
(2016).

[55] A. AlOnazi, G. S. Markomanolis, and D. Keyes, Asynchro-
nous task-based parallelization of algebraic multigrid, in

Proceedings of the Platform for Advanced Scientific
Computing Conference, PASC ’17 (Association for Com-
puting Machinery, New York, NY, USA, 2017).

[56] K. Kang, Scalable implementation of the parallel multigrid
method on massively parallel computers, Comput. Math.
Appl. 70, 2701 (2015).

[57] G. Guennebaud, B. Jacob et al., Eigen, http://eigen
.tuxfamily.org (2021), version 3.4.

[58] Y. Saad, ILUT: A dual threshold incomplete LU factoriza-
tion, Numer. Linear Algebra Appl. 1, 387 (1994).

[59] G. Lovelace, R. Owen, H. P. Pfeiffer, and T. Chu, Binary-
black-hole initial data with nearly-extremal spins, Phys.
Rev. D 78, 084017 (2008).

[60] V. Varma, M. A. Scheel, and H. P. Pfeiffer, Comparison of
binary black hole initial data sets, Phys. Rev. D 98, 104011
(2018).

[61] G. B. Cook and H. P. Pfeiffer, Excision boundary conditions
for black hole initial data, Phys. Rev. D 70, 104016
(2004).

[62] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevD.105.084027 for input-file
configurations to reproduce the results presented in this
article with the SpECTRE code.

[63] G. Lovelace, N. Demos, and H. Khan, Numerically model-
ing Brownian thermal noise in amorphous and crystalline
thin coatings, Classical Quantum Gravity 35, 025017
(2018).

[64] N. L. Vu, S. Rodriguez, T. Wlodarczyk, G. Lovelace, H. P.
Pfeiffer, G. S. Bonilla, N. Deppe, F. Hébert, L. E. Kidder, J.
Moxon, and W. Throwe, High-accuracy numerical models
of Brownian thermal noise in thin mirror coatings,
arXiv:2111.06893.

[65] B. Cockburn, J. Gopalakrishnan, and R. D. Lazarov, Unified
hybridization of discontinuous Galerkin, mixed, and con-
tinuous Galerkin methods for second order elliptic prob-
lems, SIAM J. Numer. Anal. 47, 1319 (2009).

[66] M. Giacomini, R. Sevilla, and A. Huerta, HDGlab: An
open-source implementation of the hybridisable discontinu-
ous Galerkin method in MATLAB, Arch. Comput. Methods
Eng. 28, 1941 (2021).

[67] S. Muralikrishnan, T. Bui-Thanh, and J. N. Shadid, A
multilevel approach for trace system in HDG discretizations,
J. Comput. Phys. 407, 109240 (2020).

[68] L. T. Buchman, H. P. Pfeiffer, M. A. Scheel, and B. Szilágyi,
Simulations of unequal-mass black hole binaries with
spectral methods, Phys. Rev. D 86, 084033 (2012).

[69] S. Markidis, The old and the new: Can physics-informed
deep-learning replace traditional linear solvers?, Front. big
data 4 (2021).

[70] V. Guidetti, F. Muia, Y. Welling, and A. Westphal,
dNNsolve: An efficient NN-based PDE solver, arXiv:
2103.08662.

[71] C. Gundlach, Pseudospectral apparent horizon finders: An
efficient new algorithm, Phys. Rev. D 57, 863 (1998).

[72] S. R. Lau, G. Lovelace, and H. P. Pfeiffer, Implicit-explicit
(IMEX) evolution of single black holes, Phys. Rev. D 84,
084023 (2011).

A SCALABLE ELLIPTIC SOLVER WITH TASK-BASED … PHYS. REV. D 105, 084027 (2022)

