
Nonlocal scalar fields in static spacetimes via heat kernels

Ivan Kolář *
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We solve the nonlocal equation −e−l2□□ϕ ¼ J for (i) static scalar fields in static spacetimes and
(ii) time-dependent scalar fields in ultrastatic spacetimes. Corresponding equations are rewritten as
nonlocal Poisson/inhomogeneous Helmholtz equations in compact and noncompact weighted/Riemannian
manifolds using static/frequency-domain Green’s functions, which can be computed from the heat kernels
in the respective manifolds. With the help of the heat kernel estimates, we derive the static Green’s function
estimates and use them to discuss the regularity. We also present several examples of exact and estimated
static/frequency-domain Green’s functions.
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I. INTRODUCTION

Nonlocal exponential operators of the type e−l
2□ appear

in physics in various contexts. They arise naturally in
effective descriptions of the string field theory (SFT)
[1,2] as well as the p-adic string theory (PST) [3,4]. The
nonlocal modifications of the general relativity (GR)
achieved through such operators, referred to as the
(ghost-free) infinite-derivative gravity (IDG), have also
attracted attention [5,6] (with early works in Refs. [7–9]).
It has turned out that the infinite-derivative operators such as
e−l

2□ have tendency to improve the ultraviolet behavior of
GR without introducing ghost degrees of freedom. In
particular, they seem to resolve spacetime singularities
(based on linearized/weak-field results) and also make the
theory (super)renormalizible.
The presence of an infinite number of derivatives makes

the initial value problem very intricate [10–13]. The entire
evolution is equivalent to the initial conditions, which
are, however, subject to the consistency conditions [14].
These conditions manifest themselves in the proposed
Hamiltonian formulations usually as (second-class) con-
straints arising from the field equations [15–19]. As a
consequence, solving nonlocal theories can be very intri-
cate because all the standard approaches are not applicable.
The solutions of models inspired by SFT and PST (in the

flat space or in the cosmological settings) were studied, for
example, in Refs. [3,11,14,17,20–28]. One method that
exploits the exponential form of e−l

2□ relies on recasting
the nonlocal equation into the heat/diffusion equation
[29–32] (see also Ref. [13]), which is then often solved
iteratively from a trial function using the convolution with
the heat kernel or as a boundary value problem [33–35]
(for an alternative initial value formulation, see Ref. [36]).

If the problem is linearized, then it is common to use the
Laplace transforms (on the half-line) or/and the Fourier
transform (in flat space) or/and some spectral properties of
−□ (in curved space) [10,12,37–40] (for a novel Borel
transform approach, see Ref. [41]). These methods have
been also employed for solving IDG in the linearized
regime [6,40,42–50]. Known exact solutions are either
(generalized) gravitational waves, which lead to (semi)
linear nonlocal equations [51–54] or bouncing cosmologies
with recursive curvature, which lead to nonlinear but local
equations [9,55–58].
Since the nonlinear nonlocal field equations of IDG or

SFT/PST (in curved backgrounds) are extremely difficult, it
seems very natural to first better understand linear nonlocal
scalar field equations of the form

−e−l2□□ϕ ¼ J

in fixed but curved background spacetimes. This paper
aims to develop methods for solving such an equation and
to provide several examples of (i) static scalar fields in
static spacetimes and (ii) time-dependent scalar fields in
ultrastatic spacetimes. We show that the static space/time
splitting together with the exponential form of the nonlocal
operator enables us to find Green’s functions (and discuss
their regularity) via the heat kernels. Furthermore, we try to
highlight the importance of mathematical results on the
heat kernels and their estimates in compact and non-
compact (weighted/Riemannian) manifolds, which are
perfectly suited for these nonlocal problems but often
overlooked by physicists.
This paper is structured as follows: In Sec. II, we discuss

the static space/time splitting, which provides a link
between four-dimensional static spacetimes and three-
dimensional spaces with an additional density (weight).*i.kolar@rug.nl
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In Sec. III, this viewpoint is utilized for the decomposition
of the nonlocal exponential operator allowing for the
representation through the heat kernels on weighted mani-
folds. In Sec. IV, we review some exact formulas for the
heat kernels and necessary mathematical results on the heat
kernel estimates in noncompact weighted manifolds. In
Sec. V, we solve the nonlocal equation for static scalar
fields in static spacetimes by means of the exact and
estimated static Green’s functions; we study their regularity
and present several explicit examples. In Sec. VI, we solve
the nonlocal equation for time-dependent scalar fields in
ultrastatic spacetimes using exact frequency-domain
Green’s functions, and we also provide some explicit
examples. In Sec. VII, we conclude the paper with a
summary and a discussion of our results.
Let us denote the spaces of sufficiently smooth scalar

fields/functions, tensor fields of type ðk; lÞ (with symmet-
rization marked by parentheses), and densities on the
manifold M by FM, Tk

lM, and DM, respectively.
Boldface font is used for tensors, while the fraktur font is
used for densities. We use the index-free tensor nota-
tion where the dot · indicates the contraction between
two adjacent indices and raising/lowering of indices
is achieved by means of the musical isomorphisms
♯ and ♭ [59].
We adopt the notation for two-sided estimates from

Ref. [60]. For positive functions f and g on a set X, we
write fðxÞ ≃ gðxÞ, x ∈ X, if there exists a positive constant
cm satisfying c−1m ≤ fðxÞ=gðxÞ ≤ cm, x ∈ X. Furthermore,
we use the notation fðxÞ ≍ gðx; c; c̃Þ, x ∈ X if there are
positive constants cb, c̃b, cu, c̃u for which gðx; cb; c̃bÞ ≤
fðxÞ ≤ gðx; cu; c̃uÞ, x ∈ X. The letter cwith various accents
and subscripts is reserved for positive constants whose
values can change at any occurrence.

II. STATIC SPACE/TIME SPLITTING

The starting point of our discussion is the natural space/
time splitting that is available in static spacetimes. We
introduce a viewpoint in which the four-dimensional
spacetime is regarded as a three-dimensional space with
an additional density.

A. Static spacetimes as weighted 3-manifolds

Consider a four-dimensional Lorentzian manifold
ðM̄; ḡÞ, ḡ ∈ T0

ð2ÞM̄,1 which admits a hypersurface-

orthogonal timelike Killing vector ξ̄ ∈ T1
0M̄, £ξ̄ḡ ¼ 0.

Labeling the foliation of the manifold by t ¼ const and
assuming M̄ ¼ R ×M, we can write ḡ as2

ḡðt; xÞ ¼ −w2ðxÞdtdtþ gðxÞ; t ∈ R; x ∈ M: ð2:1Þ

Just-described spacetimes are called the static spacetimes.
The notion of staticity is with respect to the observers
generated by the timelike Killing vector ξ̄ ¼ ∂t. It is
intimately connected with the function w through the norm
ξ̄ · ξ̄♭ ¼ −w2.
Thanks to the isometry of submanifolds t ¼ const, we

can capture the full information encoded in ðM̄; ḡÞ by an
arbitrary three-dimensional Riemannian manifold ðM; gÞ,
g ∈ T0

ð2ÞM equipped with an additional positive density

w ∈ DM. Here, g is the induced metric on M, and the
density w is related to the standard metric density g1=2 ≔ffiffiffiffiffiffiffiffiffiffiffiffi
det gij

p
dx1dx2dx3 ∈ DM via the weight function w,

w ¼ wg1=2; ð2:2Þ

where w ∈ FM is positive and sufficiently smooth. The
triplet ðM; g;wÞ is often referred to as the weighted
manifold.
A special subclass of spacetimes corresponding to the

unweighted case w ¼ 1 arises if the Killing vector ξ̄ is also
covariantly constant, ∇̄ ξ̄ ¼ 0. Then, the spacetime metric ḡ
reduces to

ḡðt; xÞ ¼ −dtdtþ gðxÞ; ð2:3Þ

which is commonly referred to as the ultrastatic spacetime
[61] (see also Ref. [62] and references therein). The
ultrastaticity basically means that observers in all x ∈ M
associated with ξ̄ share a common proper time t (in contrast
to other static spacetimes).
Let us introduce some geometric quantities that we can

calculate in ðM; g;wÞ. In what follows, ðM; gÞ is always
assumed to be connected and geodesically complete (with-
out boundary). This allows us to compute the (shortest)
geodesic distanceDxy between every two points x; y ∈ M.
Consequently, we can define a geodesic ball Bðx; ρÞ ⊂ M
of radius ρ centered at x ∈ M. Its volume Vðx; ρÞ and
surface Sðx; ρÞ are

Vðx;ρÞ≔
Z

Bðx;ρÞ

g1=2; Sðx;ρÞ≔
Z

∂Bðx;ρÞ

g1=2j∂Bðx;ρÞ; ð2:4Þ

which are measured with the metric density g1=2. Since we
have access to the density w, it is very convenient to
introduce also the weighted volume Vwðx; ρÞ and weighted
surface Swðx; ρÞ of Bðx; ρÞ,

Vwðx;ρÞ≔
Z

Bðx;ρÞ

w; Swðx;ρÞ≔
Z

∂Bðx;ρÞ

wj∂Bðx;ρÞ: ð2:5Þ1Bars emphasize spacetime character of the quantities.
2We work with the mostly positive metric signature,

ð−;þ;þ;þÞ.
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B. Wave operator

In our three-dimensional description, an arbitrary sca-
lar field ϕ̄ ∈ FM̄ can be realized as a set of scalar fields
ϕt ∈ FM parametrized by t ∈ R, ϕtðxÞ ¼ ϕ̄ðt; xÞ. The
action of the wave operator □̄ ≔ ∇̄ · d̄♯ on ϕ̄ can then
be understood as

□̄ ϕ̄ðt; xÞ ¼ ð−w−2∂2t þ△wÞϕtðxÞ; ð2:6Þ

where we introduced the weighted Laplace operator
[63,64],

△w ≔ w−1divðwd♯Þ ¼ w−1∇ · ðwd♯Þ
¼ △þ ðd logwÞ · d♯; ð2:7Þ

with △ ≔ ∇ · d♯ denoting the standard (unweighted)
Laplace operator. If the spacetime is ultrastatic, i.e.,
w ¼ 1, then △w ¼ △, and the wave operator reduces
to □̄ ¼ −∂2t þ△.
Another advantage of (ultra)static spacetimes is that we

can always go from the time domain to the frequency
domain t → ω (and back) by means of the standard Fourier
transform,

f̂ω¼ 1ffiffiffiffiffiffi
2π

p
Z
R

dte−iωtft; ft ¼ 1ffiffiffiffiffiffi
2π

p
Z
R

dωeiωtf̂ω; ð2:8Þ

which replaces −∂2t → ω2 and ϕt → ϕ̂ω on the right-hand
side of (2.6).
If ϕ̄ is independent of t, i.e., £ξ̄ϕ̄ ¼ 0, then we call it the

static scalar field and describe it by a single scalar field
ϕ ∈ FM. When acting on a static scalar field, the wave
operator is given simply by the weighted Laplace oper-
ator □̄ ¼ △w.

