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Starting from a formulation of correlated worldline (CWL) theory in terms of functional integrals over
paths, we define propagators for particles and matter fields in this theory. We show that the most natural
formulation of CWL theory involves a rescaling of the generating functional for the theory; correlation
functions then simplify, and all loops containing gravitons disappear from perturbative expansions. The
spacetime metric obeys the Einstein equation, sourced by all of the interacting CWL paths. The matter
paths are correlated by gravitation, thereby violating quantum mechanics for large masses. We derive exact
results for the generating functional and the matter propagator, and for linearized weak-field theory. For the
example of a two-path experiment, we derive the CWL matter propagator, and show how the results
compare with conventional quantum theory and with semiclassical gravity. We also exhibit the structure of
low-order perturbation theory for the CWL matter propagator.
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I. INTRODUCTION

A. Background

Efforts have been made for decades to marry quantum
mechanics (QM) and general relativity (GR) in a consistent
theory of quantum gravity [1]. Most theoretical efforts tend
to focus on the very high-energy regime, at Planck-energy
scales ∼Ep ¼ Mpc2 ≡ ðℏc5=GÞ1=2 ∼ 1.22 × 1019 GeV
(the Planck mass Mp ¼ ðℏc=GÞ1=2 ∼ 2.18 × 10−8 kg),
and/or at length scales ∼lP ¼ ℏ=cMp ∼ 1.64 × 10−35 m.
This work assumes the validity of QM at all energies, and
addresses problems like UV renormalizability, sums over
different topologies, the breakdown of GR near singular-
ities and quantum black holes. There are however alter-
native scenarios, wherein one assumes QM to fail because
of gravity even at low energies, because of a perceived
incompatibility between GR and QM. Theoretical discus-
sion of this possibility began over 60 years ago [2–7].
In this case one can expect departures from QM when rest
masses approachMP, i.e., for mesoscopic objects. Theories
of this kind are also motivated by widespread reservations
over the validity of QM for macroscopic systems [8,9].
These motivating factors are reviewed in Sec. II A.
In these low-energy scenarios, high-energy questions are

put to one side as being premature. One instead starts with
low-energy gravity [10,11], an effective field theory with
well-established foundations (see Sec. II A below). One
then looks for deviations from QM within this framework.

The focus of the present paper is the “correlated world-
line” (CWL) theory of quantum gravity [12–14]. This is an
internally consistent field theory which does predict
departures from QM at rest mass scales ∼OðMpÞ, even
for slowly moving masses. The parameters entering the
theory are GN;ℏ, and c, plus any parameters required to
deal with the underlying physics of matter fields (higher-
order curvature terms in the action are not excluded,
although we will be employing the simple Einstein action
in this paper).
CWL theory is a quantum field theory (QFT), which still

has all the usual fields of conventional QFT, including the
gravitational metric field gμνðxÞ. These fields are still
‘quantized’; we define factors ∼eiS=ℏ to be attached to
paths, and these factors involve Planck’s constant.
However, CWL theory violates a key assumption of

conventional QM or QFT. Instead of the usual independent
QM sum over all possible paths [including paths for both
matter fields and for gμνðxÞ], correlations between all paths
are mediated by the gravitational field gμνðxÞ. Note that
only the gravitational field is involved in these correlations.
The form of the correlations is uniquely determined by an
extension of the equivalence principle. In Sec. III we
describe the structure of CWL theory in more detail.
To see the difference between conventional theory and

CWL theory, consider a typical “two-path” or a “two-slit”
experiment. In conventional QM or QFT [Fig. 1(a)] the two
different paths are summed over independently to give the
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quantum transition amplitude between two states [15,16].
In CWL theory this superposition rule is violated; processes
like that shown in Fig. 1(b) exist, in which gravitational
interactions occur between different paths for a single
quantum system.
Even the lowest-order perturbative processes involving

gravity then give results different from conventional QM
[11–14,17]. However, these CWL corrections are expected
to be immeasurably small until the mass of the objects
involved approaches ∼Mp; for microscopic masses they are
far too weak (see e.g., the numbers given in Ref. [12], and
in much more detail in Sec. VII B below). For large masses,
second-order perturbation theory suggests [12] that the key
physical process is one of “path bunching”, in which the
CWL interaction between different paths, for a single
particle, ultimately cause the paths of that particle to bunch
together.
At first glance it would seem very hard to find a

consistent nonperturbative theory of this kind. In two
recent papers [13,14] we have described various consis-
tency checks, and the theory has passed all of these.
However, one would like to address another kind of

consistency for CWL theory; consistency with experiment.
With an eye on two-path interference experiments in, e.g.,
optomechanical systems [18–20], at rest mass scales
approaching MP, we here focus on (i) the two-path
experiment (Sec. VI), and on low-order perturbation theory
(Sec. VII).
Some of our previous work has discussed the motivation

for CWL theory [12–14]; we briefly recall this rationale in
Sec. I B below. One can also ask what CWL theory is good
for, i.e., what does it do better than other theories of

quantum gravity, and what new approaches and new
experiments does it suggest? We give a preliminary answer
to this question in Sec. VIII.

B. CWL theory: Physical discussion and motivation

The rationale for CWL theory is largely based in
physical arguments. On the one hand one has the strong
suspicion that QM must break down in some way at the
macroscopic scale, and on the other hand many questions
have been raised about the compatibility of QM and GR at
low energies (where GR is supposed to work very well).
The problems can be summarized as follows:
(a) Macroscopic QM: Doubts about QM at the macro-

scopic scale [8,9] have led to many tests of quantum
superposition, quantum interference and coherence, and of
Bell and Leggett-Garg inequalities, at the nanoscopic scale.
Examples include mass superpositions (i.e., superpositions
with a mass in two different positions) of large molecules in
two-slit or similar systems [21] and of large masses in
optomechanical systems [22], flux superpositions for
SQUID devices [23], and spin superpositions for magnetic
systems [24,25].
Although there is some dispute over how to measure the

macroscopicity of these states [26–28], the largest ‘two-
path’ mass superpositions (in which the paths actually
separate) that have been found so far [21] involve masses
< 105D, i.e., < 10−14Mp, (note that Mp¼1.311×1019D).
Such masses are far too small for one to see gravitational
effects.
(b) Low-energy GR: Doubts about the low-energy

compatibility of QM and GR rest on several arguments,
including (i) the problem of the mismatch between space-
times derived from mass superpositions [7,29,30], and the
consequent inability to define causal relations for quantum
fields [30], (ii) paradoxes such as the black hole informa-
tion paradox [31] which involves low-energy excitations,
and (iii) incompatibilities between orthodox theory quan-
tum measurement theory and standard GR, again at low
energy [6,32].
Clearly, the theoretical assumption that QMmust work at

macroscopic rest mass scales ∼OðMPÞ (let alone at
cosmological scales), involves a large extrapolation beyond
current laboratory experiments and it poses clear theoretical
problems. Note that this extrapolation is quite different
in character from the enormous extrapolation of QFT made
in, e.g., string theory, up to the Planck energy (an energy
∼1016 higher than that in current particle accelerators).
The idea that gravity could play a role in a low-energy

breakdown of QM stems essentially from (a) the problems
just noted with macroscopic mass superpositions, (b) the
idea that gravity is different from the other fields in nature,
in that it sees all fields (including itself) in the same way,
and provides causal relations [29,30] for all fields (includ-
ing itself), and (c) that it is the only obvious known physical
mechanism that might lead to a breakdown in QM.
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FIG. 1. A comparison between two-path processes in ordinary
QM or QFTand CWL theory, where a single particle is coupled to
gravitation. The particle path is shown as a solid line, gravitons as
hatched lines. In (a) we see a typical process in conventional QFT
to get the QM amplitude for the process we sum the contributions
from path A and path B. In (b) we see a process in CWL theory, in
which one cannot separate or sum over the contributions from
paths A and B, because gravity has coupled them via CWL
correlations.

JORDAN WILSON-GEROW and P. C. E. STAMP PHYS. REV. D 105, 084015 (2022)

084015-2



The difficulty is of course to find a low-energy theory of
this kind, which is both theoretically consistent and
consistent with experiment. This subject has an interesting
history. In several remarkable papers, Kibble et al. [5,6]
sketched a theory wherein intrinsic nonlinearity led to a
breakdown of the superposition principle and they sought
this nonlinearity in gravitation. They concluded that such a
nonlinear theory was unworkable, and also argued that
semiclassical gravity was internally inconsistent (see also
Refs. [11,32]). In parallel work, Weinberg [33] set up a
framework for nonlinear generalizations of QM (while
again keeping the operators, Hilbert space, and measure-
ments of QM). It was shown very quickly [34] that even this
loose framework violated causality, and entailed super-
luminal communication.
The moral we take from this story is that one needs to

drop at least part of the formal structure of QM to make
progress (and Kibble tried to dispense with Hilbert space,
even for ordinary QM [35]). The idea of CWL theory
[12,13] is that one starts from path integrals, and general-
izes these beyond the usual QM framework. The idea that
one start from path integrals is not new [36–40]). However
the CWL framework also drops the linearity inherent to
QM, QFT, and conventional quantum gravity, since in
CWL theory paths are coupled.
In CWL theory, notions like measurement are secondary

[12]; measurements are just another physical process.
Instead, the difference between the microscopic and macro-
scopic worlds arises from within the theory; for sufficiently
large masses, the usual quantum dynamics of the system
fails as CWL correlations between paths set in.
In previous papers our study of CWL theory focused on

formal questions. It was found that (i) when GN → 0, we
get back conventional QM or QFT, and letting ℏ → 0 gives
GR, (ii) one may formulate consistent expansions about
the classical limit ℏ → 0 and the nongravitational limit
GN → 0, (iii) calculate correlation functions, and (iv) it was
shown that the theory was gauge and diffeomorphism
invariant, and obeyed all relevant Ward identities [13,14].
In the present paper we focus more on the physics of

CWL dynamics. After a theoretical preamble, in Sec. II, our
new results fall into three main categories:
(a) First, we rescale the generating functional of the

theory to better organize various prefactors. It sim-
plifies the expressions for correlation functions, and
leads to a massive simplification in the perturbative
structure of the theory—in the interaction between
CWL lines shown in Fig. 1(b), no loops containing
gravitons survive. This is done in Secs. III and IV.

(b) We calculate matter propagators between boundary
data defined on two different hypersurfaces. The
dynamics of the matter field is different from standard
QM. In Sec. V, we establish key exact results for the
matter propagator and for the connected generating

functionalW. We also derive the weak-field linearized
form of CWL theory.

(c) To study the CWL dynamics in more detail, Sec. VI
looks at the two-path experiment and gives explicit
results in the linearized regime for CWL theory, for
conventional linearized gravity, and for semiclassical
gravity. The three results all differ from each other.
Then in Sec. VII we look at the dynamics of a single
particle at lowest nontrivial order inGN [i.e.,∼Oðl2

PÞ].
This calculation shows clearly how CWL theory
departs from standard QM for large rest masses.
Finally, in Sec. VIII we summarize the lessons learned
from these calculations.

There are several things we do not address here. We do
not discuss quantum measurement theory in any detail as
this is a large topic requiring discussion of real measuring
systems, and we also ignore questions of renormalizability
as this is the subject of a separate investigation. Finally, we
assume a simple structure for spacetime; no attempt is made
to discuss horizons, achronal regions, or singularities. For
the explicit calculations in the paper of relevance to
potential experiments (Secs. VI and VII), we assume a
background flat spacetime.
Finally, a notational point; for most of the paper we will

put ℏ ¼ 1, except when we wish to emphasize its role in the
theory.

II. THEORETICAL PRELIMINARIES

Let us first recall some key features of conventional
theory, and also of the formal structure of CWL theory. This
will also allow us to establish notation.
In Sec. II A we define ring paths for the generating

functional Z in both conventional QFT and in conventional
quantum gravity; we then show how to define matter field
propagators and field correlators in these theories. To make
all of this clearer we give more detail, in the Appendix A on
how this works for ordinary QM, for scalar field theory, and
for conventional quantum gravity.
In Sec. II B, we briefly recall the form of the generating

functional Q for what we call the ‘unscaled version’
of CWL theory [13,14], and the n-point matter field
correlators it leads to. In Appendix B we also deal with
a technical question in this unscaled theory, which was left
unresolved in previous papers, viz. the form of the
regulator cl.

A. Conventional theory

Here we give a summary of the ring path definition of Z,
and the definition of the propagator in terms of it for a
particle and a scalar field, both on a flat spacetime. We then
look at the same two quantities for a scalar field coupled to
gravity. Again, we let ℏ ¼ 1.
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1. Ring paths and propagators

In conventional QFT one defines a generating functional
Z½J� for some matter field [e.g., for a scalar field ϕðxÞ] as a
functional of some external current JðxÞ coupling to ϕðxÞ.
Here we define the generating functional in terms of ring
paths (see also our previous papers [12–14]). Our goal is to
then define propagators, starting directly from Z.
(1) Particle Dynamics: Consider a nonrelativistic par-

ticle with action So½r; _r� and a particle coordinate
rðtÞ coupling to some external current jðtÞ, giving a
generating functional

Zo½j� ¼
I

DrðtÞeiðSo½r;_r�þ
R

j·rÞ; ð1Þ

where the path integration
H
DrðtÞ is taken over a set

of closed ring paths. The usual way this is done is by
extending a Schwinger-Keldysh contour [41] from
t ¼ −∞ to t ¼ þ∞ and back again, and then closing
this with a path in imaginary proper time [Fig. 2(a)].
We will adopt this procedure here.
We can then define the propagator for the particle,

starting directly from this generating functional.
To simplify the discussion here, we assume a
simple propagator between two times t1 and t2 on
the upward path of the ring; this defines one of the
four Keldysh propagators (for more details, see
Appendix A). We thus introduce two cuts at
the times t1 and t2 in the ring path by writing
jðtÞ ¼ j1δðt − t1Þ þ j2δðt − t2Þ, so that

Zo½j�→Zo½j1;j2�≡Zo½j1δðt− t1Þþj2δðt− t2Þ�

¼
I

DrðtÞeiðSo½r;_r�eiðj1·rðt1Þþj2·rðt2ÞÞ;

ð2Þ

in which the cuts have vector magnitudes j1 and j2,
respectively.
We now integrate over both j1 and j2 between

these two cuts, which defines the function

ℵð2; 1Þ ¼
Z

dj1dj2 e−iðj1·x1þj2·x2ÞZo½j1; j2�; ð3Þ

which is shown in Appendix A to be equivalent to
the product

ℵð2; 1Þ ¼ Koð2; 1Þfð2; 1Þ; ð4Þ

depicted in Fig. 2(b), in which the two terms are:
(a) the usual Feynman propagator Koð2; 1Þ between

states j1i≡ jx1i and j2i≡ jx2i at times t1 and t2,
which we write as

Koð2; 1Þ ¼
Z

2

1

DrðtÞeiSo½r;_r� ð5Þ

i.e., the heavy line shown in Fig. 2(b).
(b) the light line shown in Fig. 2(b) which completes

the ring, and which is given by

fð2; 1Þ ¼ hx1je−iHðt1−tinÞρ̂ineiHðt2−tinÞjx2i; ð6Þ

where we let tin → −∞, and ρ̂in is the density
matrix defined on the contour around the cylin-
der defined at t ¼ −∞, which here is a thermal
density matrix defined at temperature T.
One can in the same way define the propa-

gator for a relativistic particle, and for a density
matrix, and define conditional propagators in
which other conditions are prescribed in addition
to the boundary information about the end points
(see Appendix A).

(2) Scalar Field Dynamics: Consider a scalar field ϕ
with action S½ϕ� and generating functional Zϕ½J� in
the presence of an external field JðxÞ, defined on a
spacetime in which a hypersurface Σ bounds a bulk
spacetime region M. The surface Σ is divided into
spacelike past and future surfaces Σ1 and Σ2, along
with a region ΣB at spatial infinity.
Starting from Zϕ½J�, and using the same methods

as before (now imposing cuts at Σ1 and Σ2), we get a
propagator between scalar field configurations
Φ1ðxÞ and Φ2ðxÞ, localized on Σ1 and Σ2, given by

t = 

t = 
t = 

t = 

(a) (b)

t1

t 2

j1

j2

K0 (2,1)

FIG. 2. In (a) we show the contour of the ring diagram for the
generating functional of the single particle discussed in the text.
This extends from proper time t ¼ −∞ up to t ¼ ∞ and back
again; it is then closed at t ¼ −∞ around the temperature cylinder
of circumference 2π=kT. In (b) the contour is represented by a
ring, and we show how the propagatorKoð2; 1Þ defined in the text
is produced by injecting external currents j1, j2 at times t1, t2 on
the upward section of the contour from t ¼ −∞ to t ¼ ∞, and
then integrating over j1 and j2.
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Kð2; 1Þ≡ KðΦ2;Φ1Þ ¼
Z

Φ2

Φ1

Dϕ eiSϕ½ϕ�: ð7Þ

The analogy with the particle derivation just given
is clearest when the surfaces Σ1 and Σ2 are simple
time slices at times t1 and t2. If they are not then the
discussion becomes a lot more technical (compare
Refs. [42–44]), but the basic principles are still the
same.
We can also, again in analogy with the discussion

for a particle, define a conditional propagator for the
field ϕðxÞ, on a spacelike hypersurface Σ̄ located
between Σ1 and Σ2, and one can generalize these
derivations to gauge field theories (see Refs. [42,44]
for the case of QED).

2. Conventional quantum gravity

By ‘conventional quantum gravity’ we mean a low-
energy theory of gravity, framed in terms of the Einstein
action, which we will define using path integrals. Without
the restriction to low energies, one expects severe prob-
lems; the theory is then perturbatively nonrenormalizable,
and involves quantum sums over different spacetime
topologies. Although there do exist procedures to define
such sums [45], it is not clear whether topology-changing
transitions are physically meaningful [46].
In a low-energy effective theory, one expands about a

background metric configuration g0. This is done either by
expanding perturbatively in GN , or in metric fluctuations.
A UV cutoff is implicit, and there is no sum over different
spacetime topologies. Here we will define a generating
functional and matter field propagators for this theory, and
establish our notation.
Consider again a scalar field ϕðxÞ, now with action

Sϕ½ϕ; g� ¼
1

2

Z
d4xg1=2½gμν∇νϕ∇μϕ − VðϕÞ� ð8Þ

in the presence of the background metric g≡ gμνðxÞ (here
∇ denotes a covariant derivative).
Let us first write the matter generating functional with a

fixed background spacetime ḡ as

Zϕ½ḡ; J� ¼
I

Dϕ eiðSϕ½ϕ;ḡ�þ
R

JϕÞ ≡ eiWo½ḡ;J�; ð9Þ

so that Wo½ḡ; J� ¼ −i lnZϕ½ḡ; J� is the generating func-
tional for connected diagrams for the scalar field on the
background ḡ. We assume, as before, a spacetime M
bounded by the hypersurface Σ, and we assume all fields
vanish fast enough at ΣB that we can integrate by parts
freely on spatial derivatives, without picking up surface
terms at ΣB.

We now unfreeze the metric gμνðxÞ. The pure gravita-
tional action is written as

SG½g� ¼ l−2
P ðIoG þ IYGHG Þ; ð10Þ

where l2P ¼ 16πG is the square of the Planck length, and we
have put ℏ ¼ 1; c ¼ 1. Here we include the bulk Einstein
action IoG ¼ R

d4x
ffiffiffi
g

p
R, in which R is the Ricci scalar,

defined in M, and IYGH is a York-Gibbons-Hawking
boundary term [47], given by

IYGHG ¼ 2

Z
Σ
d3y ϵðΣÞ

ffiffiffiffiffiffi
jhj

p
K; ð11Þ

in which h is the determinant of the induced metric on Σ, K
is the trace of the extrinsic curvature Kab of Σ, and
ϵðΣÞ ¼ �1, depending on whether the relevant piece of
Σ is timelike or spacelike.
Finally we include a gauge-fixing function χμðgðxÞÞ, to

get rid of the gauge redundancy in path integrals under
diffeomorphisms xμ → xμ þ ξμðxÞ. With this term we write
the total gravitational action as I½g�=l2

P, with

I½g� ¼ IoG þ IYGHG þ 1

2
χacabχb: ð12Þ

We have written Eq. (12) in the compact DeWitt notation,
in which the coordinates are folded in with the tensor
indices and repeated indices imply a spacetime integration
over these coordinates,

χacabχb ≡
Z

d4xd4x0χμðxÞcμνðx; x0Þχνðx0Þ: ð13Þ

To completely specify the path integral we define the
Faddeev-Popov ghost operator [48] as

Ξμ
νðx; x0jgÞ ¼ δχμðgξðxÞÞ

δξνðx0Þ
����
ξ¼0

: ð14Þ

Both the ghost operator Ξμ
ν and the matrix cμν need to be

invertible; we write the inverse of Ξμν as

Ξμ
ν Gν

λ ¼ δμλ ; ð15Þ

which defines the ghost propagator Gν
λðx; x0Þ. We also

assume that cμνðx; x0Þ ∝ δðx; x0Þ, for otherwise an extra
ghost contribution ∼Detcμν will be needed.
Note that we are describing here a conventional theory

with minimal coupling to the matter field. In reality
quantum fluctuations generate nonminimal couplings in
the action, in any background curved spacetime. In this
paper we will ignore such terms, because we are interested
in applications to low-energy laboratory experiments where
we expect nonminimal corrections to be unimportant.

PROPAGATORS IN THE CORRELATED WORLDLINE THEORY OF … PHYS. REV. D 105, 084015 (2022)

084015-5



Consider now the generating functional Z½J� for this full
theory. Naively this is written as [49–52]

Z½J� ¼
I

DgeiðI½g�=l2P−iTr lnΞÞZϕ½g; J�: ð16Þ

One can also define the generating functional with the
gauge-fixing represented explicitly as a constraint, in
contrast with the Gaussian-smeared version above. We
write this below in terms of the Faddeev-Popov functional
determinant ΔðgÞ ¼ DetΞ ¼ eTr lnΞ,

Z½J� ¼
I

Dg eiSG½g�Δ½g�δðχμðgÞÞ
I

Dϕ eiðSϕ½ϕ;g�þ
R

JϕÞ

¼
I

Dg eiSG½g�Δ½g�δðχμðgÞÞZϕ½g; J�: ð17Þ

For J ¼ 0 these two definitions coincide, but not for
general J. However, both expressions yield the same results
when used to compute gauge-invariant quantities.
Pursuing this approach, one then defines the propagator

between two different field configurations Φ1ðxÞ,Φ2ðxÞ,
and two induced metric configurations hab1 ; hab2 , specified
on Σ1 and Σ2 respectively. We get [37,38]

Kð2; 1Þ≡ KðΦ2;Φ1; hab2 ; hab1 Þ

¼
Z

h2

h1

Dg eiSG½g�ΔðgÞ δðχμÞ
Z

Φ2

Φ1

Dϕ eiSϕ½ϕ;g�

¼
Z

h2

h1

Dg eiSG½g�ΔðgÞ δðχμÞK0ð2; 1jgÞ; ð18Þ

where the functionK0ð2; 1jgÞ≡ K0ðΦ2;Φ1jgÞ is the propa-
gator for ϕðxÞ when gμνðxÞ is frozen in one particular
configuration g.
However, the problem with both the ring path functional

(17) and the propagator (18) is that if we impose no
restrictions on the allowed configurations of the metric field
gμνðxÞ, then it is completely unclear what is meant by the
integrations

H
Dg and

R
2
1 Dg in these formulas. If all the

spacetimes included in the integration were constrained to
be compact (compare Ref. [53], pp. 749–52), or at least
spatially closed [37], then one might attempt a rigourous
definition of these path integrals; but of course there is no
reason to make such restrictions.
This is where our restriction to low energies comes in.

We now assume a slowly-varying background spacetime g0
and we adopt the view, standard in QFT, that the path
integration now defines a perturbative expansion about g0,
i.e., some sort of graviton expansion. In the rest of this
paper, we will only need to assume that g0 is a solution to
the vacuum equations, with cosmological constant set to
zero. Again, we ignore nonminimal couplings.
The ring path diagrams then involve both matter and

graviton states—a typical example is shown in Fig. 3(a),

involving multiple gravitons. The cuts in this ring diagram
required to produce the propagator in Fig. 3(b), on the
surfaces Σ1 and Σ2, now involve external currents coupling
to both the matter and graviton fields (see Appendix A). We
get a propagator Kð2; 1Þ in which the initial state j1i≡
jh1; h01; h001;Φ1i has three incoming gravitons and a scalar
field state jΦ1i, and the final state j2i≡ jh2; h02;Φ2i has two
outgoing gravitons and a final state jΦ2i for the scalar field.
We can also generalize the above work to cover

propagators for the density matrix (see Appendix A). The
techniques for doing this were described in Ref. [13], and
worked out in detail for linearized gravity in Ref. [54].
Explicit expressions for Eq. (18) and its particle analog
can be found in linearized gravity, in a way analogous to
that for QED [42,43]; we will not need these in the
present paper.

B. Unscaled CWL theory

The unscaled version of CWL theory was described in
detail in Refs. [13,14], and we summarize it here. Again, to
be specific, we consider a scalar matter field. One starts by
replacing the single scalar field ϕðxÞ appearing in conven-

tional QFT by a tower, i.e., a set fϕðnÞ
k g of multiple versions

of ϕðxÞ, with k ¼ 1; 2;…n, coupled to a set fgng of metric
fields. One then writes a generating functional

Q̃½J� ¼
Y∞
n¼1

Qn½J�;

Qn½J� ¼
I

Dgn einSG½gn�
�
Zϕ

�
gn;

J
cn

��
n
; ð19Þ

(a)

(b)

�1

�2

�1

�2

FIG. 3. In (a) we show a typical graph for a “ring” contribution
to the generating functional Z for a scalar field coupled to
gravitons discussed, as in the text. Again, this extends from
proper time t ¼ −∞ up to t ¼ ∞ and back again, and is around
the temperature cylinder. The dashed lines represent graviton
propagators, and the solid line is the matter field. In (b) we show
the propagator K0ð2; 1Þ generated by imposing cuts on the
surfaces Σ1 and Σ2; the initial and final states [obtained from
where the lines crossing the cuts on Σ1 and Σ2, in the graph in (a)]
involve multiple gravitons as well as the scalar matter field.
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in which we take the product over all n, i.e., we take the
product over all the towers of different n. The number cn is
a regulating factor whose form is derived in Appendix B.
Here, and in what follows, we suppress all reference to
gauge-fixing and Faddeev-Popov determinants; they will
be absorbed into the path integral measure

R
Dgn, and only

written explicitly when necessary.
In previous papers we have sometimes referred to the n

different members fϕðnÞ
k ðxÞg of the tower as copies or

replicas of the basic field ϕðxÞ [or of some particle path
qμðτÞ]. However this language is misleading because it
implies that each field has an independent existence, and
that the permutations of the field labels can be treated as a
symmetry under which the states can be organized into
representations.
In CWL theory, however, these replicas are simply a

mathematical device used to represent different paths (or
configurations) of a single object. In contrast with conven-
tional QFT, replica permutation (i.e., path permutation) in
CWL inside some given tower should be treated as the
analog of a discrete gauge symmetry—the paths are
indistinguishable and refer to a single physical system.
As a matter of principle one should never try to physically
distinguish one replica, or path, from another. The towers
are thus simply collections of n different paths for the same
object.
Notice that the gravitational action in the nth tower (i.e.,

for the n-path term) is rescaled by a factor n. This rescaling
of SG½gn� to nSG½gn� implies a coupling constant scaling
G → G=n for the metric gn in this tower, which apparently
reduces the effect of metric fluctuations at high n. Note,
however, that the stress-energy tensor Tμν rescales in the
opposite way to nTμν. Thus, as we will see, the classical
Einstein equations still hold in the classical limit of CWL
theory (and in this paper we will discover that they hold
quite generally, even when the matter fields are in the
quantum regime).
The generating functional for connected diagrams is

given in unscaled CWL theory from (19), as

W̃½J� ¼ −i ln Q̃½J�

¼ −i lim
N→∞

XN
n¼1

lnQn½J�; ð20Þ

which is additive over the different towers. We immediately
derive the connected correlation functions of the theory
upon functional differentiation with respect to JðxÞ, to
give [13]

GlðfxkgÞ ¼ hϕðx1Þ…ϕðxlÞiCWL
c

¼ ð−iÞl 1P∞
n¼1 nc

−l
n

δl ln Q̃½J�
δJðx1Þ::δJðxlÞ

����
J¼0

; ð21Þ

where the correlator is calculated for some state of the
system. For the vacuum state jΦoi we would have

hϕðx1Þ…ϕðxlÞi≡ hΦojϕðx1Þ…ϕðxlÞjΦoi: ð22Þ

The result (21) contains the regulating factor cn. In
Appendix B we show that cn ¼ 1, for all n, so that (21)
becomes

GlðfxkgÞ ¼
ð−iÞlP∞
n¼1

n

δl lnQ½J�
δJðx1Þ::δJðxlÞ

����
J¼0

: ð23Þ

Since we expect the correlators fGlðfxkgÞg to be finite,
we then see that the divergent denominator in (23) is
exactly cancelled by the divergent numerator coming from
(20). This situation is mathematically unsatisfactory and
suggests that we rescale the original form for Q̃½J� in (19).
As we now see, this rescaling, although not changing the
theory in any fundamental way, does make it much simpler
to work with.

III. RESCALED CWL THEORY

We now turn to the rescaled version of CWL theory we
shall use from now on. In Sec. III A we describe the
rescaled theory, and show how it leads to a much simpler
form for the correlation functions. Then, in Sec. III B, we
show how the both the classical limit and the decoupled
limit (where GN ¼ 0) simplify in the rescaled CWL theory.
Finally, in Sec. III C we set out the diagrammatic rules for
the calculation of perturbative expansions in GN , for the
connected generating functional W.

A. Rescaled CWL theory

One always has some liberty in how the generating
functional Q is defined because it is lnðQÞ that is
of importance in determining physical quantities. Thus,
e.g., multiplication of Q by some factor simply adds an
irrelevant constant to lnðQÞ, and raising Q to some power
amounts to a rescaling of lnðQÞ. In what follows we employ
a very natural rescaling which greatly simplifies the
theory [55].

1. Form of rescaling

Suppose we transform the unscaled generating func-
tional Q̃½J� given in the last section, so that Q̃½J� → Q½J� ¼
Q̃α½J�. Then the connected generating functional rescales as
W̃½J� → W½J� ¼ αW̃½J�. This rescaling then multiplies the
correlation functions, etc., by a factor α.
Here we rescale the generating functional to

Q½J� ¼ lim
N→∞

�YN
n¼1

Qn½J�
�αN

; ð24Þ
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so that the rescaled connected generating functional is

W½J� ¼ −i lim
N→∞

αN
XN
n¼1

lnQn½J�; ð25Þ

i.e., we write the scaling factor αN as a function of the
number N of towers, and then take the limit N → ∞.
We now choose αN to be

αN ¼
�XN

n¼1

n

�−1

¼ 2

NðN − 1Þ ð26Þ

and all of the subsequent theory in this paper will start from
the rescaled versions of Q½J� and W½J� in Eqs. (24)–(26).
The nth tower functional Qn will be given by

Qn½J� ¼
I

DgneinSG½gn�ðZϕ½gn; J�Þn; ð27Þ

obtained by putting cn ¼ 1 in Eq. (19).
Because the generating functional factorizes, we see that

W½J� is just a sum over single g integrals, and we do not
have correlations between gn and gm unless n ¼ m, i.e., the
different towers do not ‘talk’ to each other. We can thus also
write (27) as [13]

Qn½J� ¼
I

DgeinSG½g�ðZϕ½g; J�Þn; ð28Þ

with only one metric field.
Let us write outQ½J� for the rescaled CWL theory in full,

for future reference, always bearing in mind that it is the
logarithm of this, i.e., the connected generating W½J�,
which is the physical object. To be specific we assume a
theory with a scalar matter field coupled to gravity. We then
have

Q½J� ¼ lim
N→∞

�YN
n¼1

I
DgneinSG½gn�

×
Yn
k¼1

I
DϕðnÞ

k eiSϕ½ϕ
ðnÞ
k ;gn�þJϕðnÞ

k

�
αN

≡ lim
N→∞

�YN
n¼1

Qn½J�
�αN

; ð29Þ

with the exponent αN given by (26). There are suppressed
DeWitt indices in (29); thus J, g, and ϕ are all functions
of spacetime coordinates, and the product Jϕ≡R
d4xJðxÞϕðxÞ is integrated over spacetime. We also omit

Faddeev-Popov gauge fixing factors—these will be
restored when needed.
We emphasize again that we will never use the functional

Q½J� except for formal manipulations as it isW½J� which is

physically significant. As one expects, Q½J� is essentially a
geometric mean of the individual tower generating func-
tionals Qn, whereas W½J� is a normalized sum over the
different Wn½J�, where Wn½J� ¼ −iℏ logQn½J�.

2. Correlators

In the unscaled version of the theory we found that the
prescription for computing the correlation functions was
quite peculiar; one obtained an awkward formula in which
a divergent sum in the main expression was supposed to be
canceled by the prefactor.
In the rescaled version of CWL theory this problem

disappears; the prefactor is finite, and the rescaling factor
αN removes the divergence. We then immediately find that
the correlators are given from W½J� by straightforward
differentiation, to get

Gðx1;…; xlÞ ¼
ð−iÞlþ1δl

δJðx1Þ…δJðxlÞ
W½J�jJ¼0; ð30Þ

i.e., the same formula as that in ordinary QFT.
One sees explicitly what has happened if we return to the

unscaled theory by simply setting αN ¼ 1 in (29). Then we
get, instead of (30), the result

lim
αN→1

GmðfxkgÞ ¼ C
ð−iÞlδl

δJðx1Þ…δJðxlÞ
logQ½J�jJ¼0; ð31Þ

where the normalizing factor C is given by

C ¼ lim
N→∞

�XN
n¼1

n

�−1

≡ lim
N→∞

αN; ð32Þ

i.e., the normalizing factor C in the unscaled theory is
exactly cancelled in the rescaled version by the factor αN,
when N → ∞, to give Eq. (30).

B. Two limiting cases

Before continuing, we check that the rescaled theory
reduces to sensible results in two limiting cases: (i) the
decoupled limit where GN ¼ 0, so that the metric field
gμνðxÞ decouples from any matter field, and (ii) the classical
limit ℏ → 0, where the theory has to reduce to classical
Einstein gravity.

1. Decoupled limit

We wish to show that the rescaled generating functional
has the correct limit whenGN → 0; we then want the theory
to reduce to a conventional QFT defined in flat spacetime
(i.e., g → η), with no gravitation at all.
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Starting from Eq. (29), we get

Q½J�jGN¼0 ¼ lim
N→∞

�YN
n¼1

Yn
k¼1

I
DϕðnÞ

k eiSϕ½ϕ
ðnÞ
k ;η�þiJϕðnÞ

k

�αN

¼ lim
N→∞

�YN
n¼1

�I
DϕeiSϕ½ϕ;η�þiJϕ

�
n
�αN

¼ lim
N→∞

��I
DϕeiSϕ½ϕ;η�þiJϕ

�PN
n¼1

n
�αN

¼ Zϕ½J�; ð33Þ

where Zϕ½J� ¼
R
DϕeiS½ϕ�þiJϕ is the conventional generat-

ing functional for a scalar field in the absence of gravity,
i.e., it is the function Zϕ½g; J� defined previously in Eq. (9)
but with g ¼ η. This is precisely the desired result; it holds
for any other matter field, or for particles.

2. Classical limit

The actions for both the metric and the set of n paths are
unchanged by the overall rescaling factor αN. This means
that the original discussion [13] of the saddle point for the
unscaled version of CWL still applies. We see this as
follows.
The saddle point equations, now written in terms of the

set fgng of metric field configurations, are

n
δSG½gn�
δgn

þ
Xn
k¼1

δSϕ½ϕðnÞ
k ; gn�

δgn
¼ 0;

δSϕ½ϕðnÞ
k ; gn�

δϕðnÞ
k

− J ¼ 0; ð34Þ

in which the rescaling factor αN does not appear. We now
impose the same boundary conditions on all the different

paths ϕðnÞ
k of the matter field, so that we have ϕðnÞ

k → ϕðnÞ,
i.e., both the matter fields and the stress-energy tensors in
the different saddle point equations must also be the same.
The coefficient n in (71) then cancels out, and we get the
Einstein equation for each of the metric fields

δSG½gn�
δgn

þ δSϕ½ϕðnÞ; gn�
δgn

¼ 0; ð35Þ

with source field ϕðnÞ. Moreover, in contrast with Ref. [14],
since the regulators cn are all taken equal to 1 all reference
to the tower index n disappears, and thus gn and ϕðnÞ satisfy
the same set of equations for all n, i.e., we have

δSG½ḡc�
δḡc

þ
Xn
k¼1

δSϕ½ϕc; ḡc�
δḡc

¼ 0;

δSϕ½ϕc; ḡc�
δϕc

¼ 0; ð36Þ

in which ϕðnÞ ¼ ϕc and gn ¼ ḡc (the classical solutions).
At first glance the fact that the classical limit turns out to

be Einstein theory seems a bit surprising, given that the
gravitational coupling GN has effectively become GN=n.
Why doesn’t the theory then have a complete decoupling
between gravity and the matter fields in the large-n limit?
The answer, already noted at the beginning of this section,
is seen explicitly in Eq. (36) in the sum over k in the
first equation. Because of this sum, Tμν now effectively
becomes nTμν, so that the factors of n cancel between the
new effective gravitational coupling and the new effective
stress-energy tensor. Thus we recover the usual coupling in
the Einstein equation.
At this point our next step would normally be to set up a

semiclassical expansion. However this is not so easy, even
in standard QFT, because of the now well-established result
that semiclassical expansions are not equivalent to loop
expansions [56–58]. This result invalidates the usual
association between powers of ℏ and numbers of loops,
even in standard QED [57]. In conventional quantum
gravity, where loops contribute even to low-order calcu-
lations of, e.g., classical perihelion precession [58], this
point is particularly pertinent.
In Sec. V we return to the classical limit of CWL theory.

Using a combination of diagrammatic and exact results, we
will give a complete characterization of it.

C. Diagrammar for W

We now turn to an analysis of the physical function
W½J�. We will develop a perturbative diagrammatic calcu-
lus for W½J�, up to the point where one can see the general
structure of the diagrammatic expansion.
We then find a rather startling result; in CWL theory, the

contribution of loop diagrams containing gravitons is
exactly zero. We will not deploy rigorous proofs here; a
more formal discussion, along with the implications for the
renormalizability of CWL theory, will appear in a paper
devoted to this topic [59].
This result creates apparent paradoxes, since graviton

loops are normally considered to be essential in the
derivation of classical GR from conventional quantum
gravity. Using results derived in Sec. V we will return to
these paradoxes in Sec. VII.

1. Diagrammatic rules

To set up perturbation theory we proceed as in our
discussion of conventional quantum gravity in Sec. II A 2.
Thus we again expand the metric about a flat background as
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gμν ¼ ημν þ hμν, and expand both the Einstein and matter
actions in powers of hμν. We can then read off the diagram
rules from the form of the action. Since the matter action is
independent of n, each of the matter-graviton vertices will
be the same as conventional quantum gravity [i.e.,
∼Oðn0Þ�; this is seen in the graph in Figs. 4(b) and 4(c).
The Einstein action SG½g� appears in CWL theory

multiplied by n, so each graviton-graviton vertex will come
with a factor of n, and the graviton propagator (which is the
inverse of the quadratic form in the action) will come with a
factor n−1. These results are illustrated in Figs. 4(a), 4(d),
and 4(e).
Now let us recall the rescaled CWL expression for the

connected generating functional W½J�, in Eq. (25); note
again that the rescaling factor αN ∝ 1=N2 in the limit
N → ∞. Again, we write

Wn½J� ¼ −iℏ logQn½J�; ð37Þ

and now expand this functional in a power series in n, as

Wn½J� ¼ nWð1Þ½J� þ n0Wð0Þ½J� þOðn−1Þ: ð38Þ

If we now substitute this into the full connected gen-
erating functional in (25), we obtain

W̃½J� ¼ lim
N→∞

½αN
XN
n¼1

ðnWð1Þ½J� þOðn0ÞÞ�

→ Wð1Þ½J� lim
N→∞

½1þOðN−1Þ�
¼ Wð1Þ½J�: ð39Þ

Equation (39) shows that when computing the CWL
connected generating functional perturbatively, we need
only retain those connected diagrams at each level n which

scale linearly with n. All other diagrams, scaling with n
sublinearly will be canceled by αN, and their contribution
will be identically zero.
When we come to insert these vertices into graphs forWn

or for Knð2; 1Þ, it will also be clear that we must sum over
the independent path (replica) indices fkg in the matter
lines. Thus, a factor of n will appear for every different sum
over these indices, in any diagram for Wn or for Knð2; 1Þ.

2. Results for W

To see how this works, let us now consider some typical
diagrams for W, with J ¼ 0. Figure 5 shows some of the
simpler ones. Thus, in the abbreviated DeWitt notation,
Fig. 5(a) can be written as 1

2
GaDabGb, where Ga is the

matter propagator and Dab the graviton propagator. This
diagram has sums over two different path replica indices a
and b coming from the two matter loops, giving a factor n2,
with a factor n−1 coming fromDab. Thus, this diagram is of
order n. In the same way Fig. 5(b) has a factor n3 coming
from the three matter loops, and a factor n−3 from the three
graviton lines but there is also a factor n from the three-
point graviton vertex, giving again an overall factor n.
Figures 5(d) and 5(e) illustrate how vertices can be

renormalized by the insertion of internal matter loops. Thus
Fig. 5(d) shows that we can renormalize the bare graviton
propagator by insertion of an arbitrary number of matter
bubbles; the sum of all these terms gives the full renor-
malized graviton propagator since there are no other
insertions that give terms ∼OðnÞ. In the same way we
can insert a matter loop in place of the bare three-graviton

(a)

(b)

(c)

(d)

(e)

(f)

(g)

FIG. 5. Graphs contributing toWn½J� in Eq. (38). All graphs are
∼OðnÞ except for graphs (f) and (g), which are ∼Oð1Þ. The
graphs in (a)–(c) are interactions between matter bubbles medi-
ated by two-point, three-point, and four-point graviton vertices
respectively. Graph (d) illustrates how we can renormalize the
graviton propagator by inserting an arbitrary number of bubbles
into the graviton line; all these graphs are∼OðnÞ. Graph (e) shows
a renormalization of the three-graviton vertex, also ∼OðnÞ.
Finally graphs (f) and (g) have loops containing gravitons, and
because they are ∼Oð1Þ, they contribute nothing to Wn½J�.

(a) (b)

(d) (e)

O(1/n) O(1)

O(n) O(n)

O(1)

(c)

FIG. 4. Order of the contribution to graphs in the nth tower for
different vertices. The graviton graph in (a) is ∼Oð1=nÞ. In (b)
and (c) we have interactions between the matter field and either
one or two gravitons; these vertices are both ∼Oð1Þ. In (d) and
(e) we show three-graviton and four-graviton interaction vertices,
which are both ∼OðnÞ.
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interaction, to give the result in Fig. 5(e), which is
still ∼OðnÞ.
Figs. 5(f) and 5(g) show how contributions of order

lower that ∼OðnÞ can arise. The first of these has two path
replica sums, but the factor of n2 is canceled by a factor n−2

coming from the two gravitons, so the resulting graph is
∼Oð1Þ. The second has a similar problem—the single
matter replica sum is canceled by the single graviton
contribution. Thus both these graphs are ∼Oð1Þ, and do
not contribute in the N → ∞ limit.
We can identify a simple underlying pattern determining

the power of n in each diagram. Suppose we first integrate
out the matter fields, leaving us with an effective theory for
the gravitons which has a new set of effective vertices. For
example, the central matter bubble in Fig. 5(e) would be
considered as just one effective three-graviton vertex. Since
the n path replicas are symmetric, each such vertex is just n
times the result for a single matter field. Now we see that
the effective diagram rules are n−1 for each graviton line
and n for each vertex—bare or effective.
With this counting, we see that any diagram with I

propagators and V vertices must scale as nV−I . For a
connected graph every propagator comes with a four-
momentum integral, and every vertex comes with a
momentum conserving delta function. One of these delta
functions conserves total momentum; the number of
remaining four-momentum loop integrals is then given
by L ¼ I − ðV − 1Þ. Thus a diagram with I propagators and
V vertices is ∼Oðn1−LÞ. Only diagrams with zero graviton
loops are ∼OðnÞ and able to contribute to W½J�.
Thus the following two simple rules apply here:
(i) If a graviton line forms any part of a closed loop in a

diagram, then this is enough to kill the graph, i.e., it
will not contribute in the N → ∞ limit. Figure 5(f) is
a very simple example of this rule.

(ii) If in some graph, any matter line ‘self-connects’
through a graviton line (i.e., if a matter line with a
given path/replica index interacts with itself via
either a single graviton line or a sequence of graviton
lines), then again this graph will not contribute in the
N → ∞ limit. Figure 5(g) is the simplest possible
diagram illustrating this.

To summarize; only graviton tree diagrams are included
in the theory, although matter loops still survive. Hence no
self-interactions are allowed for paths. We see that CWL
has a built-in large-N limit which is different from the
large-N limits considered in conventional QFT, since it
refers here not to the number of matter fields but to the
number of paths (recall again that one should think of CWL
replicas as distinct but indistinguishable paths). In this
large-N limit all graviton loops are eliminated.
As noted already, this seems to create two blatant

paradoxes: it apparently forbids obvious physical processes
like gravitational self-energy or radiation-reaction effects,
and is in apparent contradiction with the classical limit—as

already emphasized above, graviton loops in quantum
gravity contribute to classical general relativity. We discuss
how to resolve these paradoxes in Sec. VII.

IV. PROPAGATORS IN CORRELATED
WORLDLINE THEORY

We now turn to one of the central questions of this paper
—the dynamics of matter fields or particles. In this section
we define the CWL propagator in Sec. IVA, and elucidate
the structure of perturbation expansions for it, in powers of
GN , in Sec. IV B. This is done in the rescaled version of
CWL theory, and we find that, just as for the correlation
functions, the rescaling leads to a great simplification of the
perturbative structure.

A. Propagators: Basic definition

Wewill start from the CWL generating functionalQ, and
just as was done in Sec. II for conventional QFT, we define
propagators using a cut procedure. To be definite, let us
take a contribution to Q½J� from Qn [see Eq. (29) and also
Fig. 6(a)]. We now impose cuts on Qn, to get the situation
shown in Fig. 6(b). We take the product over n later on.
For this set (tower) of n-path contributions we have a set

of n matter lines, each with different end points. To define
two specific end point specific states Φ1ðxÞ and Φ2ðxÞ for
the propagator K, we must fix these states for each of the n
lines to be the same. Moreover, we must choose the same
end states for the different towers—any different choice

(a) (c)(b)

2

1

�k
(3) (2)

�k
(3) (1)

�2

�1

FIG. 6. Graphical definition of the CWL propagator for a field
ϕðxÞ, starting from the generating functional Q̃. In (a) we see a
CWL graph for the nth tower contribution Qn to Q̃, with n ¼ 3;
only the matter lines are shown. In (b) we cut the matter lines and
restore the CWL graviton interactions between the three different

matter paths; the paths ϕðnÞ
k , with n ¼ 3 and k ¼ 1, 2, 3, terminate

at states ϕðnÞ
k ð1Þ and ϕðnÞ

k ð2Þ. Finally, in (c) we tie the three matter

lines together at the initial and final states, so that ϕðnÞ
k ð1Þ → Φ1

and ϕðnÞ
k ð2Þ → Φ2 for each of the n ¼ 3 matter lines. This gives a

contribution to Knð2; 1Þ, for n ¼ 3.
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would make it impossible to reconcile the contributions
from the different Qn.
The resulting process of ‘tying together’ the separate

lines to get Kð2; 1Þ is shown in Fig. 6(c). We denote by Kn
the set of all contributions like that in Fig. 6(c) to Kð2; 1Þ,
coming from n matter lines—the full propagator Kð2; 1Þ
will be given by a product over the Knð2; 1Þ. We have

Knð2;1Þ ¼
Z

2

1

DgneinSG½gn�
Yn
k¼1

Z
Φ2

Φ1

DϕðnÞ
k eiSϕ½ϕ

ðnÞ
k ;gn�: ð40Þ

This expression still needs to be properly normalized. To
fix this normalization we freeze the dynamics of the
gravitational field to a particular configuration ḡ, so that
it no longer plays any dynamic role in the theory. We then
require that the propagator reduces to the conventional QFT
expression for the scalar field, in the background field ḡ.
Freezing the metric and carrying out the product we find

YN
n¼1

Knð2; 1jḡÞ ¼
YN
n¼1

Yn
k¼1

Z
Φ2

Φ1

DϕðnÞ
k eiSϕ½ϕ

ðnÞ
k ;ḡ�

¼ ðKoð2; 1jḡÞÞCN ; ð41Þ

where Kϕð2; 1jḡÞ is just that function defined in Eq. (18),
and CN ¼ P

N
n¼1 n.

If we are to match CWL propagators to conventional
QFT when gravity is switched off, we must cancel the
exponent CN ; moreover, CN is nothing but the inverse of
the exponent αN already introduced, i.e., CN ¼ α−1N . Thus,
in the sameway as with our treatment ofQ½J�, we must take
theαNth root of the integral before taking the limit N → ∞
limit [compare Eq. (26)].
After unfreezing the metric to restore functional inte-

gration over the metric field, we thus end up with the CWL
propagator for the scalar field in the form

Kð2; 1Þ ¼ lim
N→∞

�YN
n¼1

Knð2; 1Þ
�αN

¼ lim
N→∞

�YN
n¼1

N −1
n

Z
2

1

Dgn einSG½gn�

×
Yn
k¼1

Z
Φ2

Φ1

DϕðnÞ
k eiSϕ½ϕ

ðnÞ
k ;gn�

�
αN
: ð42Þ

We stress that this is so far a purely formal expression (as
with all path integrals). One can alleviate the divergences
somewhat by taking the logarithm of (42), but we can also
use it to generate perturbative expansions in GN , which we
do below. In the next section we will see that it can be
evaluated exactly.
As a check on (42), we can refreeze the metric field

gμνðxÞ in it to some fixed configuration ḡμνðxÞ; it is clear

that we will then recover the conventional QFT result, i.e.,
we get Kð2; 1Þ → Kϕð2; 1jḡÞ.
It will also be clear from this derivation how to define

a propagator between initial and final position states for
a particle. Thus, for a nonrelativistic particle, the path
integration

RΦ2

Φ1
DϕðnÞ

k for the field is replaced by
R
x2
x1

DqðnÞk ,

where qðnÞk is the kth path in the nth tower of paths, and x1

and x2 are the end points.
More generally, for both particles and matter fields, we

can define propagation between two arbitrary states jαi
and jβi. To do this, let us first note how one can write
simple one-particle QM in CWL language (without
gravity). Recall that in ordinary QM, the propagator for
a single nonrelativistic particle propagating from state
jψαðt1Þi≡ jαi to state jψβðt2Þi≡ jβi is

Koðβ; αÞ ¼
Z

d3x1d3x2hβjx2iKoð2; 1Þhx1jαi; ð43Þ

where Koð2; 1Þ≡ Koðx2;x1; t2; t1Þ is just the one-particle
propagator between spatial positions x1 and x2 given in
Eq. (5) of Sec. II.
To write this in CWL language one defines, for the nth

tower, a set of n different spatial coordinates xðnÞ
k1 and xðnÞ

k2 ,
these being the initial and final coordinates for the kth
particle line. We then integrate separately over each of the

inner products ψβðxðnÞ
k2 ; t2Þ ¼ hβjxðnÞ

k2 i and ψαðxðnÞ
k1 ; t1Þ ¼

hxðnÞ
k1 jαi, for each of these n lines, to get the final answer;

i.e., we write

Koðβ; αÞ ¼ lim
N→∞

�YN
n¼1

�Yn
k¼1

Z
d3xðnÞ

k1

Z
d3xðnÞ

k2 hβjxðnÞ
k2 i

× KoðxðnÞ
k2 ;x

ðnÞ
k1 ; t2; t1ÞhxðnÞ

k1 jαi
��

αN
: ð44Þ

The formulas (43) and (44) for Koðβ; αÞ are of course
identical [indeed, they are just the application of Eq. (33) to
the case of a nonrelativistic particle]. However one can
imagine two different graphical representations of this
propagator, shown in Fig. 7. On the one hand one collects
the end points of all the paths into the same coordinates
x1ðt1Þ and x2ðt2Þ [see Fig. 7(b)]; whereas in the correct
CWL treatment the different paths have independent end
points [see Fig. 7(c)].
We see that it is important, in generalizing ordinary QM

or QFT expressions for propagators to CWL theory, to keep
the 2n end points or end fields in the nth tower independent
from each other.
For completeness we give the complete expressions for

CWL propagators for both a particle and scalar field, now
including the functional integration over the metric. For
ordinary particle propagation between states jαi≡ jψαi
and jβi≡ jψβi we define
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Z jβi

jαi
DqðnÞk ≡

Z
d3xðnÞk1

Z
d3xðnÞk1 hβjxðnÞk1 ihxðnÞk2 jαi

Z
xðnÞk1

xðnÞk1

DqðnÞk ;

ð45Þ

in which a set of n different paths fxðnÞk g propagates in four-
dimensional spacetime, in the nth tower, between end

points xðnÞk1 and xðnÞk2 , respectively. In the same way, for
propagation between scalar field functionalsΨα andΨβ, we
define

Z
Ψβ

Ψα

DϕðnÞ
k ≡

Z
DΦðnÞ

k2

Z
DΦðnÞ

k1 hβjΦðnÞ
k2 ihΦðnÞ

k1 jαi

×
Z

ΦðnÞ
k2

ΦðnÞ
k1

DϕðnÞ
k ; ð46Þ

in terms of a set of end fields ΦðnÞ
k1 and ΦðnÞ

k2 for the scalar

fields ϕðnÞ
k in the nth tower.

The CWL propagator between states jαi and jβi, for
either particle or a field, is then

Kðβ; αÞ ¼ lim
N→∞

�YN
n¼1

Knðβ; αÞ
�αN

; ð47Þ

where Knðβ;αÞ is produced from Knð2; 1Þ in (42) by
changing the integration limits according to either (45)
or (46), depending on whether we deal with a particle or
a field.

B. Graphical expansion of propagator

The structure of the CWL propagator KðΦ2;Φ1Þ is, of
course, rather peculiar. However, we can understand it
better by using it to generate a perturbative expansion inGN
in the same way that we did already for W; we now
outline this.

1. Graphical rules

From Eq. (42), and from Fig. 6, we see that a graphical
construction of the perturbation expansion for Kð2; 1Þ can
be accomplished by three steps as follows:

(i) For the contributionKn to the propagator, draw a set
of untethered lines between start and end points

ϕðnÞ
k ð1Þ and ϕðnÞ

k ð2Þ [see Fig. 6(b)]. These represent
the n different paths for the matter field (here a scalar
field). At this point we have not yet identified the
end points of the n different lines.

(ii) Now insert all possible gravitational interactions
between these n lines. This is done in accordance
with the usual Feynman rules for conventional
quantum gravity, since we are working inside a
specific tower, the nth tower (i.e., working with all
diagrams involving n paths for the ϕ-field). Exam-
ples are shown in Fig. 6(b).

(iii) Now tie together the end points of the n untethered
matter lines at their two end points, i.e., let

ϕðnÞ
k ð1Þ → Φ1 and ϕðnÞ

k ð2Þ → Φ2; ∀ n. We then
get graphs of the form shown in Fig. 6(c), contrib-
uting to Knð2; 1Þ. To get all graphs for Kð2; 1Þ, we
must then take the product over n, defined
in Eq. (42).

This procedure again defines a set of diagrammatic rules,
which we can use to represent high-order terms in a
perturbation expansion. One should not think of these
rules as producing conventional Feynman graphs; they do
not represent the propagation of n different fields, but
instead correlations between n paths, for a single field.
Moreover, we still have to perform the product over n,
which fundamentally changes the results, as we now see.

2. Structure of diagrams

Consider Fig. 8, which categorizes a representative
sample of untethered graphs for Kð2; 1Þ. Note first, that
none of the standard self-energy graphs, familiar from
conventional quantum gravity, contribute at all to Kð2; 1Þ.
Three of these self-energy graphs are shown in the top line
of the figure. The first of these makes clear what is
happening; the contribution of this graph is killed by the
graviton loop. By adding more gravitons we simply lower
the order in n still further; adding matter insertions into the
gravitons, or between them, does not help here, nor do
tadpole self-energy insertions help either, since they are
∼Oð1Þ (Note that such tadpoles only exist if the matter lines

� N

N

8

��(x1)

(a) (b)

(c)

x1x1

xk1
(n)

x2 x2

xk2
(n)

��(x1)

��({xk1
(n) })

��(x2) ��(x2)

��({xk2
(n) })*

**

�
n = 1

N

FIG. 7. Comparison two different ways of writing Koðβ; αÞ in
CWL representation. In (a) the propagator Koð2; 1Þ between
x1ðt1Þ and x2ðt2Þ is shown as a heavy line on the left; this
decomposes into the set of all paths (depicted as light lines)
between x1ðt1Þ and x2ðt2Þ, shown in (b) at right. The supports of
the inner products hx1jαi and hβjx2i are shown as patches. In (c),
which corresponds to Eq. (44), each different path contributing to

Koð2; 1Þ has a different set of end points fxðnÞ
k1 g and fxðnÞ

k2 g.
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represent fields—they do not exist if these lines represent
particle paths).
In graphs with a pair of matter lines (the second row of

Fig. 8), there is only one contribution ∼OðnÞ (this con-
tribution, and indeed all matter lines, can be decorated with
tadpoles). The other three graphs illustrate the same
principle, that any loops containing gravitons will kill
the contribution of the graph. Notice that in the fourth
graph, one factor of 1=n comes from the graviton self-
energy graph, and the other comes from the loop integration
involving the two graviton lines linking the matter lines.
The third row contains three graphs ∼OðnÞ, which all

therefore contribute to Kð2; 1Þ. They survive precisely
because they contain no loops nor single-matter line
self-interactions—only interactions between the three dif-
ferent matter lines are included. The last graph in this row is
∼Oð1Þ, with one graviton-containing loop. To see that this
graph is ∼Oð1Þ, note that V ¼ 1, I ¼ 4, and there are three
separate replica sums over the three different matter lines;
thus we get ∼Oðn1−4þ3Þ ¼ n0.
If we now go to step (iii) given above, and tie together the

ends of these untethered graphs to make diagrams for
Kð2; 1Þ, we see that these results are not changed. A
systematic study [59] of all contributions to Kð2; 1Þ,
incorporating an arbitrary of matter lines, shows that to
all orders in GN , the only graphs that survive to give a
contribution to Kð2; 1Þ in the n → ∞ limit are graphs with
no loops involving gravitons. There is however no
prohibition on matter loops in which no internal integration
over gravitons appears.
We now need to understand how to interpret all of these

results physically—the next three sections address this
question.

V. SOME EXACT RESULTS

In this section we obtain some exact results. We first
analyze, in Secs. VA and V B, the behavior of Q½J�, W½J�,
and Kð2; 1Þ at large N, i.e., containing a very large number
N of CWL-coupled paths. Remarkably, as N → ∞, so that
infinitely many paths interact with one another, the leading
term gives the exact result—the theory has an intrinsic
large-N limit. Without any graphical analysis, we then find
that (i) CWL theory yields Einstein’s equation of motion
for the metric field, with particular matrix elements of Tμν

as a source, and (ii) that the matter dynamics is quantum-
mechanical, but with CWL correlations, mediated by
gravity, between the matter paths.
Finally, in Sec. V C, we expand about flat space, and find

the form of Kð2; 1Þ in this weak field limit. This result is
used in the next section to discuss two-path experiments.

A. Large N analysis for Q½J�
Let us return to the level-n generating functionalQn. All

of the n matter integrals are identical, and we can formally
evaluate them to obtain

Qn½J� ¼
Z

DgeinSG½g�ðeiW0½Jjg�Þn

¼
Z

DgeinðSG½g�þW0½Jjg�Þ; ð48Þ

where we have omitted the superscript (n) on the
metric field g, since are only considering a single specific
tower—the nth tower. As before, W0½Jjg� is the connected
generating functional for conventional QFT on a fixed
background metric g. Thus, for a scalar field, W0½Jjg� ¼
−i logZϕ½gjJ�, with Zϕ½gjJ� ¼

R
DϕeiðSϕ½ϕ;g�þ

R
JϕÞ [com-

pare Eq. (9)].
We can now formally evaluate Eq. (48) using the

stationary-phase method. We expand the metric g about
a stationary point ḡJ satisfying

�
δSG½g�
δg

þ δW0½Jjg�
δg

�����
g¼ḡJ

¼ 0; ð49Þ

where we emphasize that JðxÞ ≠ 0 in general, so that ḡJ is
different from its J ¼ 0 value [60].
The quantity δgW0½Jjg� is related to the stress-tensor for

the matter,

δW0½Jjg�
δgμνðxÞ ¼ −i

Z½Jjg�
Z

Dϕ

�
iδSϕ½ϕ; g�
δgμνðxÞ

�
eiðSϕ½ϕ;g�þ

R
JϕÞ

¼ −
1

2
hTμνðxjgÞiJ; ð50Þ

where hTμν½xjg�iJ is the stress energy at point x, again when
there is an external current J coupled to the matter system.

O(1) O(1/n)

O(1) O(1)O(n) O(1/n)

O(n) O(n) O(n) O(1)

O(1)

FIG. 8. Untethered graphs contributing to Knð2; 1Þ for a scalar
field [compare Eq. (42) above]. The top row shows contribution
for a single untethered matter line; there are no contribution
∼OðnÞ. The second row shows contributions for two untethered
lines; the only graph ∼OðnÞ is the first one. The third row shows
three contributions ∼OðnÞ, and one contribution ∼Oð1Þ; there are
many other contributions ∼Oð1Þ; Oð1=nÞ, etc.
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It is important to emphasize here that for J ≠ 0,
hTμν½xjg�iJ is not a conventional expectation value, since
J generally takes on different values before and after the
insertion of the stress tensor. In fact, as we will see,
hTμν½xjg�iJ is in general complex unless J ¼ 0.
Since we also know that δgSG is proportional to the

Einstein tensor Gμν, according to

δ

δgμνðxÞ SG½g� ¼
1

16πGN
GμνðxÞ; ð51Þ

we then have what looks like a semiclassical form of
Einstein’s equation of motion, but now in the field JðxÞ,

GμνðḡJðxÞÞ ¼ 8πGNhTμν½xjḡJ�iJ; ð52Þ

where

GμνðḡJðxÞÞ ¼ RμνðḡJðxÞÞ − RðḡJðxÞÞḡμνJ ðxÞ ð53Þ

for the Einstein tensor, and ḡJ is here the solution to
Einstein’s equation of motion, in the presence of quantum
fields that are themselves sourced by JðxÞ.
We should note at this point the subtle issue of boundary

data for the Einstein equation of motion. In flat spacetime

QFT one avoids fixing boundary data by implementing
small imaginary time rotations in the path integral, which
effectively constructs a vacuum-vacuum transition ampli-
tude. in quantum gravity, however, the validity of the
Euclidean continuation is a lot less clear [62], and the
vacuum state is not known in general.
To make progress here we will again assume that the

defining functional integral is a representation of a pertur-
bative series for fluctuations about a solution to the vacuum
Einstein equation. For all calculations in the present paper,
which is primarily concerned with weak-field scenarios
relevant to lab-based experiments, this will be assumed to
be flat spacetime. The omission of boundary data in
Eq. (48), along with an iϵ-prescription, then represents a
vacuum-vacuum transition for metric fluctuations about flat
spacetime. When solving Eq. (49) one should then imple-
ment past boundary conditions describing asymptotically
flat spacetime devoid of incoming gravitational radiation—
this is actually always done implicitly when one chooses an
iϵ-prescription [63].
Let us now write g ¼ ḡJ þ n−

1
2h, and expand the effec-

tive action in powers of h about the stationary-phase
solution (thereby bringing out the behavior as a function
of n, while still leaving h dimensionless). Thus, we write

Qn½J� ¼ einðSG½ḡJ �þW0½JjḡJ �Þ
Z

Dh exp

�
i
X∞
m¼2

n1−m=2

m!

δm

δga1…δgam
ðSG½g� þW0½Jjg�Þjg¼ḡJ × ha1…ham

�
; ð54Þ

where, as before, we use the DeWitt notation for tensor
indices and spacetime coordinates. We have also omitted a
factor of n raised to a power coming from the Jacobian of
the integration variable change, because this factor will not
be linear in n after taking the logarithm of Qn.
We can now see that the classical prefactor in (54) is

actually the exact result. The term quadratic in ha in the
expansion in (54) is proportional to n0, and all higher
vertices are proportional to n to a negative power. We may
thus write the level-n generating functional as

Qn½J� ¼ einðSG½ḡJ �þW0½JjḡJÞ�þOðn0Þ; ð55Þ

and, referring back to Eqs. (38) and (39), we conclude that
the exponent in this equation is actually exact.
We thus arrive at a key result. After taking the product

over n and letting N → ∞, we see that the full CWL
generating functional can be written as

Q½J� ¼ eiðSG½ḡJ �þW0½JjḡJ �Þ; ð56Þ

where, again, W0½Jjg� ¼ −i logZϕ½Jjg� is the conventional
connected generating functional for a scalar field on a

background metric g, and ḡJ self-consistently solves the full
semiclassical Einstein equation, Eq. (52). The correspond-
ing result for W½J� is just

W½J� ¼ SG½ḡJ� þW0½JjḡJ�: ð57Þ

This result can also be written in the form

Q½J� ¼ eiSG½ḡJ �
Z

DϕeiðSϕ½ϕ;ḡJ �þ
R

JϕÞ: ð58Þ

We see that the path replicas have been effectively
integrated out, leaving behind a single functional integral
for the matter field propagating on a metric ḡJ which is self-
consistently determined from Eq. (52).
In the next section we will discuss the interpretation of

this remarkable result. Before doing so, we turn to the
propagator Kð2; 1Þ.

B. Large N analysis for Kð2;1Þ
Starting from our key result (42) for Kð2; 1Þ, we wish

again to do an expansion about the stationary phase saddle
point. We first note that in the absence of any gravitational
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dynamics (so that we work on a fixed background g0), the
conventional propagator for a scalar field between con-
figurations Φ1ðxÞ and Φ2ðxÞ is just

K0ðΦ2;Φ1jg0Þ ¼
Z

Φ2

Φ1

DϕeiSϕ½ϕ;g0�; ð59Þ

[compare Eq. (18)]. We write this as

K0ðΦ2;Φ1jg0Þ ¼ eiψ0ðΦ2;Φ1jg0Þ: ð60Þ

When then switch on the gravitational dynamics by
integrating over the metric. The conventional propagator,
now between configurations ðΦ1ðxÞ; hab1 Þ and ðΦ2ðxÞ; hab2 Þ,
is given precisely by Eq. (18), which again we write as
Kð2; 1Þ in abbreviated notation. On the other hand we will
write the full CWL propagator as

Kð2; 1Þ≡KðΦ2; hab2 ;Φ1; hab1 Þ → eiΨð2;1Þ; ð61Þ

where the phase Ψð2; 1Þ≡ΨðΦ2; hab2 ;Φ1; hab1 Þ has as its
arguments both the matter and metric configurations on the
hypersurfaces Σ1 and Σ2.
Now, in the same way as before, we expand the phase

Ψð2; 1Þ directly in terms of the tower contributions
Knð2; 1Þ to the propagator [recall Eq. (42)], as

Ψð2; 1Þ ¼ −i lim
N→∞

�
αN

XN
n¼1

logKnð2; 1Þ
�
: ð62Þ

Again, it suffices to have a stationary phase result for
Knð2; 1Þ. As before, we can then write the level-n propa-
gator in the form

Knð2; 1Þ ¼
Z

2

1

DgeinðSG½g�þψ0ð2;1jgÞÞ; ð63Þ

where
R
2
1 Dg refers to metric propagation between hab1 and

hab2 , and we have suppressed the Faddeev-Popov determi-
nant in this equation.
We can now find the exact result for Kð2; 1Þ. Since

αN ∼ N−2, we need the log ofKn to give a quantity linear in
n. Then

P
N
n logKn yields a factor proportional toP

N
n¼1 n ¼ α−1N ∼ N2. Thus in evaluating the path integral

for Knð2; 1Þ we need only retain the part scaling as eOðnÞ,
and we get

Knð2; 1Þ ¼ einðSG½ḡ21�þψ0ð2;1jḡ21ÞÞþOðn0Þ; ð64Þ

where ḡ21 is the metric satisfying the conditional stationary
phase requirement

δ

δg
ðSG½g� þ ψ0ð2; 1jgÞÞjg¼ḡ21 ¼ 0; ð65Þ

i.e., it is the solution to this differential equation with the
metric ḡðxÞ subject to the boundary condition that the
induced metrics on Σ1 and Σ2 are hab1 and hab2 .
Substituting (64) into Eq. (62), and taking the limit

N → ∞, we obtain

Kð2; 1Þ ¼ eiðSG½ḡ21�þψ0ð2;1jḡ21ÞÞ; ð66Þ

up to an overall normalization. This is our key result for the
CWL propagator. We see it has the same semiclassical form
as the generating functional; and again, this result is exact.
Equation (65) plays a role analogous to (50) and (52)

above, but must be understood somewhat differently. Let us
look first at the second term,

δ

δgμνðxÞψ0ð2; 1jgÞ ¼ −i
δ

δgμνðxÞ logK0ð2; 1jgÞ

¼ −i

R
2
1 DϕeiSϕ½ϕjg�i δSϕ½ϕ;g�δgμνðxÞR

2
1 DϕeiSϕ½ϕ;g�

¼ −
1

2

hΦ2jTμν½xjg�jΦ1i
hΦ2jΦ1i

; ð67Þ

which we think of as a conditional stress energy, i.e., the
stress energy TμνðxÞ, subject to the condition that ϕðxÞ
propagates between Φ1 on Σ1 and Φ2 on Σ2 on a back-
ground metric g. It is essentially a matrix element of TμνðxÞ
between the states jΦ1i and jΦ2i.
Henceforth we will write this quantity as

hΦ2jTμν½xjg�jΦ1i
hΦ2jΦ1i

≡ χTμνð2; 1jx; gÞ: ð68Þ

It is clear from its definition that in general it is not real but
complex.
Consider now the first term in (65). Using (51) above, we

then have

Gμνðḡ21ðxÞÞ ¼ 8πGN χTμνð2; 1jx; ḡ21Þ: ð69Þ

This equation is completely analogous to the Einstein
equation of motion (52), however, since χTμνð2; 1jx; gÞ is
generally complex, so too is Gμνðḡ21ðxÞ.
At first glance we seem to have derived a somewhat

generalized form of the Einstein equation, with a complex
Einstein tensor and complex saddle points. The topic of
complex spacetimes has a long history, both in classical
relativity [64] and in quantum gravity [65], and is con-
troversial; complex saddles in quantum gravity are not
completely understood [66,67].
To understand the complex saddles in CWL theory, it is

important to note that the quantity χTμνð2; 1jx; gÞ actually
has a form which generalizes, to quantum gravity, the
notion of a weak-valued measurement, first introduced in

JORDAN WILSON-GEROW and P. C. E. STAMP PHYS. REV. D 105, 084015 (2022)

084015-16



nonrelativistic quantum measurement theory by Aharonov
et al. [68], and of great current interest [69]. One can then
think of χTμνð2; 1jx; gÞ as an expectation value of TμνðxÞ, but
one conditional on the preselection and postselection of
states jΦ1i and jΦ2i respectively for ϕðxÞ. This quantity is
in general complex.
To interpret (69) it is then essential, as for weak-valued

measurements, to look at how it works out in practice—
complex saddle points themselves are of course not
observable. Thus one needs to analyze either thought
experiments or potential real experiments, which we do
in the next two sections.
Note that the solution of Eq. (69) yields ḡ21. It is obviously

a very nonlinear equation, with the usual classical non-
linearity already inherent in the Einstein tensor, plus the
further nonlinearity introduced by the backreaction of the
quantum matter. We study the weak-field limit in the next
subsection, where we will begin to see the implications of
having complex-valued χTμνð2; 1jx; gÞ and Gμνðḡ21ðxÞÞ.
As in the previous section, we can write the result (66)

slightly more explicitly as

Kð2; 1Þ ¼ eiSG½ḡ21�
Z

Φ2

Φ1

DϕeiSϕ½ϕ;ḡ21�: ð70Þ

Again one finds an effective theory in terms of a single set
of paths for the matter field, wherein the matter propagates
on a background metric which is solved for self-
consistently from Eq. (69).
To conclude: we see that both the connected generating

functional W½J� and the propagator Kð2; 1Þ are given
exactly by the semiclassical results in (56) and (66), (70)
respectively. Clearly one can derive similar results for other
field theoretical quantities in CWL theory.

C. Form of the weak-gravity CWL propagator

We begin from our nonperturbative result (66)
for Kð2; 1Þ, in which the metric ḡ21 satisfies Eq. (69).
We wish to perform a weak-field analysis, writing
ðḡ21Þμν ¼ ημν þ hμν, where ημν represents flat spacetime
and jhμνj is small (we assume that we can ignore or
otherwise subtract off the effect of other fields coming
from the rest of the apparatus, the lab, etc.). We will see
that, even in weak field, both Gμνðḡ21ðxÞÞ and χTμνð2; 1jxÞ
have imaginary parts.
Since the flat spacetime metric is a solution to the

vacuum Einstein equation and has vanishing action, we
immediately have that

SG½η� ¼
δ

δgμνðxÞ
SG½g�jg¼η ¼ 0: ð71Þ

In this section we will expand out the compact DeWitt
notation, to be explicit about spacetime indices, coordi-
nates, and integrations. We will also assume our system to
be a particle with coordinate q propagating between
spacetime points x1 and x2; in Sec. VII we will briefly
discuss the case of a real mass having finite spatial extent.
We also assume that the particle is propagating between
two time slices, x0 ¼ t1 and x0 ¼ t2.
We begin by expanding, in powers of hμν, the total phase

Ψð2; 1Þ ¼ SG½ḡ21� þ ψ0ðx2; x1jḡ21Þ which appears in the
exponent of Kð2; 1Þ. We will then insert the solution to get
the linearized version of the propagator Einstein equation.
Expanding the phase argument in Kð2; 1Þ we have

Kðx2; x1Þ ¼ eiSG½η�þiψ0ðx2;x1jηÞ exp
�
i
Z

2

1

d4y
δ

δgμνðyÞ
ðSG½g� þ ψ0½g�Þjg¼ηhμνðyÞ

�

× exp

�
i
2

Z
2

1

d4y
Z

2

1

d4y0
δ

δgμνðyÞ
δ

δgσρðy0Þ
ðSG½g� þ ψ0½g�Þjg¼ηhμνðyÞhσρðy0Þ

�
exp½Oðh3Þ�; ð72Þ

where we are integrating over the spacetime region bounded by the time slices y0 ¼ t1 and y0 ¼ t2.
This expression can be simplified considerably. First, we use (71) to eliminate several terms. Then, from the linearized

Einstein equation, it will be obvious that δ
δgψ0½g�jg¼η ¼ OðhÞ, so that can drop the matter term in the second line of (72), as it

gives a result ∼Oðh3Þ. The resulting CWL propagator for a system with weak gravitational fields is then

Kðx2; x1Þ ¼ eiψ0ðx2;x1jηÞ exp
�
i
Z

2

1

d4y
δψ0½g�
δgμνðyÞ

����
g¼η

× hμνðyÞ
�

× exp

�
i
2

Z
2

1

d4y
Z

2

1

d4y0
δ2SG½g�

δgμνðyÞδgσρðy0Þ
����
g¼η

hμνðyÞhσρðy0Þ
�
exp½Oðh3Þ�; ð73Þ

where the prefactor in this expression is just the flat spacetime propagator for the particle in the absence of gravity [compare
Eq. (60)],
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eiψ0ðx2;x1jηÞ ¼ K0ð2; 1jηÞ≡ K0ð2; 1Þ: ð74Þ

The expression (73) simplifies one step further if one
inserts into it a formal expression for the linearized semi-
classical Einstein equation, which we write as

�Z
d4y

δ2SG½g�
δgμνðxÞδgσρðyÞ

hσρðyÞ þ
δψ0½g�
δgμνðxÞ

�����
g¼η

¼ 0; ð75Þ

This then gives the required result for the propagator
Kð2; 1Þ of the particle in CWL theory, in this linearized
approximation, as

Kð2; 1Þ ¼ K0ð2; 1ÞeiΘ21 ; ð76Þ

where the linearized phase Θ21 is

Θ21 ¼
1

2

Z
2

1

d4y
δψ0½g�
δgμνðyÞ

����
g¼η

hμνðyÞ; ð77Þ

and we have dropped terms ∼Oðh3Þ in this phase.
All that remains is to explicitly solve the linearized

semiclassical Einstein equation. This calculation is stan-
dard in classical gravity [70]; the quantum discussion here
assumes a Faddeev-Popov gauge-fixing procedure [48],
and we will fix the gauge here to be harmonic, so that the
linearized Einstein tensor is

Gð1Þ
μν ðηþ hÞ ¼ 1

2
∂2h̄μν0; ð78Þ

with h̄μν ¼ hμν − 1
2
ημνh. Notice that strictly speaking the

field h̄μνðxÞ also depends on the end points x1 and x2 in
Kð2; 1Þ and χTμνð2; 1jxÞ. To avoid clutter we suppress the
indices 1,2 in h̄μνðxÞ.
Linearizing the matter side of the Einstein equation fixes

the source as equal to the flat-spacetime stress tensor, so
that (69) becomes

∂2h̄μνðxÞ ¼ 16πGNχ
T
μνð2; 1jxÞ; ð79Þ

where χTμνð2; 1jxÞ is given for a particle by

χTμνð2; 1jxÞ ¼
R
x2
x1
DqeiS½q�TμνðxÞR
x2
x1
DqeiS½q�

: ð80Þ

Inverting the differential operator in (79), we get the
retarded flat spacetime Green’s function for hμνðxÞ as

Goðx; yÞ ¼
δððx0 − y0Þ − jx⃗ − y⃗jÞ

jx⃗ − y⃗j ð81Þ

yielding the solution

hμνðxÞ ¼ −4GN

Z
d4y Goðx; yÞχTμνð2; 1jxÞ: ð82Þ

Inserting this solution into (76) and using (77), we obtain
the final expression for the weak-field CWL propagator in
the form of Eq. (76), with the phase Θ21 given by

Θ21 ¼ GN

Z
d4y

Z
d4y0 × χTμνð2; 1jyÞGoðy; y0ÞχTμνð2; 1jy0Þ:

ð83Þ

This expression is valid for any particle trajectory. For a
slow-moving particle (as for any lab experiment involving
massive objects) we go to the nonrelativistic limit. Then
T00 dominates Tμν, and it moreover is not changing
appreciably on relativistic time scales. We can then simplify
the phase to

Θ21 →
1

2
GN

Z
t2

t1

dt
Z

d3rd3r0
1

jrðtÞ − r0ðtÞj
× χT00ð2; 1jr; tÞχT00ð2; 1jr0; tÞ; ð84Þ

involving simple three-space integrations over r and r0,
along with integration between the two time slices.
Now, in spite of appearances to the contrary, the

expressions in (83) and (84) are not the same as the
standard result for the lowest order self-energy correction
to the propagator in quantum gravity. This is because these
expressions are written in terms of χTμνð2; 1jyÞ rather than
TμνðyÞ. This will become very clear in the next section.
To compute (84), we simply need to compute the two

standard quantum mechanics quantities

Z
x2

x1

DqeiS½q� and
Z

x2

x1

DqeiS½q�T00ðxjqÞ; ð85Þ

taken along the path q followed by the system, and then
assemble the results to get Kðx2; x1Þ. We do this in the next
section for the two-path system.
Before proceeding to a specific application of these

results, let us first comment on the limitations of this weak-
field linearized approximation. We notice that the source χT

in Eq. (80) no longer depends on the dynamical metric. We
can contrast this with the full source in Eqs. (67), (69),
where the matter propagates on a metric which is solved for
self-consistently; in the linearized approximation, the
matter path integrals are instead evaluated in flat spacetime.
This is of course completely analogous to the situation in

classical gravity when one linearizes Einstein’s equation;
truncating the expansion to linear order will cause the
matter to source a gravitational field, but it will not respond
to this field. As in classical linearized gravity, the linearized
approximation discussed here will fail when it is no longer
consistent to ignore the backreaction of the gravitational
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field onto the propagating matter. We will discuss this
further when interpreting the two-path results in the next
section.

VI. TWO-PATH EXPERIMENT

The standard two-path setup is shown in Fig. 9. This is
the same thought experiment as that considered by
Feynman [3] and Kibble [6] in their original discussions
of low-energy quantum gravity. In this low-energy context,
the two-path set-up has been discussed repeatedly over the
years [3,6,32,71–74]; and analogous real experiments have
been the topic of much discussion [75].
A proper treatment of the two-path system includes the

dynamics of the slit system M2, itself of mass M2, along
with the screen systemMS with massMS, to get the correct
coupling of all the masses to gμνðxÞ. We ignore these details
here; it is easy to calculate their effects for a specific
geometry, at least in weak field gravity [76,77].
One can also perform “which path” measurements on

this system, designed to probe the position of Mo. To do
this one can, e.g., introduce a test mass m̄ (as in a
Cavendish experiment) to monitor the position of Mo.
Any real measurement is of course more likely to use
optical probes to determine the path followed by Mo.
In Fig. 9 the single path shown passing through a given

slit actually represents the set of all paths for the mass
leaving point 1, and then passing through this slit on its way
to point 2. One can unambiguously separate the two
different classes of path by introducing surfaces of final
crossing of the paths [78]. The set of all paths labeled by A
is then defined as the set of all paths originating at the
source 1 and terminating on MS at point 2, whose last
passage through the slit system M2 is through slit A.
In what follows we assume the paths contributing to the

propagator are ‘channeled’ by a two-path potential, and so

cluster very strongly about the two relevant paths; this will
be the case anyway, even in conventional QM, for large
masses [72]. This obviates the need to employ the formal
techniques described in Ref. [78].
To actually do a two-path experiment is very difficult

for a large mass, because of the strong environmental
decoherence effects then acting on Mo (the largest mass
for which two-path experiments have been done so
far [21] is ∼34; 000D, where 1D≡ 1 Dalton is the atomic
mass unit). However here we will only be interested in
what theory predicts in the absence of environmental
decoherence.
In this section we do three things. First, in Sec. VI A, we

calculate the propagator for the two-path system in conven-
tional quantum gravity. In Sec. VI B we find the result for
CWL theory, and finally, in Sec VI C, we see what is
predicted by semiclassical gravity. In all three cases we
work in the weak-field regime, i.e., where the gravitational
field sourced by Mo is weak (which will be the case in any
experiment). The differences between the three results are
very illuminating.

A. Propagator in conventional quantum gravity

In a conventional QM analysis of the two-path system,
one has the choice between evaluating the propagator
Kð2; 1Þ for the system alone, or including the test mass
m̄ as well (or some other measurement system in its place).
In this latter case, one can either:

(i) treat the test mass m̄ as a quantum system, so that its
coordinate entangles with the position of Mo, put-
ting the pair of systems in a state which we can write
schematically as

Ψ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 þ β2

p ðαjAMo
Am̄i þ βjBMo

Bm̄iÞ; ð86Þ

or alternatively
(ii) treat the test mass m̄ as a classical system. In this

case, in standard QM the test mass acts as a
measuring device, and over some time period the
coordinate state of the mass Mo is supposed to
collapse onto one or other of the paths A or B.

As noted in the introduction, discussion of the meas-
urement process in CWL theory is rather lengthy. Thus in
what follows we will largely ignore the measurement
apparatus, and simply calculate the propagator.

1. Long-wavelength calculation

In the two-path system, as just discussed, we assume
that the paths for the particle cluster around one or other of
two paths A and B. There are thus two semiclassical
paths qðαÞ, with α ¼ fA;Bg labeling these paths, and there
will be fluctuations around these paths which we will
assume small.

A

B

2

1

M o

FIG. 9. A schematic two-slit experiment. A mass Mo, begin-
ning from point 1, passes through a two-slit system M2, and is
then incident on a screen MS at point 2. The two paths are
labeled by A and B. One can also introduce a test mass which
interacts gravitationally with Mo (see text for details).
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If we completely ignore all gravitational fields, the ‘bare’
flat space propagator K0ð2; 1ÞðαÞ [cf. Eq. (74)] along each
of these paths can be written

KðαÞ
0 ð2; 1Þ ¼ ΩðαÞ

o eiS
0
21
½qðαÞjη�; ð87Þ

where the prefactors ΩðαÞ
o are van Vleck fluctuation

determinants representing fluctuations around the paths
qðαÞ. Then QM predicts that

K0ð2; 1Þ ¼
XA;B
α

ΩðαÞ
o eiS

0
21
½qðαÞjη�: ð88Þ

This expression can be simplified if we suppose that the
small oscillation frequencies in (87) are the same for each
path, i.e., that ΩðαÞ

o → Ωo. Defining sum and difference
actions as

S̄021 ≡ 1

2
ðS021½qðAÞ� þ S021½qðBÞ�Þ

ΔS21 ≡ 1

2
ðS021½qðAÞ� − S021½qðBÞ�Þ ð89Þ

we have

K0ð2; 1Þ ¼ 2ΩoeiS̄
0
21 cosðΔS21Þ: ð90Þ

In what follows we will often assume this simplification,
which would be fairly accurately obeyed in many two-path
experiments.
We assume that the field deviation hμνðxÞ is small (we

will return to this assumption below). We also assume that
hμνðxÞ will vary slowly, on a spatial scale of order the two-
path system size, and a timescale comparable to the system
traversal time for the particle. These scales are ≫ than the
wavelength and inverse frequency of the particle, even for a
microscopic particle like an electron, unless it is moving at
very low velocity. For a more massive system the difference
is huge [72].
This suggests we use a long-wavelength eikonal

approximation to represent the QM weak field propagator

KðαÞ
0 ð2; 1jhÞ along the paths qðαÞ. For low energies, this can

be done using standard methods developed for both
relativistic and nonrelativistic systems [79–81]. For the
leading order we write

KðαÞ
0 ð2; 1jhÞ ≈ e−

i
2

R
2

1
d4xhμνðxÞTðαÞ

μν ðxÞKðαÞ
0 ð2; 1Þ; ð91Þ

where KðαÞ
0 ð2; 1Þ is given by (87) above, and TðαÞ

μν ðxjqðαÞÞ is
just the stress tensor at point x when the particle follows the
αth path qðαÞ between the end points, i.e.,

TðαÞ
μν ðxjqðαÞÞ ¼ Mo

Z
dsuðαÞμ ðsÞuðαÞν ðsÞδð4Þðx − qðαÞðsÞÞ;

ð92Þ

in which uðαÞμ ðsÞ≡ dqðαÞμ ðsÞ=ds is the four-velocity for the
particle.
If this lowest-order eikonal form is accurate, we can then

write the weak field two-path QM propagator as

K0ð2; 1jhÞ ¼
XA;B
α

e−i
R

2

1
d4xhμνðxÞTðαÞ

μν ðxÞKðαÞ
0 ð2; 1Þ ð93Þ

using the shorthand TðαÞ
μν ≡ TðαÞ

μν ðqðαÞjxÞ.
To calculate K0ð2; 1Þ in conventional quantum gravity,

we then integrate over the fluctuation field hμνðxÞ. Since
these fluctuations are small, we can simply write

Kð2; 1Þ ¼
Z

Dhe
1
2

R
d4x∂μh∂μhK0ð2; 1jhÞ; ð94Þ

with K0ð2; 1jhÞ taking the two-path form just given
in Eqn. (93).

2. Result for propagator

The path integration over hμνðxÞ in (94) is independent of
the sum over the pair of paths in (93). Carrying out the
functional integration, and defining the flat-space graviton
propagator as

Dμνλσðx; x0Þ ¼ Goðx; x0Þ½ημληνσ þ ημσηνλ − ημνηλσ�; ð95Þ

where Goðx; x0Þ was defined in Eq. (81), we then get the
result for the particle propagator as a simple sum over
paths,

Kð2;1Þ¼
XA;B
α

KðαÞ
0 ð2;1Þei

2

R
d4x

R
d4x0TμνðxjqðαÞÞDμνλσðx;x0ÞTλσðx0jqðαÞÞ:

ð96Þ

This conventional result just involves a self-energy
correction to each path, which we represent in the usual
way by the sum of the two Feynman diagrams shown in
Fig. 10. These diagrams represent the lowest-order
terms coming from the exponent in (96). There are no
diagrams corresponding to the CWL interpath correlations
in Fig. 1.
If we ignore the very small imaginary part ofR
TðαÞDTðαÞ, and again assume that ΩðαÞ

o → Ωo, we simply
end up with a renormalized version of K0ð2; 1Þ for the
propagator, as

K0ð2; 1Þ ¼ 2ΩoeiS̄
ðRÞ
21 cosðΔSðRÞ21 Þ; ð97Þ

JORDAN WILSON-GEROW and P. C. E. STAMP PHYS. REV. D 105, 084015 (2022)

084015-20



where

S̄ðRÞ21 ¼ S̄021 þ
1

2

Z
ðTADTA þ TBDTBÞ;

ΔSðRÞ21 ¼ ΔS21 þ
1

2

Z
ðTADTA − TBDTBÞ; ð98Þ

and where
R
TαDTα refers to the integral in the exponent of

(96) for a particle moving on the αth path between 1 and 2.

B. CWL propagator for the two-path system

Turning now to CWL theory, we will proceed as follows.
We first find an expression for the conditional stress energy
χTμνð2; 1jxÞ, as defined in Eqs. (68), (80), in the weak-field
regime. Then, to get Kð2; 1Þ, we substitute this result into
Eq. (84) for the phase in Kð2; 1Þ.

1. Long-wavelength calculation for Kð2;1Þ
Recall from Eq. (67) that

2
δψ0ð2; 1jgÞ
δgμνðxÞ ¼ −χTμνð2; 1jx; gÞ; ð99Þ

where, as before, ψ0ð2; 1jgÞ is the phase for the particle in a
fixed background. In the weak-field regime we have

χTμνð2; 1jxÞ ¼ −2
δψ0ð2; 1jhÞ
δhμνðxÞ jh¼0: ð100Þ

We may now write a long-wavelength result for the
conditional stress-energy propagator χTμνð2; 1jxÞ, starting
from Eq. (100). Taking the differential of (93) with respect
to hμν, we get

χTμνð2;1jxÞ¼
TðAÞ
μν ðxÞKðAÞ

0 ð2;1ÞþTðBÞ
μν ðxÞKðBÞ

0 ð2;1Þ
KðAÞ

0 ð2;1ÞþKðBÞ
0 ð2;1Þ

; ð101Þ

in which the numerator K0 ¼ KA
0 þ KB

0 normalizes the
propagator [cf. Eq. (80)].
This expression can be evaluated straightforwardly, and

reduces to

χTμνð2; 1jxÞ ¼
1

2

h
ðTðAÞ

μν ðxÞ þ TðBÞ
μν ðxÞÞ þ iðTðAÞ

μν ðxÞ

− TðBÞ
μν ðxÞÞ tan ðΔS21Þ�; ð102Þ

which is complex. As we have seen, a complex χTμνð2; 1jxÞ
implies a complexGμνðḡ21ðxÞÞ [cf. Eq. (69)]. In the absence
of any phase information here (i.e., no phase interference
between the paths) the imaginary part of χTμνð2; 1jxÞ is zero.
Continuing on, we insert (102) into (84) to find the final

form of the two-path propagator Kð2; 1Þ. The prefactor
K0ð2; 1Þ is as before [cf. Eq. (90)]; for the phase term we

simplify the notation and write TðαÞ
00 ðr; tÞ → Tα and

TðαÞ
00 ðr0; tÞ → T 0

α, respectively. Then, inserting our result
for χT ð2; 1jxÞ into Eq. (84), we have

Θ21¼
GN

4

Z
t2

t1

dt
Z

d3rd3r0

jr−r0j
��

ðTAT 0
AþTBT 0

BÞð1− tan2ðΔS21ÞÞþ2
TAT 0

B

cos2ðΔS21Þ
�
þ2iðTAT 0

A−TBT 0
BÞtanðΔS21Þ

	
; ð103Þ

i.e., this phase is complex. Obviously we can absorb
this imaginary part of the phase into the prefactor, and
write

Kð2; 1Þ ¼ Að2; 1ÞeiΦ21 ; ð104Þ

where we have

Að2; 1Þ ¼ 2Ωo cosðΔS21Þ exp
�
−
GN

2

Z
t2

t1

dt
Z

d3rd3r0

jr − r0j

× ðTAT 0
A − TBT 0

BÞ tanðΔS21Þ
	

ð105Þ

(a) (b)

A B BA

2 2

1 1

FIG. 10. The two lowest-order diagrams (a) and (b) contributing
to the propagator Kð2; 1Þ in Eq. (96), calculated in a long-wave-
length weak-field treatment of conventional quantum gravity.
There are no interactions between the two separate paths A and B.

PROPAGATORS IN THE CORRELATED WORLDLINE THEORY OF … PHYS. REV. D 105, 084015 (2022)

084015-21



Φ21 ¼ S̄o21 þ
GN

4

Z
t2

t1

dt
Z

d3rd3r0

jr − r0j
�
ðTAT 0

A þ TBT 0
BÞ

× ð1 − tan2ðΔS21ÞÞ þ
ðTAT 0

B þ T 0
ATBÞ

cos2ðΔS21Þ
�

ð106Þ

for the renormalized prefactor and phase respectively, and
with K0ð2; 1Þ given by Eq. (90).
Before interpreting these results, note that they depend on

two approximations, both of which are questionable, viz.,
(i) The approximation of a point particle used here

breaks down for any extended mass. As we discuss in more
detail in Sec. VII, even for objects of nanometer size the
effective interaction between CWL paths is no longer of
singular 1=jr − r0j form as jr − r0j → 0; for objects exceed-
ing ∼Oð102Þ nm in size it is quite different.
(ii) The assumption of weak fields. As we shall see

immediately below, this can fail. In this paper we will not
try to go beyond this approximation, although the tech-
niques developed by Fradkin [79–81] could be used to
do so.

2. Interpretation of CWL results

The different terms in (105) and (106) come either from
self-interaction of the mass along the same set of paths, or
from interactions across paths, i.e., between a path along A
and another along B. These two contributions are shown at
lowest order in GN in Fig. 11. Self-interactions along a
specific path [cf. Fig. 11(a)] renormalize the action along
this path; the renormalization of the prefactor fromK0ð2; 1Þ
to Að2; 1Þ involves such a term.
More interesting is the effect of the attractive cross

interactions between paths A and B, which we will
reinterpret in the next subsection in the context of ‘path
bunching’, caused by the mutual attraction of paths [12,17].

These cross terms are examples what we showed in
Fig. 1(b) at the beginning of this paper.
Formally, the point is that while we are exponentiating

the classical action in Eqs. (56) and (66), so that the
spacetime metric is just the classical solution to the Einstein
equation, the matter term in these equations still represents
the full quantum-mechanical matter path integrals [com-
pare, e.g., Eqs. (59) and (60)].
Thus, if we denote by hḡiAB the particular solution for the

metric to our two-path problem, and then substitute hḡiAB
back into our expression (66) for the CWL propagator, we
get a result for the full CWL propagator of schematic form

Kð2; 1Þ ¼ eiSG½hḡiAB�
XA;B
α

eiSM ½qðαÞjhḡiAB� ð107Þ

in which the gravitational term is just the path integral for
the classical action SG½hḡiAB�, integrated along the classical
path in configuration for a metric field hḡiAB sourced by
both matter paths; and the matter term sums over the two
matter paths, in the presence of the same background metric
field hḡiAB. Thus the matter is still propagating quantum
mechanically.
Let us now look in more detail at our results (104)–(106)

for Kð2; 1Þ. Consider first their dependence on the relative
phase ΔS21. We note that the imaginary part of χTμνð2; 1jxÞ
vanishes when ΔS21 ¼ 2nπ for integer n—precisely when
the two paths interfere constructively. For this case of
constructive interference, χTμνð2; 1jxÞ is then a simple
average over the two paths.
We see that for constructive interference, the prefactor

Að2; 1Þ in Kð2; 1Þ is unrenormalized; however, this is not
true of the phase Φ21, which contains both intrapath and
interpath contributions. The last term in Φ21 in Eq. (106),
when ΔS21 ¼ 2nπ, is precisely the Newtonian interaction
between paths considered in previous discussions of path-
bunching (see next section).
If we move away from the constructive interference

regime, so that ΔS ≠ 2nπ, several things happen. First, the
renormalization of the prefactor enters. In principle it can
suppress the propagator, but we notice that it is proportional
to the difference between the gravitational self-energies for
the two paths, which is zero for a symmetric two-path
system. If this difference is nonzero, then Eq. (105) predicts
that the renormalization will drive Að2; 1Þ rapidly to zero as
one approaches the destructive interference regime around
ΔS21 ¼ �π, because of the factor tanðΔS21Þ. This will
happen much faster than would happen without the
renormalization.
Turning now to the phase Φ21, the path-bunching term

grows like sec2ðΔS21Þ, and ultimately diverges when
ΔS21 ¼ �π, i.e., the phase becomes singular. The other
self-energy term inΦ21 is now modified by the − tan2 term;

(a) (b)

A B BA

2 2

1 1

FIG. 11. Graphical representation of the two different kinds of
terms in Eqs. (105) and (106) for Kð2; 1Þ. In (a) we show ‘self-
energy’ contributions involving pairings like TAT 0

A or TBT 0
B. In

(b) we show inter-path pairings like TAT 0
B, or T

0
ATB, which we

refer to as ‘path-bunching’ terms. In both (a) and (b), three-path
contributions to Kð2; 1Þ are shown.
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when ΔS21 ¼ �π=2 this term switches from positive to
negative, also diverging when ΔS21 ¼ �π.
These singular effects are interesting, as they appear to

signal specific locations in which our approximation
scheme breaks down. As mentioned in the previous section,
by linearizing the semiclassical Einstein equation we have
forgone the self-consistency of the full metric solution ḡ21.
Near the “bright fringes”, i.e., where ΔS21 ≈ 2nπ, the CWL
result simply describes the Newtonian interaction between
paths A and B. Since this is a small interaction, the linear
approximation is still valid. Near the “dark fringes” though,
i.e., where ΔS21 ≈ ð2nþ 1Þπ, we apparently have
an effective CWL interaction which is arbitrarily strong.
It is clear then, that the linear approximation is failing near
the dark fringes, since the result is no longer self-consistent.
We can start to anticipate what is happening here. In a

self-consistent calculation we must allow the matter to
respond to the gravitational field it sources. Near the bright
fringes the effective gravitational interaction is relatively
weak, so we expect the classical paths considered above to
remain approximately correct. Near the dark fringes
though, the effective gravitational interaction must signifi-
cantly alter the dynamics of the particle. Remarkably, this
then indicates that CWL path-bunching must become
relevant near the locations of dark fringes.
We expect that a self-consistent calculation will ensure

that the conditional stress energy does not diverge as the
end points (1,2) are varied. Note that a realistic calculation
will also involve an extended mass rather than the simple
particle approximation used here. Looking at the expres-
sion (101), we might then anticipate that in a proper CWL
calculation, we will see the prevention of total destructive
interference at the locations of the dark fringes. We leave
this for another paper.
To summarize: In CWL theory, the mutual attraction of

the paths causes a breakdown of the usual two-slit
interference result. The CWL interactions can lead to
divergent corrections of the conventional result, which will
need to be dealt with by a full self-consistent calculation.

C. Comparison with semiclassical gravity

Semiclassical gravity has a long history [82,83], which
has been repeatedly reviewed [84–88]. In this theory, one
writes the semiclassical equation of motion as

GμνðxjḡÞ ¼ 8πGNhTμν½xjḡ�i; ð108Þ

which is the same Eq. (52) as we found for GμνðxÞ in CWL
theory, in the special case that J ¼ 0.
The literature describing the predictions of semiclassical

theory appears to be quite confusing. In the original papers
of Kibble [6], Page and Geilker [71], and others, it was
argued that a semiclassical analysis of the two-path experi-
ment leads to an obvious violation of QM. Thus, suppose
the massMo is in a symmetric superposition of states paths

A and B. It has then been claimed (see, e.g., Ref. [6]), that
hTμν½xjḡ�i will source a field which is apparently generated
by the average of the two paths, i.e., by a source midway
between the two paths.
If one then employs a test mass m̄ (as in a Cavendish

experiment) to monitor the position of Mo, via the
gravitational interaction betweenMo and m̄, then according
to this argument, semiclassical theory predicts that it will
detect Mo at this midpoint.
This result is not entirely clear to us. If a particle which is

simultaneously following paths rAðtÞ and rBðtÞ, it will be in
a state

jψðtÞi ∼ 1ffiffiffi
2

p ½δðr − rAðtÞÞ þ δðr − rBðtÞÞ�: ð109Þ

Then one has

hT00ðxÞi ¼
hψ jT00ðxÞjψi

hψ jψi
¼ m

2
½δðr − rAðtÞÞ þ δðr − rBðtÞÞ�; ð110Þ

for the expectation value of T00ðxÞ.
On the other hand the argument just given indicates that

in semiclassical gravity one should instead have

hT00ðxÞi ¼ mδ

�
r −

1

2
½rAðtÞ þ rBðtÞ�

�
: ð111Þ

To clarify this question, let us expand the semiclassical
Eq. (108) for the particle in state jψi as

Gμνðgðr; tÞÞ ¼ 8πGNhψ jeiĤtTμνðrÞe−iĤtjψi
¼ 8πGNhψðtÞjTμνðrÞjψðtÞi; ð112Þ

which, using (109) for jψðtÞi, gives

Gμνðgðr; tÞÞ ¼ 4πGN

XA;B
α

hrαjTμνðrÞjrαi; ð113Þ

and this result is shown in Fig. 12(a).
To proceed further we again introduce the eikonal

expansion of the weak-field deviation hμνðxÞ; proceeding
as before we obtain the semiclassical propagator in the form
Kscð2; 1Þ ¼ AðscÞð2; 1ÞeiΦ21 , where the prefactor has the
unrenormalized form

AðscÞð2; 1Þ ¼ 2Ωo cosðΔS21Þ; ð114Þ

and the phase is now
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ΦðscÞ
21 ¼ S̄o21 þ

GN

4

Z
t2

t1

dt
Z

d3rd3r0

jr − r0j
× ½ðTAT 0

A þ TBT 0
BÞ þ ðTAT 0

B þ T 0
ATBÞ�; ð115Þ

when written out in full.
This result for the semiclassical propagator is clearly

different from both the conventional result in Eqs. (96)–
(98), and the CWL result in Eqs. (104)–(106).
Notice that we can get exactly the same result for

Kscð2; 1Þ by noting that in semiclassical theory, we only
expect the mean stress energy to be involved [compare
Eq. (108)], and so we naturally guess that χTμνð2; 1jxÞ will
have the form

χTμνð2; 1jxÞ ¼
1

2
ðTðAÞ

μν ðxÞ þ TðBÞ
μν ðxÞÞ: ð116Þ

If we now substitute this into (84) we again get back
(114) and (115) for KðscÞð2; 1Þ.
In this long-wavelength, weak-field approximation we

can depict these semiclassical results diagrammatically
[Figs. 12(b) and 12(c)]. The Hartree pairing of terms in
the phaseΦ21 in (115), in the form ðTA þ TBÞðT 0

A þ T 0
BÞ, is

what we would expect from a Schrödinger-Newton analysis
in the nonrelativistic regime. One gets not only self-
interactions along each path, but also interactions between
paths.
To summarize—one finds interpath interactions in both

semiclassical and CWL theory. The difference between the
results for the two theories comes entirely from the

imaginary part of χTμνð2; 1jxÞ in Eq. (102), which is absent
from the semiclassical result.

VII. THE PROPAGATOR Kð2;1Þ IN l2
P

APPROXIMATION

As we have just seen, a key feature in CWL theory is the
cross-correlation between paths. We would like to better
understand how this works. In this section we drop the
restriction to two-path system, and now look at the lowest-
order graphs in an expansion in powers of GN (i.e., in l2

P),
for Kð2; 1Þ. A preliminary analysis of Kð2; 1Þ to order l2

P
was given in a previous paper [12]. Here we justify the
previous work, in Sec. VII A, by showing that at order l2

P,
only one graph survives after we take the CWL product
over N—the same graph that was analyzed [12] in the
earlier work.
We then give, in Sec. VII B, a more detailed treatment of

the physics emerging in this approximation, in the non-
relativistic regime relevant to experiment, and show what
kind of dynamics emerges. Finally, in Sec. VII C, we
discuss what we might expect to happen in a more realistic
calculation, where a dissipative coupling to the background
environment is included, and where we go beyond the l2

P
approximation used here.
We emphasize before starting that CWL results obtained

in the l2
P approximation are mainly of methodological

interest. They allow simple calculations, which allow one to
explore the physics of path bunching, and estimate the
relevant energy and length scales in the problem. They
can also be related to calculations done in semiclassical
theory using, e.g., the Schrödinger-Newton approximation
[89,90]. However they have very obvious limitations [12],
which we will reiterate in this section.

A. Evaluation of graphs

In a previous paper [14] we derived all the terms
appearing up to ∼Oðl2

PÞ in the generating functional Q
and the correlation functions. We now extend this analysis
to the propagator Kð2; 1Þ, to the same order.
As before, we collect all the n matter field paths in the

nth tower into one big vector field, Φn ≡ fϕðnÞ
i ðxÞg, so that

S½Φ� ¼ P
n
i¼1 Sϕ½ϕðnÞ

i �, and use the contracted DeWitt-style
notation in which a, b, c label all internal indices (including
tower and replicated path indices), and subscripts denote
functional derivatives around a background field go.
Thus, e.g., Sa ≡ δS=δgajg¼go and the second derivative
Iab is the inverse of the graviton propagator, i.e.,
IacDcb ¼ δba. We will also use the three-graviton vertex
Ibcd ¼ δ3I=δgbδgcδgcjg¼go . Note that in this section we will
be more explicit about gauge-breaking terms, i.e., rather
than SG½g� we use I½g� as defined in Eq. (12). We will omit
the Faddeev-Popov ghost terms because they ultimately do

(a)

(b)

A B BA

2 2

1 1
(c)

x

FIG. 12. Results in semiclassical gravity theory. The graphical
representation of Eq. (113) is shown in (a). In (b) and (c) the two
contributions to the semiclassical propagator Kscð2; 1Þ are shown
for the two-path system; in (b) we see the intrapath term
proportional to TBT 0

B in the phaseΦ21 in Eq. (115), and (c) shows
one of the interpath cross terms in this equation.
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not contribute since graviton loops all vanish, so too do
ghost loops.
Let us now expand the propagator up to Oðl2PÞ, precisely

as was done for Qn and for Q in Ref [14]. Note that, as in
[14], we assume below that the metric fluctuations

propagate between vacuum states, and that these fluctua-
tions have already been integrated out. This leaves an
effective action for the matter propagator in terms of
graviton correlators/vertices. The terms are shown graphi-
cally in Fig. 13. For the n-path contribution Kn one gets

Knð2; 1Þ ¼
Z

Φ2

Φ1

DΦneiS½Φn�
�
1 −

l2
P

2n
DabðiSa½Φn�Sb½Φn� þ Sab½Φn� − Sa½Φn�IbcdDcdