
Near zone dynamical effects in gravity

Victor Massart1,* and M. B. Paranjape 1,2,†
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Dynamical effects in general relativity have been finally, relatively recently observed by LIGO [B. P.
Abbott et al., Living Rev. Relativity 19, 1 (2016).]. These effects correspond to gravitational waves created
by the coalescence of black holes or neutron stars billions of years ago and billions of light years away from
their sources. To be able to measure these signals, great care has to be taken to minimize all sources of noise
in the detector. One of the sources of noise is called Newtonian noise, the name based on the notion that
close by sources would create essentially instantaneous Newtonian gravitational fields. In this article we
present an analysis of the dynamical (time dependent) nature of the Newtonian noise. In that respect, it is a
misnomer to call it Newtonian noise, because the Newtonian theory does not afford any dynamical notion
of the gravitational field. Wewill, in fact, do our analysis in the context of Einsteinian general relativity. The
dynamical aspects of the nature of the Newtonian noise have heretofore been disregarded as they were
considered negligible. However, we demonstrate that they are indeed not far from the realm of being
measurable. They could be used to validate Einsteinian general relativity or to give valuable information on
the true dynamical nature of gravity. One fundamental question, for example, is a direct measurement the
speed of propagation of gravitational effects and the verification that it is indeed the same as the speed of
light? We propose a simple laboratory experiment that could affirm or deny this proposition. We also
analyze the possibility of the detection of large geophysical events, such as earthquakes. We find that large
seismic events seem to be easily observable with the present ensemble of gravitational wave detectors. The
ensemble of gravitational wave detectors could easily serve as a system of early warning for otherwise
catastrophic seismic events.

DOI: 10.1103/PhysRevD.105.084024

I. INTRODUCTION

In the quest for observing dynamical gravitational
signals, Newtonian noise, often called gravity gradient
noise, originating from seismic gravitational disturbances
will give the ultimate noise threshold, beyond which no
signals could ever be observed [1]. Newtonian noise of
anthropogenic origin or of other controllable origin has
heretofore been analyzed [2]; however, the focus has been
to eliminate this source of noise so that astronomically
sourced gravitational waves could be observed. On the
other hand, it is clearly imaginable that we could try to
create strong enough and observable Newtonian signals
and measure their time dependent, dynamical properties.

Such measurements could give rise to a stunning verifica-
tion or refutation of Einsteinian general relativity.
This paper is the continuation of an analysis [3] which

gave rise to a computation and a proposal for measuring the
speed of gravity, whichwewill call cg, in the near-field zone,
in a laboratory setting where all aspects are under direct
control. The idea enunciated in [3] observed that a finite
propagation speed could give rise to a measurable relative
aberration of the effects of gravity on a detector and
subsequently the ability tomeasure that speed. Only recently
the best limit on the speed of gravity was set in conjunction
with the simultaneous observation of the arrival times of
gravitational waves by LIGO [4] and of gamma rays [5] from
the same source. It was found that the speed of gravity, cg,
and the speed of light, c, were identical to one part in 1015.
However, it should be noted that these observations are not
done in a controlled environment and rely on the assumption
that both signals were emitted at the same time. They are, in
fact, an indirect measurement of the speed of gravity. They
are also observations in the radiation zone, a totally different
regime from the proposed measurement [3] here, which is in
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the near zone. As expounded upon by Saulson [6], the
creation of gravitational waves in the laboratory, where we
could control the amplitude, frequency, and polarization,
would make possible an unequivocal test of general rela-
tivity, akin to Heinrich Hertz’s experiments that verified
Maxwell’s prediction of electromagnetic waves. It would be
important to create a gravitational disturbance and measure
its arrival at a spatially distanced detector all under the
scrutiny of direct, controlled, laboratory experiment.
In the next section we will discuss the theoretical

background. First, we will discuss the weak-field limit
of the Einstein equations [7,8] underlining the connections
with the equations of electrodynamics. Then we will
discuss the conservation of momentum and analyze its
implications for human created gravity gradient noise [2].
In the following section we will apply these considerations
to the question of measuring the velocity of the propagation
of gravitation. We will use the Lagrange inversion theorem
which will be exposed and explained (briefly). Finally, we
will discuss the possibility for the observation of the
calculated effects including the gravity gradient signal that
could be created by large enough earthquakes [9,10].

II. THEORETICAL BACKGROUND

A. Weak-field gravitation

We begin with the full Einstein equations,

Rμν −
1

2
gμνR ¼ 8πGTμν: ð1Þ

We are interested in the weak-field approximation, which
corresponds to a restriction to coordinate systems in which
we can write the expansion of the metric, gμν, around a
(Minkowski) background, as ημν plus a small perturbation,
hμν ≪ 1.1 Then we can compute the connections (the
Christoffel symbols), the Riemann tensor, the Ricci tensor,
and the curvature scalar, while neglecting at each step the
terms oðh2Þ and higher. We do not record the correspond-
ing expressions here, but they are well known (see, for
example, [8]). We also make the harmonic gauge choice

∂μ

�
hμν −

1

2
ημνhλλ

�
¼ ∂μh̄μν ¼ 0: ð2Þ

Expressing all quantities in terms of h̄μν simplifies the
notation considerably.
In the harmonic gauge, the linearized approximation to

the Einstein equations (1) gives simply

□h̄μν ¼ −16πGTμν: ð3Þ
We note that h̄μν is dimensionless, which requires that
G → G=c4g; however, powers of cg are suppressed in most

equations that follow. The set of equations in Eq. (3)
describe dynamical gravitational phenomena and are, in
fact, very similar to the equations for the electromagnetic
potentials in Lorenz gauge, □Aν ¼ 4πjν. This similarity is
very useful since the dynamics of electromagnetism is well
understood; in particular, we know the physical (retarded)
solution,

h̄μνðxÞ ¼ 16πG
Z

Drðx − x0ÞTμνðx0Þd4x0; ð4Þ

where Drðx − x0Þ is the retarded Green function of the
d’Alembertian.
We will consider point sources giving rise to gravita-

tional phenomena. The energy momentum tensor of a
gravitational point source is well understood [11,12] and
can be written as

Tμν ¼ Mffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2

p βμβνδ3ðx − rðtÞÞ ¼ Mγβμβνδ3ðx − rðtÞÞ;

ð5Þ
where rðtÞ is the position of the point source and βμ ¼
ð1; βÞ ¼ ð1; 1

cg
d
dt rðtÞÞ is its four velocity. M contains a

suppressed factor of c2g, M → Mc2g. Corrections to the
gravitational field from the nonpointlike nature of the
sources will involve the higher multipoles and will be
assumed to be negligible. The solutions to (4) are well
known, and in electrodynamics are called the Lienard-
Wiechert potentials [13]. Correspondingly, the gravitational
fields h̄μνðxÞ are then given by

h̄μνðx; tÞ ¼
�
4GMγβμβν

ð1 − β · nÞR
�����

ret
; ð6Þ

where RðtÞ ¼ x − rðtÞ, RðtÞ ¼ jRðtÞj, and nðtÞ ¼ RðtÞ=
RðtÞ. RðtÞ is the vector pointing from the (point) source
at rðtÞ to the observer at x. The subscript ret means
evaluated at the retarded time tr, i.e., βðtÞ → βðtrÞ, etc.
The retarded time tr is the time at which a source must emit
a signal so that it reaches an observer at a given time t,
explicitly

t ¼ tr þ RðtrÞ=cg: ð7Þ
cg is the speed of propagation of gravitational effects,
surely the same as the speed of light c; however, one of the
points of this paper is that this should be experimentally
measured and confirmed.

B. Effective gravitational force

The expression for the effective force on test bodies
results from the geodesic equation

dpμ

dt
¼ −Γμ

ρσ
pρpσ

E
with pμ ¼ EVμ: ð8Þ1ημν (diagonal) and our signature are chosen as ð−1; 1; 1; 1Þ.
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The force can be expanded to second order in the source
velocities, and we will also expand it to zeroth order in the
body velocity i.e., we will neglect any velocity dependent
forces (effective magnetic type forces). For a body with
momentum p ¼ mV [7], we find (note that all temporal
derivatives come with an unwritten factor of 1=cg)

dpi

dt
¼ −EΓi

00 ¼ −m
�
−
1

2
∂ih00 þ ∂0h0i

�
þOðVÞ

¼ −m
�
−
1

4
∂ih̄00 þ ∂0h̄0i −

1

4
∂ih̄

j
j

�
þOðVÞ: ð9Þ

We note here that the derivatives which appear in (9) are
with respect to xμ while the gravitational fields are
functions of the retarded time tr, as in (6), and hence for
both temporal and spatial derivatives one has to take this
change of variables into account.
Then for a given motion of a point source, we find

dp
dt

¼ −GmM

�
γ
n − β

κ2R2
−

R
κ3R3

ð _Rþ β2 − R · _βÞ

þ 4β

R2
ð _Rþ β2 − R · _βÞ − 4_β

R
þ n
R2

β2
�
ret
; ð10Þ

where κ ¼ 1 − β · n and it is understood that only terms up
to β2 and _β up to 1=c2g should be kept inside the bracket.
This gravitational field can be created by moving macro-
scopic sized masses in the neighborhood of a detector, such
as the mirror in the LIGO experiment [14], and it does seem
likely that dynamical predictions of Einsteinian general
relativity could be measured.
Examining this formula a little critically, if the motion is

uniform, i.e., _β ¼ 0, we find

dp
dt

¼ −GmM

�
γ

κ2R2

�
1 −

1

2
ð3ðn · βÞ2 − β2Þ

�
η

−
�
2n · β
R2

�
βþOðβ3Þ

�
ret
; ð11Þ

where the direction of η is the direction of the retarded
position quadratically extrapolated to the instantaneous
direction, given by

η¼ nþR
dn
dt

þ 1

2
R2

d2n
dt2

¼ 1

κ

��
1þ 1

2
ð3ðn · βÞ2 − β2Þ

�
n− ð1þ n · βÞβþOðβ3Þ

�
;

ð12Þ

and again it is understood that κ should be expanded to
order β2. Wewish to emphasize that Eq. (11) is strictly valid
for unaccelerated motion. Our formula is not identical to

that found in Carlip [15]; however, the energy-momentum
tensor that he considered corresponds to the Kinnersley
photon rocket [16], which is slightly different from the
energy momentum used here.
The first term in Eq. (11) is the special term that shows

that the electric field for uniform motion is in the direction
of the instantaneous position of the charge, something
required by Lorentz invariance. Of course, the full gravi-
tational field of a uniformly moving mass is not only given
by Eq. (11) but also will contain gravitomagnetic type
fields, and the full set of fields can be obtained exactly
by a simple Lorentz transformation of the Schwarzschild
metric [17].
It should also be pointed out that Eq. (10) is the

calculation of the gravitational field of a single point mass.
A single point mass can actually only effect uniform,
straightline motion as momentum must be conserved, and
thus the right-hand side (RHS) of Eq. (10) can never be
created except in the case of Eq. (11). If we want to
consider more complicated motion, such as simple har-
monic oscillations, we must add the field produced by a
compensatory mass which is required by momentum
conservation. In the linear approximation, the fields simply
superpose linearly. We turn to the analysis of momentum
conservation in the next section.

C. Conservation of momentum in Newtonian mechanics

We have obtained the gravitational fields of a prescribed
motion of a point source in Eq. (10). However, if the motion
is to be physical, as we have noted, there has to be a
compensatory movement of a different source that main-
tains conservation of momentum. Generally speaking, the
fields of the compensatory source will remove any dipole-
like gravitational fields that appear to have been created by
the original source. However, the multipole expansion is
made with respect to a fixed coordinate system common for
both the system and the compensatory mass.
We consider a system composed of point sources whose

center of mass is at position ξ. The compensatory mass or
counterweight is also composed of point sources whose
center of mass is at position ζ. These masses create
gravitational fields which are detected/affect a point body
located at position x0. For details, see Appendix A and
especially Fig. 3 which appears there. The Newtonian
definition of the center of mass is sufficient for our analysis
as the radiation reaction terms are assumed to be com-
pletely negligible. However, it is clear that the positions of
the masses could be such that it may not be possible to use
the multipole expansion for the created gravitational fields
as it may not be possible to satisfy simultaneously the
required assumptions jξj ≪ jx0j and jζj ≪ jx0j in any given
coordinate system. For example, the systemmay be close to
the detector but the compensatory mass is by far the farthest
away. Then we would have jξj ≪ jx0j but jζj ≫ jx0j, and
for this case, the multipole expansion is not sensible, does
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not converge, and cannot be made. This will happen, for
example, if the center of mass of the compensatory system
is not close to the detector or if the compensatory mass is
spread out over a relatively large region. Such is the case
when the oscillating mass is bolted to the earth, the
compensatory mass being the somewhat large part of the
earth that reacts to the motion of the oscillating mass. If we
think of oscillations at timescales of 10 Hz to 104 Hz [18],
the LIGO frequency band, the sound speed on the surface
of the earth being in the range of ∼500 to ∼2000 m=s [1],
the compensatory mass would be spread out over a volume
with linear dimensions of a few meters (the distance to the
floor from the detector is ∼200 m). The oscillating mass
can be brought as close to the detector as possible, say
∼1 cm, and then the oscillatory mass would be close to the
detector but the compensatory mass would be far, jξj ≪
jx0j but jζj ≫ jx0j, and the multipole expansion would fail.
This scenario has been analyzed in Thorne andWinstein [2]
for the case of humans walking near the detector, as well as
where the compensatory mass is treated as the local part of
the floor and the earth below the building. The reaction of
the floor and earth is treated using elasticity theory. As the
compensatory mass is found at all different distances from
the detector, and these distances are much greater than the
distance between the detector and the human, one does not
get the exact cancellation of the dipole terms as in
Eq. (A19) in Appendix A.
The conclusion to draw from this analysis is that for a

physical, complete gravitating system (system and counter-
weight) made up of only positive masses, the total dipole
moment can at most be a linear function of time due to
momentum conservation and can be made exactly zero by
choosing the appropriate, inertial, coordinate system.
However, the multipole expansion is dependent on the
coordinate system, and the expansion only converges and is
useful if the observation point x0 is the largest relevant
distance in the expansion. If this is not the case, then it can
be that higher multipoles dominate, and the multipole
expansion is not useful, even though it always remains
true in any inertial coordinate system that the total dipole
can at most be a linear function of time.
For the sake of simplicity, let us imagine that the

oscillating mass m is attached to the compensatory mass
M by a long, thin, rigid rod, coupled with a spring, all in
the horizontal direction. Let the rod be of length Njξj
such that ζ ¼ Nξ, and making the assumption that the
oscillating mass and the compensatory mass can both be
taken as concentrated at their respective centers of mass, the
Newtonian potential at the detector is given by

ϕNewtonðx0; xi; yAÞ ≈ −
Gm

jx0 − ξj −
GM

jx0 − ζj
¼ −

Gm
jx0 − ξj −

GM
jx0 − Nξj : ð13Þ

It is clear that the multipole expansion is not convergent
and hence not usable for large enough N, but we can
obviously see

ϕNewtonðx0; xi; yAÞ ≈ −
Gm

jx0 − ξj þ o

�
1

N

�

¼ −Gm
1

jx0j
−
Gx0
jx0j3

· ðmξÞ þ o

�
1

N

�

þ � � � : ð14Þ

Neglecting the terms that are oð1NÞ we see that a dipolelike
contribution of the motion of the oscillating mass does
indeed give a nonvanishing contribution that, in fact,
dominates over the quadrupolelike contribution.

III. EXPERIMENTAL PROPOSALS

A. First proposal

In this subsection we offer a (corrected) detailed analysis
of the proposed system of [3].2 The system analyzed in [3]
corresponds to the following experimental configuration: a
detector of gravitational phenomena (forces, waves, etc.)
has on each side (left and right), masses (which move) such
that the Newtonian (instantaneous) gravitational forces
produced at the detector exactly cancel (i.e., the ratios of
mass over distance squared to the detector for each side are
chosen to be equal). The simplest motion one can imagine
is harmonic oscillation, with the left side mass M at a
distance R0 þ ΔðtÞ and the right side mass 4M at a distance
2R0 þ 2ΔðtÞ (see Fig. 1). The amplitude of the oscillation
is Δ on the left and 2Δ on the right with Δ ≪ R0. The
oscillation is synchronous so that the Newtonian gravita-
tional terms exactly cancel. The actual dynamical terms are,
in fact, different and do not cancel, as we will see, and this
affords the possibility of measuring the speed of propaga-
tion of gravitational effects. The Newtonian theory is
incomplete because it does not encompass any dynamical,
time dependent effects of gravitation. It posits instanta-
neous action at a distance, which is surely not accurate.
Any dynamical theory of gravitation, and we will be
exclusively concerned with Einsteinian general relativity,
will suggest that gravitational effects have a finite propa-
gation speed, and for any relativistically invariant theory,
that propagation speed will be equal to the speed of light.
Consequently, any dynamical effects of gravitation will be
perceived by an observer at what is termed the “instanta-
neous time” corresponding to the creation of those effects at
the position of the source at what is termed the “retarded
time.” The retarded time tr and the instantaneous time t are
defined implicitly by the equation

2In [3], both the lack of aberration and the necessity of
conservation of momentum were not taken into account.
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tr ¼ t − jRðtrÞj=cg; ð15Þ

where RðtrÞ is the position of the source at the retarded time
and is graphically represented in Fig. 2.

1. Lack of aberration

A naive analysis of the notion of retarded time would
lead one to believe that to an observer, sources of
gravitation always point back to their retarded position.
For example, on this basis, Laplace [19] (in 1799 no less)
concluded the speed of gravity must be greater than 108c
based on the instability of the solar system as angular
momentum was no longer conserved, or more recently Van
Flandern [20] computed from experimental data that the
speed of gravity should be greater than 2 × 1010c. This
conundrum is known as aberration, or more precisely, the
lack thereof for unaccelerated motion. The claims in
[19,20] have been debunked; the actual physics is well
understood and explained by Carlip [15] and Will [21]. Our
analysis has to take into account this subtlety to compute
the true effect of the moving masses at the detector.

2. Cancellation due to momentum conservation

A further subtlety arises due to momentum conservation.
The arbitrary motion of a given mass, say as in our proposal
of simple harmonic motion, is simply unphysical. There has
to be a compensatory mass whose motion takes into account
energy-momentum conservation. The effect of such a com-
pensatorymass, however large or complicated in its spread, is
to remove the total dipole contribution to the gravitational
forces. On general grounds the total dipole contributionmust
be absent. However, if the compensatory mass can be placed
very far away from the detector, then its contribution can be
taken as negligible. The multipole expansion of both the
oscillating mass and the compensatory mass does not make
sense, and just the dipole contribution of the oscillatingmass
can contribute. This is the import of the previous section on
the conservation of momentum.

3. Expression in terms of the instantaneous time

Finally, a further complication arises from the fact that the
two masses have different retarded times for a given instan-
taneous time, as their positions RðtrÞ and the corresponding
retarded times tr are different for the two sides. Hence, to
combine their contributions at the detector, one must express
each contribution in terms of the instantaneous time. This
requires inverting the expression for the retarded time, and
any functions thereof, in terms of the instantaneous time. To
do this inversion, we make use of the Lagrange inversion
theorem [22]. The fundamental time dependent function that
we must express in terms of the instantaneous time is the
distance from the source to the observer/detector (placed at
the origin of the coordinate system)

RðtrÞ ¼ −rðtrÞ≡ R0ð1þ α sinðvtrÞ; 0; 0Þ: ð16Þ
We define the dimensionless retarded time, z, as

z ≔
cgtr
R0

; ð17Þ

where R0 is a fiducial distance, taken as in Fig. 1, the
distance from the left side mass to the detector at tr ¼ 0. We
imagine a harmonic motion as RðtrÞ ¼ R0 þ Δ sinðωtrÞ
where we impose that Δ ≪ R0, and then α ¼ Δ=R0 ≪ 1
can act as the expansion parameter. Then the motion is
given by

RðzÞ ¼ R0ð1þ αfðzÞÞ; ð18Þ
where fðzÞ describes the oscillation aroundR0. The retarded
time equation tr ¼ t − jRðtrÞj=cg defining y ¼ cgt

R0
− 1

becomes

z ¼ y − αfðzÞ: ð19Þ
The −1 in the definition of y just corresponds to the light
travel time for the distance R0 and, correspondingly, α
becomes the expansion parameter. Equation (19) is seen

FIG. 1. Schema of the experiment with two oscillators (O1,O2)
of respective mass (M, 4M) and oscillating at distances (R0, 2R0)
with amplitudes (Δ, 2Δ).

FIG. 2. The different times and distances and the links between
them for an oscillating motion.
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as an equation implicitly defining the retarded time z in terms
of the instantaneous timey. The inversion ofEq. (19) for z, or,
in fact, any function gðzÞ in terms of y is given in a series
expansion by the Lagrange inversion theorem.

4. Lagrange inversion theorem

To combine the effects of the motion of different sources
located at different positions at different retarded times, we
must express their effects in terms of the instantaneous time.
The Lagrange inversion theorem is a perfectly suited formula
for this goal and gives an expansion of functions of the
retarded time in terms of the instantaneous time. Although
we will only use the first few terms of the expansion in this
article, we think it is useful to the reader to know the full
expansion. The proof of the theorem and all details can be
found, for example, in Whittaker and Watson [23].
Theorem 1. Let fðzÞ be a function of z which is analytic

on and inside a contour C surrounding a point y, and let α
be such that the inequality

jαfðzÞj < jz − yj
is satisfied at all points z on the perimeter of C; then the
equation

z ¼ yþ αfðzÞ ð20Þ

regarded as an equation in z has one root in the interior of
C; and further any function gðzÞ analytic on and inside C
can be expanded in a power series in α by the formula

gðzÞ ¼ gðyÞ þ
X∞
n¼1

αn

n!
dn−1

dyn−1
ðg0ðyÞfnðyÞÞ: ð21Þ

This is the general theorem, and we will use this expansion
only to second order in this article.

5. Application to the first proposal

We will apply the theorem to the motion and effects of
the mass on the left, O1. We have the retarded position

RðzÞ≡ R0ð1þ α sinðvzÞ; 0; 0Þ; ð22Þ

where v ¼ ωR0

cg
≪ 1 is the dimensionless speed and evi-

dently vz ¼ ωR0

cg
· cgtrR0

¼ ωtr and the acceleration produced

from Eq. (11) is given as

dp
dt

¼ −GmMx̂
R2
0

�
1þ αv cosðvzÞ − 3αv2 sinðvzÞ − 3α2v2sin2ðvzÞ − 3α2v2cos2ðvzÞ

ð1þ α sinðvzÞÞ2ð1þ αv cosðvzÞÞ3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2v2cos2ðvzÞ

p
�
: ð23Þ

The gravitational force is all expressed in the retarded time here, the application of the Lagrange inversion theorem is then
quite straightforward but tedious. The detailed computation is found in Appendix B; however, the general idea is clear. We
apply the theorem to the RHS of Eq. (23), and reexpress it in terms of y the instantaneous time. Throughout the computation
we Taylor expand in v and α. Subsequently we write the trigonometric functions of vy in terms of ωt and note that there is a
shift by −1 given in Eq. (19) in the definition of the instantaneous time and y. Finally, Eq. (23) as a function of the
instantaneous time t is found to be

dp
dt

ðtÞ ¼ −GmMx̂

�
1

RðtÞ2 −
1

R2
0

�
4αv2 sinðωtÞ þ 5

2
α2v2cos2ðωtÞ − 4α2v2sin2ðωtÞ

��

¼ −GmMx̂

�
1

RðtÞ2 −
1

R2
0

ð4aðtÞ þ 5

2
βðtÞ2 − 4aðtÞΔðtÞÞ

�
; ð24Þ

where the velocity is given by βðtÞ ¼ αv cosðωtÞ and the
acceleration is given by aðtÞ ¼ αv2 sinðωtÞ. The expression
in terms of βðtÞ, aðtÞ, and ΔðtÞ is only valid for the
harmonic motion that is considered.
The first term is the Newtonian instantaneous term

arriving because of Lorentz invariance in the absence of
acceleration and relativistic corrections. The next term
is proportional to the acceleration aðtÞ ¼ αv2 sinðωtÞ.
This term comes from the dipole moment of the oscillating
mass. However, the motion of a single, simple harmonic
oscillator does not conserve momentum and simply
does not occur physically. This is solved by adding a

compensating mass moving synchronously in the opposite
direction. For example, if O1 is bolted to the floor, the
compensatory mass is effectively the Earth. For the sake of
simplicity and clarity, consider just a very heavy mass,OH,
moving in the opposite direction to O1, and then M _ΔðtÞ þ
MH

_ΔHðtÞ ¼ 0 for momentum conservation. Taking the
compensatory mass at a distance RH with vibrational
amplitude RHαH, we get

MR0α −MHRHαH ¼ 0 ð25Þ

giving
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αH ¼ MR0

MHRH
α: ð26Þ

Then for the gravitational effect of the heavy mass, we can
simply use the same formula as Eq. (24) replacing α →

αH ¼ − MR0

MHRH
α and v → vH ¼ ωRH

cg
, and we find that the

dipole term of the compensating mass is given by

GMH

R2
H

x̂4αHðvHÞ2 sinðωtÞ ¼
�
R0

RH

�
GMx̂4αv2

R2
0

sinðωtÞ

¼
�
R0

RH

�
GMx̂
R2
0

4aðtÞ: ð27Þ

Hence, for ðR0

RH
Þ taken small enough, we can drop the dipole

contribution of the compensating mass. Thus only the dipole
term of the oscillating mass gives the dominant contribution.
We stress that this in no way means that the total dipole
moment is contributing to the oscillating gravitational field at
the detector. Its contribution, because of momentum con-
servation, has to be trivial in any inertial coordinate system.
The contribution of the subsequent terms in the multipole
expansion due to the compensatory mass are smaller by
additional factors of αH and hence are in principle utterly
negligible. Therefore, the only contribution of the compen-
satory mass that wewill keep is its instantaneous Newtonian
monopole term. Thus,we find the acceleration of the detector
due to the masses on the left is given by

dp
dt

¼ −mx̂

�
GMH

RHðtÞ2
þ GM
RðtÞ2 −

GM
R2
0

ð4aðtÞ þ 5

2
βðtÞ2

− 4aðtÞΔðtÞÞ
�
: ð28Þ

This is the net effect of the left-side oscillatingmasses (M and
MH) on a detector placed at the distances R0 and RH,
respectively, from the detector.
The system on the other side of the detector is composed

of mass 4M at a distance 2R0 with oscillation amplitude 2Δ
and, of course, a compensatory mass 4MH placed at 2RH.
The choice of the right side masses is made in order to
cancel the instantaneous Newtonian force of all the masses
on the detector. The computation of the right-side system is
identical to the left-side system since the dimensionless
parameters all have the same values and only the direction
of the forces created are in the opposite direction and the
values of the dimensionless velocities are doubled. Then
total acceleration of the detector is given by

dp
dt

ðtÞ ¼ −mx̂4

�
GM
R2
0

��
4aðtÞ þ 5

2
βðtÞ2 − 4aðtÞΔðtÞ

�

þmx̂

�
GM
R2
0

��
4aðtÞ þ 5

2
βðtÞ2 − 4aðtÞΔðtÞ

�

¼ −mx̂
GM
R2
0

�
12aðtÞ þ 15

2
βðtÞ2 − 12aðtÞΔðtÞ

�
:

ð29Þ

We note that the result we have obtained is quite different
from that obtained for the field in the wave zone, which
corresponds to distances much larger than the size of the
source and the wavelength of the radiation produced. In the
wave zone the metric perturbations drop off as ∼ 1

r while
the corresponding gravitational fields then fall off as ∼ 1

r2.
This behavior is simply not valid in our case. Our result is
not proportional to the third time derivative of the quadru-
pole moment, which is the result obtained as the leading
term in the wave zone. Here we are well inside a single
wavelength, and we are computing what is normally called
Newtonian noise.