III. NONLOCAL SCALAR FIELD THEORY

The space/time splitting of the wave operator □̄ (and the
Fourier transform in time) is especially useful in the study of
nonlocal scalar fields. It allows us to rewrite the field
equations in terms of operators eτ△w , which can then be
represented through the heat kernels onweightedmanifolds.

A. Field equation

Consider a nonlocal theory of a scalar field ϕ̄ ∈ FM̄ in a
fixed spacetime ðM̄; ḡÞ sourced by J̄ ∈ FM̄,

S½ϕ̄� ¼
Z
M̄

ḡ1=2
�
1

2
ϕ̄e−l

2□̄□̄ ϕ̄þJ̄ ϕ̄

�
; ð3:1Þ

where the nonlocal exponential operator can be understood
either via the infinite sum of derivatives or via the spectral
resolution Ēλ̄ of −□̄,

eτ□̄ ≔
X∞
k¼0

τk

k!
□̄k ≔

Z
R

dĒλ̄e
−τλ̄; τ ∈ R; ð3:2Þ

provided that ðM̄; ḡÞ admits such representations for
certain spaces of functions. The parameter l > 0 is called
the (length) scale of nonlocality. The local theory is
recovered in the limit l → 0. By taking the functional
derivative of S with respect to ϕ̄, we may derive the field
equation, which is of the of the nonlocal inhomogeneous
wave equation,

−e−l2□̄□̄ ϕ̄ ¼ J̄: ð3:3Þ

Considering a static spacetime, we can rewrite this
equation in the spirit of the previous section as

el
2ðw−2∂2t−△wÞðw−2∂2t −△wÞϕt ¼ Jt: ð3:4Þ

In this paper, we will study two special subcases, in which
the operators in the argument of the exponential com-
mutes, ½w−2∂2t ;△w�ϕt ¼ 0:

(i) If the scalar field and the spacetime are both static,
then (3.4) reduces to the nonlocal Poisson equation:

−△wϕ ¼ el
2△wJ: ð3:5Þ

(ii) If the scalar field is time dependent but the spacetime
is ultrastatic, then we can recast the equation (3.4) to
the form of the nonlocal inhomogeneous Helmholtz
equation (in frequency domain):

−ð△þ ω2Þϕ̂ω ¼ el
2ω2

el
2△Ĵω: ð3:6Þ

Notice that we assumed that the nonlocal exponential
operator can be inverted without affecting the solutions
of the field equation [10,37]. Because of this, the nonlocal
operator with the (weighted) Laplace operator appears on
the right-hand side with the positive sign in the exponent.
As a consequence, its action can be formulated by means of
the heat kernel (below).
It is vital to stress that the nonlocal exponential operators

defined through infinite sums of derivatives, spectral
representations, and the heat kernels may differ on certain
(nonanalytic) functions [14]. Here, we assume that we work
in a subspace of functions where all three definitions are
equivalent (and the exponential operator is invertible).
Explicit identification of such spaces is rather difficult
and goes beyond the scope of this paper (see Ref. [40], for
the discussion of this problem in the Minkowski space-
time). We will be quite sloppy in this regard and just write
FM̄ or FM for such optimal spaces of functions.
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B. Nonlocal operator via heat kernel

In curved spaces, it is very efficient to characterize the
action of eτ△w , τ ≥ 0, by means of the heat kernels.
Consider the heat/diffusion equation on ½0;∞Þ ×M for
an arbitrary initial condition Ψ0 ∈ FM,

△wΨτðxÞ ¼ ∂τΨτðxÞ; ð3:7Þ

where τ ≥ 0 is an evolution parameter. The solution is often
expressed using the heat kernel Kτ ∈ FðM ×MÞ [65],

ΨτðxÞ≕ hKτðx; ·Þ;Ψ0iw; ð3:8Þ

where we introduced the weighted inner product of two
scalar fields f1; f2 ∈ FM,

hf1; f2iw ≔
Z
x∈M

wðxÞf1ðxÞf2ðxÞ: ð3:9Þ

Let us point out that the heat kernel is always symmetric,
Kτðx; yÞ ¼ Kτðy; xÞ, but we will not symmetrize it in many
cases for brevity reasons.
Denoting the spectral resolution of the weighted Laplace

operator −△w by Eλ, we may write

eτ△w ≔
Z∞
0

dEλe−τλ: ð3:10Þ

Therefore, the action of the nonlocal exponential operator
eτ△w on an arbitrary scalar field Ψ0 ∈ FM can be equiv-
alently characterized by means of the solution Ψτ, i.e.,
diffused with parameter τ,

eτ△wΨ0 ¼ Ψτ; ð3:11Þ
because the differentiation with respect to the parameter τ,
∂τe−τλ ¼ −λe−τλ, exactly reproduces (3.7). Comparing
(3.11) with (3.8), we also obtain the distributional formula
for the heat kernel

Kτð·; yÞ ¼ eτ△wδy; ð3:12Þ
which also implies that Kτ satisfies the heat equation in
both variables. Here, δy is the Dirac delta distribution
defined by

hδy; fiw ≔ fðyÞ; ð3:13Þ
where hT; fiw is now understood as an action of the
distribution (linear functional) T on the test function f.
This bracket reduces back to the inner product (3.9) for
distributions associated with ordinary functions. The set of
operators eτ△w , τ ≥ 0, is often referred to as the heat
semigroup due to the identity

eτ1△weτ2△w ¼ eðτ1þτ2Þ△w ; ð3:14Þ

which translates to the following identity for the heat kernel

Kτ1þτ2ðx; zÞ ¼ hKτ1ðx; ·ÞKτ2ð·; zÞiw: ð3:15Þ

Let us also mention two important limits of the heat
kernel [60],

lim
τ→0

τ logKτðx; yÞ ¼ −
1

4
D2

xy;

lim
τ→∞

1

τ
logKτðx; yÞ ¼ −λmin; ð3:16Þ

where λmin denotes the bottom of the spectrum of −△w.
The former can be made more explicit if Dxy is sufficiently
small. Then, Kτ always approaches the heat kernel of the
Euclidean 3-space ðR3; geucÞ [given by (4.2) below] multi-
plied by a positive function f ∈ FðM ×MÞ,

Kτðx; yÞ ∼ fðx; yÞKeuc
τ ðx; yÞ; τ → 0: ð3:17Þ

If the manifold is compact, then −△w has pure (non-
negative) point spectrum λk, k ∈ N0 (counted with multi-
plicity). Moreover, λk can be sorted so that the sequence
grows and λk → ∞ for k → ∞. The corresponding eigen-
functions ψk ∈ FM,

−△wψk ¼ λkψk; ð3:18Þ

form a complete orthonormal set on FM with the inner
product (3.9),

hψ j;ψki ¼ δjk; ð3:19Þ

meaning that we can expand an arbitrary function
f ∈ FM as

fðxÞ ¼
X∞
k¼0

fkψkðxÞ; fk ≔ hf;ψkiw: ð3:20Þ

Furthermore, the minimum principle implies that the
constant function is the only harmonic function on the
compact manifold. Due to the normalization (3.19), we find

λ0 ¼ 0; ψ0 ¼
1ffiffiffiffiffiffiffiffi
VM
w

p ; ð3:21Þ

where VM
w ≔

R
M w denotes the weighted volume of M,

which is finite because w and g are bounded onM (thanks
to continuity). The action of the nonlocal exponential
operator (3.10) reduces to the infinite sum
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eτ△wf ¼
X∞
k¼0

e−τλkfkψk; ð3:22Þ

which can be easily translated to a direct relation for the
heat kernel if we expand f in eτ△wfðxÞ ¼ hKτðx; ·Þ; fiw by
means of (3.20) with (3.19),

Kτðx; yÞ ¼
X∞
k¼0

e−τλkψkðxÞψkðyÞ: ð3:23Þ

The sum converges absolutely and uniformly for τ ≥ ε by
Weierstrass m-test with the convergent majorant seriesP∞

k¼0 mkðεÞ for any ε > 0 [65].

IV. HEAT KERNELS AND THEIR ESTIMATES

Before we proceed to solving Eqs. (3.5) and (3.6), we
need to review some exact formulas for heat kernels
together with important mathematical results on heat kernel
estimates in noncompact weighted manifolds. For more
details, we refer the reader to the reviews [60,66,67] and the
textbook [65].

A. Exact expressions

Let us begin with some important three-dimensional
(unweighted) Riemannian manifolds for which the heat
kernels are known exactly. Such examples involve mainly
the maximally symmetric spaces (with six Killing vectors),
i.e., the space of constant curvature.
Of course, the simplest and best-known example is the

Euclidean 3-space ðR3; geucÞ (vanishing curvature),3

geuc ≔ dρdρþ ρ2ðdϑdϑþ sin2ϑdφdφÞ: ð4:1Þ

Here, the Laplace operator −△ has a continuous non-
negative spectrum, ½0;∞Þ. The heat kernel has the form of
the Gaussian function with the variance τ,

Keuc
τ ðx; yÞ ¼ 1

ð4πτÞ32 exp
�
−
D2

xy

4τ

�
; ð4:2Þ

where Dxy is now the standard Euclidean distance.
Another noncompact Riemannian manifold with an

exact formula is the hyperbolic 3-space ðR3; ghypÞ (negative
constant curvature),

ghyp ≔ dρdρþ A2sinh2
�
ρ

A

�
ðdϑdϑþ sin2ϑdφdφÞ; ð4:3Þ

where A > 0 is an arbitrary constant characterizing the
value of the curvature. The heat kernel is given by [68–70]

Khyp
τ ðx; yÞ ¼ 1

ð4πτÞ32
Dxy

A

sinhðDxy

A Þ
exp

�
−
D2

xy

4τ
−

τ

A2

�
: ð4:4Þ

The additional term −τ=A2 arises thanks to the fact that the
spectrum starts above zero, ½1=A2;∞Þ, with λmin ¼ 1=A2;
see the second limit of (3.16).
Moving on to the compact Riemannian manifolds, the

exact expression is known for the 3-sphere ðS3; gsphÞ
(positive constant curvature),

gsph ≔ dρdρþ B2sin2
�
ρ

B

�
ðdϑdϑþ sin2ϑdφdφÞ; ð4:5Þ

where B > 0 denotes the radius of the 3-sphere. Its heat
kernel reads [71,72]

