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Gravitational lenses are examined in a de Sitter (dS) background, for which the existence of the dS
horizon is taken into account and hyperbolic trigonometry is used together with the hyperbolic angular
diameter distance. Spherical trigonometry is used to discuss a gravitational lens in anti–de Sitter (AdS)
background. The difference in the form among the dS/AdS lens equations and the exact lens equation in
Minkowski background begins at the third order, when a small angle approximation is used in terms of lens
and source planes. The angular separation of lensed images is decreased by the third-order deviation in the
dS lens equation, while it is increased in AdS. In the present framework on the dS/AdS backgrounds, we
discuss also the deflection angle of light, which does not include any term of purely the cosmological
constant. Despite the different geometry, the deflection angle of light rays in hyperbolic and spherical
geometry can take the same form. Through a coupling of the cosmological constant with lens mass, the
separation angle of multiple images is larger (smaller) in dS (AdS) than in the flat case, for a given mass,
source direction, and angular diameter distances among the lens, receiver and source.
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I. INTRODUCTION

Since the observation by Eddington and his collaborators
[1], the gravitational deflection of light has played an
important role in astronomy and gravitational physics. The
Event Horizon Telescope team has recently succeeded a
direct image of the immediate vicinity of the supermassive
black hole candidate of M87 galaxy [2]. In addition, the
same team has reported measurements of linear polari-
zations around the black hole candidate [3] and has inferred
the mass accretion rate and the strength of the magnetic
field [4]. Such ground-breaking events have generated
renewed interest in the strong field gravitational lens.
Gravitational lens equations, which relate source and

image positions for a given deflecting mass, are at the heart
of the gravitational lens theory. For most lens equations, the
background spacetime is assumed to be Minkowskian. In
the flat background, Euclidean geometry holds for its
spatial sector. Therefore, Euclidean trigonometry is used
to arrive at the standard form of the lens equation [5–8].
However, the current and future astronomy needs a more

precise prediction from a gravitational lensing theory
especially relevant with the strong field regime. The
Schwarzschild–de Sitter spacetime (often called Kottler
solution) plays a theoretical model that allows us to examine
the gravitational deflection of light by a mass in the presence
of the cosmological constant Λ. Many attempts have been
made on the simple model in the context of the gravitational
lensing e.g. [9–23]. Intuitively, the Minkowskian back-
ground can work as an approximation at small scale, though
there can be a significant departure of the Minkowskian
background from de Sitter backgrounds especially at very

large scale. See Fig. 1 for this intuition. Until recently, the
definition for the deflection angle of light has required
the asymptotic flatness of a spacetime [5–8]. However,
recent works [9,24] based on the Gauss-Bonnet theorem
[25] have enabled us to well define the deflection angle
without assuming the asymptotic flatness. This new method
has been applied by several groups to various spacetime
models [26–36]. See Ref. [37] for a brief review on this
subject.
Can the lens equation on de Sitter backgrounds take the

same form as that in Minkowskian background? One may
specifically ask if the de Sitter lens equation can be
expressed in the same form when angular diameter dis-
tances are properly defined. One possible answer is that
there would exist a difference between the two lens
equations in the flat and de Sitter backgrounds, even if
angular diameter distances are defined in a suitable manner.
If this answer is correct, what changes are made?
The main purpose of this paper is to examine gravita-

tional lenses on de Sitter (dS) background. Henceforth,
cases of Λ > 0 and Λ < 0 are referred to as dS and anti–de
Sitter (AdS), respectively. A key tool in the present study is
the optical metric, which is known to describe light rays in
stationary spacetimes [9,25,34,38]. We shall show that the
optical metric for dS spacetime describes a hyperbolic
space, while that for AdS spacetime corresponds to
spherical geometry. Therefore, we use hyperbolic trigo-
nometry in order to derive a gravitational lens equation on
the dS background, where we do not use a small angle
approximation nor a thin lens one. For AdS case, we use
spherical trigonometry to derive a gravitational lens

PHYSICAL REVIEW D 105, 084022 (2022)

2470-0010=2022=105(8)=084022(13) 084022-1 © 2022 American Physical Society

https://orcid.org/0000-0001-9442-6050
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.105.084022&domain=pdf&date_stamp=2022-04-13
https://doi.org/10.1103/PhysRevD.105.084022
https://doi.org/10.1103/PhysRevD.105.084022
https://doi.org/10.1103/PhysRevD.105.084022
https://doi.org/10.1103/PhysRevD.105.084022


equation on the AdS background. In both the deriva-
tions, we define angular diameter distances on dS/AdS
backgrounds.
This paper is organized as follows. In Sec. II, the optical

metric is examined on dS/AdS backgrounds. By using
hyperbolic trigonometry, in Sec. III, we discuss gravita-
tional lens equations on dS background. In Sec. IV, we
make use of spherical trigonometry to study gravitational
lens equations on AdS background. In Sec. V, the
Euclidean, hyperbolic and spherical lens equations are
unified into a single equation. The deflection angle of
light on dS/AdS backgrounds also is examined. Finally, this
paper is summarized in Sec. VI. Throughout this paper, we
use the unit of G ¼ c ¼ 1.

II. OPTICAL METRIC FOR dS/AdS SPACETIMES

A. Hyperbolic space: dS case

There are several known ways for slicing of dS space-
time, where the scalar curvature of dS universe is positive.
We work on the static coordinates of dS spacetime, where
the dS metric reads

ds2 ¼ −
�
1−

Λ
3
r2
�
dt2 þ dr2

1− Λ
3
r2

þ r2ðdΘ2 þ sin2Θdϕ2Þ;

ð1Þ

where rH ≡ ffiffiffiffiffiffiffiffiffi
3=Λ

p
is a radius of the dS horizon.

For later convenience, we normalize a radial coordinate
in terms of the cosmological constant as

R≡
ffiffiffiffi
Λ
3

r
r; ð2Þ

such that dS metric can be reexpressed as

ds2 ¼ −ð1 − R2Þdt2

þ 3

Λ

�
dR2

1 − R2
þ R2ðdΘ2 þ sin2Θdϕ2Þ

�
: ð3Þ

In the present paper, we focus on a case that the lens,
receiver and source are located inside the dS horizon,
namely R < 1.
We consider the optical metric followed by the null

condition ds2 ¼ 0, which determines the light propagation
[9,25,38]

dl2 ≡ dt2;

¼ 3

Λ

�
dR2

ð1 − R2Þ2 þ
R2

1 − R2
ðdΘ2 þ sin2Θdϕ2Þ

�
: ð4Þ

Clearly, it is convenient to work on the conformally
rescaled metric as

dl̂2 ≡ Λ
3
dl2;

¼ dR2

ð1 − R2Þ2 þ
R2

1 − R2
ðdΘ2 þ sin2Θdϕ2Þ: ð5Þ

We define a new radial coordinate ρ by [39]

R≡ tanh ρ ð6Þ

to reexpress the rescaled metric as

dl̂2 ¼ dρ2 þ sinh2 ρðdΘ2 þ sin2Θdϕ2Þ: ð7Þ

Note that ρ coordinate is different from χ coordinate
that is usually used in general relativistic cosmology.
Equation (7) means that the optical metric in dS case
describes a hyperbolic space, in which unlensed light rays
are geodesic curves.
The dS horizon is located at ρ ¼ þ∞ in the metric

Eq. (7). This means that ρ coordinate describes only the
inside of the dS horizon. On the other hand, it is apparent
that the r coordinate can go beyond the dS horizon, if one
treats perturbatively Eq. (1) around the Minkowskian
background even at very large scale.

B. Spherical space: AdS case

For AdS case (Λ < 0), all we have to do is to replace
sin χ by sinh χ. For this, we introduce [40]

Extendable?

End?

FIG. 1. Intuitive illustration of how an orbit in a curved surface
with a boundary and its approximation on a flat background are
different. The solid red arrow denotes a curve on a bowl and the
dashed blue arrow denotes a line on a table. On the flat
background, the dashed arrow means an approximation of the
curve on the bowl. The approximation is good at small scale in
the neighborhood of the bottom of the bowl, while the difference
of the two curves becomes significant at very large scale,
especially near the edge of the bowl. The edge has an analogy
with the so-called de Sitter horizon in de Sitter spacetime, though
the latter is traversable one way. The solid arrow terminates at the
edge of the bowl. On the other hand, one may ask if the dashed
line can be more extended as indicated by the dotted black arrow.
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R≡
ffiffiffiffiffiffiffi
−Λ
3

r
r; ð8Þ

R≡ tan ρ; ð9Þ

to obtain the normalized optical metric as

dl̂2 ¼ dρ2 þ sin2 ρðdΘ2 þ sin2Θdϕ2Þ: ð10Þ

This is a metric of spherical geometry.

III. GRAVITATIONAL LENS IN
HYPERBOLIC GEOMETRY

A. Hyperbolic trigonometry

We consider a photon orbit around a spherically sym-
metric lens at the origin of the spatial coordinates ρ ¼ 0.
Because of the symmetry, we can choose the equatorial
plane Θ ¼ π=2 as a photon orbit for its simplicity. This
choice can be done also for a photon orbit in the equatorial
plane of an axisymmetric lens with reflection symmetry.
Then, we can use the conformally normalized optical

metric of a hyperbolic plane as

dl̂2 ¼ dρ2 þ sinh2 ρdϕ2: ð11Þ

It follows that the hyperbolic plane is homogeneous and
isotropic. This allows us to explicitly define angular
diameter distance in a simple manner. See Sec. III for
more detail.
We consider hyperbolic triangles in order to discuss a

gravitational lens configuration on a hyperbolic plane.
Figure 2 is a schematic illustration of the gravitational
lens configuration in the hyperbolic plane. For a compari-
son, see also Fig. 3 for a flat background.
First, we briefly summarize hyperbolic trigonometry

[42,43], with which most physicists may not be familiar.
Let us consider a triangle ABC, where A, B and C denote
the vertices of the triangle and they mean also the inner
angles. The sides of the triangle follow geodesics in the
hyperbolic plane. See Fig. 4 for the hyperbolic triangle
ABC.
In all the formulas stated here, arc length of the sides a, b

and c are measured in absolute unit, in which the Gaussian
curvature K of the plane is −1. For instance, in this paper,
the absolute length of the side AB (which is in the
normalized optical metric) is denoted as ρAB, which is
different from the proper length measured by the original
optical metric. In the case that A is the receiver, we shall
omit it simply as ρB, because the receiver is often chosen as
the coordinate origin in the gravitational lens study.

FIG. 2. Schematic figure of a lens L, receiver R, and source S in
a hyperbolic plane. For its simplicity, a line connecting L and R is
drawn as a straight one for reference. The red curve connecting R
and S denotes a lensed light ray, which is not a geodesic in the
hyperbolic plane. A dotted geodesic curve emanating from S is a
tangent to the lensed light ray, while the other dotted one from R
is another tangent to the light ray. The latter dotted line indicates
the lensed image direction θð¼ ΨRÞ seen from the receiver. A
geodesic curve between R and S is denoted by a long dashed line,
which indicates the unlensed source direction β. The lens and
source planes are vertical to the geodesic line RU. These curves
are not parallel to each other because of hyperbolicity. Note that
the sum of the inner angles for the hyperbolic quadrilateral LRVS
does not equal to 2π according to the Gauss-Bonnet theorem for
the curved surface (see e.g. [9,41]). Therefore, the outer angle at
the intersection point V of the two tangents in the hyperbolic
plane differs from αð¼ ΨR − ΨS þ ϕRSÞ. In fact, the intersec-
tion V has nothing to do with the derivation of the lens equations
in this paper.

FIG. 3. A gravitational lens system in a Euclidean background
[41]. The notations are the same as those in Fig. 2. The lens and
source planes are parallel to each other, because they live in a
Euclidean space.
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The hyperbolic law of sines is

sinh ρBC
sin A

¼ sinh ρCA
sin B

¼ sinh ρAB
sin C

: ð12Þ

The hyperbolic law of cosines is

cosh ρAB ¼ cosh ρBC cosh ρCA − sinh ρBC sinh ρCA cos C:

ð13Þ

The trigonometry of right angles is as follows. If
C ¼ π=2, then

sinA ¼ sinh ρBC
sinh ρAB

; ð14Þ

cosA ¼ cosh ρBC sinh ρCA
sinh ρAB

¼ tanh ρCA
tanh ρAB

; ð15Þ

cosh ρAB ¼ cosh ρBC cosh ρCA: ð16Þ

Equation (16) is a hyperbolic generalization of Pythagorean
theorem. It recovers ρ2AB ¼ ρ2BC þ ρ2CA at very small scale
of ρAB ≪ 1.

B. Lens, receiver and source in a hyperbolic plane

For the right triangle PRL, we obtain

sin θ ¼ sinh ρPL
sinh ρL

; ð17Þ

where Eq. (14) is used. Similarly, for the right triangle LQS,

sinðπ − ΨSÞ ¼
sinh ρQL

sinh ρLS
: ð18Þ

Both of ρPL and ρQL mean the arc length ρb of the impact
parameter of a single light ray in the normalized optical
metric. See Fig. 2. For the single light ray, they must be
equal to each other. Therefore, ρPL ¼ ρQL. By eliminating
ρPL and ρQL from Eqs. (17) and (18), we thus find a relation
between ΨS and θ as

ΨS ¼ π − arcsin

�
sinh ρL
sinh ρLS

sin θ

�
: ð19Þ

Next, we consider the right triangle LSU, where the point
U is chosen such that the side SU is perpendicular to LU. In
the hyperbolic plane, the inner angle between LR and LS is
the same as the longitude ϕRS in dS spacetime. Using
Eq. (14) at the vertex L of LSU, we find

sinðπ − ϕRSÞ ¼
sinh ρSU
sinh ρLS

: ð20Þ

Similarly, from the triangle RSU, we obtain

sin β ¼ sinh ρSU
sinh ρS

: ð21Þ

Here, β denotes the angle R, which is the same as the
directional angle of the unlensed source in dS spacetime.
From Eqs. (20) and (21), we obtain a relation between the
longitude ϕRS and the source direction β as

ϕRS ¼ π − arcsin

�
sinh ρS
sinh ρLS

sin β

�
: ð22Þ

We work on the angle of the gravitational deflection of
light that has been defined by Ishihara et al. as [9]

α≡ θ −ΨS þ ϕRS: ð23Þ

It has been recently proven that the definition holds even in
a nonasymptotically flat spacetime [41].
By substituting Eqs. (19) and (22) into Eq. (23), we

obtain

α − θ ¼ arcsin

�
sinh ρL
sinh ρLS

sin θ

�
− arcsin

�
sinh ρS
sinh ρLS

sin β

�
:

ð24Þ

C. Hyperbolic angular diameter distance

In the normalized hyperbolic plane, d̂ denotes the
angular diameter distance between two points, while we
use the conventional notation d for the angular diameter
distance in the original metric. In dS case, the physical

FIG. 4. Schematic figure of a hyperbolic triangle ABC. The
vertices are denoted by A, B and C. The sides of the triangle are
geodesics indicated by a thin solid line. The arc length of them is
ρAB, ρBC, and ρCA.
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angular diameter distance is d ¼ d̂
ffiffiffiffiffiffiffiffiffi
3=Λ

p
. From Eq. (11),

the angular diameter distance is defined as

d̂L ≡ sinh ρL; ð25Þ

d̂S ≡ sinh ρS; ð26Þ

d̂LS ≡ sinh ρLS: ð27Þ

Thereby, Eq. (24) can be rewritten explicitly in terms of the
angular diameter distance as

α − θ ¼ arcsin

�
d̂L
d̂LS

sin θ

�
− arcsin

�
d̂S
d̂LS

sin β

�
: ð28Þ

Equation (28) takes the same form as Eq. (17) of Ref. [41]
for the flat background [44]. It is not a surprising coincidence,
because the both derivations do not rely on whether the
quadrilateral LRQS lives in a flat space. The sum of the
internal angles is not necessarily Lþ Rþ V þ S ¼ 2π.
Indeed, the formulation by Takizawa et al. [41] stands on
fully curved backgrounds. However, this point has not been
stressed [41].
We should note also that the addition law holds for the

flat angular diameter distance in a Euclidean space, but it
does not in a curved space. Indeed, d̂L þ d̂LS ≠ d̂S in
hyperbolic geometry.

D. Lens and source planes in hyperbolic geometry

In the above, we have considered the angular diameter
distance between points. On the other hand, most studies on
the gravitational lens employ angular diameter distances
between a point (usually chosen as the receiver position)
and the so-called lens plane (or the source plane). In a
Euclidean space, the lens and source planes are parallel to
each other. In a non-Euclidean space, however, the two
planes are not parallel to each other.
In the hyperbolic space, we define a lens plane as a

surface which consists of a family of geodesics, every of
which is vertical to the geodetic line LR at the point L. We
consider a point in the hyperbolic space, at which the
geodetic line connecting L and R is vertical to another
geodetic emanating from the source point S. We denote the
point as U. By the same way, we define a source plane that
is vertical to the geodetic line connecting L and R at the
point U. See Fig. 2 for the lens and source planes.
In terms of the lens and source planes, we can define the

angular diameter distances. The normalized angular diam-
eter distance from the receiver to the lens plane is defined
as that from the receiver to the point L on the lens plane.
That is,

D̂L ≡ d̂L;

¼ sinh ρL; ð29Þ

where we use Eq. (25).
In the similar manner, the normalized angular distance

from the receiver to the hyperbolic source plane is defined
as that from the receiver to the point U on the source plane

D̂S ≡ sinh ρU: ð30Þ
The normalized angular distance between the lens and source
planes is defined as that from the point L to the point U

D̂LS ≡ sinh ρLU: ð31Þ

Note that D̂L þ D̂LS ≠ D̂S in hyperbolic geometry. This is
because sinh ρL þ sinh ρLU ≠ sinh ρU, though ρL þ ρLU ¼
ρU. Again, we should note that the physical angular diameter
distance needs the factor as D ¼ D̂

ffiffiffiffiffiffiffiffiffi
3=Λ

p
.

By using the cosine formula Eq. (15) for the right
triangle RSU, we obtain

cos β ¼ cosh ρSU sinh ρU
sinh ρS

: ð32Þ

From Eqs. (21) and (32), we find

tan β ¼ sin β
cos β

;

¼ tanh ρSU
sinh ρU

: ð33Þ

By using this for Eq. (30), we obtain

D̂S ¼
tanh ρSU
tan β

: ð34Þ

From this, we can see

sinh2 ρSU ¼ D̂2
S tan

2 β

1 − D̂2
S tan

2 β
: ð35Þ

By using Eq. (16) for the right triangle LSU, we obtain

cosh ρLS ¼ cosh ρSU cosh ρLU: ð36Þ

This leads to

sinh2 ρLS ¼ cosh2 ρLS − 1;

¼ ðcosh ρLU cosh ρSUÞ2 − 1;

¼ D̂2
LS þ D̂2

S tan
2 β

1 − D̂2
S tan

2 β
; ð37Þ

where Eqs. (31) and (35) are used in the last line.
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Next, we consider the angle L in the right triangle LSU.
We find

sinL ¼ d̂S
d̂LS

sin β; ð38Þ

where Eq. (14) is used. We thus obtain

tanL ¼ sinL
cosL

;

¼ D̂S

D̂LS
tan β; ð39Þ

where Eqs. (15), (16) and (37) are used. By combining
Eqs. (38) and (39), we obtain

arcsin
�
d̂S
d̂LS

sin β
�

¼ arctan
�
D̂S

D̂LS
tan β

�
: ð40Þ

In terms of the angular diameter distance D̂, Eq. (28) can
be reexpressed as

α − θ ¼ arcsin

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − D̂2

S tan
2 β

D̂2
LS þ D̂2

S tan
2 β

s
D̂L sin θ

!

− arctan

�
D̂S

D̂LS
tan β

�
; ð41Þ

where Eqs. (29)–(31), (33), (37) and (40) are used. The
inside of the square root in Eq. (41) must be nonnegative.
Therefore,

j tan βj ≤ 1

D̂S
; ð42Þ

which gives the allowed region of the source direction. This
is due to the existence of the dS horizon.
The hyperbolic lens equation Eq. (41) is slightly differ-

ent from the Takizawa lens equation in the flat background
as [41]

α − θ ¼ arcsin

�
DLffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

D2
LS þD2

S tan
2 β

p sin θ

�

− arctan

�
DS

DLS
tan β

�
: ð43Þ

The only difference is caused because Euclidean
Pythagorean theorem does not stand in hyperbolic space,
especially for the right triangle such as RSU and LSU. In
other words, the methods of deriving Eqs. (41) and (43) do
depend on whether the triangle LSU lives in a flat space.
Equations (41) and (43) bear a striking resemblance to

each other, though they are based on two completely
different geometry. Does it mean that the cosmological

constant makes almost no effects on gravitational lens
observations? No. Equation (41) is written by using the
angular diameter distances in hyperbolic geometry due to
the presence of the cosmological constant. This means that
the cosmological constant significantly affects the gravi-
tational lens.

