
Spherically symmetric vacuum solutions and horizons
in covariant f ðTÞ gravity theory

Andrew DeBenedictis ,1,* Saša Ilijić ,2,† and Marko Sossich2,‡
1Simon Fraser University 8888, University Drive,
Burnaby, British Columbia V5A 1S6, Canada

and The Pacific Institute for the Mathematical Sciences
2Department of Applied Physics, Faculty of Electrical Engineering and Computing,

University of Zagreb, HR-10000 Zagreb, Unska 3, Croatia

(Received 5 March 2022; accepted 14 March 2022; published 13 April 2022)

In this paper we study properties that the vacuum must possess in the minimal extension to the
teleparallel equivalent of general relativity (TEGR) where the action is supplemented with a quadratic
torsion term. No assumption is made about the weakness of the quadratic term although in the weak-field
regime the validity of our previously derived perturbative solution is confirmed. Regarding the exact nature
of the vacuum, it is found that if the center of symmetry is to be regular, the mathematical conditions on the
tetrad at the isotropy point mimic those of general relativity. With respect to horizons it is found that, under
very mild assumptions, a smooth horizon cannot exist unless the quadratic torsion coupling, α, vanishes,
which is the TEGR limit (with the Schwarzschild tetrad as its solution). This analysis is then supplemented
with computational work utilizing asymptotically Schwarzschild boundary data. It is verified that in no
case studied does a smooth horizon form. For α > 0 naked singularities occur which break down the
equations of motion before a horizon can form. For α < 0 there is a limited range of α where a vacuum
horizon might exist but, if present, the horizon is singular. Therefore physically acceptable black hole
horizons are problematic in the studied theory at least within the realm of vacuum static spherical
symmetry. These results also imply that static spherical matter distributions generally must have extra
restrictions on their spatial extent and stress-energy bounds so as to render the vacuum solution invalid in
the singular region and make the solutions finite.
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I. INTRODUCTION

General relativity is now known to be a highly successful
theory of gravity on many energy scales. It has passed a
number of solar system tests [1] and, more recently, it has
been shown to be accurate even in high-energy scenarios
[2]. General relativity is based on the concept of intrinsic
curvature as the cause of the gravitational field. There also
exists a much less known, but completely equivalent theory
of gravity based on torsion and no curvature. This theory is
known as the teleparallel equivalent of general relativity
(TEGR). Instead of an action constructed linear in the Ricci
scalar with the metric as the degree of freedom, TEGR
instead is derived from an action constructed linearly from
the torsion scalar with the tetrad being the degree of
freedom. The two theories yield exactly the same equations
of motion, except for a difference in a boundary term (and
hence a possible difference in junction conditions [3,4]).

Since the two theories are equivalent it is a matter of choice
which theory one chooses to work with, provided the
choice is between general relativity and TEGR.
However, it is possible that the full theory is not general

relativity or TEGR, but only yields these in a certain limit.
In curvature based theories, the most popular extension to
the Einstein-Hilbert Lagrangian density is one where the
Ricci scalar in the action is supplemented with a quadratic
term in the Ricci scalar. The quadratic term is sometimes
referred to as the Starobinsky term [5]. This “Rþ αR2”
theory could be viewed as the correct full theory of
curvature gravity, or just the first two terms in a
Lagrangian density which is power-expandable in powers
of the curvature scalar about a small curvature. In the latter
case the R2 term is seen as a correction due to a more
general fðRÞ gravity theory.
One can do the same type of extension in the torsion

theory, giving rise to what is known as fðTÞ gravity theory,
or extended teleparallel gravity. The resulting fðTÞ equa-
tions of motion will no longer mimic those of the
corresponding curvature theory beyond linear order in
the action, and so the two theories will generally make
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different predictions. One feature of fðTÞ gravity is that the
differential equations of motion retain their second-order
nature even when fðTÞ is no longer simply linear in the
torsion scalar, whereas fðRÞ becomes a fourth-order theory
beyond the linear Lagrangian density.
The covariant theory (in this manuscript meaning with

spin connection explicitly included) produces the same
equations of motion as the pure tetrad theory if one chooses
a “good” tetrad [6] in the pure tetrad theory. Therefore,
using a good tetrad with no spin connection yields the same
equations of motion as the ones here. A good tetrad in the
pure tetrad frame does yield locally covariant equations of
motion provided that, when one locally Lorentz transforms
the tetrad to another frame, one must also pick up the
proper nonzero spin connection in this new frame.
The fðTÞ gravity is not nearly as well studied as its fðRÞ

counterpart but interest has increased dramatically in the
past couple of decades when considering candidates for
modified gravity theories. The greatest amount of work in
teleparallel gravity has arguably been performed in the
arena of cosmology [7–14]. There it has been shown that
such modifications to the gravitational action may be able
to naturally produce dark matter and dark energy effects
[15–19]. Stellar structure has also been studied in some
detail [6–27] as well as black holes [28–34]. A nice review
of the subject may be found in [35].

II. A BRIEF REVIEW OF COVARIANT
f ðTÞ GRAVITY

In this paper we will refer to the Riemann tensor
specifically constructed from the Levi-Civita connection
as the Riemann-Christoffel tensor (although we should
caution that sometimes in the mathematical literature this
nomenclature refers to the Riemann tensor for any connec-
tion). The Riemann-Weitzenböck tensor, whose components
are all identically zero, refers to the Riemann tensor con-
structed specifically from the Weitzenböck connection.
The action for fðTÞ gravity theory is given by1

S ¼
Z �

1

16π
fðTÞ þ Lmatter

�
detðhα̂μÞd4x: ð1Þ

Here hα̂μ represents the tetrad, which satisfies the condition
of metric compatibility,

hα̂μhα̂ν ¼ gμν; ð2Þ

and fðTÞ is some function of the torsion scalar, T, which is
constructed out of the torsion tensor, Tα

βγ . The torsion is
defined from the commutator of the Weitzenböck con-
nection Γσ

βγ with the spin connection, ωα̂
β̂σ as

T α̂
μν ¼ hα̂σðΓσ

νμ − Γσ
μνÞ ≔ ∂μhα̂ν − ∂νhα̂μ

þ ωα̂
β̂μh

β̂
ν − ωα̂

β̂νh
β̂
μ: ð3Þ

The torsion scalar itself is formed via,

T ≔
1

4
TαβγTαβγ þ 1

2
TαβγTγβα − Tαβ

αTγβ
γ; ð4Þ

Even though it is not a tensor we define the raising and
lowering of indices on the spin connection in the usual way

ωα̂
β̂μ ≔ gα̂ γ̂ωγ̂ β̂ μ; ωγ̂ β̂

ν ≔ ωγ̂ β̂ μg
μν; etc:;

the hatted metric being the orthonormal metric.
The equations of motion result from extremizing the

action (1) with respect to the tetrad hα̂μ yielding

1

2
gμνfðTÞ þ

dfðTÞ
dT

�
G
∘
μν −

1

2
gμνT

�

þ d2fðTÞ
dT2

Sμνλ∂λT ¼ 8πT μν; ð5Þ

where T μν represents the components of the symmetric
stress-energy tensor, which will be set to zero here as we

will be dealing with vacuum solutions. G
∘ μν

is the Einstein
tensor, constructed from the Ricci scalar and Ricci tensor
created from the Christoffel connection. We will use a ring
over quantities constructed from the Christoffel connection.
The quantity Sμνρ is known as the superpotential, and is
given by

Sαμν ¼ Kμνα − gανTλ
μλ þ gαμTλ

νλ; ð6Þ

with Kμνα the contorsion (sometimes referred to as con-
tortion) tensor defined by

Kαμν ¼
1

2
ðTναμ þ Tμαν − TαμνÞ: ð7Þ

The form that we have written Eq. (5) is not the common
way that they are usually found in thefðTÞ literature, but they
are equivalent [36]. The form in (5) makes it particularly
convenient to compare fðTÞ gravity with the Einstein
equations of general relativity and isolate the differences
in the two theories. One can see in (5) that when taking
fðTÞ ¼ T (TEGR) one recovers readily the Einstein
equations.
The primary role of the spin connection is to render the

theory locally Lorentz covariant [37–47]. If the spin con-
nection is ignored it is known that generally the resulting
fðTÞ theory is not covariant under local Lorentz trans-
formations. It is still possible to achieve physically sensible
equations of motion without the spin connection but one
must then choose a tetrad which yields zero for all
components of the spin connection. Such a tetrad, often

1Indices are such that hatted Greek letters represent ortho-
normal indices whereas unadorned Greek letters represent space-
time coordinate indices.
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referred to as a “good” tetrad in the fðTÞ literature [37–40],
will then yield physically appropriate equations of motion.
These equations of motion will then be identical to the
equations of motion created with an arbitrary metric
compatible tetrad [meaning (2) is satisfied] but without
ignoring the spin connection. To reiterate, if one chooses to
ignore the spin connection one cannot use just any metric
compatible tetrad, but must choose one that yields zero spin
connection, whereas with a properly computed spin con-
nection any metric compatible tetrad may be utilized. It is
generally simpler, and safer, to include the spin connection
so that one does not need to worry about local Lorentz
invariance. The drawback to this is that at this time there is
no scheme to calculate the appropriate inertial spin con-
nection for general scenarios.
Although it is still not clear how to calculate the

appropriate inertial spin connection in general cases, there
has been some good progress on this in the past few years
[41,44]. The methods presented in [41,44] provide slightly
different prescriptions on how to isolate the inertial (versus
the truly gravitational) degrees of freedom, and provide a
method to compute the spin connection so that it renders
the equations of motion (5) Lorentz covariant and therefore
truly describing gravitational effects only. The schemes do
not work in all scenarios. As an example, the method does
not yield satisfactory equations of motion when A and B are
time also dependent. For the static spherical scenario
however the method is robust and they work quite well
for the case of static spherical symmetry.
In the method of [41] one can compute the appropriate

spin connection by first considering a tetrad ansatz of
choice in (3). For example, relevant to this work, a tetrad
compatible with spherical symmetry is chosen. One then
takes the G → 0 (gravitational constant) limit in the
resulting torsion tensor, and sets this torsion tensor equal
to zero. This results in a set of equations for the spin-
connection components which one must solve.
The method in [44] differs slightly in that one first

computes the spin connections via

ωα̂
β̂μ ¼ −ð∇∘ μhα̂νÞhβ̂ν ¼ −ð∂μhα̂ν − Γ

∘ λ
νμhα̂λÞhβ̂ν; ð8Þ

using the tetrad ansatz (e.g., spherical symmetry) and the

Levi-Civita (Christoffel) connection, Γ
∘ μ

νσ . Then the flat
space limit (in the Riemann-Christoffel sense) is set in the
resulting expression and this yields the components of the
inertial spin connection.
Below we will utilize these methods to compute the

necessary inertial spin connection coefficients. We should
mention here that the spin connection computed according
to these methods yields the correct inertial spin connection
required for full local Lorentz invariance, which includes
parity and time reversal, that produces zero torsion for
Minkowski spacetime. This is demanded, for example, so

that spinors do not experience gravitational effects in
Minkowski spacetime. It may be possible in fðTÞ gravity
to just demand that spinors do not couple to the torsion, but
since in general such coupling naturally arises in spinor
theory we do not consider scenarios which yield nonzero
torsion in Minkowski spacetime. These are stronger con-
ditions than simply having the equations of motion (5) be
symmetric. The resulting equations of motions must be
symmetric as well as be locally Lorentz invariant (including
the discrete transformations on the tetrad of parity and time
reversal) in order to have covariant fðTÞ gravity, and the
methods of [41,44] provide the spin connection that
achieves both these criteria in static spherical symmetry.

III. POSSIBLE MEASURES OF REGULARITY
IN f ðTÞ GRAVITY

Regularity in fðTÞ gravity is a trickier issue than in
curvature based theories such as general relativity. For
example, in curvature theories one possesses a curvature
singularity wherever at least one of the orthonormal compo-
nents of the Riemann curvature tensor becomes infinite. In
fðTÞ gravity though the Riemann-Weitzenböck tensor is
identically zero. Onemay perhaps then appeal to the fact that
the tensor analogous to the Riemann curvature tensor in fðTÞ
gravity is the torsion tensor (3). This tensor however does not
provide a reliable diagnostic of physical pathologies in
the spacetime. One way to see this is to construct the
torsion tensor with the Schwarzschild solution’s tetrad.
The Schwarzschild solution is the unique spherically sym-
metric vacuum solution in TEGR, which is a valid theory
within the realm of fðTÞ gravities. Therefore the
Schwarzschild horizon is a bona fide physically acceptable
black hole horizon in fðTÞ ¼ T gravity theory. It can be
readily verified that some components of the torsion tensor,
both in the coordinate and orthonormal frames, diverge on
the Schwarzschild horizon, even though it is well known that
this surface is benign in TEGR and general relativity. The
same is true of the superpotential (6) and contortion tensor
(7); again some coordinate and orthonormal components of
these tensors diverge on the benign Schwarzschild horizon.
The torsion scalar itself also sheds no light on regularity,
since it is also infinite on the Schwarzschild horizon.
Similarly, the scalars TαβγTαβγ , KαβγKαβγ , and SαβγSαβγ

diverge on the Schwarzschild horizon and so also do not
provide a good benchmark for true singular behavior.
In this paper we will make clear specifically what

is meant by “singularity” or “regularity” in the sections
where the issue arises, but to summarize we generally mean
that the equations of motion themselves are ill or well
behaved in some sense. We also will appeal to the
Riemann-Christoffel tensor in the orthonormal frame, or

the Riemann-Christoffel-Kretschmann scalar, R
∘
αβγδR

∘ αβγδ
,

being finite or not. As mentioned above, the Riemann-
Christoffel criteria may seem peculiar in a theory whose

SPHERICALLY SYMMETRIC VACUUM SOLUTIONS AND … PHYS. REV. D 105, 084020 (2022)

084020-3



spacetime connection is not the Christoffel connection. The
reason we sometimes utilize this condition as a measure of
the spacetime’s regularity is that even in fðTÞ gravity the
paths of free-falling particles are governed by the geodesic
equation, not autoparallels of the spacetime connection.
One way to see why this is the case is starting from the
action for free particles [including free of gravity, which in
fðTÞmeans torsion free]. The action for such a free particle
is given by

S ¼
Z �

ημν
dxμ

dτ
dxν

dτ

�1
2

dτ; ð9Þ

where ημν is the spacetime coordinate-frame metric in the
absence of gravity,

ημν ¼ ηα̂ β̂e
α̂
μeβ̂ν; ð10Þ

with e·· the gravity-free orthonormal tetrads which project
from the orthonormal frame to the coordinate frame. The
gravitational coupling prescription in teleparallel gravity
amounts to the replacement of the gravity-free tetrads with
the tetrad compatible when torsion is present

eα̂μ → hα̂μ; ð11Þ

so that in the presence of torsion (10) becomes

gμν ¼ gα̂ β̂h
α̂
μhβ̂ν; ð12Þ

(ηα̂ β̂ and gα̂ β̂ are of course numerically equivalent, but differ
conceptually [48] and most authors do not distinguish).
It can be seen that employing this coupling principle

essentially replaces the gravity-free metric in the action (9)
with the gravitational metric so that (9) becomes

S ¼
Z �

gμν
dxμ

dτ
dxν

dτ

�1
2

dτ: ð13Þ

As is well known, extremizing this action with respect to
the particle’s position and velocity yields the geodesic
equation, whose connection is the Christoffel connection,

d2xα

dτ2 jx:¼χ:ðτÞ
¼ −

�
Γ
∘ α
μν
dxμ

dτ
dxν

dτ

�
jx:¼χ:ðτÞ

; ð14Þ

where χ·ðτÞ denotes a restriction to the parameterized
geodesic path of the particle. A fuller account of how this
gravitational coupling prescription arises may be found
in [49].
Since the free-falling particle motion is geodesic, the

geodesic deviation equation applies to free-falling particles
exactly like in curvature-only theories. That is,

∇∘ u∇
∘
uξ

α ¼ R
∘ α

μνβuμuνξβ; ð15Þ

where uμ are the components of u, which is tangent to the
geodesics, and ξα the deviation vector. Therefore, pathol-
ogies in the Riemann-Christoffel tensor in fðTÞ gravity
herald a pathology in the tidal forces on free particles, just
as in general relativity or similar curvature-based theories.
Specifically, we should consider this tensor in some
orthonormal frame since in geodesic deviation the tensor
is projected onto four-velocities. (The orthonormal com-
ponents also eliminate spurious coordinate artifacts, which
could be a false signal of a singularity.) Alternatively, if we
are willing to lose some information, we can consider its
Kretschmann scalar.