Ksph
τ ðx; yÞ ¼

X∞
k¼0

ðkþ 1Þ sin ððkþ 1Þ Dxy

B Þ
2π2B3 sinðDxy

B Þ
e−kðkþ2Þ τ

B2 : ð4:6Þ

This sum converges absolutely and uniformly for τ ≥ ε for
any ε > 0 as we anticipated. Since the spectrum of the
Laplace operator −△ is discrete and consisting of the
eigenvalues λk ¼ kðkþ 2Þ=B2, k ∈ N0 with the eigenfunc-
tions being three-dimensional spherical harmonics ψk;j.
The formula (4.6) is obtained by means of (3.23) with the
use of the addition theorem [73],4

ψkðxÞψkðyÞ ¼
Xðkþ1Þ2

j¼1

ψk;jðxÞψk;jðyÞ

¼ ðkþ 1Þ sin ððkþ 1Þ Dxy

B Þ
2π2B3 sinðDxy

B Þ
: ð4:7Þ

Note that the expressions Khyp
τ and Ksph

τ approach Keuc
τ

for large values of A and B (the latter can be verified
numerically). Unfortunately, the heat kernels for more
complicated (less symmetrical) Riemannian/weighted
manifolds are not known in general. Luckily, it is often
sufficient to work just with the global estimates (upper and/
or lower bounds) instead, which have been studied exten-
sively in the mathematical literature.

B. Li-Yau estimate

It turns out that on a large number of noncompact
weighted manifolds ðM; g;wÞ, the heat kernel can be
globally estimated from both sides by (see Ref. [60] and
references therein)

3Spherically symmetric metrics are written in spherical coor-
dinates for later convenience. All expressions for the heat kernels
are coordinate independent.

4This identity typically appears with the Gegenbauer poly-
nomial on the right-hand side, Cð1Þ

k ðcos xÞ ¼ sinððkþ1ÞxÞ
sin x .
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Kτðx; yÞ ≍
c

Vwðx;
ffiffiffi
τ

p Þ exp
�
−c̃

D2
xy

4τ

�
: ð4:8Þ

This formula is known as the (weighted) Li-Yau estimate.
(The constant c̃2 in the upper bound can be taken arbitrarily
close to 1.) It was first proven for Riemannian manifolds
ðM; gÞ (compact or noncompact) with the non-negative
Ricci curvature, v · Ric · v ≥ 0, ∀ v ∈ T1

0M in the seminal
work [74], where Ric ∈ T0

ð2ÞM is the Ricci tensor.

Following Ref. [74], this result was extended to many
other cases including weighted manifolds ðM; g;wÞ.
Such a generalization makes use of two alternative

characterizations of weighted manifolds satisfying (4.8).
The weighted Li-Yau estimate is, on one hand, fully
equivalent to the Harnack inequality5 and, on the other
hand, to the Poincaré inequality6 together with the volume
doubling property,

Vwðx; 2ρÞ ≤ cVwðx; ρÞ: ð4:9Þ

The last condition has an important consequence called the
reverse volume doubling,

Vwðx; ρ2Þ
Vwðx; ρ1Þ

≤ c

�
ρ2
ρ1

�
κ

; ρ2 > ρ1 > 0; ð4:10Þ

for some κ > 0. Assuming that (4.8) holds for a non-
compact Riemannian manifold, one can show (based on the
equivalent characterizations above) that it holds also for its
weighted counterpart whenever the weight function w is
bounded,

wðxÞ ≃ 1; ∀ x ∈ M: ð4:11Þ

In fact, this result can be further generalized to
unbounded w if we introduce another geometric notion.
Let us fix a reference point o ∈ M, called the origin,
together with the notation

jxj ≔ Dxo; VðρÞ ≔ Vðo; ρÞ; VwðρÞ ≔ Vwðo; ρÞ;
SðρÞ ≔ Sðo; ρÞ; SwðρÞ ≔ Swðo; ρÞ: ð4:12Þ

We say that ðM; gÞ has relatively connected annuli if
there exists a constant c > 1 such that for any two points
x; y ∈ M with large enough jxj ¼ jyj ¼ ρ there exists a
continuous path from x to y that is fully contained within
the annulus Bðo; cρÞnBðo; c−1ρÞ. The statement that relates
the weighted and unweighted Li-Yau estimates then

remains true on any manifold with relatively connected
annuli if we replace the condition (4.11) by more general
conditions [60,75]

wðxÞ ≃ w̆ðjxjÞ; ∀ x ∈ M;Zρ
c

dρ̃
ρ̃
w̆ðρ̃ÞVðρ̃Þ ≃ w̆ðρÞVðρÞ; ∀ ρ > 2c > 0; ð4:13Þ

where we denoted w̆ðρÞ ≔ supjxj¼ρwðxÞ. Moreover, con-
ditions (4.13) always imply the following relation between
the weighted and unweighted volumes:

Vwðx; ρÞ ≃ w̆ðjxj þ ρÞVðx; ρÞ: ð4:14Þ

If VðρÞ ≃ ρα and w̆ðρÞ ≃ ρβ for large ρ, then (4.13) is
met for αþ β > 0. Note that the unweighted volume
growth is already constrained to α ∈ ½1; 3� for noncompact
Riemannian manifolds ðM; gÞ of non-negative Ricci cur-
vature according to the Calabi-Yau and Bishop-Gromov
bounds (see, e.g., Ref. [76]),7

c1ρ ≤ Vðx; ρÞ ≤ c2ρ3; ð4:15Þ

for sufficiently large ρ.

C. Spherical symmetry

The problem simplifies considerably if we focus on
certain spherically symmetric weighted spaces (with three
Killing vectors). We define them as the weighted manifolds
ðR3; gsym; sÞ, where

gsym ≔ dρdρþ ϱ2ðρÞðdϑdϑþ sin2ϑdφdφÞ;
s ≔ sg1=2sym ¼ sðρÞϱ2ðρÞ sinϑdρdϑdφ; ð4:16Þ

with ϱ and s being two completely arbitrary positive
functions satisfying

ϱðρÞ ¼ ρþOðρ3Þ; sðρÞ ¼ 1þOðρ2Þ; ρ→ 0: ð4:17Þ

The just-described weighted manifolds are noncompact
and have relatively connected annuli with the origin o ∈ R3

set at ρ ¼ 0. The additional conditions (4.17) guarantee that
the metric is well behaved at o; in particular, ðR3; gsym; sÞ
becomes ðR3; geucÞ in the vicinity of the origin.8

5∀Bðx; ρÞ, ∀Ψτ > 0 solving the heat equation in the cylinder
C ≔ ð0; ρ2Þ × Bðx; ρÞ, supy∈C−ΨτðyÞ ≤ c infy∈CþΨτðyÞ, where

C− ≔ ðρ2
4
; ρ

2

2
Þ × Bðx; ρ

2
Þ and Cþ ≔ ð3ρ2

4
; ρ2Þ × Bðx; ρ

2
Þ.

6 ∃ ε ∈ ð0; 1Þ: ∀Bðx; ρÞ and ∀ f ∈ FBðx; ρÞ,
infs∈R

R
Bðx;ερÞ wðf − sÞ2 ≤ cρ2

R
Bðx;ρÞ wdf · d♯f.

7The upper bound Vðx; ρÞ ¼ c2ρ3 corresponds to the Euclid-
ean-like volume growth, which can be achieved, for example, by
any conformally deformed Euclidean geometries g ¼ Ω2geuc,
with VM ¼ ∞ and

R
M g1=2R < ∞ [77].

8From the four-dimensional viewpoint, these spaces corre-
spond to the spherically symmetric static spacetimes (with four
Killing vectors) with spatial sections diffeomorphic to R3, which
approach Minkowski spacetime near the origin.

IVAN KOLÁŘ PHYS. REV. D 105, 084026 (2022)

084026-6



The coordinate ρ has the meaning of the geodesic distance
in the radial direction ∂ρ from the origin, ρ ¼ jxj. The
weighted volume and surface of a geodesic ball Bðo; ρÞ are
given by

VsðρÞ ¼
Zρ
0

dρ̃Ssðρ̃Þ;

SsðρÞ ¼ V 0
sðρÞ ¼ 4πsðρÞϱ2ðρÞ: ð4:18Þ

Since the Weyl tensor vanishes identically in three dimen-
sions, the Riemannian curvature is described purely by the
Ricci tensor (and Ricci scalar),

Ricsym ¼ −
2ϱ00

ϱ
dρdρþ ½1 − ðϱϱ0Þ0�ðdϑdϑþ sin2ϑdφdφÞ;

Rsym ¼ 2

ϱ2
ð1 − 2ϱϱ00 − ϱ02Þ: ð4:19Þ

Let us study the weighted Li-Yau estimate (4.8) in
spherically symmetric weighted spaces. As mentioned
above, we first need to satisfy its unweighted version (with
w ¼ 1). Recalling that it is met for spaces with non-
negative Ricci curvature [and taking into account
(4.17)], we may find the constraints on the first and second
derivatives,

0 ≤ ϱ0 ≤ 1; ϱ00 ≤ 0;

ϱð0Þ ¼ ϱ00ð0Þ ¼ 0; ϱ0ð0Þ ¼ 1: ð4:20Þ

Consequently, in any space ðR3; gsymÞ with ϱ given by
(4.20), we can use the unweighted Li-Yau estimate.
Following (4.13) [and considering (4.17)], the heat kernel
in the corresponding weighted spaces ðR3; gsym; sÞ can be
estimated by the weighted Li-Yau estimate, if we choose
the weight function s such that

Zρ
c

dρ̃
ρ̃
sðρ̃ÞVðρ̃Þ ≃ sðρÞVðρÞ; ∀ ρ > 2c > 0;

sð0Þ ¼ 1; s0ð0Þ ¼ 0; ð4:21Þ

where VðρÞ ¼ 4π
R ρ
0 dρ̃ ϱ

2ðρ̃Þ. The constraints in (4.21)
still offer many viable weight functions s. As a particular
example, we can mention sðρÞ ¼ Cργ=VðρÞ for ρ > 2c
with C; γ > 0 with an appropriate extension to ρ ¼ 0.
Great simplification can be achieved if the spherical

symmetry is further incorporated into the problem.
Specifically, if the source J of our nonlocal equation is
proportional to δo or if we only need the values of field at
the origin ϕðoÞ, then it is sufficient to know just the heat
kernel with one point centered at the origin o. In these
situations, we can use the heat kernel estimate

Ksym
τ ðx; oÞ ≍ c̃

Vsð
ffiffiffi
τ

p Þ exp
�
−c

jxj2
4τ

�
; ð4:22Þ

which correctly approximates the heat kernel whenever [60]

VsðρÞ ≃ ρSsðρÞ ð4:23Þ

holds for large ρ. Remark that (4.23) is always satisfied for
a bounded range of ρ. Furthermore, if also VðρÞ ≃ ρSðρÞ for
sufficiently large ρ, then necessarily VsðρÞ ≃ sðρÞVðρÞ,
∀ ρ > 0. Let us stress that (4.23) is the only the condition
one has to satisfy. Therefore, it may hold with arbitrary
Ricci curvature and even in the situations when the Li-Yau
estimate is violated.