IV. GRAVITATIONAL LENS IN SPHERICAL
GEOMETRY

A. Spherical trigonometry

In the similar manner to the previous section, we focus
on photon orbits on the equatorial plane θ ¼ π=2 in
spherical geometry, which corresponds to AdS case.
Then, the normalized optical metric in the plane is

dl̂2 ¼ dρ2 þ sin2 ρdϕ2: ð44Þ

Let us briefly summarize the spherical trigonometry [43].
See Fig. 5 for a spherical triangle ABC.
The laws of sines and cosines are

sin ρBC
sin A

¼ sin ρCA
sin B

¼ sin ρAB
sin C

; ð45Þ

cos ρAB ¼ cos ρBC cos ρCA − sin ρBC sin ρCA cosC: ð46Þ

The spherical trigonometry of right angles is as follows.
If C ¼ π=2, then

sinA ¼ sin ρBC
sin ρAB

; ð47Þ

cosA ¼ cos ρBC sin ρCA
sin ρAB

;

¼ tan ρCA
tan ρAB

; ð48Þ

FIG. 5. Schematic figure of a spherical triangle. The notations
are the same as those in Fig. 4.
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cos ρAB ¼ cos ρBC cos ρCA; ð49Þ

where the last equation is a generalization of Pythagorean
theorem in spherical geometry. Equation (49) approaches
ρ2AB ¼ ρ2BC þ ρ2CA at very small scale of ρAB ≪ 1.

B. Gravitational lens configuration in
spherical geometry

It is usually convenient to use a correspondence between
hyperbolic functions and spherical ones, when we wish to
obtain expressions in spherical geometry from known
hyperbolic ones, and vice versa. If this correspondence
were applied to Eq. (41), this equation would remain the
same, because it does not include any hyperbolic function.
However, this is not the case as shown below.
Figure 6 shows a gravitational lens system in spherical

geometry. For the right triangle PRL, we obtain

sin θ ¼ sin ρPL
sin ρL

; ð50Þ

where Eq. (47) is used. From the right triangle LQS,

sinðπ − ΨSÞ ¼
sin ρQL

sin ρLS
: ð51Þ

For the single light ray, ρPL and ρQL must be equal to
each other, because it means the impact parameter. Hence,
ρPL ¼ ρQL. By using this for Eqs. (50) and (51), we obtain

ΨS ¼ π − arcsin
�
sin ρL
sin ρLS

sin θ
�
: ð52Þ

Next, we consider the right triangle LSU. Using Eq. (47)
at the vertex L of LSU, we find

sinðπ − ϕRSÞ ¼
sin ρSU
sin ρLS

: ð53Þ

For the triangle RSU, we obtain

sin β ¼ sin ρSU
sin ρS

; ð54Þ

where β is the angle R, namely the (unlensed) source angle
in AdS spacetime.
From Eqs. (53) and (54), a relation between ϕRS and β is

found as

ϕRS ¼ π − arcsin
�
sin ρS
sin ρLS

sin β
�
: ð55Þ

By substituting Eqs. (52) and (55) into Eq. (23), we
obtain

α − θ ¼ arcsin

�
sin ρL
sin ρLS

sin θ

�
− arcsin

�
sin ρS
sin ρLS

sin β

�
:

ð56Þ

C. Angular diameter distance in spherical geometry

In the normalized spherical surface, we consider the
angular diameter distance between two points as d̂, while d
denotes the angular diameter distance in the original
spherical space. Namely, d ¼ d̂

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3=ð−ΛÞp

. The normalized
angular diameter distances are defined as

d̂L ≡ sin ρL; ð57Þ

d̂S ≡ sin ρS; ð58Þ

d̂LS ≡ sin ρLS; ð59Þ

such that Eq. (56) can be rewritten simply as

α − θ ¼ arcsin

�
d̂L
d̂LS

sin θ

�
− arcsin

�
d̂S
d̂LS

sin β

�
: ð60Þ

Equation (60) takes the same form as Eq. (17) of
Ref. [41] for the flat background. Note that d̂L þ d̂LS ≠
d̂S also in spherical geometry.

D. Lens and source planes in spherical geometry

In spherical geometry, we consider lens and source
planes as shown by Fig. 6.
For the lens and source planes, we define the normalized

angular diameter distance from the receiver to the lens
plane as

FIG. 6. A gravitational lens system in AdS background. The
notations are the same as those in Fig. 2. The lens and source
planes are not parallel to each other, because they live in a curved
space.
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D̂L ≡ d̂L;

¼ sin ρL; ð61Þ

where we use Eq. (57). By the same way, the normalized
angular distance from the receiver to the source plane is
defined as

D̂S ≡ sin ρRU: ð62Þ
The normalized angular distance between the lens and source
planes is the same as that between the points L and U,

D̂LS ≡ sin ρLU: ð63Þ

Note that ρL þ ρLU ¼ ρU but D̂L þ D̂LS ≠ D̂S in spheri-
cal geometry, because sin ρL þ sin ρLU ≠ sin ρU. We
should remember also that the physical angular diameter
distance can be obtained from the normalized one
by D ¼ D̂

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3=ð−ΛÞp

.
By using the cosine formula Eq. (48) for the right

triangle RSU, we obtain

cos β ¼ cos ρSU sin ρU
sin ρS

: ð64Þ

From Eqs. (54) and (64), we find

tan β ¼ sin β
cos β

;

¼ tan ρSU
sin ρU

: ð65Þ

We use this for Eq. (62) to obtain

D̂S ¼
tan ρSU
tan β

: ð66Þ

From this, we can see

sin2 ρSU ¼ D̂2
S tan

2 β

1 − D̂2
S tan

2 β
: ð67Þ

Using Eq. (49) for the right triangle LSU leads to

cos ρLS ¼ cos ρSU cos ρLU: ð68Þ

This leads to

sin2 ρLS ¼ 1 − cos2 ρLS;

¼ 1 − ðcos ρLU cos ρSUÞ2;

¼ D̂2
LS þ D̂2

S tan
2 β

1þ D̂2
S tan

2 β
; ð69Þ

where Eqs. (63) and (67) are used in the last line.