IV. THE SPHERICALLY SYMMETRIC f ðTÞ
VACUUM

In this work we will be considering an action of the form
(1) with fðTÞ specifically given by

fðTÞ ¼ T þ α

2
T2: ð16Þ

This form of the action is considered important for several
reasons. One is that it is the torsion analog of Starobinsky
theory [50–54], and hence many of the arguments in favor
of Starobinsky theory in the curvature realm could apply to
this theory in the arena of torsion theories. Also, if the full
fðTÞ Lagrangian density function is considered to be one
analytic in T then (16) yields the lowest-order correction
beyond TEGR. In this manuscript however we make no
claim to the smallness of the quadratic term, and study the
exact (as opposed to perturbative) properties of vacuum
solutions. Perturbative torsion vacuum solutions have been
discussed in [55–58]. In covariant fðTÞ theory perturbative
solutions were discovered in [59] and were further studied
in [60–63].
Here we will consider the physically relevant scenario of

static spherical symmetry specifically in the isotropic coor-
dinate chart, for reasons which will be discussed below. A
line element compatible with such a chart is given by

ds2 ¼ A2ðρÞdt2−B2ðρÞ½dρ2þ ρ2ðdθ2þ sin2θdϕ2Þ�; ð17Þ

with t1 < t < t2, ρH ≤ ρ < ∞, 0 < θ < π, 0 ≤ ϕ < 2π. In
(17) a horizon exists where AðρÞ ¼ 0 and the value of ρ
where this occurs will be denoted as ρH.
A metric compatible tetrad in this coordinate system is

provided by

½hα̂μ� ¼

2
6664

ξð0ÞAðρÞ 0 0 0

0 ξð1ÞBðρÞ 0 0

0 0 ξð2ÞBðρÞρ 0

0 0 0 ξð3ÞBðρÞρsinθ

3
7775;

ð18Þ
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where the ξðμÞ can each be eitherþ1 or −1 independently of
each other. We note that this coordinate system is not
suitable for describing the region interior to the horizon and
therefore we restrict our analyses to horizons and their
exterior regions.
Before continuing we must compute the spin connection

to ensure that we are studying Lorentz covariant fðTÞ
gravity. We utilize both of the previously mentioned
methods to compute the inertial spin connection compo-
nents. In the case here tetrad (18) is used, and the flat-space
(or G → 0) limit described earlier corresponds to taking
AðρÞ ¼ 1 and BðρÞ ¼ 1, and their derivatives set to zero.
In the case of tetrad (18) both methods yield the same

spin connection components, as they should. These com-
ponents are

ωρ̂ θ̂
θ ¼ −ωθ̂ ρ̂

θ ¼
ξð2Þ
ξð1Þ

;

ωρ̂ ϕ̂
ϕ ¼ −ωϕ̂ ρ̂

ϕ ¼ ξð3Þ
ξð1Þ

sin θ;

ωθ̂ ϕ̂
ϕ ¼ −ωϕ̂ θ̂

ϕ ¼ ξð3Þ
ξð2Þ

cos θ: ð19Þ

These spin-connection components turn out to be similar to
the ones one would get if the more common Schwarzschild
coordinates were used instead of isotropic coordinates. The
equations of motion that result with the tetrad (18) and spin
connection (19) do not depend on whether or not any
combination of the ξðμÞ are þ1 or −1, indicating time-
reversal, parity and rotational invariance as required by full
Lorentz symmetry. (There is local boost invariance as well.)
Changing the sign of only some of the spatial ξðμÞ is
equivalent to either a rotation or a parity transformation
plus a specific rotation. Only even powers of the ξðμÞ appear
in the resulting equations of motion. Since the signs of the
ξðμÞ are irrelevant, from this point onward we will set all
ξðμÞ ¼ þ1 without loss of generality.
It can be easily confirmed that now the resulting theory is

Lorentz covariant. For example, one could take the tetrad
(18) and apply a local (coordinate dependent) proper

Lorentz transformation, Λα̂
β̂0 ðxÞ to it,

Λα̂
β̂0 ðxÞhα̂μ ¼ hβ̂

0
μ: ð20Þ

Then it can be verified that the action calculated with T,
constructed from hα̂μ via using (18) and (19) in (4), is
exactly the same as the action computed with T constructed
from hβ̂

0
μ and the corresponding spin connection of the

method of [41,44]. Said another way, the torsion scalar T
transforms as a scalar under local Lorentz transformations
(including parity and time-reversal) if one includes the

proper inertial spin connection, and also the resulting
equations of motion are locally Lorentz invariant.
In the case of this paper, the explicit form of the Lorentz

invariant torsion scalar, using (18) and (19) in (3) and
computing (4), is

T ¼ 2B0ð2BA0 þ AB0Þ
AB4

; ð21Þ

stressing that this is in isotropic coordinates, and hence
does not exactly resemble the covariant torsion scalar in the
usual curvature coordinates. In (21) the primes denote
differentiation with respect to ρ and we have suppressed the
explicit ρ dependence of the tetrad functions.
The vacuum equations of motion, by using (18) and (19)

in (5) are given by

Lt̂ t̂ ¼
−2BρB00 þ ρðB0Þ2 − 4BB0

B4ρ

þ α

A2B8ρ
½B0ðAB0ð−4Bρð2BA00 þ 3AB00Þ

þ 17AρðB0Þ2 − 8ABB0Þ
− 8ABA0ð2BρB00 − 3ρðB0Þ2 þ 2BB0Þ
þ4B2ρðA0Þ2B0Þ� ¼ 0; ð22aÞ

Lρ̂ ρ̂ ¼
2BA0ðρB0 þ BÞ þ AB0ðρB0 þ 2BÞ

AB4ρ

þ α

A2B8ρ
½B0ð2BA0 þ AB0Þð2BA0ð3ρB0 þ 2BÞ

þ AB0ð3ρB0 þ 4BÞÞ� ¼ 0; ð22bÞ

Lϑ̂ ϑ̂ ¼ B2ðρA00 þ A0Þ − AρðB0Þ2 þ ABðρB00 þ B0Þ
AB4ρ

þ α

A3B8ρ
½A2ðB0Þ2ð6BρðBA00 þ AB00Þ

− 9AρðB0Þ2 þ 2ABB0Þ − 4B3ρðA0Þ3B0

þ 4AB2ðA0Þ2ðBρB00 þ B0ðB − 3ρB0ÞÞ
þ 2ABA0B0ð2Bρð2BA00 þ 3AB00Þ
− 10AρðB0Þ2 þ 3ABB0Þ� ¼ 0: ð22cÞ

In the following sections we study several relevant
properties of vacuum solutions. In Sec. V we study
properties that vacuum solutions should possess in order
to be regular at their center. We assume in that section that
there are no horizons so that ρ ¼ 0 can validly be covered
by the coordinate chart of (18). In general relativity (or
TEGR), this requirement of regularity of the vacuum at the
origin of course leads to the well-known conclusion that the
vacuum spacetime must be Minkowski spacetime every-
where. (In general relativity Minkowski spacetime is the
only spherically symmetric everywhere vacuum solution
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that is regular everywhere.) We reiterate that in this
manuscript we are solely concerned with vacuum solutions.
It is not immediately clear though that this restriction to
Minkowski spacetime remains in more general extended
fðTÞ settings since the equations are no longer Einstein
vacuum equations and, as well, it is arguably less obvious
what is meant by “regularity” in a Weitzenböck spacetime.
Of course though, Minkowski spacetime is indeed a
vacuum solution of fðTÞ gravity, but it is not clear that
it must be the only spherically symmetric vacuum solution
with a regular center in fðTÞ gravity since from (5) fðTÞ
vacuum gravity can mimic general relativity with a peculiar
matter source.
In Sec. VI we assume that there is a horizon somewhere

in the spacetime, and study the properties that solutions
must have in order for the horizon’s existence. In Sec. VII
we supplement the analytic work with numerical evolutions
and also summarize the various scenarios. Finally, some
comments are made regarding the presence of a cosmo-
logical constant.