D. Mean curvature

The spherically symmetric weighted spaces described
above can actually provide us with the heat kernel estimates
even for spaces that are not spherically symmetric.
Consider an arbitrary noncompact weighted manifold
ðM; g;wÞ with an origin o ∈ M whose cut locus is an
empty set. In any such a space, we can always introduce the
spherical coordinates centered at o that cover the entire
Mnfog. The weighted Laplace operator in such coordi-
nates reads

△w ¼ ∂2ρ þMðρ; ϑ;φÞ∂ρ þ =△; ð4:24Þ

where M is the (weighted) mean curvature of the geodesic
2-sphere ∂Bðo; ρÞ in the radial direction and △ denotes the
Laplace operator on ∂Bðo; ρÞ. In the spherically symmetric
weighted spaces ðR3; gsym; sÞ, we can write explicitly

Msym ¼ S0s
Ss

¼ 2
ϱ0

ϱ
þ s0

s
;

△sym ¼ 1

ϱ2
ð∂2ϑ þ cotϑ∂ϑ þ csc2ϑ∂2φÞ: ð4:25Þ

Let us assume that we find two spherically symmetric
weighted spaces ðR3; g�sym; s�Þ such that their mean cur-
vatures M� delimit the mean curvature M of ðM; g;wÞ,

M−
symðρÞ ≥ Mðρ; ϑ;φÞ ≥ Mþ

symðρÞ; ð4:26Þ

with the identification of points x ∈ M, x� ∈ R3 such that
jxj ¼ jx�j. Then, the heat kernels with one point centered at
o satisfy inequalities [60]

Ksym−
τ ðx−; o−Þ ≤ Kτðx; oÞ ≤ Ksymþ

τ ðxþ; oþÞ: ð4:27Þ

Combining with (4.22), these inequalities give rise to the
estimate of Kτðx; oÞ. In fact, the relation (4.27) may even
remedy shortcomings of the above heat kernel estimates, in
particular, the unspecified constants c and c̃. This issue can
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be overcome whenever Ksym�
τ are known exactly (e.g., Keuc

τ

or Khyp
τ ).

V. STATIC GREEN’S FUNCTIONS

We are now well equipped to solve the nonlocal
Poisson’s field equation for static scalar fields in static
spacetimes (3.5),

−△wϕ ¼ el
2△wJ:

Wewill employ the method of the Green’s functions, which
can be calculated or at least estimated directly from the heat
kernels and their estimates.

A. Static Green’s functions from heat kernels

Starting with the noncompact manifold, we define the
static Green’s functionGðx; yÞ as a solution of the nonlocal
equation above with the point source J ¼ δy satisfying the
boundary condition G → 0 for Dxy → ∞. Employing
(3.12), we may write

−△wGð·; yÞ ¼ el
2△wδy ¼ Kl2ð·; yÞ: ð5:1Þ

The solution with an arbitrary source J ∈ FM is then
given by

ϕðxÞ ¼ hGðx; ·Þ; Jiw: ð5:2Þ

The static Green’s function G can be calculated from its
local version Gloc through

G ¼ el
2△wGloc; −△wGlocð·; yÞ ¼ δy: ð5:3Þ

Of the utmost importance, however, is the following
formula relating G to an integral of Kτ,

9

Gðx; yÞ ¼
Z∞
l2

dτKτðx; yÞ: ð5:4Þ

This integral expression can be even considered as an
alternative definition of G, as it is often common for Gloc
[60], which is recovered by taking l → 0. Equation (5.3) is
regained by means of the identity (3.15). The integral
relation (5.4) can be proven formally by a direct calculation

△wG¼
Z∞
l2

dτ△wKτ ¼
Z∞
l2

dτ∂τKτ ¼ ½Kτ�∞l2 ¼−Kl2 ; ð5:5Þ

where we used Kτ → 0 for τ → ∞. This condition is
satisfied, for example, in the weighted manifolds admitting
the Li-Yau estimate (4.8). The convergence of the integral
(5.4) will be discussed in the next subsection. Here, we just
mention that the local static Green’s function Glocðx; yÞ
diverges at coinciding points x ¼ y due to asymptotic
behavior for small τ (3.17).
The definition of the static Green’s functions on com-

pacts manifolds requires a modification. To understand
why, let us apply the divergence theorem to the nonlocal
equation (3.5). We observe that the source J integrated over
the entire manifold M must vanish,Z

M

wJ ¼ −
Z
M

divðwd♯e−l
2△wϕÞ ¼ 0; ð5:6Þ

because ∂M ¼ ∅. This statement can be equivalently
reformulated as J0 ¼ hJ;ψ0iw ¼ 0 thanks to (3.21), where
Jk denotes the coefficients calculated with the help of
(3.20). Since hδy; 1iw ¼ 1 ≠ 0, we introduce the static
Green’s function as the solution with the source J ¼
δy − 1=VM

w (see, e.g., Refs. [78,79] for the local case).
Using (3.12), and the spectral properties (3.21), (3.22), and
(3.23), we may express it equivalently as10

−△wGð·; yÞ ¼ el
2△w

�
δy −

1

VM
w

�
¼ Kl2ð·; yÞ − 1

VM
w

¼ el
2△w

�X∞
k¼1

ψkð·ÞψkðyÞ
�

¼
X∞
k¼1

e−l
2λkψkð·ÞψkðyÞ; ð5:7Þ

where the sums run from k ¼ 0 (as a consequence of
J0 ¼ 0). The static Green’s function contains a freedom in
an arbitrary additive constant, which we will denote by C0.
This follows again from the fact that the only harmonic
function (homogeneous solution) on a compact manifold is
a constant function. The solution for an arbitrary source
J ∈ FM satisfying (5.6), J0 ¼ 0, is then still given by

ϕðxÞ ¼ hGðx; ·Þ; Jiw: ð5:8Þ

The relation to its local counterpart now reads

G ¼ el
2△wGloc; −△wGlocð·; yÞ ¼ δy −

1

VM
w

: ð5:9Þ

The integral formula (5.4) must be also modified by
subtracting the inverse volume (corresponding to the limit
Kτ → 1=VM

w , for τ → ∞),

9To the best of our knowledge, in the context of nonlocal
fields, this formula was first used in Ref. [45].

10The existence of smooth solutions on compact Riemannian
manifolds was proven in Ref. [39].
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Gðx; yÞ ¼
Z∞
l2

dτ

�
Kτðx; yÞ −

1

VM
w

�
þ C0

¼
X∞
k¼1

e−l
2λk

λk
ψkðxÞψkðyÞ þ C0; ð5:10Þ

which can be alternatively derived by means of the spectral
expansion of the field equation. It remains true also in the
local case, l → 0. Divergence of Glocðx; yÞ for the coincid-
ing points x ¼ y is still a consequence of (3.17). On the
other hand, the nonlocal static Green’s function Gðx; yÞ,
converges absolutely and uniformly ∀ x; y ∈ M. This
follows from the relation to the majorant mkðl2Þ in the
convergence of Kl2ðx; yÞ, because

sup
x;y∈M

���� e−l
2λk

λk
ψkðxÞψkðyÞ

���� ≤ 1

λ1
mkðl2Þ: ð5:11Þ

B. Estimates and regularity

Returning to the noncompact case, we can study the
regularity of (5.4) using the Li-Yau estimate leading to

Gðx; yÞ ≍
Z∞
l2

dτ
c

Vwðx;
ffiffiffi
τ

p Þ exp
�
−c̃

D2
xy

4τ

�
; ð5:12Þ

which we refer to as theGaussian estimate ofG. As we will
see shortly, it is possible to derive an even simpler estimate
for the static Green’s function. If Dxy ≥ l, then we may
write

Gðx; yÞ ≍

2
64Z
D2

xy

l2

þ
Z∞
D2

xy

3
75dτ ce−c̃

D2
xy
4τ

Vwðx;
ffiffiffi
τ

p Þ

8<
:

≤
R
∞
D2

xy
dτ

1
3
c3c2þc

Vwðx;
ffiffi
τ

p Þ ;

≥
R
∞
D2

xy
dτ ce−c̃=4

Vwðx;
ffiffi
τ

p Þ :

ð5:13Þ

The upper bound of the first integral is a consequence of the
volume doubling (4.9) and the reverse volume doubling
(4.10),

ZD2
xy

l2

dτ
ce−c̃

D2
xy
4τ

Vwðx;
ffiffiffi
τ

p Þ≤
ZD2

xy

0

dτ
ce−c̃

D2
xy
4τ

Vwðx;
ffiffiffi
τ

p Þ≤
cc1D2κ

xy

Vwðx;DxyÞ
ZD2

xy

0

dτ
e−c̃

D2
xy
4τ

τκ

¼ c2D2
xy

Vwðx;DxyÞ
≤

c3c2D2
xy

Vwðx;2DxyÞ

≤
Z4D2

xy

D2
xy

dτ
1
3
c3c2

Vwðx;
ffiffiffi
τ

p Þ≤
Z∞
D2

xy

dτ
1
3
c3c2

Vwðx;
ffiffiffi
τ

p Þ;

ð5:14Þ

where we denoted c2 ≔ cc1E2−κðc̃=4Þ > 0. (Here, the
letter E stands for the exponential integral function.) On
the other hand, if Dxy < l, then we obtain

Gðx; yÞ ≍
Z∞
l2

dτ
ce−c̃

D2
xy
4τ

Vwðx;
ffiffiffi
τ

p Þ

8<
:

≤
R∞
l2 dτ c

Vwðx;
ffiffi
τ

p Þ ;

≥
R
∞
l2 dτ ce−c̃=4

Vwðx;
ffiffi
τ

p Þ :
ð5:15Þ

Putting everything together, we get

Gðx; yÞ ≃
Z∞

max2ðl;DxyÞ

dτ
Vwðx;

ffiffiffi
τ

p Þ ; ð5:16Þ

which generalizes the known formula for the estimate of
Gloc from Ref. [60], where the bottom limit becomesD2

xy in
the limit l → 0. We call this expression the volume
estimate of G.
Based on (5.16), we can now discuss the regularity of the

static Green’s function. We observe that G converges
whenever the upper limit is finite,

Z∞
dτ

Vwðx;
ffiffiffi
τ

p Þ < ∞; ð5:17Þ

and the bottom limit is strictly positive,

max ðl; DxyÞ > 0; ð5:18Þ

because Vwðx;
ffiffiffi
τ

p Þ is a positive nondecreasing function of
τ that vanishes for τ ¼ 0. Note that only the condition
(5.18) depends on the scale of nonlocality, but (5.17) is
independent of l. This reflects the fact that the nonlocality
introduced through the exponential operator affects only
the short-distance behavior, while the long-distance asymp-
totic behavior far from the source remains the same.
The condition (5.18) is satisfied for Gloc only if x ≠ y.