6. Measurement

The effect of the oscillating gravitation field on a detector
will be to force oscillations, simply according to Newton’s
law. We have

dp
dt

¼m
d2X
dt2

¼−mx̂
GM
R2
0

ð12aðtÞþ 15

2
βðtÞ2 − 12aðtÞΔðtÞÞ:

ð30Þ

As expected the mass of the detector m cancels from
this equation as dictated by the principle of equivalence.
Then the spatial motion of the detector is obtained by
integrating Eq. (30) twice. We note that a ∼ 1=c2g and
β ∼ 1=cg, all terms in Eq. (30), contain factors of 1=cg.
Hence, if there was truly no aberration and the propagation
speed was infinite, i.e., cg → ∞, our result would, of
course, vanish. Hence, the actual measurement of any
effect would confirm a finite propagation speed for
gravity, while precision measurements could be used to
determine cg. Our calculation is the first for the dynamical
effects of gravitation at laboratory sized distances, and the
instantaneous effects have been designed to exactly cancel.
Previous calculations have always neglected the finite
propagation speed of gravitational effects at these distan-
ces. As we will see, the dynamical effects are not utterly
negligible.

7. Optimization

The motion we have studied allows for the choice of a
number of parameters, Δ;ω;M; R0, and ρ; rs, the density
and size of the oscillating masses. This gives a window for
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optimizing the resulting force on the detector. However,
there are different constraints that must be taken into
account. We will not analyze the compensatory masses
—they must exist—but their net effect on the detector is
taken to be vanishing or negligible.
The first constraint comes from imposing the cancella-

tion of the Newtonian terms [and has already been imposed
in obtaining Eq. (29)] and leads to

M
R2
0

¼ M0

R02
0

;
Δ
R0

¼ α ¼ Δ0

R0
0

; and ω ¼ ω0; ð31Þ

where the unprimed and primed quantities are specific to
the systems on either side of the detector. We also impose
that α ≪ 1, especially since we neglect terms of order α3 in
the computation.3

The second constraint is due to physical considerations.
The masses, which were taken as point masses during the
computation, should actually be spherical bodies made of
the same material with density ρ. Therefore, physically, for
a spherical mass of density ρ its radius rs must be smaller
than the distance to the detector, R0:

rs ¼ ζR0 with ζ < 1:

The ζ’s of the two masses are different but linked by the
equality ζ03 ¼ ζ3 · R0=R0

0 ¼ ζ3 · Δ=Δ0 from imposing the
cancellation of the instantaneous Newton force.
Then our expression for the force becomes

dp
dt

ðtÞ ¼ −mG
4πρR3

0ζ
3

3
x̂
αω2

c2g

�
12 sinðωtÞ

þ α

�
15

2
cos2ðωtÞ − 12sin2ðωtÞ

��

¼ −mG
4πρR3

0ζ
3

3

αω2

c2g
x̂

�
12 sinðωtÞ

þ α

��
6þ 15

4

�
cosð2ωtÞ

�
−
�
6 −

15

4

���
:

ð32Þ

Dropping the terms proportional to α2, we have an
oscillating driving force on the mirror that is a consequence
of the relative delay between the signal propagating from
the sources to the mirror. The Newton equation for the
motion of the mirror is simply

d2X
dt2

¼ G
4πρζ3R3

0αω
2

3c2g
12 sinðωtÞ; ð33Þ

which integrates trivially by taking out the factor of ω2 in
the numerator,

XðtÞ ¼ −G
4πρζ3R3

0α

3c2g
sinðωtÞ: ð34Þ

Interestingly, the frequency plays no role in the observ-

ability of the effect. Writing M0 ¼ 4πρR3
0

3
we have

XðtÞ ¼ −G
ζ3M0α

c2g
sinðωtÞ: ð35Þ

Taking nominally ζ ¼ 0.9, α ¼ 0.1, we find the overall
numerical factor gives

XðtÞ ¼ −0.72G
M0

c2g
sinðωtÞ: ð36Þ

Taking cg ¼ c ¼ 2.99 × 108 and G ¼ 6.67 × 10−11 in mks
units we get in meters

XðtÞ ¼ −0.72 × 7.46 × 10−28M0 sinðωtÞ
¼ 5.05 × 10−28M0 sinðωtÞ: ð37Þ

For a large mass of say 10 metric tons, M0 ¼ 104 kg,
the amplitude of the oscillations of the mirror are
XðtÞ ∼ 10−24 m. This is outside of the range of present
technology which allows the measurement of amplitudes of
∼10−21 m. However, we do not see our predicted amplitude
as totally out of the realm of possibility, in the hopefully
not too distant future. It should be noted that recent
analyses [24,25] of the possibility of observing gravita-
tional quantum fluctuations, which would establish
unequivocally the existence of quantum gravitons, require
observations at the level of 10−35 m, which is substantially
smaller than our projection. We speculate that the handful
of orders of magnitude improvement in measurement
capability could be surpassed in future generation gravi-
tational wave detectors.

B. Second proposal

Here we explore the possibility that the acceleration of
the source system could give rise to the dominant effect. If
we neglect all velocity dependent terms, we are left with,
from Eq. (10), dropping all terms that cancel with the mass
on the other side and the compensatory masses

dp
dt

¼ −mGM

�
R
R3

ðR · _βÞ − 4_β
R

�
ret

¼ −mGM

�
n
R

�
n ·

d2r
dt2

�
−
4

R
d2r
dt2

�
ret
: ð38Þ

Then the geodesic equation for the detector (mirror in
LIGO), dropping the vectorial notation as we take every-
thing to move in one direction and the κ factor, will be3It is easy to take into account higher orders terms in α.
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m
d2X
dt2

¼ mGM

�
3

R
d2x
dt2

�
ret
: ð39Þ

If we imagine that the system suffers an impulse, a large
acceleration for a short period of time followed by a period
of coasting, such as a steel ball bearing bouncing between
two fixed walls with a relatively large and essentially
constant retardation time, for example, then we can
estimate the effect on the detector by integrating this
equation with the retarded time put in the right-hand side.
As both sides are identical in time derivatives, we get

XðtÞ ¼ 3GM

�
xðtÞ
R

�
ret
: ð40Þ

Noting that there is a 1=c2g implicit in the right-hand side,
we find in meters

jXj ∼ 7.46 × 10−28Mα; ð41Þ

where α is the fractional amplitude of the accelerated
motion. This expression is, of course, only the contribution
of one side, and at the corresponding retarded time,
however, it is not canceled by the other side due to the
retardation effects. It is still rather small, and with α ¼ 0.1
and a mass of 104 kg, which is very large but not absolutely
impossible, we have

jXj ∼ 7.46 × 10−25 m: ð42Þ

This amount of disturbance is again not yet measurable;
however, it is also not completely out of the realm of
possibilities in the future.

1. Gravitational earthquake detection

An even more serendipitous potential observation has to
do with earthquakes. Gravitational observation of earth-
quakes has been discussed in the literature [26–29].
However, the theoretical analysis done in these references
does not consider the dynamical aspects of the nature of
gravitation. All calculations are done in the assumption that
the speed of gravitational effects is essentially infinite.
For large earthquakes the analysis of small seismic

disturbances done in [1] is not relevant. In magnitude 8
and higher earthquakes, a huge mass, part of a tectonic
plate, can move of the order of several tens of meters in a
short period of time, tens of seconds. Although the
accelerations experienced are not large, the mass that
moves can be so large that the gravitational effect is
potentially observable. Indeed, it may well be possible
to detect large magnitude earthquakes gravitationally, well
before their seismic signal arrives.
During a magnitude 8 or higher earthquake, part of a

tectonic plate that normally has a thickness of around
100 km can move (locally) a distance of the order of 40 m

[10,30]. The thickness of the plate can vary; however,
around 100 km is a reasonable estimate. The tectonic plates
form a large jigsaw puzzle that covers the surface of the
earth, and any motion of the plates is highly constrained.
When an earthquake happens, most of a plate does not
move, but only builds up until stresses in a local region
are released, and only the part of the plate in the local
region of the earthquake actually moves. The motion of
mass corresponds to the liberation of strains and stresses
that have slowly been built up over many years. The
movement can be quite dramatic. The subduction (one plate
moving under a neighboring plate) of the Pacific plate
during the recent (April 2011) earthquake in Fukushima,
Japan, corresponded to a local displacement of about 40 m.
Did the whole Pacific plate move by 40 m? Of course not,
only a small, local portion of the plate and the correspond-
ing mass moved this distance in that region which is called
the subduction zone for this type of earthquake.
For a magnitude 8, an earthquake can last several tens of

seconds and mass motion occurs along a distance of about
100 km. For a magnitude 9 or higher earthquake, stresses
can be released over a 1000 km distance and the quake can
last for up to 5 min [31]. For the example of the Fukushima
earthquake, which was the second largest ever recorded
(after the 1960 Chile earthquake) the mass in the sub-
duction zone of the Pacific plate moved of the order of 40 m
under the Eurasian plate.
Let us estimate the volume of the part of the plate that

moved in the Fukushima earthquake, as having length
100 km, a thickness of 100 km, and a width of 40 m, which
corresponds to 4 × 1011 m3. The density of the lithosphere
(the solid crust of the earth that makes up the tectonic
plates) is approximately 2800 kg=m3 [9], and therefore, we
get a mass of 1.12 × 1015 kg.
We do have to think whether conservation of momentum

would simply, exactly cancel the existence of any such
effect coming from the movement of this mass. Evidently,
such a motion cannot occur alone, while respecting con-
servation of momentum. The reaction of the rest of the
Earth to the movement of this mass due to the release of the
built up stress reverberated throughout the Pacific plate, and
this is why we actually feel earthquakes. The entire Pacific
plate and probably various other parts of the Earth
reverberated so as to respect conservation of total momen-
tum. However, we have understood that the motion of the
distributed parts reacting due to conservation of momentum
of a given specific motion do not act in an identical fashion
to the specific motion, and hence do not exactly cancel the
gravitational effects on a detector because the distance to
the detector is not the same. Additionally the magma under
the Eurasian plate, which allowed for the intrusion of the
Pacific plate, had to flow around the inserted plate to make
available the volume of the inserted plate. The motion of
this mass again would be distributed around the inserted
plate and would create gravitational perturbations at the
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detector. However, as noted before, these contributions
would be distributed over large regions of the earth
compared to the location and size of the initial intrusion,
and the resulting gravitational effects would never exactly
cancel the original effect.
Let us calculate the effect of such a motion on a mirror as

in the LIGO detector. From Eq. (40)

XðtÞ ¼ −
3G
c2g

M

�
xðtÞ
R

�
ret

∼
3 × 6.67 × 10−11 × 1.12 × 1015

ð2.99 × 108Þ2
�
xðtÞ
R

�
ret

¼ 2.51 × 10−11
�
xðtÞ
R

�
ret
: ð43Þ

Taking j½xðtÞR �retj ∼ 40=106 for a magnitude 9 or greater
earthquake with a movement of 40 m and occurring at
R ∼ 1000 km away, we have

jXj ∼ 1.00 × 10−15 m; ð44Þ

which is very easily observable. Of course, the estimated
mass and other parameters could vary considerably; how-
ever, we can afford a diminution of our estimate by several
orders of magnitude, but the effect is still observable. We
have also not taken into account the effect of the compen-
satory mass, which in this case would be the rest of the earth.
But applying the rule of thumb that can be obtained from the
calculations done in [2], using elasticity theory for the
reaction of the rest of the earth to humans walking, to
the motion due to the earthquake, we can imagine that the
canceling effect of the movement of the rest of the earth will
only be an effect of the same order of magnitude. This means
that we would expect that our calculated gravitational effect
would be modified by terms that would be of the same order
of magnitude but that would not exactly cancel the calculated
effect. Therefore, the effect calculated in Eq. (43) would only
be affected by terms of the same order of magnitude,
changing the amplitude by at most a factor of order 1.
It would seem that the LIGO type detector is an ideal

early warning sensor for large earthquakes, as gravitational
effects presumably propagate at the speed of light which is
much faster than the speed of seismic waves. Having many
such detectors situated around the globe, as is the actual
case, would allow for quick referencing data on the actual
position of the earthquake.

IV. CONCLUSION

We have proposed an experiment that could observe the
dynamical effects of general relativity in the near zone and
could be used to measure the speed of gravity in a directly
controllable laboratory setting. It would be important to
be able to do this measurement since up to now the

measurement of the speed of gravitational propagation is
solely based on production at astronomically distant
sources and the subsequent indirect measurement of the
speed by comparison with the arrival time of electromag-
netic radiation, in principle produced simultaneously by the
same source. Such an indirect measurement is surely
perfectly good, especially as it confirms that the speed
of gravity and the speed of light are equal to one part in
1015. However, an incontrovertible measurement would
correspond to the production of the propagating gravita-
tional disturbance in the laboratory and the measurement of
the elapsed time before its subsequent arrival at a detector
also in the laboratory. The experimental proposals that we
have analyzed are not possible at the present; however,
they are neither beyond the not so far horizon of future
possibilities.
In the process of our calculation, we analyzed the role of

instantaneous and retarded time and focused on how to pass
from one to the other. We use a mathematical result, the
Lagrange inversion theorem, that could be useful in future
computation. It could also be easily adapted for use even in
a pure electromagnetism situation.
Two subtleties have been addressed that are at the heart

of the reason why the dynamical effects of gravitation are
so difficult to observe, apart from the obvious fact of
the intrinsic weakness of gravity due to the very small
coupling constant. First, the fact that there is no aberration
in the gravitational fields for uniformly moving sources
(masses). This is a subtle consequence of Lorentz invari-
ance. Therefore, only accelerated motion can give rise to
dynamical retardation effects of the gravitational fields, and
consequently the observable effects are extremely small.
Second is the fact that energy-momentum conservation
denies the possibility of a dipolar dynamical field. The
gravitational dipole must be time independent and actually
origin dependent. Therefore, the first nonzero dynamical
effects can only be observed in the quadrupole gravitational
fields, which results in a further diminution of potentially
observable effects. However, the usual higher power decay
of the quadrupole for the far zone is not valid in the near
zone; hence, there is some hope that the effects in the near
zone are not suppressed into oblivion. Although too weak
at the present time, nevertheless, we still hope that the
dynamical effects of gravity could be observed in special
purpose, extremely high precision detectors of gravitational
acceleration in the not too distant future.
Finally, we have given an analysis of the signal measured

due to the acceleration of different masses. Controlled
masses in a laboratory setting again do not give signals that
are presently measurable. However, the enormous mass
movement that occurs in some earthquakes would seem to
give signals that are observable in interferometric gravita-
tional wave detectors. This fact has already been noticed in
the extant literature [26–29]. Indeed, the ensemble of such
interferometric gravitational wave detectors could serve as
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an early warning system for large earthquakes, with
location information available by triangulation and signal
arrival time, if there are sufficiently many such detectors.
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APPENDIX A: ANALYSIS OF THE
CONSERVATION OF MOMENTUM