V. PROPERTIES NEAR THE CENTER

In this section we will study the properties that vacuum
solutions must possess near ρ ¼ 0 subject to the condition
that the solutions are regular. We assume in this section that
there are no horizons so that the isotropic coordinate chart
can cover ρ ¼ 0.
To begin the study of regular centers let us start with

studying the geodesic equations (14). Constructing the
Christoffel connection with (17) and concentrating on
radial geodesics (i.e., only ut and uρ not being zero), the
ρ component of Eq. (14) yields,

d2ρ
dτ2 jx:¼χ:ðτÞ

¼ −
�
AA0

B2
ðutÞ2 þ B0

B
ðuρÞ2

�
jx·¼χ ·ðτÞ

: ð23Þ

Put in the language of “effective force”, one can look at
Eq. (23) as a force equation where the left-hand side is the
effective acceleration of the particle in the ρ direction, and
the right-hand side represents the force. In fact, viewing the
geodesic equation as a force equation is actually the correct
interpretation in teleparallel gravity since gravitation in
fðTÞ theory is considered a true force.
Consider now placing a massive test particle at ρ ¼ 0

with no initial spatial velocity. Spherical symmetry dictates
that no radial direction from the center is privileged due to
isotropy about this point, so the particle, having zero initial
spatial velocity, should not start to move away from the
origin. In other words, the left-hand side of (23) must be
zero for such a particle. Now, from this argument we know
that for such a particle at the center we must have uρ ¼ 0
for all τ. The only way that the right-hand side of (23) can
vanish for ut ≠ 0 and B not infinite is if A0 ¼ 0. Að0Þ ¼ 0 is
not considered as it would indicate an infinite redshift

horizon at the center and in this part of the paper horizons
are not considered.
Next consider a radially in-falling particle as it crosses

ρ ¼ 0. Here as well when the particle is momentarily at the
center it should not be pulled in any direction due to
spherical symmetry, so again both sides of (23) must be
zero at ρ ¼ 0. In this case however neither ut nor uρ are
zero at the center. We have just argued above though that at
ρ ¼ 0 the derivative of A must vanish. Assuming that the
metric function B is not infinite, this implies that at the
center B0ð0Þ ¼ 0 in order to make the right-hand side of
(23) vanish. These arguments do not explicitly rely on the
spacetime being vacuum, and so could apply also, for
example, at the centers of spherical stars.
Before continuing we comment that it is perhaps

interesting to note that, assuming that if neither of the
tetrad functions or their first two derivatives are infinite, the
equations of motion at places where A0 and B0 simulta-
neously vanish are locally equivalent to Einstein’s equa-
tions. This can be seen from (22a)–(22c) where under these
conditions the terms proportional to α locally vanish.
In summary, we find that for a regular center to exist,

regular meaning acceptable particle motion, both A0ð0Þ and
B0ð0Þ must be zero. This is similar to the conditions in
general relativity where a kink in the metric at the origin is
forbidden as it would imply the presence of an infinitely
thin segment of matter there.
Our analysis above is local. However, if the spacetime

is everywhere vacuum and regular, then there is arguably
no preferred center of symmetry, and ρ ¼ 0 could be
placed anywhere in the spatial submanifold of the space-
time. The above arguments would then apply to every
point in the spacetime and we would conclude that any-
where in the globally vacuum spacetime the first derivatives
of A and B should vanish. This would imply that the
spacetime is Minkowski spacetime everywhere, and so
even in fðTÞ gravity Minkowski spacetime remains the
globally vacuum spherically symmetric solution that is
everywhere regular. This result is not surprising since in
such a spacetime we have promoted isotropy about a point
to isotropy about every point. It is important to stress that
when we refer to vacuum in this manuscript we are
referring to the absence of a cosmological constant as
well. Some comments on the cosmological constant will be
made in Sec. VIII.
We can analyze this claim of global Minkowski structure

more quantitatively by assuming that the functions A and B
are analytic functions. We can therefore Taylor expand the
equations around ρ ¼ 0, assuming A0ð0Þ and B0ð0Þ are
zero, as dictated by the above analysis of the geodesic
equations. Since we are solving the vacuum equations in
some nonzero domain around ρ ¼ 0, the resulting equa-
tions must equal zero order-by-order.
We begin by analyzing Eq. (22a) and expanding it about

ρ ¼ 0 subject to the above mentioned regularity condition
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that A0ð0Þ ¼ 0 ¼ B0ð0Þ. The lowest-order term in Lt̂ t̂
implies that

−
6B00ð0Þ
B3ð0Þ þOðρÞ ¼ 0: ð24Þ

This equation may be satisfied by demanding that
B00ð0Þ ¼ 0. Next the equation of motion (22b) is analyzed
to lowest nontrivial order and once B00ð0Þ ¼ 0 is employed
it demands that

2A00ð0Þ
Að0ÞB2ð0Þ þOðρÞ ¼ 0: ð25Þ

This implies that A00ð0Þ ¼ 0. We then repeat the above
procedure order-by-order of first analyzing Eq. (22a),
which must be satisfied by setting the next higher derivative
of A to zero. We then use this condition in the equation of
motion (22b) which tells us that the next higher derivative
of B must also equal zero. The pattern can be seen to arise
as far as the expansion could be carried out. Therefore, it is
conjectured that all-order derivatives of A and B must
vanish when demanding regularity in the sense required by
the Eq. (23). This implies that the vacuum spacetime is
Minkowski since in this particular argument the so called
flat-functions are ruled out by our assumption of real
analyticity. We confirm that the resulting spacetime is
indeed Minkowski in Sec. VII (see Fig. 1). There we
evolve solutions from ρ ¼ 0 subject to the condition that
A0ð0Þ ¼ 0 and B0ð0Þ ¼ 0 and always obtain Minkowski
spacetime throughout the entire domain.
Before proceeding to the next section on horizons we

summarize the findings of this section as follows:
Requiring that the gravitational force equation, which in
fðTÞ gravity is equivalent to the geodesic equation, behaves
properly at the center of symmetry dictates that A0ð0Þ ¼ 0
and B0ð0Þ ¼ 0. One may then argue that if the spacetime is
vacuum everywhere and further one demands the spacetime
to be geodesically regular everywhere, then ρ ¼ 0, the
center of symmetry, may be taken to be anywhere in the
spatial submanifold. This then implies if the spherically
symmetric spacetime is vacuum and regular everywhere all
spatial positions should have the condition of vanishing
first derivatives, and hence the spacetime is Minkowski
spacetime. This statement was then quantified by assuming
that the tetrad is an analytic one, and solving the field
equations order-by-order about ρ ¼ 0 indeed yields
Minkowski spacetime.
On the other hand, a vacuum spacetime with a horizon

does not need to be regular everywhere in order to be
physically acceptable if the singular point is hidden behind
a horizon. This is the hypothesis of cosmic censorship.
Therefore the above results do not necessarily apply to
vacuum spacetimes with horizons as we do not need to
worry about regularity inside a horizon and therefore relax

the condition of globally Minkowski spacetime. We will
analyze situations with horizons in the next section.

VI. HORIZON ANALYSIS

In this section we are interested in the properties at
possible horizons, which by definition occur at ρ ¼ ρH

where AðρHÞ ¼ 0. First we will make some general analysis
regarding horizons and the equations of motion (22a)–
(22c). It is assumed that BðρHÞ is not infinite, since in the
isotropic coordinates this would imply that the horizon has
infinite proper area. It is also assumed that BðρHÞ is not zero
as that would yield a horizon of zero proper area.
We begin by writing each individual equation of motion

over a common denominator. It is then noted that where a
possible horizon occurs [AðρHÞ ¼ 0] the resulting common
denominators all vanish, and therefore if the equations of
motion are to be equal to zero we must have that the

FIG. 1. Tests of the numerical procedure. Upper plot: Min-
kowski space is obtained with α ≠ 0 and outbound integration
starting from x ¼ ϵ using AðϵÞ ¼ BðϵÞ ¼ 1 and A0ðϵÞ ¼ B0ðϵÞ ¼
0 as initial conditions [solutions AðxÞ ¼ 1=BðxÞ ¼ 1 overlap].
Lower plot: Schwarzschild exterior solution functions (35a) and
(35b) are reproduced numerically with α ¼ 0 and inbound
integration starting from x ¼ 1 − ϵ [AðxÞ is shown in black,
1=BðxÞ in orange]. The numerical expressions overlap with the
exact expressions indicating a robust computational scheme.
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numerators must vanish there. The resulting numerators
subject to the A ¼ 0 horizon condition are as follows:

4αrB2A02B02 ¼ 0; ð26aÞ

4αB2A02B0ð2Bþ 3rB0Þ ¼ 0; ð26bÞ

4αrB3A03B0 ¼ 0: ð26cÞ

Under the specified conditions, the only way that the above
equations can be zero at ρH is if the following condition
holds,

ðA0ðρÞB0ðρÞÞjρ¼ρH
¼ 0: ð27Þ

We note that in TEGR the above restriction is not required
since α ¼ 0 for TEGR and so (26a)–(26c) are identically
zero for TEGR.
Regarding condition (27), we will next show that it is

specifically A0ðρÞ that should vanish at ρH in order for a
regular horizon solution to possibly exist in the sense of no
Riemann-Christoffel singularity. In other words, it will be
shown that if A0ðρHÞ ¼ 0 there may potentially be a non-
singular horizon solution, and that solution will be regular
subject to the further restriction that A00ðρHÞ ¼ 0. As we will
discuss, this last condition is not practically achieved with an
asymptotically Schwarzschild tetrad when α ≠ 0.
Following that analysis, it will separately be shown that,

under the assumption of analyticity, it is B0ðρHÞ that should
vanish for the equations to possibly possess a horizon
solution (regular or otherwise). It will also be shown though
that such a condition cannot solve the equations of motion
to all orders, so actually there is no solution under this
condition. This criterion is derived subject to the condition
of analyticity and so the analysis there is restricted to
analytic tetrad solutions. This is why both the Riemann-
Christoffel analysis and the analysis involving Taylor
expansions of the equations of motion will both be utilized.
The two conditions do not encompass each other. Failure of
the former condition allows for a possible horizon solution
to the equations of motion, but the horizon is Riemann-
Christoffel singular. Failure of the second condition dis-
allows any horizon solution to the equations of motion, but
may not necessarily apply to nonanalytic tetrads.
Let us now begin the first of the above mentioned

analyses by examining the orthonormal components of the
Riemann-Christoffel tensor in a frame locally adapted to
the coordinate system. Specifically, we examine the com-
ponent

R
∘
θ̂ t̂ t̂ θ̂ ¼

A0ðBþ ρB0Þ
ρAB3

: ð28Þ

Recall that on a horizon AðρHÞ ¼ 0, and that we are not
considering BðρHÞ zero or infinite. Since we have

determined above that a nonsingular horizon requires
A0ðρHÞB0ðρHÞ ¼ 0, (28) can only possibly be regular if
A0ðρHÞ ¼ 0. Next let us concentrate on the Riemann
component

R
∘
t̂ ρ̂ t̂ ρ̂ ¼

A0B0 − A00B
AB3

ð29Þ

at ρ ¼ ρH, now subject to the conditions AðρHÞ ¼ 0 and
A0ðρHÞ ¼ 0. We can see that in order for (29) to not be
infinite we now also require the condition A00ðρHÞ ¼ 0.
At this stage it has been established that for a regular

horizon in the orthonormal Riemann-Christoffel sense
when α ≠ 0, the conditions required are that the tetrad
function A as well as its first two derivatives must vanish.
It will be shown below in Sec. VII with numerical work,
that for asymptotically Schwarzschild spacetimes, the
second derivative of A at the possible horizon is not zero.
Therefore, a Riemann-Christoffel curvature singularity will
exist there if a horizon forms.
The above findings rely on using a result from computa-

tional evolutions in order to show that a regular horizon
does not exist; namely the result that A00 does not equal to
zero on the horizon which violates the studied regularity
condition there. We also repeat that the numerical results
stem from evolving asymptotically Schwarzschild black
holes, which are arguably the most physically relevant in
this paradigm. It would though be beneficial if a no-go
argument for regular horizons could be implemented
without relying on a numerical result, and that is also
purely local. To accomplish this we will do a similar
analysis to what was done earlier. That is, we will expand
the equations of motion about ρ ¼ ρH subject to the
condition that AðρHÞ ¼ 0, making the assumption that
the functions AðρÞ and BðρÞ are analytic in their nonzero
domain of convergence of ρ ≥ ρH. [The function BðρÞ
could in principle be considered formally Laurent expand-
able, removing its requirement for analyticity near the
horizon, but we shall consider it only Taylor expandable
since BðρHÞ becoming infinite implies a horizon of infinite
proper size.]
The isotropic coordinates (17), (18) are chosen in this

paper due to the fact that they lend themselves better to
the study of horizons in terms of analytic tetrad functions.
The famous Schwarzschild black hole of general relativity
(or TEGR), for example, when cast in isotropic coordi-
nates, can be described by an analytic diagonal tetrad such
as (18),

ASchwðρÞ ¼
ρ −M=2
ρþM=2

¼ 1

M
ðρ − ρHÞ −

1

M2
ðρ − ρHÞ2 þOðρ − ρHÞ3;

ð30aÞ
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BSchwðρÞ ¼
�
ρþM=2

ρ

�
2

¼ 4 −
8

M
ðρ − ρHÞ þ

20

M2
ðρ − ρHÞ2 þOðρ − ρHÞ3:

ð30bÞ

The Schwarzschild horizon is located at ρH ¼ M=2 and it is
explicitly assumed that M > 0. Isotropic coordinates are
also somewhat better behaved at the horizon than the usual
Schwarzschild coordinates. For example, the most often
used characters of the Riemann-Christoffel tensor in the

coordinate frame, R
∘
αβγδ or R

∘ α
βγδ, are all finite at ρ ¼ ρH for

the Schwarzschild metric in isotropic coordinates, whereas
in Schwarzschild coordinates at least some components
diverge on the Schwarzschild horizon.2 The importance of
the Riemann-Christoffel tensor in fðTÞ gravity, whose
connection is instead the flat Weitzenböck connection,
was discussed above.
We begin with an expansion about some value ρ ¼ ρH

where the condition AðρHÞ ¼ 0 is assumed to hold. That is,
we begin with the assumption that a horizon exists some-
where. The series expansion to leading order yields

Lt̂ t̂ ¼
4αB02ðρHÞ
B6ðρHÞ

1

ðρ − ρHÞ2
þOðρ − ρHÞ−1; ð31aÞ

Lρ̂ ρ̂ ¼
4αB0ðρHÞð2BðρHÞ þ 3ρHB0ðρHÞÞ

ρHB6ðρHÞðρ − ρHÞ2
þOðρ − ρHÞ−1; ð31bÞ

Lθ̂ θ̂ ¼
4αB0ðρHÞ
B5ðρHÞ

1

ðρ − ρHÞ3
þOðρ − ρHÞ−2: ð31cÞ

Interestingly we note that the potentially most singular
terms in the equations of motion are proportional to α,
hinting that perhaps TEGR tends to be less singular than
extended teleparallel gravity in this setting.
From the above equations we note that for all three

equations to be equal to zero, the physically acceptable
condition that B0ðρHÞ ¼ 0 must be employed. This con-
dition is not required in TEGR since the above terms are
automatically zero when α ¼ 0. The case BðρHÞ being
infinite is not considered due to it representing a horizon of
infinite size, and also violates the assumption that B is an
analytic function in the neighborhood of ρH.
Next we continue to analyze the equations of motion

now subject to the conditions AðρHÞ ¼ 0 and the newly
discovered condition that B0ðρHÞ ¼ 0. This yields, to
leading order,

Lt̂t̂¼−
2B00ðρHÞðB3ðρHÞþ6αB00ðρHÞÞ

B6ðρHÞ
þOðρ−ρHÞ; ð32aÞ

Lρ̂ ρ̂ ¼
2ðB3ðρHÞ þ 4αB00ðρHÞÞ

ρHB5ðρHÞðρ − ρHÞ
þOðρ − ρHÞ; ð32bÞ

where Lθ̂ θ̂ has not been written as it will not be required for
the argument. We now note that Eqs. (32a) and (32b)
cannot both be set equal to zero under a physically
acceptable condition. Therefore, we conclude that if
AðρHÞ ¼ 0 we cannot simultaneously solve all vacuum
equations of motion outside the horizon.
We mention again that the analysis on Eqs. (32a) and