As mentioned above, Gloc diverges at the coinciding
points x ¼ y. Of course, this is not the true for the nonlocal
case where (5.18) is always satisfied since the scale of
nonlocality is positive, l > 0. Indeed, the value l2 plays
a role of the bottom cutoff in (5.16) [or (5.12)]; it
effectively regularizes the limit of coinciding points byR∞
l2 dτ=Vwðx;

ffiffiffi
τ

p Þ < ∞ provided that (5.17) is met.
The condition (5.17) is related to the weighted volume

growth. Using the limit comparison test for improper
integrals, we can find that it is satisfied, for instance, if
Vwðx; ρÞ ≃ ρη, η > 2, for large ρ. This is still in accordance
with the Li-Yau estimate if we take η ¼ αþ β > 2 above.
Let us consider a spherically symmetric weighted space

ðR3; gsym; sÞwith the Dirac delta point source located at the
origin, i.e., δo. The solution is then described byGsymðx; oÞ.
Following the same steps as before, but starting with (4.22),
we can arrive at the Gaussian estimates of Gsym centered
at o,
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Gsymðx; oÞ ≍
Z∞
l2

dτ
c̃

Vsð
ffiffiffi
τ

p Þ exp
�
−c

jxj2
4τ

�
; ð5:19Þ

and the volume estimates of Gsym centered at o,

Gsymðx; oÞ ≃
Z∞

max2ðl;jxjÞ

dτ
Vsð

ffiffiffi
τ

p Þ : ð5:20Þ

Remark that the latter requires the volume doubling
property Vsð2ρÞ ≤ cVsðρÞ, ∀ ρ > 0, to hold.
The estimates (5.19) and (5.20) can be contrasted with

the exact formula for the static Green’s function center at o
that is available in the local case,

Gsym
loc ðx; oÞ ¼

Z∞
jxj

dρ
SsðρÞ

: ð5:21Þ

We may verify (5.21) as follows:

h−△sG
sym
loc ð·;oÞ;fis¼h∂ρGsym

loc ð·;oÞ;∂ρfis¼−
Z
M

s∂ρf
Ss

¼−
Z∞
0

dρ∂ρf¼fð0Þ¼hδo;fis: ð5:22Þ

As before, we still get the convergence condition
η ¼ αþ β > 2 for the upper limit of (5.20) [or (5.19)
with x ¼ o] where ϱ ≃ ρðα−1Þ=2 and sðρÞ ≃ ρβ. Calculating
the Riemann tensor of the full four-dimensional
Lorentzian manifold ðR4; ḡsymÞ, we find that it vanishes
asymptotically if

s ¼ Oð1Þ; ϱ ¼ ρþOð1Þ; ρ → ∞: ð5:23Þ

Consequently, an asymptotic flatness of the static sym-
metric spacetime is sufficient for the convergence of
Gsym

loc ðx; oÞ, x ≠ o, and Gsymðx; oÞ, ∀ x ∈ R3.
Finally, let us also mention that the inequalities between

the heat kernels (4.27) can be promoted to the inequalities
between the corresponding static Green’s functions cen-
tered at o,

Gsym−ðx−; o−Þ ≤ Gðx; oÞ ≤ Gsymþðxþ; oþÞ: ð5:24Þ

We refer to them as the plus-minus estimate. Recall that G
can be the Green’s function on an arbitrary weighted
manifold with an origin that is missing its cut locus,
provided that (4.26) are satisfied. Furthermore, the plus-
minus estimate holds true even in the local case.

C. Example: Exterior and interior
Schwarzschild spacetime

As a simple example, consider a static spacetime
composed of the exterior Schwarzschild geometry glued
to the interior Schwarzschild metric [80]. In particular, we
choose two constants 0 < 9

8
a < b, where r ¼ b is the

matching surface, r ¼ a is the Schwarzschild radius, and
r ¼ 0 is the origin o. Therefore, the metric for 0 < r < b is

ḡintsch ¼ −

 
3

2

ffiffiffiffiffiffiffiffiffiffiffi
1 −

a
b

r
−
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

r2a
b3

s !2

dTdT þ drdr
1 − a

b3 r
2

þ r2ðdϑdϑþ sin2ϑdφdφÞ; ð5:25Þ

while the metric for r > b reads

ḡextsch ¼ −
�
1 −

a
r

�
dTdT þ drdr

1 − a
r

þ r2ðdϑdϑþ sin2 ϑdφdφÞ: ð5:26Þ

Both geometries can be rewritten in the form

ḡsch ¼ −s2ðρÞdtdtþ dρdρ

þ ϱ2ðρÞðdϑdϑþ sin2ϑdφdφÞ; ð5:27Þ

if we use the transformation of the radial coordinate

ρ ≔ ξðr2Þ ≔

8>>><
>>>:

b3=2ffiffi
a

p sin−1
� ffiffi

a
p
b3=2

r
�
; r < b;

a tanh−1
� ffiffiffiffiffiffiffiffiffiffi

1 − a
r

p �
þr

ffiffiffiffiffiffiffiffiffiffi
1 − a

r

p þ ξ0; r > b;

ξ0 ≔
b3=2ffiffiffi
a

p sin−1
� ffiffiffi

a
pffiffiffi
b

p
�
− b

ffiffiffiffiffiffiffiffiffiffiffi
1 −

a
b

r

− a tanh−1
� ffiffiffiffiffiffiffiffiffiffiffi

1 −
a
b

r �
ð5:28Þ

and rescale the temporal coordinate as

t ≔ T=s∞; s∞ ≔ 1

��
3

2

ffiffiffiffiffiffiffiffiffiffiffi
1 −

a
b

r
−
1

2

�
: ð5:29Þ

The constant ξ0 was fixed from the continuity of the radial
coordinate, and the constant s∞ was chosen so that
sð0Þ ¼ 1. As a result, we can view this spacetime as the
spherically symmetric weighted space ðR3; gsch; sÞ. The
functions ϱ and s are given implicitly in terms of ξ,11

11The fact that ϱ and s are not twice differentiable is not
problematic because △s depends only on zeroth and first
derivatives; see Eqs. (4.24) and (4.25).
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ϱ2ðρÞ¼ ξ−1ðρÞ;

sðξðr2ÞÞ¼ s∞×

8<
:

3
2

ffiffiffiffiffiffiffiffiffi
1− a

b

p
− 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− a

b3 r
2

q
; r <b;ffiffiffiffiffiffiffiffiffi

1− a
r

p
; r >b:

ð5:30Þ

Unfortunately, ξ−1 does not have a closed-form expression
for r > b. However, as we will see, we can make significant
progress even without it. For instance, using the formula for

the integral of an inverse function [81] and employing
ϱð0Þ ¼ 0, we can calculate VðρÞ,

VðρÞ
4π

¼
Zρ
0

dρ̃ξ−1ðρ̃Þ¼ρξ−1ðρÞ−Ξðξ−1ðρÞÞþΞð0Þ; ð5:31Þ

where we denoted the primitive function of ξ by Ξ,

Ξðr2Þ ¼

8>><
>>:

r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aðb3−ar2Þ

p
−ðb3−2ar2Þsin−1ðr ffiffiffi

a
b3

p Þ
2ðabÞ3=2

; r < b;�
ar2 − 5a3

8

�
tanh−1

� ffiffiffiffiffiffiffiffiffiffi
1 − a

r

p �
þ
�
− 5

8
a2 − 5

12
arþ 2

3
r2
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

rðr − aÞp þ ξ0r2 þ Ξ0; r > b;

Ξ0 ≔
5

8
a3tanh−1

� ffiffiffiffiffiffiffiffiffiffiffi
1 −

a
b

r �
þ

ffiffiffi
b

p ffiffiffiffiffiffiffiffiffiffiffi
b − a

p �
5

8
a2 þ b3

2a
þ 5

12
abþ 1

3
b2
�
−

b9=2

2a3=2
sin−1

� ffiffiffi
a
b

r �
: ð5:32Þ

The integration constant was chosen so that Ξð0Þ ¼ 0.
Let us study the static Green’s functions centered at the

origin, r ¼ ρ ¼ 0. The exact expression for the local one
can be obtained from (5.21),

Gsch
loc ðx; oÞ ¼

1

4π

Z∞
jxj

dρ
sðρÞξ−1ðρÞ

¼ 1

2π

Z∞
ffiffiffiffiffiffiffiffiffiffiffi
ξ−1ðjxjÞ

p
dr

ξ0ðr2Þ
sðξðr2ÞÞr ; ð5:33Þ

which clearly diverges at x ¼ o, since the integrand
behaves as 1=4πr2 þOð1Þ for r → 0.
To use the formulas for the estimates of nonlocal static

Green’s functions (5.19) and (5.20), we have to check their
assumptions. The space ðR3; gsch; sÞ approaches the
Euclidean 3-space for ρ → 0 and the weighted Euclidean
3-space for ρ → ∞ with constant weight function s∞. It
follows from ρSðρÞ=VðρÞ → 3 and sðρÞ → s∞ for ρ → ∞
that (4.23) is actually satisfied for both weighted and
unweighted versions. Thus, we can write the Gaussian
estimate as