By the same way to Eq. (40), we consider the angle L in
the right triangle LSU to obtain also in spherical geometry

arcsin

�
d̂S
d̂LS

sin β

�
¼ arctan

�
D̂S

D̂LS
tan β

�
: ð70Þ

In terms of the angular diameter distance D̂, Eq. (60) is
rearranged as

α − θ ¼ arcsin

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ D̂2

S tan
2 β

D̂2
LS þ D̂2

S tan
2 β

s
D̂L sin θ

!

− arctan

�
D̂S

D̂LS
tan β

�
; ð71Þ

where Eqs. (61)–(63), (65), (69) and (70) are used.
There exists the only difference between Eqs. (41) and

(71). The sign of one term in the square root is opposite. For
this reason, the present section avoids a conventional
method of only replacing hyperbolic functions by spherical
ones. The sign difference comes from Eqs. (37) and (69) for
sinh ρ2LS and sin ρ2LS, respectively.
We should note that Eq. (71) is based on the angular

diameter distances in spherical geometry due to the
presence of the negative cosmological constant.

V. DISCUSSIONS

A. Unified form in Euclidean, hyperbolic
and spherical geometry

Equations (28) and (60) are in the same form as the flat
lens equation. However, they are not in practical use,
because the receiver cannot directly measure the distance
from the lens to the source though the distance from the
receiver to the source is in principle a direct observable.
Hence, the lens equations in terms of the lens and source
planes have much more practical use [5–8].
First, we unify Eqs. (41), (43), and (71) in a single

form as

α − θ ¼ arcsin

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ KD̂2

S tan
2 β

D̂2
LS þ D̂2

S tan
2 β

s
D̂L sin θ

!

− arctan

�
D̂S

D̂LS
tan β

�
; ð72Þ

where K denotes 1, 0 and −1 for spherical, flat and
hyperbolic geometry, respectively. K is corresponding to
the Gaussian curvature of the normalized background
surface.
How does the only difference among Eqs. (41), (43), and

(71) affect the lensed image position? What is the physical
effect of the K term in Eq. (72)? To investigate this issue
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below, we shall use small angle approximations to follow
the method by Takizawa et al. [41].

B. Iterative behaviors

Let us introduce a book-keeping parameter ε. For a given
source position angle as β ¼ εβð1Þ, the image position angle
and the deflection angle are expanded in a Taylor series as

θ ¼
X∞
k¼1

εkθðkÞ; ð73Þ

α ¼
X∞
k¼1

εkαðkÞ: ð74Þ

For the third-order solution in a flat background, please
refer to Eqs. (56)–(58) of Ref. [41] for instance. In the
similar calculations to Ref. [41], we find the third-order
solution for the lens equation in hyperbolic/spherical
geometry. The new term appears owing to the background
curvature. From Eq. (72), we obtain the new term as

θNew
ð3Þ ¼ K

D̂LD̂
2
S

2D̂2
LSðD̂L þ D̂LSÞ

β2ð1Þθð1Þ: ð75Þ

At the third order level, Λ (K ¼ −1) decreases θ
compared with in the flat background when the angular
diameter distances are the same as each other, while θ is
increased in AdS (K ¼ 1). However, there is subtlety in this
statement. Equations (56)–(58) of Ref. [41] uses the
addition law DS ¼ DL þDLS because of the flat back-
ground. In a curved background, however, they have to be
modified because D̂L þ D̂LS ≠ D̂S.
The totally modified form is thus

θð3Þ ¼
D̂LS

D̂L þ D̂LS
αð3Þ −

D̂S

3ðD̂L þ D̂LSÞ

�
1 −

D̂2
S

D̂2
LS

�
β3ð1Þ

−
ð1 − KÞD̂LD̂

2
S

2D̂2
LSðD̂L þ D̂LSÞ

β2ð1Þθð1Þ

−
D̂L

6ðD̂L þ D̂LSÞ

�
1 −

D̂2
L

D̂2
LS

�
θ3ð1Þ; ð76Þ

where the new term makes a correction in the second line.
Instead of assuming a specific model of the lens object,
here, we consider a general one, for which the deflection
angle of light at Oðε3Þ is denoted as αð3Þ. αð3Þ can be
calculated by using the lower order solutions θð1Þ and θð2Þ
for a given lens model. In some model, θð2Þ vanishes [41].
To be rigorous, θ is not always a direct observable,

because it is the angle measured from the lens direction but
the direction is unknown in several cases. On the other
hand, the separation angle between two lensed images,
each of which is located on the opposite sides of the lens, is

a direct observable. The separation angle is decreased
(increased) by not Λ > 0 (Λ < 0) alone but its coupling
with the lens mass.
The above correction due to the new K term is a

mathematical consequence of introducing the lens and
source planes into curved backgrounds.

