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We present an inequality between two types of distance measures from an observer to a single light
source in general relativity. It states that for a given source and observer the distance measured by the
trigonometric parallax is never shorter than the angular diameter distance provided that the null energy
condition holds and that there are no focal points in between. This result is independent of the details of the
spacetime geometry or the motions of the observer and the source. The proof is based on the geodesic
bilocal operator formalism and on well-known properties of infinitesimal light ray bundles. Observation of
the violation of the distance inequality would mean that on large scales either the null energy condition does
not hold or that light does not travel along null geodesics.
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I. INTRODUCTION

Measuring the distance to a given light source is one of
the fundamental problems of astronomy. Many methods
have been developed for that purpose depending on the
nature of the source and the distance. The three probably
most straightforward ones are the trigonometric parallax
measurement, the determination of the angular size of an
extended source of known size (i.e., a standard ruler) and
the measurement of the energy flux from an isotropic
source with known absolute luminosity (i.e., a standard
candle). By definition, all three methods must give the same
result in a flat spacetime and in the absence of relative
motions between the source and the observer. However, in
the presence of spacetime curvature and relative motions
the three methods are inequivalent. Therefore, in general
relativity (GR) we distinguish the angular diameter distance
Dang, also known as the area distance, defined via the solid
angle occupied by the image of a standard ruler, the
luminosity distance Dlum, defined by the measured energy
flux from a standard candle, and the parallax distance Dpar,
defined via the apparent displacement of the image given
the displacement of the observer along a baseline [1,2].
Note that in the presence of curvature the trigonometric
parallax may depend on the baseline orientation. However,
it is possible to define a baseline-averaged quantity,
combining the parallax effects from two orthogonal
directions [2].
Dang, Dlum and the redshift z measured between a fixed

source and observer are related by the well-known
Etherington’s reciprocity relation Dlum ¼ ð1þ zÞ2Dang

independently of the spacetime geometry [1,3–10]. In case

of the baseline-averaged parallax distance Dpar the relation
to other distance measures is more complicated and
depends on the curvature tensor along the line of sight.
In fact, for short distances the relative difference between
Dang and Dpar, called the distance slip μ, depends only on
the matter content along the line of sight: the leading order
correction is given by an integral of the component Tμνlμlν

of the stress-energy tensor, where lμ is the tangent vector to
the null geodesic connecting the observer and the source.
Namely, for short distances we have

μ ¼ 1 −
D2

ang

D2
par

¼ 8πG
Z

λE

λO

TμνlμlμðλE − λÞdλþOðRiem2Þ;

ð1Þ

where λ is the affine parameter of the connecting null
geodesic, λO corresponds to the observation point and λE to
the source, whileOðRiem2Þ denotes terms involving higher
powers of the curvature [2,11].
In this paper we show that the sign of the difference

between Dpar and Dang for a given source and a given
observer is directly related to the null energy condition
(NEC). On the perturbative level this already follows from
(1): the leading, linear term in curvature is obviously
nonnegative if the NEC condition holds, because in this
case we have 0 ≤ Rμνlμlν ¼ 8πGTμνlμlν for any null lμ.
The main theorems of this paper extend this inequality to
the non-perturbative level: we show that if the NEC is
satisfied then Dpar ≥ Dang at least up to a well-defined,
finite distance between the observer and the light source.
More precisely, for a fixed observation point and variable
source position along a null geodesic the inequality is
guaranteed to hold from the observation point up to the so-
called focal point, where the parallax distance reaches

*korzynski@cft.edu.pl
†julius@cft.edu.pl

PHYSICAL REVIEW D 105, 084017 (2022)

2470-0010=2022=105(8)=084017(12) 084017-1 © 2022 American Physical Society

https://orcid.org/0000-0002-0034-1417
https://orcid.org/0000-0001-8642-2113
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.105.084017&domain=pdf&date_stamp=2022-04-11
https://doi.org/10.1103/PhysRevD.105.084017
https://doi.org/10.1103/PhysRevD.105.084017
https://doi.org/10.1103/PhysRevD.105.084017
https://doi.org/10.1103/PhysRevD.105.084017


infinite value. Note that this blow-up may happen for a
finite value of the affine parameter. Past that point,
however, Dpar becomes finite again and it is possible that
Dpar < Dang there even if the NEC holds globally [12]. This
restriction means that the distance inequality is not global.
Stated in a more physical language, the inequality means
that both the matter along line of sight, resulting in Ricci
focusing of the null geodesics, and the tidal forces,
producing their shear, can only increaseDpar in comparison
with Dang, at least up to the first focal point.
Recall that the null energy condition (NEC) for all null

vectors lμ reads

Tμνlμlν ≥ 0: ð2Þ

It is one of the weakest classical pointlike energy conditions
with relatively simple and important applications. In gen-
eral relativity, it is equivalent to the null convergence
condition (NCC)