Gschðx;oÞ≍ c̃

3ð4πÞ32
Z∞
l2

dτ
expð−cjxj2=4τÞ

sðξðr2ÞÞ½ ffiffiffiτp
ξ−1ð ffiffiffi

τ
p Þ−Ξðξ−1ð ffiffiffi

τ
p ÞÞ�

¼ c̃

6π
3
2

Z∞
ffiffiffiffiffiffiffiffiffiffi
ξ−1ðlÞ

p
dr

rξðr2Þξ0ðr2Þexpð− cjxj2
4ξ2ðr2ÞÞ

sðξðr2ÞÞ½r2ξðr2Þ−Ξðr2Þ� ; ð5:34Þ

where we used the relation VsðρÞ ≃ sðρÞVðρÞ. In the deri-
vation, we performed a change of integration variable,

ξ−1ð ffiffiffi
τ

p Þ ¼ r2, to bring the integral to a more tractable form,
involving the inverse function in the bottom limit only.
Furthermore, we used ξ−1ð∞Þ ¼ ∞ and the formula for the
derivative of an inverse function, τ0ðrÞ ¼ 4rξðr2Þξ0ðr2Þ.
Similarly, we can also obtain the volume estimate,

Gschðx;oÞ≃ 1

24π

Z∞
max2ðl;jxjÞ

dτ
sðξðr2ÞÞ½ ffiffiffiτp

ξ−1ð ffiffiffi
τ

p Þ−Ξðξ−1ð ffiffiffi
τ

p ÞÞ�

¼ 1

6π

Z∞
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ−1ðmaxðl;jxjÞÞ

p
dr

rξðr2Þξ0ðr2Þ
sðξðr2ÞÞ½r2ξðr2Þ−Ξðr2Þ�:

ð5:35Þ

Note that the volume doubling property is satisfied since
Vsð2ρÞ=VsðρÞ is a positive continuous function that
approaches a constant number 8 for ρ → 0 and ρ → ∞.
The overall constant in both estimates was rescaled to match
the asymptotic of (5.33) for large ρ if all constants are set to 1,
cb ¼ cu ¼ c̃b ¼ c̃u ¼ cm ¼ 1. This is motivated by the fact
that the nonlocality described by the exponential operator
usually affects the static field only close to the source.
Integral (5.33) has a closed form, which is rather lengthy

and not very illuminating. Integrals (5.34) and (5.35) do not
have a closed form, but they converge everywhere due to
constantly weighted Euclidean asymptotic behavior of the
integrand. They can be easily evaluated numerically; see
Fig. 1. Although the constants in the estimates of the
nonlocal static Green’s function are arbitrary, one can
clearly see that the exact solution must be finite, which
is not true for the local static Green’s function at x ¼ o. Let
us point out that the estimate (5.35) with l → 0 approx-
imates the exact local solution (5.33) rather well because

NONLOCAL SCALAR FIELDS IN STATIC SPACETIMES VIA … PHYS. REV. D 105, 084026 (2022)

084026-11



Ξðr2Þ=r2ξðr2Þ ≈ 2=3. Finally, by taking the flat-space limit
a → 0 of (5.34) and (5.35), we get

Geucðx; oÞ ≍ c̃erfð
ffiffi
c

p jxj
2l Þ

4π
ffiffiffi
c

p jxj ;

Geucðx; oÞ ≃ 1

4πmaxðjxj;lÞ ; ð5:36Þ

which are estimates of the nonlocal static Green’s function
in the Euclidean 3-space (5.38). (Here, erf is the error
function.)

D. Example: Ultrastatic universes

Consider spacetimes of the homogeneous isotropic
ultrastatic universes of zero, negative, and positive spatial
curvatures,

ḡuni ≔ −dtdtþ
8<
:

geuc; M ¼ R3;

ghyp; M ¼ R3;

gsph; M ¼ S3;

ð5:37Þ

where the three-dimensional metrics are given by (4.1),
(4.3), and (4.5). They describe the Minkowski spacetime,
the hyperbolic universe, and the Einstein universe,
respectively.

Applying the formula (5.4) to the heat kernel (4.2), we
can really easily calculate the static Green’s function in the
Minkowski spacetime (together with its local limit),

Geucðx; yÞ ¼ erfðDxy

2l Þ
4πDxy

; Geuc
loc ðx; yÞ ¼

1

4πDxy
; ð5:38Þ

which was found earlier in Refs. [6,42] using the Fourier
transform and in Ref. [45] by means of this heat kernel
approach.
Similarly, we can employ the formula (5.4) together with

(4.4) to find the static Green’s function in the hyperbolic
universe. Integrating the heat kernel, we arrive at

Ghypðx; yÞ ¼ Dxy=A

sinh ðDxy=AÞ
HDxy;lð1=AÞ;

Ghyp
loc ðx; yÞ ¼

Dxy=A

sinh ðDxy=AÞ
HDxy;0ð1=AÞ; ð5:39Þ

where we denoted

Hα;βðγÞ ≔
Z∞
β2

dτ
e−τγ

2−α2

4τ

ð4πτÞ32 ¼ 1

4πα

	
1

2
e−γα erf

�
α

2β
− γβ

�

þ 1

2
eγα erf

�
α

2β
þ γβ

�
− sinh ðγαÞ



;

Hα;0ðγÞ ≔
e−γα

4πα
ð5:40Þ

for later convenience. The function (5.39) goes to zero as
∼e−Dxy=A for Dxy → ∞ in contrast to ∼1=Dxy in the
Euclidean space.
Since the spatial part of the Einstein universe is compact,

we have to use (5.10) together with the addition theorem
(4.7) to calculate the static Green’s function. We obtain

Gsphðx; yÞ ¼
X∞
k¼1

e−kðkþ2Þl2
B2

2π2B
ðkþ 1Þ2
kðkþ 2Þ

×

	
sin ððkþ 1Þ Dxy

B Þ
ðkþ 1Þ sinðDxy

B Þ
− ð−1Þk



;

Gsph
loc ðx; yÞ ¼

ðπ − Dxy

B Þ cotðDxy

B Þ þ 1

4π2B
; ð5:41Þ

where the infinite sum converges absolutely and uniformly
as we expected. In order to fix the conventional constant C0

in (5.10), we employed a convention that the static Green’s
functions vanish for the longest geodesics, Dxy ¼ πB. The
local expression matches the known formula [79,82] found
by other methods.
In all three cases, the local Green’s functions blow up at

coinciding points x ¼ y, while their nonlocal counterparts
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FIG. 1. Static Green’s functions centered at the origin
calculated in a spacetime composed of exterior and interior
Schwarzschild metrics. The dashed line is the exact local static
Green’s function given by (5.33). The blue region describes the
Gaussian estimate of the nonlocal static Green’s function (5.34)
with c̃u ¼ 1=c̃b ¼ 2 and cu ¼ 1=cb ¼ 4=5. The yellow region
corresponds to the volume estimate of the nonlocal static Green’s
function (5.35) with cm ¼ 2. We set l=b ¼ 1=5 and a=b ¼ 7=9.
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are finite everywhere. Moreover, Eqs. (5.39) and (5.41)
reduce back to (5.38) for large values of A and B (the latter
we checked numerically in the nonlocal case). The graphs
of the functions mentioned here are shown in Fig. 2.

E. Example: Anti-de Sitter spacetime

Returning to noncompact manifolds, we would like to
demonstrate that, owing to (5.24), the result (5.39) [and its
special case (5.38)] may actually serve as rather precise
estimate for the static Green’s function centered at the
origin,

Ghyp−ðx−; o−Þ ≤ Gðx; oÞ ≤ Ghypþðxþ; oþÞ: ð5:42Þ

Here, the two hyperbolic 3-spaces ðR2; g�hypÞ differ by
the constants Aþ > A− > 0 (including the special case
Aþ ¼ ∞ corresponding to the Euclidean 3-space Geucþ).
This estimate is satisfied for an arbitrary weighted manifold
ðM; g;wÞ whose origin does not have a cut locus and
whose mean curvature M satisfies (4.26). Compared to
unspecified constants in previous estimates, the constants
A� can be computed directly.
Let us restrict ourselves to the spherically symmetric

weighted space ðR3; gsym; sÞ. Then, the condition (4.26)
takes the form

2

A−
coth

�
ρ

A−

�
≥
S0sðρÞ
SsðρÞ

≥
2

Aþ
coth

�
ρ

Aþ

�
: ð5:43Þ

Interestingly, this differential inequality can be solved
exactly using Grönwall’s lemma [83], which implies that

Ssðρ0Þ
sinh2ð ρ

A−
Þ

sinh2ðρ0A−
Þ ≥ SsðρÞ ≥ Ssðρ0Þ

sinh2ð ρ
Aþ
Þ

sinh2ð ρ0Aþ
Þ ; ð5:44Þ

with ρ > ρ0 > 0. Taking the limit ρ0 → 0, we obtain an
inequality that holds for all ρ > 0,

4πA2
−sinh2

�
ρ

A−

�
≥ SsðρÞ ≥ 4πA2þsinh2

�
ρ

Aþ

�
; ð5:45Þ

where we used the fact that Ssðρ0Þ=4πρ20 → 1 for ρ0 → 0 as
it follows from (4.17). Whenever SsðρÞ ¼ 4πsðρÞϱ2ðρÞ
satisfies these inequalities, we can use the estimate (5.42).
The previous considerations can be applied, for example,

to the anti-de Sitter spacetime. If we write it in the global
coordinates,

ḡads ¼ −cosh2
�
ρ

A0

�
dtdtþ dρdρ

þ A2
0sinh

2

�
ρ

A0

�
ðdϑdϑþ sin2ϑdφdφÞ; ð5:46Þ

we can immediately see that it can be represented as the
weighted hyperbolic 3-space ðR3; ghyp; sÞ with the weight
function sðρÞ ¼ coshðρ=A0Þ. The weighted volume and
surface of geodesic balls are given by

SsðρÞ ¼ 4πA2
0sinh

2

�
ρ

A0

�
cosh

�
ρ

A0

�
;

VsðρÞ ¼
4π

3
A3
0sinh

3

�
ρ

A0

�
: ð5:47Þ

From these two expressions, we can see that the weighted
volume and surface do not satisfy the condition (4.23), so
we cannot use the estimate (4.22). Instead, let use (5.42)
and denote Q ≔ A�=A0 and ζ ≔ ρ=A0. The constants
A� are given by the properties of the function
sinh2ðζÞ coshðζÞ −Q2sinh2ðζ=QÞ. Since it is purely neg-
ative ifQ <

ffiffiffiffiffiffiffiffi
2=5

p
and purely positive ifQ > 2=3, we may

identify

Aþ ¼ 2

3
A0; A− ¼

ffiffiffi
2

5

r
A0: ð5:48Þ

As before, for the comparison, we can find an exact
expression for the local Green’s function centered at the
origin using (5.21). Performing the integral, we arrive at the
formula
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FIG. 2. Static Green’s functions calculated in ultrastatic uni-
verses: the Minkowski spacetime (euc), the hyperbolic universe
(hyp), and the Einstein universe (sph). Dashed and solid lines
describe the local and nonlocal static Green’s function, respec-
tively; see Eqs. (5.38), (5.39), and (5.41). We set l ¼ 0.35 m and
A ¼ B ¼ 1 m for better qualitative comparison. The end point
Dxy ¼ πB of the purple lines corresponds to longest geodesics
between opposite poles on the sphere.
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Gads
loc ðx; oÞ ¼

cschðjxjA0
Þ þ gdðjxjA0

Þ − π
2

16πA0

; ð5:49Þ

which reduces to the flat case 1=4πjxj for A0 → ∞
corresponding to the Minkowski limit of the anti-de
Sitter spacetime. (Here, gd denotes the Gudermannian
function.) The above results are depicted in Fig. 3.

VI. FREQUENCY-DOMAIN
GREEN’S FUNCTIONS

Let us proceed to time-dependent scalar fields but in
ultrastatic spacetimes. Solutions of nonlocal equations such
as (3.3) with time-dependent sources are significantly more
challenging to find and rather rare in the literature (see, e.g.,
Refs. [45,50]). Moreover, it is well known that the
spacetime Green’s function of the nonlocal wave operator
−e−l2□̄□̄ does not exists even for the Minkowski spacetime
[40,84]. To overcome this issue, we propose moving to the
frequency domain and solving the nonlocal inhomomoge-
neous Helmholtz equation (3.6),

−ð△þ ω2Þϕ̂ω ¼ el
2ω2

el
2△Ĵω:

Again, we employ the Green’s function method.

A. Frequency-domain Green’s functions
from heat kernels

First, we consider the noncompact manifold. We define
the frequency-domain Green’s function Ĝωðx; yÞ as a

solution of the above nonlocal equation with the source
Ĵω ¼ δy and the boundary condition Ĝ

ω → 0 for Dxy → ∞
and ∀ω ∈ R. With the help of (3.12), we may write

−ð△þω2ÞĜωð·;yÞ ¼ el
2ω2

el
2△δy ¼ el

2ω2

Kl2ð·;yÞ: ð6:1Þ

Since we work in the frequency domain, we allow for
the complex solutions in general. However, it is clear that
only the real part ReĜ should depend on the scale of
nonlocality l. The imaginary part ImĜ should be inde-
pendent of l because it comprises a purely homogeneous
solution. This (local) imaginary part can be chosen so that
the character of the solutions is either retarded or advanced.
The solution with an arbitrary source Ĵω ∈ FM for each
ω ∈ R is then given by

ϕ̂ωðxÞ ¼ hĜωðx; ·Þ; Ĵωi: ð6:2Þ

By analogy with (5.3), we may also introduce the local
frequency-domain Green’s function Ĝω

loc,

Ĝω ¼ el
2ω2

el
2△Ĝω

loc; −ð△þω2ÞĜω
locð·;yÞ¼ δy: ð6:3Þ

At this point, we would like to write an integral
representation analogous to (5.4). Unfortunately, the naive
integral of eτω

2

Kτ could have serious problems with the
convergence even in the local case (whenever ω2 > λmin).
The integrand eτω

2

Kτ could blow up for τ → ∞ and make
the integral with respect to τ divergent. However, the
analyticity in ω provides an interesting formal method of
generating possible candidates for the frequency-domain
Green’s functions Ĝ: First, we replace ω2 → −z2 in our
nonlocal inhomogeneous Helmholtz equation, turning it
into the nonlocal screened Poisson equation. Then, we
perform the integral

Z∞
l2

dτ e−τz
2

Kτðx; yÞ; z > 0: ð6:4Þ

Finally, to get the formula for Ĝω and Ĝω
loc, we analytically

continue the expression to z → iωþ 0þ. Of course, the
results obtained by this formal procedure may or may not
be correct. The final expressions must be always checked
against the definition of the frequency-domain Green’s
functions (6.1). Alternatively, Ĝω can be derived from Ĝω

loc
by means of (6.3) without the need for analytic continu-
ation. Also, let us remark that we have chosen the sign so
that it leads to retarded solutions. (The advanced solutions
are obtained by replacement ω → −ω.) Upon taking the
limit ω → 0, we regain the formula for the static Green’s
function (5.4).
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FIG. 3. Static Green’s functions centered at the origin calcu-
lated in anti-de Sitter spacetime. The dashed line is the exact local
static Green’s function given by (5.49). The brown region
describes the plus-minus estimate of the nonlocal static Green’s
function (5.42) with (5.48). We set l=A0 ¼ 1=5.
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Let us move on to the compact manifolds. Notice that the
field equations impose constraints of vanishing source for

frequencies ω2 ¼ λl, i.e., Ĵ
�
ffiffiffi
λl

p
l ¼ hĴ�

ffiffiffi
λl

p
;ψ li ¼ 0; see

Ref. [85]. If ω2 ≠ λk, ∀ k ∈ N0, then we define the
Green’s function with the source Ĵω ¼ δy,

−ð△þ ω2ÞĜωð·; yÞ ¼ el
2ω2

el
2△δy ¼ el

2ω2

Kl2ð·; yÞ

¼
X∞
k¼0

e−l
2ðλk−ω2Þψkð·ÞψkðyÞ: ð6:5Þ

However, if ∃ l ∈ N0: ω2 ¼ λl, then we have to modify the
source in the definition of the frequency-domain Green’s
function to respect the restrictions described above,

Ĵ�
ffiffiffi
λl

p
¼ δy − ψ lð·Þψ lðyÞ,

−ð△þ λlÞĜ�
ffiffiffi
λl

p
ð·; yÞ ¼ el

2λlel
2△ðδy − ψ lð·Þψ lðyÞÞ

¼ el
2λlKl2ð·; yÞ − ψ lð·Þψ lðyÞ

¼
X∞
k¼0
k≠l

e−l
2ðλk−λlÞψkð·ÞψkðyÞ: ð6:6Þ

Here, we used the equations (3.12), (3.22), and (3.23).
Also, notice that the indexing set of the sum is a

consequence of Ĵ
�
ffiffiffi
λl

p
l ¼ 0. The solution for an arbitrary

source Ĵω ∈ FM, ω ∈ R, satisfying Ĵ
�
ffiffiffi
λl

p
l ¼ 0, then still

reads

ϕ̂ωðxÞ ¼ hĜωðx; ·Þ; Ĵωi: ð6:7Þ

Also, the relation to the local frequency-domain Green’s
function remains unchanged,

Ĝω¼ el
2ω2

el
2△Ĝω

loc;

−ð△þω2ÞĜω
locð·;yÞ¼

�
δy; ω2 ≠ λk;

δy−ψ lð·Þψ lðyÞ; ω2 ¼ λl:
ð6:8Þ

Similar to (5.10), we can also derive

Ĝω¼
X∞
k¼0

e−l
2ðλk−ω2Þ

λk−ω2
ψkðxÞψkðyÞ; ω2≠λk;

Ĝ�
ffiffiffi
λl

p
¼
X∞
k¼0
k≠l

e−l
2ðλk−λlÞ

λk−λl
ψkðxÞψkðyÞþClψ lðxÞψ lðyÞ; ð6:9Þ

either from the corresponding integrals of Kτ or by the
spectral expansion of the field equation. Here, Cl are
arbitrary constants that characterize the freedom in the
homogeneous part of the solution due to −△ψ l ¼ λlψ l.

They will enable us not only to prescribe a certain value of
the field at a given point but also to achieve a desired
character of the solutions (retarded/advanced). Notice that
the constants Cl are absent for ω2 ≠ λk because the
equation admits no homogeneous solutions beyond the
eigenfunctions. This also means that such a Green’s
function cannot produce retarded or advanced solutions.
Let us also point out that the caseω2 ¼ λl nicely reproduces
the static Green’s functions (5.10) as a special subcase
l ¼ 0 in contrast to the frequency-domain Green’s func-
tions with ω2 ≠ λk, which tend to blow up for ω2 → λk.
Finally, it is not difficult to realize that the two formulas in
(6.9) are actually related through the limit (see Ref. [82], for
the local case),

Ĝ�
ffiffiffi
λl

p
jCl¼0 ¼ lim

ω2→λl

∂
∂ω2

	
ω2 − λl

e−l
2ðλl−ω2Þ Ĝ

ω



: ð6:10Þ

B. Example: Minkowski spacetime

Let us start with the Minkowski spacetime. The fre-
quency-domain Green’s function can be obtained by
performing the integral (6.4) with the heat kernel (4.2).
It leads to the integral that we previously denoted HðzÞ,
z > 0, in (5.40). This function can be analytically extended
to all z ∈ C. Evaluating HðiωÞ, we get the retarded
frequency-domain Green’s functions,

Ĝeuc ¼ HDxy;lðiωÞ; Ĝeuc
loc ¼ HDxy;0ðiωÞ: ð6:11Þ

Of course, we should not just blindly rely on the analytic
continuation of a diverging integral. However, the correct-
ness of (6.11) can be easily verified by insertion to the left-
hand side of (6.1). Moreover, Ĝeuc can be also obtained
directly from the known expression for Ĝeuc

loc by means of
(6.3). By realizing that the exponential and error functions
commute with the complex conjugations, we can write real
and imaginary parts of (6.11) explicitly as

Re Ĝeuc ¼ Re ½eiωDxy erfðDxy

2l þ iωlÞ�
4πDxy

;

Re Ĝeuc
loc ¼ cos ðωDxyÞ

4πDxy
;

Im Ĝeuc ¼ Im Ĝeuc
loc ¼ −

sin ðωDxyÞ
4πDxy

: ð6:12Þ

Here, we can clearly see that the imaginary part is
independent of the scale of nonlocality and bounded
∀ω ∈ R. By contrast, the real part blows up jωj → ∞
in the nonlocal case. Because of this, the spacetime Green’s
function of −e−l2□̄□̄, i.e., the inverse Fourier transform of
Ĝω=

ffiffiffiffiffiffi
2π

p
, does not exist in the nonlocal case. [In the
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local case, the spacetime Green’s function of −□̄ is
δðt − t̃ −DxyÞ=4πDxy.] The graphs of the obtained fre-
quency-domain Green’s functions are shown in Fig. 4.
One can check that the limit ω → 0 reproduces the static
Green’s functions (5.38).
The frequency-domain Green’s functions allow us to

compute retarded solutions for various sources. The sim-
plest time-dependent example, which was studied in
Ref. [49] using a different method, is the pointlike mono-
chromatic emitter, Jt ¼ J0 cosðΩtÞδy. Here, J0 and Ω are
two real positive constants. In the frequency domain, this
source reads

Ĵω ¼
ffiffiffi
π

2

r
J0½δðω − ΩÞ þ δðωþΩÞ�δy: ð6:13Þ

Employing (6.7), we can write the solution as

ϕ̂ω ¼
ffiffiffi
π

2

r
J0Ĝ

ω½δðω −ΩÞ þ δðωþ ΩÞ�: ð6:14Þ

In the time domain, thanks to the (anti)symmetry in ω,
ReĜω ¼ ReĜ−ω and ImĜω ¼ −ImĜω, it takes the form

ϕt ¼ J0½ReĜΩ cosðΩtÞ − ImĜΩ sinðΩtÞ�; ð6:15Þ

which reduces to J0 cos½ΩðDxy − tÞ�=4πDxy in the local
case. In Ref. [49], this result was derived through the four-
dimensional Fourier transform, leading to the principal
value integral in the form of the Hilbert transform. The heat
kernel approach presented here is more a direct method.
Unlike the four-dimensional Fourier transform, it can be
used also in the curved (ultrastatic) spacetimes.

C. Example: Hyperbolic universe

Finding the frequency-domain Green’s functions in the
hyperbolic universe is very similar, since the integral (6.4)
with the heat kernel (4.4) results inHð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ 1=A2

p
Þ, z > 0.

Choosing the principal branch for the square root, we see
that

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ 1=A2

p
has a branch cut at Rez ¼ 0 and

jImzj > 1=A. Consequently, we can analytically continue
the result to complex values with Rez ≥ 0 and compute
Hð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðiωþ 0þÞ2 þ 1=A2

p
Þ. This leads to the frequency-

domain Green’s functions,

Ĝhyp ¼ Dxy=A

sinh ðDxy=AÞ
HDxy;lðI=AÞ;

Ĝhyp
loc ¼ Dxy=A

sinh ðDxy=AÞ
HDxy;0ðI=AÞ;

I ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jA2ω2 − 1j

q
×

8<
:

−i; Aω < −1;
þ1; Ajωj ≤ 1;

þi; Aω > 1;

ð6:16Þ

which can be verified again by direct insertion into (6.1)
and/or using (6.3), which provides the relation between
Ĝhyp and Ĝhyp

loc . If Ajωj ≤ 1, then (6.16) are real and
qualitatively similar to the static Green’s functions, i.e.,
the red lines in Fig. 2. The absence of the imaginary part
means that these functions describe standing waves.
Further, if Ajωj > 1, then the solutions have retarded
character. The real and imaginary parts take the form

Re Ĝhyp ¼ Re ½eIDxy
A erfðDxy

2l þ Il
A Þ�

4πA sinhðDxy

A Þ
;

Re Ĝhyp
loc ¼

cos
�
ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 1

A2ω2

q
Dxy

�
4πA sinhðDxy

A Þ
;

Im Ĝhyp ¼ Im Ĝhyp
loc ¼ −

sin
�
ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 1

A2ω2

q
Dxy

�
4πA sinhðDxy

A Þ
: ð6:17Þ

They have properties similar to the retarded frequency-
domain Green’s function in the Minkowski spacetime Ĝeuc

(with an additional exponential damping), to which they
reduce for A → ∞. The real part blows up for jωj → ∞,
while the imaginary part remains bounded. These functions
are depicted in Fig. 5.
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FIG. 4. Frequency-domain Green’s functions calculated in the
Minkowski spacetime. Dashed and solid lines describe the local
and nonlocal retarded frequency-domain Green’s function, re-
spectively; see Eqs. (6.11) or (6.12). The blue color represents
their real parts, while the yellow color represents their imaginary
parts. Dashed and solid yellow lines coincide because the local
and nonlocal imaginary parts are identical. We set l ¼ 0.4 m
and ω ¼ 2 m−1.
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D. Example: Einstein universe

We close this section with an example of the compact
case. Considering the Einstein static spacetime, we can
compute the frequency-domain Green’s function by means
of (6.9). Recall that−△ on 3-sphere has a discrete spectrum
with eigenvalues being the three-dimensional spherical
harmonics ψk;j satisfying the addition theorem (4.7).
We arrive at the following results: if B2ω2 ≠ kðkþ 2Þ,
∀ k ∈ N0, then

Ĝsph ¼
X∞
k¼0

e−
l2

B2
ðkðkþ2Þ−B2ω2Þ

2π2B
ðkþ 1Þ2

kðkþ 2Þ − B2ω2

×
sin ððkþ 1Þ Dxy

B Þ
ðkþ 1Þ sinðDxy

B Þ
;

Ĝsph
loc ¼

U ffiffiffiffiffiffiffiffiffiffiffiffi
B2ω2þ1

p
−1

�
− cos

�
Dxy

B

��
4πB sin ðπ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2ω2 þ 1

p
Þ : ð6:18Þ

Here, the letter U stands for the Chebyshev polynomial/
function of the second kind. The solutions are real and
describe standing waves. As we anticipated, they blow up
for B2ω2 → kðkþ 2Þ, k ∈ N0.
On the other hand, if ∃ l ∈ N0: B2ω2 ¼ lðlþ 2Þ, then we

find

ReĜsph¼
X∞
k¼0
k≠l

e−
l2

B2
ðkðkþ2Þ−lðlþ2ÞÞ

2π2B
ðkþ1Þ2

kðkþ2Þ− lðlþ2Þ

×

	
sinððkþ1ÞDxy

B Þ
ðkþ1ÞsinðDxy

B Þ
−
ð−1Þk−l sinððlþ1ÞDxy

B Þ
ðlþ1ÞsinðDxy

B Þ



;

ReĜsph
loc ¼

ðπ−Dxy

B Þðlþ1Þcotððlþ1ÞDxy

B Þþ1

4π2B

sinððlþ1ÞDxy

B Þ
ðlþ1ÞsinðDxy

B Þ
;

ImĜsph¼ ImĜsph
loc ¼−sgnðBωÞsinððlþ1ÞDxy

B Þ
4πBsinðDxy

B Þ
; ð6:19Þ

where we have chosen the real parts of constants Cl so that
the real parts of the frequency-domain Green’s functions
vanish for the longest geodesics, Dxy ¼ πB. Furthermore,
the imaginary part of Cl has been set to achieve the retarded
character [inspired by a formal replacement A → iB in its
hyperbolic counterpart (6.17)]. Notice that the case l ¼ 0
corresponds to the static Green’s function. Also, we recover
Ĝeuc

loc when we take the flat limit B → ∞ upon setting
l ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2ω2 þ 1

p
− 1. Finally, let us mention that the local

expressions in (6.18) and (6.19) are in agreement with the
results of Ref. [82] up to the homogeneous solutions.
[Remark that ReĜsph

loc in (6.19) can be rewritten using
the Chebyshev polynomials TlðcosðxÞÞ ¼ cos ðlxÞ and
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FIG. 5. Frequency-domain Green’s functions calculated in the
hyperbolic universe for Ajωj > 1. Dashed and solid lines describe
the local and nonlocal retarded frequency-domain Green’s
function, respectively; see Eqs. (6.16) or (6.17). The blue color
represents their real parts, while the yellow color represents their
imaginary parts. Dashed and solid yellow lines coincide because
the local and nonlocal imaginary parts are identical. We set
l=A ¼ 2=5 and Aω ¼ 2.
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FIG. 6. Frequency-domain Green’s functions calculated in the
Einstein universe. Dashed and solid lines describe the local and
nonlocal cases. Blue and yellow colors represent, respectively,
the real and imaginary parts of the retarded frequency-domain
Green’s functions (6.19) with l ¼ 3. Dashed and solid yellow
lines coincide because the local and nonlocal imaginary parts are
identical. The purple color corresponds to the frequency-domain
Green’s functions (6.18) with B2ω2 ¼ 13 ≠ kðkþ 2Þ, ∀ k ∈ N0,
which are real (standing waves). We set l=B ¼ 2=5.
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UlðcosðxÞÞ ¼ sinððlþ1ÞxÞ
sin x .] The graphs of these Green’s

functions are plotted in Fig. 6.

VII. CONCLUSIONS

In this paper, we discussed solutions of the linear scalar
field equation modified by the nonlocal exponential oper-
ator e−l

2□. We discussed two separate cases: (i) static scalar
field in static spacetimes and (ii) time-dependent scalar
field in ultrastatic spacetimes. Rewriting the problem from
the three-dimensional viewpoint, we showed that the
equation takes the form of nonlocal Poisson/inhomo-
geneous Helmholtz equations in compact and noncompact
weighted/Riemannian manifolds. In the first case, we found
solutions by means of the exact and estimated static
Green’s functions, which can be derived from the heat
kernels and their estimates. We also studied their regularity.
In the second case, we introduced the frequency-domain
Green’s functions, which can be related to the heat kernels
through the analytic continuation. Finally, we demonstrated
the general techniques discussed in this paper on several
examples (exterior and interior Schwarzschild, ultrastatic
universes, and anti-de Sitter).
Let us now go through possible extensions of our work

and follow-up projects. The static and frequency-domain
Green’s functions we obtained here can be directly applied

in the study of exact and estimated solutions generated by
other (physically motivated) sources and also extended to
more interesting static curved spacetimes. In the future
works, we would like to elaborate more on the relation
between the frequency-domain Green’s function and the
heat kernels to understand the analytic continuation better.
In its current form, it only serves as a tool for generating
possible candidates for the frequency-domain Green’s
functions. Another interesting direction of research would
be the application of the presented methods to nonlinear
problems, such as the perturbative treatment of IDG or
SFT/PST with nonlinear potentials. Finally, we would like
to extend our results also to higher-order exponential
operators such as eð−l2□ÞN , N ∈ N, perhaps with the help
of the recent work [86]. As discussed in Refs. [49,50], the
operators with even powers of □ are expected to remove
issues with divergences for high frequencies that we also
observed in the frequency-domain Green’s functions.
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[81] C.-A. Laisant, Intégration des fonctions inverses, Nouvelles
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