084027-25

https://doi.org/10.3847/1538-4365/ac157b
https://doi.org/10.3847/1538-4365/ac157b
https://doi.org/10.1016/j.cpc.2020.107251
https://charm.cs.illinois.edu
https://charm.cs.illinois.edu
https://charm.cs.illinois.edu
https://charm.cs.illinois.edu
https://doi.org/10.1103/PhysRevD.100.084052
https://doi.org/10.1103/PhysRevD.105.024034
https://doi.org/10.1016/j.compfluid.2018.01.040
https://doi.org/10.1137/130936725
https://doi.org/10.1137/130936725
https://www.mcs.anl.gov/petsc
https://www.mcs.anl.gov/petsc
https://www.mcs.anl.gov/petsc
https://www.mcs.anl.gov/petsc
https://doi.org/10.1137/0907058
https://doi.org/10.1016/j.jcp.2004.11.017
https://doi.org/10.1016/j.jcp.2004.11.017
https://doi.org/10.1137/18M1206357
https://doi.org/10.1007/s10915-004-4787-3
https://doi.org/10.1007/s10915-004-4787-3
https://doi.org/10.1016/j.jcp.2016.09.041
https://doi.org/10.1016/j.jcp.2016.09.041
https://doi.org/10.1016/j.camwa.2015.07.023
https://doi.org/10.1016/j.camwa.2015.07.023
http://eigen.tuxfamily.org
http://eigen.tuxfamily.org
http://eigen.tuxfamily.org
https://doi.org/10.1002/nla.1680010405
https://doi.org/10.1103/PhysRevD.78.084017
https://doi.org/10.1103/PhysRevD.78.084017
https://doi.org/10.1103/PhysRevD.98.104011
https://doi.org/10.1103/PhysRevD.98.104011
https://doi.org/10.1103/PhysRevD.70.104016
https://doi.org/10.1103/PhysRevD.70.104016
http://link.aps.org/supplemental/10.1103/PhysRevD.105.084027
http://link.aps.org/supplemental/10.1103/PhysRevD.105.084027
http://link.aps.org/supplemental/10.1103/PhysRevD.105.084027
http://link.aps.org/supplemental/10.1103/PhysRevD.105.084027
http://link.aps.org/supplemental/10.1103/PhysRevD.105.084027
http://link.aps.org/supplemental/10.1103/PhysRevD.105.084027
http://link.aps.org/supplemental/10.1103/PhysRevD.105.084027
https://doi.org/10.1088/1361-6382/aa9ccc
https://doi.org/10.1088/1361-6382/aa9ccc
https://arXiv.org/abs/2111.06893
https://doi.org/10.1137/070706616
https://doi.org/10.1007/s11831-020-09502-5
https://doi.org/10.1007/s11831-020-09502-5
https://doi.org/10.1016/j.jcp.2020.109240
https://doi.org/10.1103/PhysRevD.86.084033
https://doi.org/10.3389/fdata.2021.669097
https://doi.org/10.3389/fdata.2021.669097
https://arXiv.org/abs/2103.08662
https://arXiv.org/abs/2103.08662
https://doi.org/10.1103/PhysRevD.57.863
https://doi.org/10.1103/PhysRevD.84.084023
https://doi.org/10.1103/PhysRevD.84.084023


[73] H. Deng, L. Mayer, and H. Latter, Global simulations of
self-gravitating magnetized protoplanetary disks, Astro-
phys. J. 891, 1538 (2020).

[74] P. F. Hopkins, A new class of accurate, mesh-free hydro-
dynamic simulation methods, Mon. Not. Roy. Astron. Soc.
450, 53 (2015).

[75] G. L. Bryan et al. (The Enzo Collaboration), Enzo: An
adaptive mesh refinement code for astrophysics, Astrophys.
J. 211, 1538 (2014).

[76] N. L. Vu, dgpy v0.1, 10.5281/zenodo.5086181 (2021).

[77] J. D. Hunter, Matplotlib: A 2d graphics environment,
Comput. Sci. Eng 9, 90 (2007).

[78] T. A. Caswell et al., matplotlib v3.3.3, 10.5281/zenodo
.4268928(2020).

[79] T. Tantau, pgf—a portable graphic format for TeX, github:
pgf-tikz/pgf (2021).

[80] J. Ahrens, B. Geveci, and C. Law, ParaView: An end-user
tool for large-data visualization, in Visualization Handbook
(Butterworth-Heinemann, Burlington, 2005).

NILS L. VU et al. PHYS. REV. D 105, 084027 (2022)

084027-26

https://doi.org/10.3847/1538-4357/ab77b2
https://doi.org/10.3847/1538-4357/ab77b2
https://doi.org/10.1093/mnras/stv195
https://doi.org/10.1093/mnras/stv195
https://doi.org/10.1088/0067-0049/211/2/19
https://doi.org/10.1088/0067-0049/211/2/19
https://doi.org/10.5281/zenodo.5086181
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.5281/zenodo.4268928
https://doi.org/10.5281/zenodo.4268928
github:pgf-tikz/pgf
github:pgf-tikz/pgf