Rμνlμlν ≥ 0; ð3Þ

which ensures that at every point light rays experience
gravity as an attractive force. This property implies that any
light ray bundle eventually has to reach a caustic over a
finite distance provided that suitable initial condition holds.
More precisely, the standard focusing theorem states that
the ray bundle must reach a point where its expansion
diverges provided that the expansion is negative at a single
point, and NCC holds [13]. Surprisingly, this simple result
is necessary for proving such basic black hole properties
like formation of event horizons and singularities under the
gravitational collapse, some of the black hole laws, various
no hair theorems, and some versions of the positivity of
ADM mass [14].
As we have already noted, if we assume the Einstein

equations then the NEC is equivalent to the NCC. It is
satisfied for most reasonable types of matter like dust,
radiation, fluid, or classical electromagnetic fields [15]. It is
also insensitive to the presence of cosmological constant.
The validity of the NEC can also be used to put bounds on
various properties of the FLRWUniverse [16]. On the other
hand, it has also been noted that quantum effects tend to
violate the NEC as well as its even weaker averaged version
[17]. The NEC can also fail in the presence of nonstandard
matter fields [14,17,18], including fluids with barotropic
index w < −1 or for holographic dark energy models with
even smaller barotropic index [19].
In modified theories of gravity NEC and NCC are in

general not equivalent. The NCC can fail even in presence
of standard matter if the field equations contain additional
terms, like in the case of fðRÞ gravity [20,21] or other
extended metric theories [22–24]. Moreover, light propa-
gation may also work differently than in GR: outside the
Riemannian geometry regime the light may follow null

curves which are neither autoparallel nor extremal, and this
implies that the optical equations contain additional geo-
metric terms, effectively acting as additional, nonclassical
matter fields [25–27]. These terms affect the focusing and
defocusing properties of the spacetime and, consequently,
the relation between NEC and the properties of light rays.
In this paper we assume that standard general relativity

holds. Therefore, we will assume NEC, which we in turn
treat as equivalent to NCC. However, the reasoning should
still apply to any metric theory in which light travels along
null geodesics and NCC holds.
The main result of this paper, i.e., the distance inequality,

provides a method to test the NEC using sufficiently
precise, simultaneous distance measurements by parallax
and angular (or luminosity) to a number of light sources.
The observation of the violation of the NEC would require
a serious reevaluation of the fundamentals of physics. We
point out, however, that the precision required seems
beyond what is currently possible.
The proof of the main theorem of the paper, that is,

Theorem III.1, makes use of the bi-local approach to light
propagation in curved spacetimes, developed in [2,12], and
of the standard infinitesimal ray bundle formalism [1],
closely related to the null congruence formalism. We first
show that the distance slip μ between the observation point
O and any source located along a past-directed null
geodesic fromO is related to the ratio of the cross-sectional
areas of a particular infinitesimal bundle of null rays, with
cross sections taken at O and at the source. We then show
that this cross-sectional area cannot increase along the null
geodesic as we move away from the observation point in
the past direction, at least up to the first focal point, which
completes the proof. The main argument is similar to the
reasoning used in the proof of the standard focusing
theorem.

A. Notation and conventions

Greek letters ðα; β;…Þ run from 0 to 3, lowercase Latin
indices run from 1 to 3 and uppercase Latin indices run
from 1 to 2. They all enumerate tensor components in the
coordinate tetrad. Boldface versions of indices cover the
same range but denote components in a parallel transported
tetrad. The dot stands for the derivative with respect to the
affine parameter along the null geodesic. SubscriptO and E
denote evaluation of the quantity at respectively the point of
observation and emission, i.e., fO ≡ fðλOÞ. We assume the
speed of light c ¼ 1 throughout the paper.

B. Structure of the paper

In Sec. II, we briefly review the bilocal geodesic operator
(BGO) formalism and relate these operators to the mag-
nification and parallax matrices as well as angular diameter
and parallax distances. Then we introduce the notion of the
infinitesimal ray bundle and present two types of bundles
which we will use later. Finally, we recall Sachs optical
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equations and their connection to the BGOs. In Sec. III we
present our main results. In the first part we prove the
inequality for the parallax distance Dpar with baseline
averaging performed using the determinant of the parallax
matrix. In the second part we show that a similar conclusion
follows for the parallax distance with the baseline averag-
ing via trace, as proposed earlier by a number of authors.
Lastly, we explain why our result cannot be extended to
single baseline parallax measurements. We gather our final
remarks in Sec. IV, including a short discussion of the
prospects for measurement.

II. PRELIMINARIES

Let ðM; gÞ be a Lorentzian spacetime, with signature
ð−;þ;þ;þÞ. Let O; E ∈ M be points contained in a
geodesically convex set. O will denote the observation
point, lying in the causal future of the emission point E. Let
γ0∶½λO; λE � → M be the unique geodesic connecting O and
E, and we assume here that γ0 is null. By convention we
assume that the affine parameter λ runs backwards in time,
i.e., λO < λE . Let NO; NE ⊂ M be locally flat neighbor-
hoods of O and E respectively extending in all four
dimensions. Let lμ be the vector tangent to γ0. Let ξμ

denote the deviation vector (Jacobi field) along γ0, satisfy-
ing the first order geodesic deviation equation (GDE):

∇l∇lξ
μ ¼ Rμ

llνξ
ν; ð4Þ

where the optical tidal tensor Rμ
llν is defined as

Rμ
llν ≡ Rμ

αβνlαlβ. This is a linear, second order ordinary
differential equation for ξμ. It is possible to rewrite it as an
equation for four bitensors, forming together the formal
resolvent of the GDE [2]. In this language the general
solution to (4) can be expressed as

ξμðλÞ ¼ WXX
μ
νðλÞξνðλOÞ þWXL

μ
νðλÞ∇lξ

νðλOÞ
∇lξ

μðλÞ ¼ WLX
μ
νðλÞξνðλOÞ þWLL

μ
νðλÞ∇lξ

νðλOÞ; ð5Þ

where WXX, WXL, WLX and WLL are 4 bitensors, or two-
point tensors, acting from the observation point O to the
point λ on the geodesic, called the bilocal geodesic
operators (BGO’s). The BGO’s are functionals of the
curvature along γ0 defined via appropriate ordinary differ-
ential equations involving the components of the optical
tidal tensor as coefficients [2,28].
We introduce the seminull tetrad (SNT) of the form

ðuμ; eμA; lμÞ, parallel propagated along γ0. It comprises the
null tangent vector lμ, two orthonormal spacelike vectors
eμA, A ¼ 1, 2, orthogonal to lμ, spanning a spacelike two-
dimensional subspace called the screen space or transverse
space, and a normalized timelike vector uμ orthogonal to
eμA. u

μ is commonly identified with the 4-velocity of an
observer measuring the position and the direction of the
propagation of photons. It satisfies uμlμ ¼ Q, where Q is a

positive constant. Given the fixed observation point O, the
equations for the transverse components of WXX and WXL
expressed in the SNF read [2]:

ẄXX
A
B − RA

llCWXX
C
B ¼ 0

WXX
A
BðλOÞ ¼ δAB

_WXX
A
BðλOÞ ¼ 0 ð6Þ

and

ẄXL
A
B − RA

llCWXL
C
B ¼ 0

WXL
A
BðλOÞ ¼ 0

_WXL
A
BðλOÞ ¼ δAB: ð7Þ

With this machinery we may introduce the parallax
matrix, the magnification matrix and the optical distance
measures. Suppose we project the BGOs onto the SNT,
with the timelike vector corresponding to the observer’s 4-
velocity uμO. Their projection onto the screen space spanned
by eμA is related to the matrices.
The magnification matrix MA

B relates the transverse
vectors representing the spatial extent of a luminous body
to the vectors on the screen space representing the angular
size on an observer’s sky [2] (in the gravitational lensing
theory this quantity is usually defined using angular
variables, and therefore rescaled with respect to MA

B as
defined here). We have

MA
B ¼ 1

ðuμOlOμÞ
ðWXL

−1ÞAB; ð8Þ

see [2]. The submatrix WXL
A
B, whose inverse appears in

the formula above, is also known as the Jacobi matrix.
The parallax matrix on the other hand relates the trans-

verse displacement of an observer with the apparent change
of the position of a body on the observer’s sky [2] and is
given by

ΠA
B ¼ 1

ðuμOlOμÞ
ðWXL

−1ÞACWXX
C
B: ð9Þ

In a flat spacetime both linear operators are proportional to a
unit matrix. Therefore both the trigonometric parallax and
the magnification do not depend on the direction of the
baseline or the orientation of the source’s shape.However, in
the general case the direction in the transverse space is
important. Both linear operators can be used to define
direction-averaged distances to the observed source of light.
In the BGO formalism it is natural to do this as follows: the
angular diameter distance, or the area distance, is defined via
the determinant of MA

B:

Dang ¼ j detMA
Bj−1=2 ¼ ðuμOlOμÞj detWXL

A
Bj1=2: ð10Þ
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In a more operational language, it is given by the ratio of the
cross-sectional area of a luminous object and the solid angle
taken by its image. It is a well-known quantity in relativistic
geometrical optics. The parallax distance averaged by
determinant has been introduced in [2]:

Dpar ¼ j detΠA
Bj−1=2

¼ ðuμOlOμÞj detWXL
A
Bj1=2j detWXX

A
Bj−1=2: ð11Þ

Both distance measures depend on the state of motion of the
observer, given by uμO, and the spacetime geometry along the
line of sight. However, they do not depend on the state of
motion of the light emitter.
Finally, we recall the definition of the main quantity of

this work, i.e., the distance slip μ [2]:

μ ¼ 1 − σ
D2

ang

D2
par

¼ 1 −
detΠA

B

detMA
B
; ð12Þ

where σ ¼ �1 is a sign correction given by
σ ¼ sgn detΠA

B=sgn detMA
B. It is independent of the

states of motion of both the observer and the source. It
vanishes in a flat spacetime, but not necessary in a
curved one.
From (8)–(11) we can rewrite the equations above as

μ ¼ 1 − detWXX
A
B ð13Þ

and

σ ¼ sgn detWXX
A
B: ð14Þ

A. Infinitesimally thin bundles

The infinitesimally thin ray bundle formalism is a
complementary method to describe light propagation
between two points. We make use of it in this paper,
because the propagation equations describing the bundles
can be easily used to prove inequalities involving observ-
able quantities. We will briefly review the infinitesimally
thin ray bundle formalism, as described in [1].
By an infinitesimal ray bundle with an elliptical cross

section we mean the set

S ¼ fcIξAI jc1; c2 ∈ R; cIcJδIJ ≤ 1g ð15Þ

where ξA satisfies the GDE in the SNT:

̈ξAI ¼ RA
llBξ

B
I ; ð16Þ

and the index I enumerates linearly independent solutions
not proportional to lμ. Note that we take into account only
the two transverse components of the vectors. This is
possible because we may impose the condition ξ0 ¼ 0, or
equivalently

ξμlμ ¼ 0; ð17Þ

along the whole γ0, and because the component ξ3 does not
couple with the other three. ξ3 is also irrelevant from the
point of view of geometric optics [2,29]. The cross section
of S by the screen spanned by eμA is spacelike and Lorentz-
invariant everywhere along the geodesic. Especially impor-
tant for the main result is its cross-sectional area:

A ¼ πϵABξ
A
1 ξ

B
2 ; ð18Þ

where ϵAB is the area two-form [30] and ξAI are the two
linearly independent solutions of (16) projected on the
screen space. The area defined by (18) is a signed quantity
which may change sign when the bundle degenerates to a
point or to a line. We assume throughout the work that the
initial value of A is chosen to be positive, i.e.,

AðλOÞ≡AO > 0: ð19Þ

It is customary to rewrite the GDE (16) for the two
generators of an infinitesimal bundle in terms of the so-
called kinematical bundle variables. We first need to
decompose the transverse part of the optical tidal tensor
into the trace and the traceless part as follows:

RA
μνBlμlν ¼ −

1

2
Rllδ

A
B þ CA

μνBlμlν; ð20Þ

where Rll ¼ Rμνlμlν denotes the l − l component of the
Ricci tensor and Cα

μνβ is the Weyl tensor. This decom-
position holds even though we are taking the trace only
with respect to the two-dimensional subspace of the tangent
space, see for example [2,31].
The bundle evolution along the null geodesic is most

conveniently described in terms of the deformation tensor
BA

B [32–34], defined via

_ξAI ðλÞ ¼ BA
BðλÞξBI ðλÞ ð21Þ

for both I ¼ 1, 2. The infinitesimal bundle can always be
extended to a full congruence of null geodesics. In that case
we have the relation

BA
B ¼ ∇BlA; ð22Þ

where lμ denotes the vector field generating the
congruence.
BA

B decomposes into the kinematical variables (also
known as the optical scalars), i.e., the scalar expansion θ,
traceless symmetric shear σAB, and antisymmetric twist
ωAB, according to

BAB ¼ 1

2
θδAB þ σAB þ ωAB: ð23Þ
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Each of them satisfies an appropriate ODE along the null
geodesic, known as the null Raychaudhuri equations, Sachs
optical equations or transport equations. Here we only
consider twist-free (or surface-forming) bundles, for which
ωAB ¼ 0 along the whole γ0. In this case the equations for θ
and shear σAB read [33]

dθ
dλ

¼ −
θ2

2
− σABσ

AB − Rll ð24Þ

dσAB

dλ
¼ −θσAB þ CAllB; ð25Þ

where CAllB ¼ CAμνBlμlν. These equations are sometimes
written in a different form, using a set of complex scalars,
but we prefer the tensorial representation. The area of the
cross section satisfies its own evolution equation, given in
terms of the expansion:

dA
dλ

¼ Aθ: ð26Þ

In this paper we mainly consider two examples of
infinitesimal ray bundles. The first one is the infinitesimal
ray bundle parallel at O, or the parallel bundle at O for
short, see Fig. 1. As the name suggests, it satisfies the
condition of being strictly parallel at O, i.e.,

θðλOÞ ¼ 0 ð27Þ

σABðλOÞ ¼ 0 ð28Þ

ωABðλOÞ ¼ 0: ð29Þ

It is related to the transverse components of WXX:
namely, we have

ξAI ðλÞ ¼ WXX
A
BðλÞξBI ðλOÞ ð30Þ

for this bundle. Due to the orthogonality condition (17) ξμI
has only transverse components plus a component propor-
tional to lμ. The latter is irrelevant from the point of view of
the geometry of cross sections, see the Sachs shadow
theorem [30], so it is the two transverse components of ξμI
given by (30) that define the distance measures. Finally,
Eqs. (30) and (18) give

AðλÞ ¼ ðdetWXX
A
BÞAO: ð31Þ

From this and (13) we see that

μ ¼ 1 −
AðλÞ
AO

; ð32Þ

where μ is calculated for the emission point at λ and the
observation point at O.
The other bundle we consider in this paper is the

infinitesimal ray bundle with a vertex at point E, or simply
the vertex bundle from E. It satisfies the condition of
vanishing at E, i.e., ξ̃AI ðλEÞ ¼ 0 for I ¼ 1, 2, see Fig. 2(a).
Let W̃XL

A
BðλÞ denote the transverse components of the

bitensor defined just like WXL
A
BðλÞ, but with the initial

point taken at E instead of O. The vertex bundle is then
related to this bitensor via:

ξ̃AI ðλÞ ¼ W̃XL
A
BðλÞ _ξ̃BI ðλEÞ: ð33Þ

FIG. 1. A bundle of rays that runs parallel at O. Its shape undergoes a deformation under the spacetime curvature. Along the fiducial
geodesic a shape of cross section that is circular at O changes its size and becomes increasingly elliptical. In the generic case it
eventually degenerates either to a line or to a point. The point on the geodesic where this degeneracy happens is called the focal point.
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The asymptotic behavior of the infinitesimal bundle near E
is described by the Taylor expansion

W̃XL
A
BðλÞ ¼ ðλ − λEÞδAB þOððλ − λEÞ2Þ; ð34Þ

see equations (7) with E as the base point. It follows that the
expansion θ̃ has a simple pole at λE [1]:

θ̃ðλÞ ¼ 2ðλ − λEÞ−1 þOð1Þ: ð35Þ

This is an example of a singular point of an infinitesimal
ray bundle. In the next section we will define this notion
more precisely.

By analogy we may also consider an infinitesimal ray
bundle with a vertex at O, related to the bitensor WXL

instead of W̃XL.

B. Singular points of a bundle

The description of a ray bundle using the shear and
expansion can break down at isolated points even though
the perturbed geodesics constituting the bundle are per-
fectly regular there. This typically happens when the
bundle collapses along one or two directions, forming a
self-intersection. In the language of the Sachs frame this
happens if the determinant of the two transverse solutions
of the GDE vanishes, i.e., detðξA1 ; ξB2 Þ ¼ 0. The expansion
diverges in this case to �∞ and changes sign.

FIG. 2. (a) A bundle of rays that forms a vertex at E. Its shape undergoes a deformation under the spacetime curvature. Along the
fiducial geodesic a shape of cross section that is circular at E changes its size and becomes increasingly elliptical. (b) The same bundle of
rays that forms a vertex at E. At a larger distance it may eventually degenerate either to a line or to a point. The point on the geodesic
where this degeneracy happens is called the conjugate point.
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We introduce the following definition:
Definition II.1. Point P along a null geodesic γ0 is a

regular point of a ray bundle iff θðλÞ, ωABðλÞ and σABðλÞ are
smooth atP. A point that is not regular will be called singular.
We fix the null geodesic γ0 and the observer’s positionO

along γ0. We can now introduce two types of singular
points along a null geodesic, defined by the properties of
the vertex and initially parallel ray bundles.
We call P a conjugate point with respect to O iff the

vertex bundle fromO refocuses back at P at least along one
transverse direction. This property is equivalent to the
existence of a Jacobi field along γ0, satisfying the GDE and
vanishing at O and P, but not identically zero [1]. It is easy
to check that this happens iff detWXL

A
B ¼ 0 between O

and P. Conjugate points correspond to the intersection of
the fiducial geodesic with a caustic and are points of infinite
magnification of images of objects located at P as seen
in O.
We call P a focal point iff an infinitesimal bundle of rays

running parallel at O refocuses at P along at least one
direction. This happens when detWXX

A
B ¼ 0, see Fig 1.

The reader may check that at both the focal point and the
conjugate point the expansion θ of the corresponding
bundle has a singularity.

C. Integral formula for the cross-sectional area

The ODE (26) can be integrated exactly assuming that
θðλÞ is a regular function. Namely, if there are no singular
points between O and λ, the solution simply reads

AðλÞ ¼ AO exp

�Z
λ

λO

θðλ0Þdλ0
�
: ð36Þ

This formula will play an important role in the proof of the
main result. Let us stress that the condition of regularity of
θðλÞ is crucial here, because Eq. (36) may break down after
a singular point such as a focal point. This is evident if we
note that AðλÞ may switch sign past a focal point, which is
obviously inconsistent with Eq. (36), in which the signs of
AO and AðλÞ must be the same.

III. THE MAIN THEOREMS

Definition We say that the null energy condition (NEC)
holds at a set O ⊂ M iff at every point in O we have
Rμνlμlν ≥ 0 for all null vectors lμ.
Theorem III.1 Let O and E be two points along a null

geodesic γ0 such thatO lies in the causal future of E and let
the NEC hold along γ0 between O and E. Assume also that
between O and E there are no singular points of the
infinitesimal bundle of rays parallel at O. Then we have

μ ≥ 0 ð37Þ

for an observer at O and a source at E. Moreover, μ ¼ 0 iff
the transverse components of the optical tidal tensor
RA

μνBlμlν vanish along γ0 between O and E.
Proof We begin with the inequality. The right-hand side

of the Eq. (24) for the derivative of θ is obviously non-
positive. Since initially θðλOÞ ¼ 0 we see that θðλÞ ≤ 0
everywhere between O and E:

Z
λE

λO

θðλÞdλ ≤ 0: ð38Þ

From the integral formula (36) we see that AðλÞ ≤ AO, so
from (32) we have μ ≥ 0. This completes the proof of the
first part of the theorem.
Assume now μ ¼ 0 between O and E. It follows from

(32) that AðλÞ ¼ AO. Substituting this to the integral
formula (36) we obtain

exp

�Z
λE

λO

θðλÞdλ
�

¼ 1; ð39Þ

or equivalently
Z

λE

λO

θðλÞdλ ¼ 0: ð40Þ

By the regularity assumption θðλÞ is continuous on the closed
interval between λO and λE and we have also shown that
θðλÞ ≤ 0 on this interval. ThereforeEq. (40) is only possible if
θðλÞ ¼ 0 everywhere on this interval. Substituting this
condition to (24) we obtain −σABσAB − Rll ¼ 0, which
implies that both σAB ¼ 0 and Rll ¼ 0 everywhere between
O and E. Finally, we substitute the former relation to (25) to
obtain CAμνBlμlν ¼ 0.
We have thus proved that both the contracted Ricci tensor

and the transverse components of the contracted Weyl
tensor vanish. It follows that all transverse components
of the optical tidal tensor must vanish between O and E,
see (20). This completes the proof of the second part of the
theorem.
This theorem does not automatically imply an inequality

between the distance measures because of the sign ambi-
guity in the definition of μ, see the rhs of Eq. (12). We
therefore need one more result regarding the sign-defining
factor σ in (12):
Proposition III.2. Under the assumptionsofTheoremIII.1

we have σ ¼ 1.
Proof. From (36) we see easily that AðλÞ > 0.

Therefore from (31) we have detWXX
A
B>0. Then σ ¼ 1

follows from (14).
The following result follows now Theorem III.1, Eq. (12)

and Proposition III.2
Corollary III.3. Under the assumptions of Theorem III.1

we have

Dpar ≥ Dang ð41Þ
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for any observer at O and any light source at E. Moreover,
Dpar ¼ Dang iff the transverse components of the optical tidal
tensor RA

μνBlμlν vanish along γ0 between O and E.
Proof. From Proposition III.2 and (12) we have

μ ¼ 1 − D2
ang

D2
par
. Together with the positivity of Dang and

Dpar, this implies that the inequality μ ≥ 0 is equivalent
to Dpar ≥ Dang and the equality μ ¼ 0 is equivalent to
Dpar ¼ Dang. The Corollary follows then trivially from
Theorem III.1.

A. Trace-based baseline-averaged parallax distance

In Räsänen [35], Rosquist [36] as well as Ellis et al. [7]
(republished as [8]), Jordan et al. [37] (republished as [38])
a different method of baseline averaging for the parallax
distance has been proposed. Effectively it differs from Dpar
by using the trace of the parallax matrix instead of the
determinant for baseline direction averaging. We will
now prove a result analogous to Theorem III.1 and
Corollary III.3 for the parallax distance averaged by trace.
Let D̃par denote the trace-based parallax distance:

D̃par ¼
2

jΠA
Aj

: ð42Þ

This can be expressed also as

D̃par ¼ 2ðlOμu
μ
OÞjθ̃j−1; ð43Þ

where θ̃ is the expansion of the vertex bundle emanating
from E, evaluated at O, see Fig. 2(a). If we rescale the
parametrization λ to fit the observer’s frame, ensuring
lOμu

μ
O ¼ 1, this expression simplifies to

D̃par ¼ 2jθ̃j−1: ð44Þ

We prove now the following theorem:
Theorem III.4. Let O and E be two points along a null

geodesic γ0 such thatO lies in the causal future of E and let
the NEC hold along γ0 between O and E. Assume also that
between O and E there are no singular points of the
infinitesimal bundle of rays with the vertex at E, except the
point E itself, and that its expansion θ̃ does not vanish
between O and E. Then we have

D̃par ≥ Dang ð45Þ

for an observer at O and a source at E. Moreover, D̃par ¼
Dang iff the transverse components of the optical tidal
tensor RA

μνBlμlν vanish along γ0 between O and E.
Proof. The proof uses the properties of an infinitesimal

bundle with a vertex at E in a similar way as the proof of
Theorem III.1 uses the infinitesimal bundle parallel at O.

We begin by relating the angular diameter distance to the
properties of this bundle.
The angular diameter distance is related to the determi-

nant of the Jacobi matrix at E, with the vertex positioned at
O, see (10). However, it can be easily related to the Jacobi
map with the roles of O and E reversed.
Let W̃XL

A
BðλÞ denote the Jacobi map with the vertex at

E, i.e., satisfying

d2

dλ2
W̃XL

A
B − RA

llCW̃XL
C
B ¼ 0 ð46Þ

W̃XL
A
BðEÞ ¼ 0 ð47Þ

d
dλ

W̃XL
A
BðEÞ ¼ δAB: ð48Þ

From the symplectic property of the GDE we have a simple
relation between the Jacobi matrix from E up to O and the
one calculated the other way round:

WXL
A
BðλEÞ ¼ −W̃XLB

AðλOÞ; ð49Þ

i.e., the two matrices are the transpose of each other, with a
sign flip [1,10]. Therefore we can replace detWXL

A
B by

det W̃XL
A
B in (10):

Dang ¼ ðlOμu
μ
OÞj det W̃XL

A
Bj−1=2; ð50Þ

where W̃XL
A
B is the Jacobi map from E to O [39].

W̃XL
A
BðλÞ, on the other hand, can be related by another

ODE to the deformation tensor B̃A
B of the bundle with

vertex at E:

d
dλ

W̃XL
A
B ¼ B̃A

CW̃XL
C
B; ð51Þ

The bundle is twist-free, so it decomposes into expansion θ̃
and shear σ̃AB according to B̃A

BðλÞ ¼ 1
2
θ̃δAB þ σ̃AB. It

follows from (51) that

d
dλ

det W̃XL
A
B ¼ θ̃ðdet W̃XL

A
BÞ: ð52Þ

We now define an auxiliary function fðλÞ in the
following way: we fix the emission point E and vary the
observation point, corresponding to the affine parameter
value λ. We then take the ratio of the distances squared,
measured between E and the point λ:

fðλÞ ¼ D2
ang

D̃2
par

: ð53Þ

From (50) and (43) we get an expression for fðλÞ in terms
of quantities related to the vertex bundle at E:
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fðλÞ ¼ θ̃2j det W̃XL
A
Bj

4
: ð54Þ

We will now derive an integral formula for fðλÞ. We begin
by differentiating Eq. (54) and applying (52):

df
dλ

¼ 1

4

�
2θ̃

dθ̃
dλ

j det W̃XL
A
Bj þ θ̃3j det W̃XL

A
Bj
�

ð55Þ

In the first term use the propagation equation (24) for θ̃ to
obtain

df
dλ

¼ 1

4
θ̃j det W̃XL

A
Bjð−σ̃ABσ̃

AB − RllÞ; ð56Þ

or, equivalently,

df
dλ

¼ f

θ̃
ð−σ̃ABσ̃

AB − RllÞ: ð57Þ

This equation can be solved by separation of variables, but
we need the initial data. Recall that in the bundle with the
vertex at E we have asymptotic expansions (34) and (35).
The reader may check using (54) that this implies that f →
1 as λ → λE . With this knowledge we may integrate the
ODE (57) to

fðλÞ ¼ exp

�
−
Z

λ

λE

θ̃−1ðσ̃ABσ̃
AB þ RllÞdλ0

�
: ð58Þ

The integrand contains the expansion θ̃ in the denominator,
but the integral is regular at E and everywhere along the
interval considered because of our assumptions regarding
the behavior of θ̃ (i.e., no zeros and a pole at E). Moreover,
we note that θ̃ < 0 inside the interval we consider, because
it is negative near λE due to (35) and from the assumptions
we know that it cannot vanish or change sign in the interval
we consider. It also follows that we can write θ̃ ¼ −jθ̃j. The
integration in the formula above proceeds from larger λE
down to smaller λ, so we swap the integration limits and
absorb this way the minus sign from θ̃ to obtain:

fðλÞ ¼ exp

�
−
Z

λE

λ
jθ̃j−1ðσ̃ABσ̃

AB þ RllÞdλ0
�
: ð59Þ

Now, the last steps of the proof proceed just like in the
proof of Theorem III.1: the integrand is manifestly non-
negative if NEC holds. Therefore we have f ≤ 1, with the
equality happening only if and only if both Rll and σ̃AB
vanish between E and λ. The vanishing of the shear tensor
σ̃AB implies that the transverse components of the Weyl
part of the optical tidal matrix CAllB must also vanish
because of (25).

B. Single baseline parallax distance

While it may not be obvious from the proofs we
presented above, the baseline averaging of the trigonomet-
ric parallax effect is necessary for the distance inequality to
work. Obviously it is possible to define a type of parallax
distance defined through measurements with a single
baseline. Let the transverse unit vector nA denote the
baseline direction, with nAnA ¼ 1. As the simplest exam-
ple we consider here

Dn
par ¼ jΠABnAnBj−1; ð60Þ

definition considered for example in [40]. Dn
par coincides

with the baseline-averaged parallax distances in flat space-
times, in whichΠA

B ¼ D−1δAB,D denoting the distance in
the observer’s frame. However, it turns out Dn

par does not
have to obey the inequality Dang ≤ Dn

par even if the NEC is
satisfied. As an example consider the situation when we
have a vacuum solution (Rll ¼ 0), but nonvanishing Weyl
tensor CAllB causing shear of null geodesics along γ0.
Obviously the NEC holds in a vacuum spacetime. The most
general Taylor expansions for WXX

A
B and WXL

A
B around

λO read [12]:

WXX
A
B ¼ δAB þ ðλ − λOÞ2

2
RA

llB þOððλ − λOÞ3Þ ð61Þ

WXL
A
B ¼ðλ− λOÞδAB þ ðλ− λOÞ3

6
RA

llB þOððλ− λOÞ4Þ;
ð62Þ

with RA
llB evaluated at O. It follows that the parallax

matrix has the Taylor expansion

ΠAB ¼ ðlOμu
μ
OÞ−1ðλ − λOÞ−1

�
δAB þ ðλ − λOÞ2

3
RAllB

�

þOððλ − λOÞ2Þ; ð63Þ

while the expansion for Dn
par reads

Dn
par ¼ ðlOμu

μ
OÞðλ − λOÞ

�
1 −

ðλ − λOÞ2
3

RAllBnAnB
�

þOððλ − λOÞ4Þ: ð64Þ
We compare the latter expression with the Taylor series
for Dang:

Dang¼ðlOμu
μ
OÞðλ−λOÞ

�
1−

ðλ−λOÞ2
12

Rll

�
þOððλ−λOÞ4Þ:

ð65Þ

Assuming vacuum we have Rll ¼ 0 and RAllB ¼ CAllB and
hence
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Dn
par¼Dang

�
1−

ðλ−λOÞ2
3

CAllBnAnB
�
þOððλ−λOÞ3Þ:

ð66Þ

Obviously we have Dn
par < Dang near O provided that

CAllBnAnB > 0, i.e., nA is chosen such that the images
undergo stretching by the tidal forces in its direction.

IV. CONCLUSIONS

The two main results of this paper, i.e., Theorems III.3
and III.4, mean that any observation of a systematic
difference between the angular diameter distance and the
baseline-averaged parallax distance with Dang > Dpar
would be difficult to reconcile with general relativity and
the theory of light propagation as we understand them
today. In particular, the effects of shear of the ray bundle
due to tidal fields along the line of sight could not explain
away a result of this kind. One would have to give up either
the null energy condition or the assumption that light
travels along null geodesics. Therefore, systematic com-
parison of both distance measurements may be considered
an experimental test of the null energy condition, assuming
that the general relativity and the geometric optics approxi-
mation for light propagation hold. Since Dang is related to
Dlum and the redshift through the Etherington’s reciprocity
relation, it is in principle possible to perform the measure-
ment of distance slip μ using standard candles for which
we have also precise redshift and trigonometric parallax
measurements.
We note, however, that the measurements of the differ-

ence between the two distance measures seem impossible
today, because the annual parallax effects are too small over
the distances in which we can measure the trigonometric
parallax. We can provide an order-of-magnitude estimate of
the distance slip from the integral formula (1): for the mass
density comparable with the mass density in the thin disc of
the Milky Way ρ ¼ 1 M⊙ pc−3 [41], negligible pressure
terms in Tμν and the distance of 20 kpc, comparable to the
largest distance measured by trigonometric parallax [42],
we get μ ≈ 2 × 10−4. A successful measurement of μ for a
single source would then require the determination of both
distance measures and the redshift with relative error not
greater than 10−4, way below current limitations [43–45].
This problem could possibly be overcome with a suffi-
ciently large sample of sources. However, it would still
require very precise standardization of the standard candles,
good control of all possible sources of systematics as well
as very precise redshift measurements.
Another type of parallax measurement has been pro-

posed by Kardashev [46]. The measurement would use the
displacement due to the motion of the Solar System with
respect to the CMB rest frame as the baseline. The baseline
grows in this case linearly in time and the signal is
measured as secular variations of angular separations

between distant sources. Longer baseline should in prin-
ciple allow for parallax measurements on cosmological
distances, although the signal seems still too low for
modern instruments. Moreover, the foreground signal
due to the Galactic aberration drift needs to be removed
first [47]. The idea of cosmic parallax was also developed
by many other authors [11,35,36,40,47–52]. Interestingly,
the estimates for the distance slip on cosmological dis-
tances in the standard ΛCDM model (satisfying the NEC)
yield fairly large values, reaching for example μ ¼ 0.2 near
z ¼ 1 [11]. Measurements of μ on such distances and
determination its sign could test for the NEC violation
by dark energy, an obvious sign of physics beyond the
ΛCDM model.
We also point out three caveats regarding the distance

inequality. The first two are related to the limitations of the
mathematical approach. In the proofs we have used the first
order geodesic deviation equation around a null geodesic.
This means that we assume that the linear, curvature term in
the geodesic deviation equation describes very well the
behavior of all relevant light rays. This may fail, for
example, if light passes through a region of very quickly
varying gravitational potential across the null ray bundle
considered (physical width of around 1 AU). In particular, it
may fail in case of a microlensing event, i.e., a small
massive body passing through the line of sight. It can also
fail if light rays undergo significant nongravitational
bending, for example due to the presence of ionized
medium of variable density along the line of sight, or if
the geometric optics approximation is not applicable.
Second, the inequality works only up to the first focal

point, whose position in a given direction is not known
beforehand. However, focal points between the Earth and
galactic sources should be very rare, confined to rather
special, fairly strongly lensed rays. Assuming that the line
of sight is filled uniformly with mass density of
100 M⊙ pc−3, scale of the density inside the bulge of the
Milky Way, and ignoring the Weyl tensor contribution, we
may predict the first focal point to appear at around
140 kpc. For uniform mass density comparable with the
thin disc (1 M⊙ pc−3) the distance to the focal point grows
to over 1 Mpc, while the density of the dark matter halo of
10−2 M⊙ pc−3 yields 14 Mpc, the mass density estimates
taken again from [41]. The assumption of uniform mass
density along the light of sight makes these estimates very
conservative. We conclude that we should not expect the
formation of such points anywhere around galactic dis-
tances. Moreover, sinceWXX

A
B usually changes sign of the

determinant at the focal point, we may expect the parallax
matrix ΠA

B past the focal point to deviate far from
proportionality to the unit matrix. This in turn may lead
to unusual dependence of the two-dimensional parallax
angles on the Earth’s position, an effect that is in principle
observable. Therefore sources past focal point could in
principle be detected and removed from the data.
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Third, as we have seen in Sec. III B, if the parallax is
measured only along one baseline then the test is prone to
errors in the presence of strong shear induced by the Weyl
tensor. Therefore, if shear is not negligible then the baseline
averaging step is crucial: we must be able to measure the
parallax in two orthogonal directions for the measurement
to yield a reliable NEC test. In case of the annual parallax
due to Earth’s motion this requirement excludes sources too
close to the ecliptic. The problem is obviously even more
serious for the cosmic parallax, in which only one baseline
is available for all sources. Tests on cosmological distances
require therefore prior estimation of the Weyl tensor
contribution to the parallax matrix over large distances.
Note, however, that even in the presence of moderate shear
this problem might in principle be overcome if the single-
baseline parallax and angular diameter distance have been
measured for a sufficiently large sample of sources at
different positions on the sky. Since the Weyl tensor along
the line of sight depends on the position of the source, it
varies relatively quickly across the sky and it is

uncorrelated with the fixed baseline direction. We may
expect that its impact will average to 0, at least in the linear
order given a large sample of sources. What is left from the
averaging is thus the bare, baseline-independent effect of
the Ricci tensor. Quantification of the impact of shear on
the NEC test, its error budget and the question of feasibility
are beyond the scope of this paper. We stress here that
unlike the full baseline-averaged measurement, this type of
single-baseline measurement relies on additional assump-
tions about the metric tensor, i.e., either the vanishing of the
Weyl contribution to the parallax matrix or the random,
uncorrelated nature of the Weyl tensor over the whole sky.
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