C. Deflection angle of light on dS/AdS backgrounds

Up to this point, we have not mentioned details of α.
Takizawa et al. have shown Eq. (23) for the deflection
angle of light can be justified even in a nonasymptotically
flat spacetime [24]. They have calculated α in the
Schwarzschild–de Sitter spacetime. For their α, the back-
ground spacetime is implicitly Minkowskian, because α
vanishes onlywhenM ¼ 0 andΛ ¼ 0. Hence, theirα should
be used in Eq. (43).
On the other hand, Eqs. (28) and (41) are valid in

hyperbolic geometry due to the positive cosmological
constant, while Eqs. (60) and (71) hold in spherical
geometry due to the negative cosmological constant.
In the present method, the effects of purely the cosmo-

logical constant are included in the angular diameter
distance of the dS/AdS backgrounds. Therefore, the
deflection angle of light αdS is subtracted by the effects
of purely Λ. For clarity, we denote the deflection angle of
light explicitly as αdSðpi;ΛÞ, where the lens object is
parametrized by pi (i ¼ 1; 2;…) in addition to Λ. In the
Kerr–de Sitter spacetime for instance, pi corresponds to the
mass or spin parameter. The deflection angle of light on dS/
AdS backgrounds is thus

αdS ≡ αðpi;ΛÞ − αðpi ¼ 0;ΛÞ: ð77Þ

Let us explain why Eq. (77) is justified. See Fig. 7 for two
triangles LRS in a hyperbolic plane. One triangle LRS has a
side RS that is a hyperbolic geodesic indicated by a dashed
blue line, while the other LRS has another side RS that
means a true light raydenoted by a solid red line. FromFig. 7,
we find αðpi;ΛÞ ¼ ΨR −ΨS þ ϕRS, and αðpi;¼ 0;ΛÞ ¼
ΨdS

R −ΨdS
S þ ϕRS. By using Eq. (77), therefore, we obtain

αdS ¼ ðΨR −ΨdS
R Þ þ ðΨdS

S − ΨSÞ: ð78Þ

This allows us to interpret αdS as the deflection angle of
the light ray (the solid red line) with respect to the reference
line (the dashed blue line). This point is explained also in
the caption of Fig. 7. As a result, Eq. (77) has the meaning
of the deflection angle of light on the dS background [48].
By the same way, one can see that Eq. (77) gives the
deflection angle of light on the AdS background as the
spherical surface.
As an example, we assume the Schwarzschild–de Sitter

spacetime, for which α is calculated in Refs. [9,24]. Their α
is invariant under transformations of spatial coordinates,
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because it can be expressed as the areal integral of the
Gaussian curvature of the plane. By using Eq. (77) for their
expression of α, we obtain the deflection angle on the dS/
AdS backgrounds as

αdS ¼ rg
b

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − b2u2S

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − b2u2R

q �

þ rgbΛ
12

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − b2u2S
p þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − b2u2R
p �

þOðr2g;Λ2Þ; ð79Þ

where rg ≡ 2m for the mass m.
Note that, in the present formulation, αdS does not

include any term of purely the cosmological constant.
This is because we work on the dS background and hence

the effects of purely the cosmological constant are fully
included in the well-defined angular diameter distance.
On the dS background, the impact parameter of light b is

b ¼ ffiffiffiffiffiffiffiffiffi
3=Λ

p
Rb ¼

ffiffiffiffiffiffiffiffiffi
3=Λ

p
tanh ρb, where Rb denotes the

normalized impact parameter and ρb is the arc length
corresponding to the impact parameter of light.

rg
b
¼

ffiffiffiffi
Λ
3

r
rg

tanh ρb
;

¼ rg

ffiffiffiffi
Λ
3

r �
1

D̂b
þ D̂b

2
þOðD̂2

bÞ
�
;

¼ rg
Db

þ rgΛDb

6
þOðrgΛ2D3

bÞ; ð80Þ

where we use in the second line

1

tanh ρb
¼ 1

sinh ρb
þ sinh ρb

2
þOðsinh3 ρbÞ; ð81Þ

and the angular diameter distance and the normalized one
corresponding to ρb are denote denoted as D̂b ≡ sinh ρb
and Db ≡

ffiffiffiffiffiffiffiffiffi
3=Λ

p
D̂b, respectively.

By using Eq. (14) for the right triangle LPR in Fig. 2, we
obtain

sin θ ¼ Db

DL
: ð82Þ

By using this for Db in Eq. (80), we find

rg
b
¼ rg

DL sin θ
þ rgΛDL sin θ

6
þOðrgΛ2D3

bÞ: ð83Þ

For more simplicity, we employ small angle approxi-
mations. Then, we find

b2u2R ¼ θ2 þ 1

3
ΛD2

Lθ
2 þOðθ4; θ4D2Λ; θD4Λ2Þ; ð84Þ

b2u2S ¼
�
DL

DLS

�
2

θ2 þ 1

3
ΛD2

Lθ
2 þOðθ4; θ4D2Λ; θD4Λ2Þ;

ð85Þ

where the latter equation can be obtained by noting
Eq. (19). By using Eqs. (83)–(85), Eq. (79) is simplified as

αdS ¼ 2rg
DLθ

−
rgθ

2DL

�
1þ

�
DL

DLS

�
2
�

þ rgΛDLθ

6
þOðr2g; rgθ3; rgΛDθ3; rgΛ2D3Þ: ð86Þ

In the AdS case, tanh functions should be replaced by tan
ones. This leads to

FIG. 7. Schematic figure of the deflection angle of light on a
hyperbolic plane as the dS background. The solid lines LR and
LS denote the radial geodesics emanating from the lens to the
receiver and the source, respectively. The inner angle at L is ϕRS
which is a given parameter characterizing the angle separation
between R and S. The dashed blue curve denotes the geodesic
connecting S and R. The solid red curve denotes a true light ray
from S to R. The light ray by a gravitating mass in the presence of
Λ does not follow a geodesic in hyperbolic geometry. The angle
between the radial line LR and the geodesic RS is denoted asΨdS