Wewill first consider the case of a set of particles (atoms,
treated as point particles) with masses and positions
fmi; xig which correspond to our system that is creating
the Newtonian noise. These masses are compensated by a
counterweight which is composed also of a set of particles
(also atoms, treated as point particles) with masses and
positions fmA; yAg. xi and yA are the coordinates of the
mass points with respect to a fixed origin. The system could
correspond to a human walking or a mass oscillating or any
system of gravitational sources creating a desired, time
dependent gravitational field. However, the required
motion can require compensating movement of masses
in order that momentum is conserved. For example, an
oscillating pendulum could be in a housing that is mounted
on the ground. In that case, the counterweight would
correspond to all the particles that make up the ground
in a reasonable sized region around the spot where the
housing is mounted. The motion of a pendulum alone does
not conserve momentum, and, indeed, with the housing and
through the mounting, the particles in the ground supply the

required momentum for conservation. The counterweight
could also be a specific macroscopic mass attached to the
system, designed in such a way (usually, a very large mass)
so that its motion will allow for conservation of momen-
tum; however, its dynamical gravitational fields would be
negligible. We will see how this is possible in our example.
The position of the center of mass of the entire system

and counterweight X is given by

X ¼
P

imixi þ
P

AmAyAP
imi þ

P
AmA

: ðA1Þ

Let the mass of the system be m ¼ P
i mi and the mass of

the counterweight beM ¼ P
A mA. We define ξ and ζ to be

the center of mass of the system and the counterweight,
respectively,

ξ ¼
P

imixi

m
; ζ ¼

P
AmayA

M
: ðA2Þ

These should be identified as proportional to the dipole
moment of the system and of the counterweight, respec-
tively. The deviation of the particles making up the system
and the counterweight from their respective center of mass
is defined as xi ¼ ξ þ ξi and yA ¼ ζ þ ζA. Then it is easy to
find

X ¼ mξ þMζ
mþM

þ
P

imiξi þ
P

AmAζA

mþM
: ðA3Þ

Now the dipole moment of the system is given by

X
i

mixi ¼
X
i

miξ þ
X
i

miξi ¼ mξ þ
X
i

miξi

¼ m

P
imixi

m
þ
X
i

miξi ¼
X
i

mixi þ
X
i

miξi:

ðA4Þ

Therefore, X
i

miξi ¼ 0 ðA5Þ

and correspondingly X
A

mAζA ¼ 0; ðA6Þ

i.e., the contributions of the deviations of the particles of the
system from its center of mass does not contribute to
the dipole moment of the system, and correspondingly for
the counterweight. Then clearly

X ¼ mξ þMζ
mþM

: ðA7Þ

Total momentum of the system and the counterweight
together must be conserved. Therefore,

FIG. 3. The scheme of the test mass (mirror), the system, and
the counterweight.
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_P ¼ d
dt

�X
i

mi _xi þ
X
A

mA _yA
�

¼ d2

dt2

�X
i

mixi þ
X
A

mAyA
�

¼ m̈ξ þMζ̈ ¼ 0; ðA8Þ

i.e.,

Ẍ ¼ 0: ðA9Þ

Thus, we can write

X ¼ Vtþ X0; ðA10Þ

and in the center of mass system with the appropriate
choice of origin, V ¼ 0 X0 ¼ 0, so that indeed we can take

X ¼ 0: ðA11Þ

We assume that the deviations ξi and ζA are small when
compared to the respective centers of mass ξ and ζ,
respectively. Then any function of the coordinates can
be expanded in a Taylor series about the undeviated
coordinates. We will specialize to functions that can be
written as a linear superposition of a contribution coming
from each mass point, as it is the kind of function that is
relevant:

fðxi; yAÞ ¼
X
i

fiðxiÞ þ
X
A

fAðyAÞ: ðA12Þ

Then writing the coordinates of xi as xiα where the greek
index takes the values α ¼ 1, 2, 3 and summation over
repeated greek indices is assumed, etc., we have

fðxiα; yAβ Þ
¼ fðξα þ ξiα; ζβ þ ζAβ Þ ¼ fðξα; ζβÞ
þ
X
i

∂ξγfiðξαÞξiγ þ
X
A

∂ζγfAðζβÞζAγ

þ 1

2

�X
i

∂ξγ∂ξϵfiðξαÞξiγξiϵ þ
X
A

∂ζγ∂ζϵfAðζβÞζAγ ζAϵ
�

þ � � � : ðA13Þ
Applying this to the Newtonian potential at a position x0,
the position of a detector for example, we have

ϕNewtonðx0; xi; yAÞ ¼ −
X
i

Gmi

jx0 − xij −
X
A

GmA

jx0 − yAj :

ðA14Þ

Thus, fiðx0; ξÞ ¼ − Gmi
jx0−ξj, and then we have ∂ξγfiðx0; ξÞ ¼

−Gmi
x0γ−ξγ
jx0−ξj3 and ∂ξγ∂ξϵfiðx0; ξÞ ¼ Gmi

�
δγϵ

jx0−ξj3 −
3ðx0γ−ξγÞðx0ϵ−ξϵÞ

jx0−ξj5
	
. Therefore, we have

ϕNewtonðx0; xi; yAÞ ¼ ϕNewtonðx0; ξ; ζÞ −
X
i

Gmi
x0γ − ξγ
jx0 − ξj3 ξ

i
γ −

X
A

GmA
x0γ − ζγ
jx0 − ζj3 ζ

A
γ

þ 1

2

�X
i

Gmi

�
δγϵ

jx0 − ξj3 −
3ðx0γ − ξγÞðx0ϵ − ξϵÞ

jx0 − ξj5
�
ξiγξ

i
ϵ

þ
X
A

GmA

�
δγϵ

jx0 − ζj3 −
3ðx0γ − ζγÞðx0ϵ − ζϵÞ

jx0 − ζj5
�
ζAγ ζ

A
ϵ

�
þ � � � : ðA15Þ

Clearly the terms linear in ξiγ and ζAγ , the dipole terms, vanish simply becauseX
i

miξi ¼ 0;
X
A

mAζA ¼ 0: ðA16Þ

Therefore, we find the quadrupole terms are the first nontrivial terms contributing to the potential

ϕNewtonðx0; xi; yAÞ ¼ ϕNewtonðx0; ξ; ζÞ þ
1

2

�X
i

Gmi

�
δγϵ

jx0 − ξj3 −
3ðx0γ − ξγÞðx0ϵ − ξϵÞ

jx0 − ξj5
�
ξiγξ

i
ϵ

þ
X
A

GmA

�
δγϵ

jx0 − ζj3 −
3ðx0γ − ζγÞðx0ϵ − ζϵÞ

jx0 − ζj5
�
ζAγ ζ

A
ϵ

�
þ � � � : ðA17Þ

However, there are other ways of obtaining dipolelike
contributions, and we will show that these do not neces-
sarily have to cancel, as exposed in Thorne and Winstein

[2]. These contributions are dipolelike, but, in fact, do not
correspond to the total dipole moment of the combined
system and the compensatory mass. The total dipole
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moment is, of course, constant or at most linearly time
dependent. Consider the approximation where all the mass
of the system and of the compensatory mass can be taken to
be concentrated at their respective centers of mass. Then,
making the assumption that the origin of the coordinate
system can be taken such that jξj; jζj ≪ jx0j, we can expand
as

ϕNewtonðx0; xi; yAÞ

≈ −
Gm

jx0 − ξj −
GM

jx0 − ζj ¼ −GðmþMÞ 1

jx0j
−
Gx0
jx0j3

· ðmξ þMζÞ þ G
2jx0j5

ðmð3ðx0 · ζÞ2 − jξj2jx0j2Þ

þMð3ðx0 · ζÞ2 − jζj2jx0j2ÞÞ: ðA18Þ

However, once again, mξþMζ¼ðmþMÞX≪ ðmþMÞx0
and the coordinate system can be chosen so that the center
of mass occurs at X ¼ 0, giving

ϕNewtonðx0; xi; yAÞ ≈ −GðmþMÞ 1

jx0j
þ G
2jx0j5

ðmð3ðx0 · ζÞ2 − jξj2jx0j2Þ

þMð3ðx0 · ζÞ2 − jζj2jx0j2ÞÞ: ðA19Þ

Therefore, we see that, in the center of mass system and if
the assumption jξj; jζj ≪ jx0j is valid, these dipole terms
also must vanish because of conservation of momentum.
The system may correspond to motions of high acceler-
ations such as jerks, but because of momentum conserva-
tion, the counterweight must respond in an identical,

compensatory manner, and the combined, total contribution
certainly will not exhibit the potentially complicated time
dependence of, say, the system alone.

APPENDIX B: DETAILED COMPUTATION
FOR HARMONIC MOTION

The detailed computation for the x̂ harmonic oscillator is
given in this Appendix. We consider the O1 harmonic
oscillator (on the left) where motion is described by

RðzÞ ¼ −rðzÞ ¼ R0ð1þ α sinðvzÞ; 0; 0Þ; ðB1Þ

whereα≡ Δ
R0

≪ 1 is theexpansionparameter andv≡ωR0

c ≪1

is the dimensionless speed such that vz ¼ ωR0

c · ctrR0
¼ ωtr.

This motion of a point mass creates a gravitational field,
evaluated at the retarded time, and is given by Eq. (10)
reproduced here

dp
dt

¼ −GmM

�
γ
n − β

κ2R2
−

R
κ3R3

ð _Rþ β2 − R · _βÞ

þ 4β

κ3R2
_R −

4_β

κ2R
þ n
κ2R2

β2
�����

ret
; ðB2Þ

where κ ¼ ð1 − β · nÞ is to be expanded to keep terms of

order less than β3, α3, and n ¼ RðzÞ
RðzÞ. We also have n ¼ x̂,

β ¼ −αv cosðvzÞx̂, and _β ¼ αv2
R0

sinðvzÞx̂. It is important to
note that along the computation we are going to neglect the
terms proportional to β3, α4, and higher. Then the dynami-
cal equation is given by

dp
dt

ðzÞ ¼ −GmMx̂
R2
0

�
1þ αv cosðvzÞ − 3αv2 sinðvzÞ − 3α2v2sin2ðvzÞ − 3α2v2cos2ðvzÞ

ð1þ α sinðvzÞÞ2ð1þ αv cosðvzÞÞ3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2v2cos2ðvzÞ

p
�����

ret

: ðB3Þ

To express the field given as a function of z, the dimensionless retarded time, as a function y, the dimensionless
instantaneous time (up to a constant shift), we apply the Lagrange inversion theorem with gðzÞ ¼ dp

dt ðzÞwhere p is the norm
of p as all vectors are in one direction:

dp
dt

ðzÞ ¼ dp
dt

ðyÞ − α sinðvyÞ∂y
dp
dt

ðyÞ þ α2

2
∂y

�
sin2ðvyÞ∂y

dp
dt

ðyÞ
�
þOðα3; v3Þ;

and with

∂y
dp
dt

ðyÞ ¼ −GmM
R2
0

�
−2

αv cosðvyÞ
ð1þ α sinðvyÞÞ3ð1þ αv cosðvyÞÞ2 þ 2

αv2 sinðvyÞ
ð1þ α sinðvyÞÞ2

�
;

∂2
y
dp
dt

ðyÞ ¼ −GmM
R2
0

�
6α2v2cos2ðvyÞ
ð1þ α sinðvyÞÞ4 þ 2

αv2 sinðvyÞ
ð1þ α sinðvyÞÞ3

�
;

where we have included the second derivative just for completeness, although it does not contribute at the order we are
interested in. Correspondingly all denominators should be expanded to order v2 and α2. After some algebra, we find
(suppressing the argument of the trigonometric functions to avoid an unwieldy equation)
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−GmMx̂
R2
0

�
1 − 2αv cos−3αv2 sinþ2α2v cos sin−5α2v2sin2 þ ð1=2Þα2v2cos2

ð1þ α sinÞ2
�
þOðα3; v3Þ:

Every trigonometric function is expressed in terms of vy ¼ ωt − v; however, we want our expression to be in terms of t
directly. We use simple trigonometric identities and then Taylor expand up to the second order in v,

sinðvyÞ ¼ sinðωt − vÞ ¼ sinðωtÞð1 − v2=2Þ − v cosðωtÞ;
cosðvyÞ ¼ cosðωt − vÞ ¼ cosðωtÞ þ v sinðωtÞ:

Again we Taylor expand everything and neglect the terms of order v3, α3, and higher. Then we obtain Eq. (24) in terms of
the instantaneous time t:

dp
dt

ðtÞ ¼ −GmMx̂

�
1

RðtÞ2 −
1

R2
0

�
4αv2 sinðωtÞ þ 5

2
α2v2cos2ðωtÞ − 4α2v2sin2ðωtÞ

��

¼ −GmMx̂

�
1

RðtÞ2 −
1

R2
0

ð4aðtÞ þ 5

2
βðtÞ2 − 4aðtÞΔðtÞÞ

�
: ðB4Þ
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céleste, Traité de mécanique céleste /par P.S. Laplace...;
tome premier [-quatrieme]. de l’Imprimerie de Crapelet,
1799.

[20] Tom Van Flandern, The speed of gravity—what the experi-
ments say, Phys. Lett. A 250, 1 (1998).

[21] Clifford M. Will, Propagation speed of gravity and the
relativistic time delay, Astrophys. J. 590, 683 (2003).

[22] Joseph Louis Lagrange, Nouvelle méthode pour résoudre
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