(32b) does not apply to TEGR since (32a) and (32b) are
subject to the B0ðρHÞ ¼ 0 condition, which as stated
previously is not a requirement of TEGR. This can easily
be seen from Eqs. (31a) and (31b) where the leading term
vanishes automatically with α ¼ 0. [The Schwarzschild
horizon has the value B0ðρHÞ ¼ −8=M.]
Although the above mentioned analyticity restriction is

mild and certainly applies to the analogous black hole
in general relativity/TEGR, as shown in (30a)–(30b),
it does impose a limitation on the applicability of the
analysis to the set of analytic tetrads. Therefore in Sec. VII
we study solutions numerically which are asymptotically
Schwarzschild. Since in the weak field the Schwarzschild
metric is known to give excellent agreement with obser-
vations [64] it is expected that far from the horizon the
spacetime metric mimics closely the Schwarzschild one. In
this current section however we made no assumptions
about the asymptotics far away from the horizon.
The findings in this section can be summarized as

follows: The equations of motion can potentially have a
solution when AðρHÞ ¼ 0 subject to condition (27). If one
then wishes that solution to be nonsingular in the Riemann-
Christoffel sense, the supplementary conditions A0ðρHÞ ¼ 0
and as well A00ðρHÞ ¼ 0 arise. Numerically it will be found
that if a horizon exists this last condition does not hold.
However, if one is willing to restrict the analysis to analytic
functions one does not need to rely on the numerical result.
Then one finds that in a scenario where AðρHÞ ¼ 0 the
equations of motion do not have a solution in the vicinity of
the horizon.

VII. COMPUTATIONAL RESULTS

Here we will construct numerical solutions to the static
spherically symmetric vacuum equations of motion of the
fðTÞ ¼ T þ α

2
T2 gravity theory. The analysis is constrained

to the solutions that inherit the asymptotic behavior of the
Schwarzschild solution at spatial infinity and are therefore
of potential astrophysical interest. The Schwarzschild
solution will be used to provide us with the initial data
near spatial infinity, needed for inbound numerical inte-
grations of equations of motion. We would like to also

2Of course, in the orthonormal frame all components are finite
at the Schwarzschild horizon, indicating that it is not a true
curvature singularity.
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verify that the perturbative asymptotically Schwarzschild
solution found in [59] is indeed valid in the weak field
regime. We will therefore next briefly review the perturba-
tive solution.

A. Perturbative solution

In the isotropic coordinate chart of (17) the perturbative
solution can be written as

AðρÞ ¼ ASchwðρÞ þ αaðρÞ; ð33aÞ

BðρÞ ¼ BSchwðρÞ þ αbðρÞ; ð33bÞ

where the Schwarzschild functions ASchw and BSchw are
given by (30a) and (30b), while functions a and b constitute
the perturbative part. The above expressions are substituted
into the equations of motion (22a)–(22c), which are then
expanded in powers of the perturbative part. The leading
order terms in this expansion give a system of differential
equations in a and b for which solutions can be obtained in
closed form. Setting the integration constants in these
solutions so that the leading terms in power expansions
of a and B about 1=ρ ¼ 0 (i.e., spatial infinity) appear at the
highest possible order, a and b follow as

aðρÞ ¼ 16M6 þ 70M5ρþ 288M4ρ2 þ 256M3ρ3 − 96Mρ5

3M2ð2ρþMÞ6

þM2 þ 8Mρ − 4ρ2

2M2ð2ρþMÞ2 ln
2ρ −M
2ρþM

¼ −
2M3

5ρ5
þO

�
1

ρ

�
6

; ð34aÞ

bðρÞ ¼ −
Mρð41M3 þ 34M2ρ − 12Mρ2 − 24ρ3Þ

6M2ρ2ð2ρþMÞ3

þ ð2ρ − 3MÞð2ρþMÞ4
8M2ρ2ð2ρþMÞ3 ln

2ρ −M
2ρþM

¼ 2M3

5ρ5
þO

�
1

ρ

�
6

: ð34bÞ

Since the leading terms in the power expansions of the
Schwarzschild solution are ASchwðρÞ ¼ 1−M=ρþOð1=ρÞ2
and BSchwðρÞ ¼ 1þM=ρþOð1=ρÞ2, it is clear the pertur-
bative solution obeys the expected asymptotics in this
coordinate system. We verify below that this is indeed valid.

B. Numerical procedure

Standard routines for numerical evolution of ordinary
differential equations will be used. In order to compactify
the semi-infinite radial domain the dimensionless coordi-
nate defined with x ¼ ρ=ðM þ ρÞ ∈ ½0; 1Þ will be used.
Here M is the mass parameter of the asymptotically
Schwarzschild spacetime. Since we will be using the

Schwarzschild solution to provide us with the initial data
for inbound numerical integrations starting at near spatial
infinity, we will require the Schwarzschild solution in the
compactified coordinate. Using the radial coordinate x
defined above the Schwarzschild solution assumes the form

ASchwðxÞ ¼
3x − 1

1þ x
; ð35aÞ

BSchwðxÞ ¼
ð1þ xÞ2
4x2

; ð35bÞ

where the mass parameter M no longer appears, and
the black hole horizon takes place at x ¼ 1=3. In the
rescaled equations of motion the only remaining parameter
is the ratio α=M2, which implies that the asymptotically
Schwarzschild solutions in the fðTÞ ¼ T þ α

2
T2 gravity

theory comprise a one-parameter family of solutions.
As a preliminary test of the reliability of the numerical

procedure we first established that the outbound integration
set off from the vicinity of the center of symmetry with
A0ð0Þ ¼ B0ð0Þ ¼ 0 as initial conditions reproduces the
Minkowski spacetime. This will also serve to verify our
previous argument that demanding regularity at the center
of symmetry of the vacuum spacetime yields Minkowski
spacetime globally. This test is shown in the upper plot of
Fig. 1 and it confirms our previous analysis in Sec. V that
regularity at the center generates Minkowski spacetime
everywhere.
As a further test, we also verified that the inbound

integration set off from near infinity with α ¼ 0 and with
initial conditions drawn from the Schwarzschild solution
correctly reproduces the Schwarzschild solution (35a) and
(35b) down to the black hole horizon. This test is shown in
the lower plot of Fig. 1, where one sees only the numeri-
cally evolved solution since it completely overlaps the
analytical solution which is also plotted.
As an additional consistency check we compared the

numerical solutions obtained by inbound integrations from
near infinity to the perturbative solutions (34a) and (34b) of
[59] and to the Schwarzschild solution. As expected, the
perturbative solutions follow the numerical solutions more
closely than the Schwarzschild solution does. This can be
seen in all three plots of Fig. 3, where the numerical
solutions is shown with thick solid lines, perturbative
solutions is short-dashed, and the Schwarzschild solution
is long-dashed. The range over which the perturbative and
numerical solutions agree may appear rather short, but this
is only an artefact of the compactification of the radial
domain, and the agreement is actually over a very large
region of the uncompactified domain. In all studies here the
validity of the perturbative solutions [59] are confirmed.