R ,
while that between the radial line LR and the light ray is denoted
as ΨR. The dotted arrow denotes the tangent of the radial line LS.
The angle between the radial line LS and the geodesic RS is an
outer angle, which is denoted as ΨdS

S . The angle between the
radial line LS and the light ray is an outer angle, which is denoted
as ΨS. We consider the tangents of the solid red line and those of
the dashed blue one at the two points R and S. The angle
difference between the two tangents at the source position S is
ΨS −ΨdS

S , which is denoted as δS. The angle difference between
the two tangents at the receiver point R is ΨdS

R −ΨR, which is
denoted as δR. The right-hand side of Eq. (78) is the sum of the
two angle differences, namely δR þ δS. This can be thus inter-
preted as the deflection angle of the solid red line to the reference
line as the dashed blue one.
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1

tan ρb
¼ 1

sin ρb
−
sin ρb
2

þOðsin3 ρbÞ; ð87Þ

which has a difference in the sign of the second term of the
right-hand side, compared with Eq. (81). However, we
obtain

rg
b
¼ rg

DL sin θ
þ rgΛDL sin θ

6
þOðrgΛ2D3

bÞ; ð88Þ

where the second term of the right-hand side has the same
sign as the dS case because of the factor

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3=ð−ΛÞp

in the
angular diameter distance, though the second term in the
right-hand side of Eq. (87) has the minus sign. As a
consequence, we obtain for the AdS

αAdS ¼ 2rg
DLθ

−
rgθ

2DL

�
1þ

�
DL

DLS

�
2
�

þ rgΛDLθ

6
þOðr2g; rgθ3; rgΛDθ3; rgΛ2D3Þ: ð89Þ

Equation (89) is in the same form as Eq. (86), though the
two background geometries are very different.
In order to discuss effects of Λ on lensing observations,

we consider Eqs. (28) and (60). In terms of the angular
diameter distances among the three points L, R and S, the
dS/AdS lens equations take exactly the same form as the
flat one. We assume an ideal situation that the angular
diameter distances dL, dS, and dLS take the same values for
each of the flat, dS and AdS cases. Then, the difference in
the three lens equations can come only from the deflection
angle of light. According to Eqs. (86) and (89), the
deflection angle of light for a given lens mass is larger
(smaller) in dS (AdS) than in the flat case, where dL ¼ DL
is used. This means that, through a coupling of Λ with m,
the separation angle of multiple images is increased
(decreased) by Λ > 0 (Λ < 0), for given m, β, dL, dS,
and dLS.
It is worthwhile to mention also that α in Refs. [9,24]

apparently diverges as b → ∞, while Eq. (79) is not
divergent because the present formulation takes full
account of the curvature of dS backgrounds. This means
that the present formulation can describe the lensing
behavior on much larger scale than the conventional
method based on the Minkowskian background. See
Fig. 8 for a schematic illustration of light rays on hyper-
bolic, flat and spherical surfaces.

D. Strong deflection

Finally, we mention the strong deflection case, for which
light rays have the winding numberN, whereN is a positive
integer. We thus extend Eq. (72) as

α − θ ¼ arcsin

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ KD̂2

S tan
2 β

D̂2
LS þ D̂2

S tan
2 β

s
D̂L sin θ

!

− arctan

�
D̂S

D̂LS
tan β

�
þ 2πN: ð90Þ

Fully nonlinear investigations of the strong deflection with
Eq. (90) are left for future.

VI. SUMMARY

Gravitational lens equations have been discussed in dS
background, for which the existence of the dS horizon has
been taken into account and hyperbolic trigonometry has
been used together with the hyperbolic angular diameter
distance. We have used spherical trigonometry in order to
discuss gravitational lens equations in AdS background.
In terms of the angular diameter distances between two

points, the lens equations on the dS/AdS backgrounds
Eqs. (28) and (60) take exactly the same form as that in the
flat background [41]. On the other hand, there exists a
difference among those in terms of the angular diameter
distances using the lens and source planes. See Eqs. (41),
(43), and (71). The only difference in the form is indicated
as the K term in Eq. (72).

FIG. 8. Lensed light rays on three distinct manifolds that are
characterized by Λ. Each light ray is denoted by a solid red arrow.
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In small angle approximations, the difference in the form
among the dS/AdS lens equations and the exact lens
equation in Minkowski background begins at the third
order. The angular separation of lensed images is decreased
by the third-order deviation in the dS lens equation, while it
is increased in AdS.
We have discussed also the deflection angle of light to

match with the lens equations on the dS/AdS backgrounds.
This new form of the deflection angle of light does not
include any term of purely the cosmological constant. In
addition, we wish to stress that the deflection angle of light
rays in both hyperbolic and spherical geometry can take the
same form within the present framework. It would be
worthwhile to fully understand a reason for the coincidence.
Through a coupling of Λ with m, the separation angle of

multiple images is increased (decreased) byΛ > 0 (Λ < 0),
for a given mass, source direction and angular diameter
distances among the lens, receiver and source.
The above results imply that a similar behavior in the dS/

AdS lensing may occur at the third order level of the

general relativistic cosmological perturbations. Along this
direction, a study on realistic cosmological backgrounds
with Λ is left for future.
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