C. Numerical results

In the discussion of the vacuum solutions that we are
about to construct numerically we will make use of what is
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sometimes called the GR picture. Here one interprets the
solution originating from a modified theory of gravity as if
it were obtained within the framework of general relativity,
but with exotic matter being present. In our case, the exotic
matter will be referred to as the fðTÞ fluid. In the GR
picture the vacuum equations of motion can be cast as

G
∘
μν ¼ 8πT̃ μν, where T̃ μν is the effective stress-energy

tensor of the fðTÞ fluid. For general fðTÞ this effective
stress-energy tensor is given by, via (5),

T̃ μν ¼
gμν
16π

�
T −

fðTÞ
f0ðTÞ

�
−
Sμνλð∂λTÞf00ðTÞ

8πf0ðTÞ ; ð36Þ

while specifically for fðTÞ ¼ T þ ðα=2ÞT2 it is

T̃ μν ¼ α
gμνT2 − 4Sμνλ∂λT

32πð1þ αTÞ : ð37Þ

In spherical symmetry the structure of the above effective
stress-energy tensor is that of an anisotropic perfect fluid of
Segré characteristic [1,1, (1,1)]. We will therefore refer to
its nontrivial components as the effective energy density,
effective radial pressure, and effective transverse pressure.
In the denominator of (37) one can see that a potential
pathology could exist when αT ¼ −1. However we will
confirm below that pathologies that will arise are not
specifically due to this issue.
Extensive investigations were carried out of the properties

of the numerical solutions obtained with various values of
α=M2, with inbound integrations set off from near infinity
and initial conditions drawn from the Schwarzschild sol-
ution. These investigations revealed three distinct regimes of
α=M2 in which the solutions exhibit qualitatively different
behavior. We show the different regimes in Fig. 2 and the
properties of each regime are summarized below.
(a) With positive values of α=M2 the numerical routines

are able to carry out the inbound integration of the
solutions only down to a finite value of x ¼ xS at
which a singularity and/or stiffness in the system is
reported before a horizon can form. Functions A and B
obtained numerically for α=M2 ¼ 1 are shown in the
upper plot of Fig. 3. The isotropic radial coordinate of
the spherical surface at which the numerical break-
down occurs is ρS ¼ MxS=ð1 − xSÞ, and the corre-
sponding area-radius RS ¼ MxS=ð1 − xSÞ is shown in
Fig. 2 with green dots. The term area-radius refers to
the value of the radius that defines the area of two-
spheres. That is, it refers to the corresponding radius in
the Schwarzschild coordinates. We observe that RS

increases with α=M2, while as α=M2 → 0 we have
RS → 2M as expected. This is shown with green dots
in Fig. 2. With α ¼ 0 one expects the Schwarzschild
solution with the event horizon of radius R ¼ 2M,
which is an infinite redshift surface. However, the

property of infinite redshift is not shared with the
surfaces RS obtained with α=M2 > 0, as inspection of
the solutions prior to the breakdown reveals that AðxÞ
remains finite as x → xS. Further inspection of the
solutions in this regime reveals that as x → xS Ricci-
Christoffel and Kretschmann-Christoffel scalars di-
verge as can be seen in the upper plot in Fig. 4. This
implies that the orthonormal frame Riemann tensor
contains diverging components, which in general
relativity signals diverging tidal forces or infinite
geodesic deviations. Since the motion of particles in
fðTÞ gravity is governed by the same equations as in
general relativity, we are concluding that the surfaces
RS obtained here involve singular physics. We also
inspected the components of the effective fðTÞ fluid
stress-energy tensor (37). As x → xS it is found to have
diverging energy density and transverse pressure,
while the radial pressure remains finite. These results
are also shown in the upper plot of Fig. 4.

(b) In the regime −4.2≲ α=M2 < 0, where the lower
boundary of the interval could only be established
approximately, the numerical solutions can be evolved
down to a finite value of the coordinate x ¼ xS at
which the function A vanishes, signaling an infinite
redshift spherical surface of finite radius RS ¼
MxS=ð1 − xSÞ (see orange dots in Fig. 2). Metric
functions obtained for α=M2 ¼ −1 (a representative
example of many different values studied in this
regime) are shown in the middle plot of Fig. 3.
Inspection of Ricci-Christoffel and Kretschmann-
Christoffel scalars reveals that they diverge as x→xS
as illustrated in the middle plot in Fig. 4. As in the
previous case, this implies diverging components of

FIG. 2. Area-radius RS of singular surfaces in asymptotically
Schwarzschild vacuum solutions in fðTÞ ¼ T þ α

2
T2 gravity:

Point-singularities (blue dots), infinite gravitational redshift
singular surfaces (orange dots), finite gravitational redshift
singular surfaces (green dots). Black dot at α ¼ 0 and RS ¼
2M is the (nonsingular) event horizon of the Schwarzschild
black hole.
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the orthonormal frame Riemann tensor and renders
this surface singular in the sense of infinite tidal forces.
As can be seen from the plots in Fig. 3, although
A0ðρSÞ ¼ 0, as was required for nonsingular horizons
from our earlier analysis, we note that the second
earlier derived condition required for regularity
there, namely that A00ðρSÞ ¼ 0 as well, does not hold.

FIG. 4. Effective stress-energy components and invariant scalars
in numerical vacuum solutions in fðTÞ gravity: Upper plot: stress-
energy components obtained with α=M2 ¼ 1 are multiplied by

250M2, and invariant scalars αT, M2R
∘
, and M4R

∘
αβγδR

∘ αβγδ

(Kretschmann scalar), are multiplied by 2 for figure scaling
purposes. All quantities except the energy density and the radial
pressure diverge at the singular surface. Middle plot: For α=M2 ¼
−1 factor of 10 is used for stress-energy components, while no
additional factors are used with invariant scalars. All quantities
except the energy density diverge at the singular surface. Bottom
plot: For α=M2 ¼ −256 the stress-energy components are scaled
up by factor of 10, and invariant scalars are scaled downby factor of
10. All quantities diverge at the singular center.

FIG. 3. Numerical vacuum solutions in fðTÞ ¼ T þ α
2
T2 grav-

ity: Functions A (black) and 1=B (orange) obtained numerically
(solid lines), perturbative solutions (short-dashed lines),
Schwarzschild solution (long-dashed lines). (Insets show that
for large x numerical solutions follow perturbative solution more
closely than the Schwarzschild solution.).
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The effective pressures of the fðTÞ fluid also diverge
as x → xS, while the effective energy density remains
finite and this is shown in the middle plot in Fig. 4.
Therefore, we consider the surfaces RS in this regime
singular surfaces. In the regime α=M2 ≲ −4.2 the
numerical evolution of solutions can typically be
carried out down to a value of x ∼ 10−15, while the
exact zero remains out of reach due to the singularity
of coefficients in the differential equations. These
solutions are represented with blue dots in Fig. 2, and
the metric functions obtained for α=M2 ¼ −256 are
shown in the lower plot of Fig. 3. The functions A and
B remain finite throughout the range of x, while
Ricci-Christoffel and Kretschmann-Christoffel sca-
lars, as well as the components of the fðTÞ fluid
effective stress-energy tensor, diverge as x → 0.
These are illustrated in the lower plot in Fig. 4. As
there is no indication of the divergences taking place
at a finite value of x, we interpret these solutions as
representing a point singularity at the center of
symmetry.

Based on the results of the numerical evolutions one can
conclude that asymptotically Schwarzschild solutions
obtained with α ≠ 0 contain either a singular central point
or a singular surface of finite radius. These singular
surfaces are not shielded by an event horizon as in the
case of the Schwarzschild solution.
It should also be noted that while the α ¼ 0 (TEGR) case

can in some sense be understood as a legitimate case within
the realm of fðTÞ ¼ T þ α

2
T2 gravity theories, it is in fact

highly special. This can be seen by observing that with
α ≠ 0 the vacuum equations of motion reduce to two
equations with A00 and B00 as highest-order derivatives,
while with α ¼ 0 the highest derivatives are A0 and B00.
Also, in the summary of the numerical results given in
Table I one can see that the physical properties of the

singular surface can not be taken as changing continuously
as α=M changes sign. One has a singular limit there.
In Table I we also give the value of the quantity

ðgrrÞ−1=2 ¼ 1þ ρB0ðρÞ=BðρÞ as x → xS, where grr is the
metric component in the usual Schwarzschild chart
whose line element for a purely radial displacement is
ds2 ¼ −grrdr2, coordinate r being the area-radius. In the
regime α=M2 ≲ −4.2 we find that for all solutions grr → 1
as x → 0, which is the expected behavior in spherically
symmetric spacetimes with regular centers (e.g., stars).
This hints that the divergence of the effective energy
density, ρ̃, at the center of symmetry that we find in
our numerical solutions might be sufficiently benign to
render the “mass function” defined with mðrÞ ¼ rð1 −
grrðrÞÞ=2 ¼ 4π

R
r
0 r

2ρ̃ðr0Þdr0 obey the limit mðrÞ=r → 0 as
r → 0, which is the property of regular centers. However,
this is not sufficient to eliminate all pathologies there.
For all the solutions in the regime −4.2≲ α=M2 < 0,

as x → xS we find ðgrrÞ−1=2 → 1=3, for which we have
found no direct interpretation, but it is interesting that there
exist such attractors in the equations. For positive values of
α the value of ðgrrÞ−1=2 at the singular surface is found
to vary.
We also looked for the possibility that the divergences in

the components of the effective stress-energy tensor are due
to the previously mentioned condition αT ¼ −1, which
appears in the denominator of (37). It was found that this is
not the source of the pathology.

VIII. SOME COMMENTS ON THE
COSMOLOGICAL CONSTANT

We make some comments here regarding the possi-
bility of a nonzero cosmological constant, Λ. This can
be accommodated by adding a −Λhα̂μhα̂ν term to the left-
hand side of (5). This term of course could be interpreted

TABLE I. Properties of metric functions A and B, Ricci-Christoffel, torsion, and Kretschmann-Christoffel scalars, and effective fðTÞ-
fluid stress energy tensor components on singular surfaces (except α ¼ 0) found in numerically constructed vacuum solutions. Signs of
divergences are reported as surface is approached from the outside. f.p. (f.n.) stands for finite positive (negative) value.

Regime α=M2 ≲ −4.2 −4.2≲ α=M2 < 0 α ¼ 0 0 < α=M2

Surface condition
Isotropic radius ρS

Numerical breakdown
ρS ≃ 0

Minimum of A2

0 < ρS < M=2
M=2 Numerical breakdown

M=2 < ρS

AðρSÞ, A0ðρSÞ, A00ðρSÞ f.p., þ∞, −∞ ≃0, ≃0, f.p. 0, 1=M, −2=M2 f.p., f.p., f.n.
BðρSÞ, B0ðρSÞ f.p., −∞ f.p., f.n. 4, −8=M f.p., f.n.
Area–radius RS ¼ BðρSÞρS 0 0 < RS < 2M 2M 2M < RS
1þ ρSB0ðρSÞ=BðρSÞ ≃1 ≃1=3 0 f.p. (varies)

Ricci scalar −∞ þ∞ 0 þ∞
Torsion scalar −∞ −∞ −∞ f.n.
Kretschmann scalar þ∞ þ∞ 3=4M2 þ∞

Effective energy density þ∞ f.p. 0 −∞
Radial pressure þ∞ þ∞ 0 f.n.
Transverse pressure þ∞ þ∞ 0 −∞
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as the “stress energy of the vacuum” if one moves
it to the right-hand-side of the equations; that is
T μ

νðvacÞ ≔ Λ=ð8πÞδμν.
Regarding the regularity at the center, it is still demanded

that A0ð0Þ and B0ð0Þ vanish as previously required, since
those conditions arose not from the equations of motion,
but from a reasonable force equation at the center (14). If
one performs the Taylor expansions done previously about
ρ ¼ 0, but now with the equations supplemented with a
cosmological term, solving order-by-order reveals that the
restriction B00ð0Þ ¼ 0 no longer holds. Instead, B00ð0Þ now
must be set to a function of Λ and Bð0Þ. This now implies
that even under the restriction of regularity everywhere, the
spacetime is no longer Minkowski. This is not surprising of
course given the nonzero cosmological term.
With regards to the issue of horizons, the argument that

any solution to the equations of motion near a horizon
require that A0ðρHÞB0ðρHÞ ¼ 0 still holds with a cosmo-
logical term. Therefore the analysis on the orthonormal
Riemann-Christoffel components (28) and (29) still holds
as before. That is A0ðρHÞ and A00ðρHÞ should equal zero in
order for the horizon to be nonsingular. However, in the
case of a cosmological constant we do not have numerical
confirmation that A00ðρHÞ does not equal zero on possible
horizons. This impediment arises from the fact that the
numerical solution requires an asymptotic weak-field
solution in order to commence the computational evolution.
Asymptotically one could use the Schwarzschild-(anti–)de
Sitter solution for this, however, this is problematic since
the cosmological horizon renders the radial coordinate
timelike far from the center [65].
If we are willing to restrict the horizon analysis to

analytic functions, we can perform a Taylor analysis about
ρ ¼ ρH on the equations of motion subject to the found
conditions that A0ðρHÞ and A00ðρHÞ must be zero for
regularity there. These conditions are not reliant on any
analyticity restriction on the tetrad so apply in general to
any horizon. The pattern that arose for the previous no-go
result is no longer found in the case where Λ is present in
the equations of motion. Instead we were able to solve the
equations up to some order ðρ − ρHÞn. For Lt̂ t̂ we solved up
to and including order n ¼ 4, for Lρ̂ ρ̂ to order n ¼ 3, and
for Lθ̂ θ̂ to n ¼ 3. A consistent solution could be found up to
these orders subject to the following extra conditions,

B0ðρHÞ ¼ 0; Λ ¼ −
1

4α
: ð38Þ

The restriction on B0ðρHÞ in (38) is not present in TEGR.
The reason is that the leading-order terms in the equations
of motion are proportional to αB0 whose only consistent
solution is that this must vanish. For α ¼ 0, of course, this
condition is automatically met, but for nonzero alpha we
must enforce B0ðρHÞ ¼ 0. We hasten to add here that we
were not able to show that a nonsingular horizon can exist
with the presence of nonzero Λ, but simply that a

nonexistence argument could not be easily formulated in
this case, and if they exist conditions (38) must hold, at least
assuming the system is describable by analytic functions.
The second condition in (38) is somewhat interesting in

that it implies that if regular horizons exist the sign of the
cosmological constant is tied to the sign of the nonlinear
torsion coupling, at least if subject to the condition of
analyticity.

IX. CONCLUDING REMARKS

In this manuscript properties of the spherically symmet-
ric static vacuum in the minimal quadratic extension to
TEGR in fðTÞ gravity theory were studied. A number of
interesting results were found. It is determined that
demanding vacuum regularity at the center, the center
being the point of isotropy, requires that the first derivatives
of the tetrad function vanish. The field equations under the
symmetry then dictate that the spacetime is Minkowski
spacetime throughout. Although it may seem that this must
be the case, it is not completely a priori obvious, since fðTÞ
gravity mimics general relativity in the presence of an
exotic material source, as can be seen from (5), and such a
result of global Minkowski spacetime is of course not
required in nonvacuum general relativity.
The properties of possible vacuum horizons were also

studied. The situation here differs from the above central
analysis in that one no longer makes the demand that the
spacetime be regular everywhere in order to be physically
acceptable, but instead only regular up to and including the
horizon. It was found that, with the exception of TEGR,
vacuum horizons possess some type of pathology in the
theory. Namely, for asymptotically Schwarzschild solutions
with α > 0 horizons cannot exist, and for α < 0 there is a
range of α where they may exist, but are singular. We
therefore have naked singularities evading the cosmic
censorship conjecture. These results do not rely on the
nonlinear torsion term being small, and so are fairly
general, although we do confirm the validity of the
perturbative solution derived in [59] in the weak-field
regime of the exact theory.
We should add here though that the results, although

quite interesting, do not mean that black holes are com-
pletely forbidden within the studied theory. It is possible
that relaxing the symmetry to stationary instead of static
will reintroduce physical (nonsingular) horizons. Or else
time dependence, even within spherical symmetry, may
allow for nonsingular horizons, recalling that as of yet there
is no Birkhoff’s theorem forbidding this for extended
teleparallel gravity theory. At the moment these exten-
sions pose a difficult task as there is no direct way to
calculate the appropriate inertial spin connection for these
scenarios. Also, some of the obtained no–go results are
based on the assumption that the solution is asymptotically
Schwarzschild. Abandoning this assumption could poten-
tially lead to nonsingular horizons in some cases where the
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horizon cannot be described by analytic functions.
However, such solutions, if they exist, would be astrophysi-
cally less interesting. There is also the possibility of adding
matter to the system, which could allow evasion of the
horizon no-go results here which apply to the vacuum
case only. It is also possible that the correct theory of
gravity is not the extended fðTÞ ¼ T þ αT2=2 gravity but
instead generalizations on it such as fðT; BÞ [66] or other
extended teleparallel theories. These extensions were not
studied here.
The analytic work in the first sections of this manuscript

was supplemented with computational work in Sec. VII
and the computational work confirms all of the obtained
results. In no scenario, save for TEGR (α ¼ 0), were
regular horizons found.

Finally, some comments were made regarding the
possible addition of a cosmological constant. It was found
that a nonexistence argument is more difficult to formulate
and the analysis of the possible existence of a regular
vacuum horizon was inconclusive. It might therefore be
possible that regular vacuum static spherically symmetric
horizons exist with nonzero Λ.
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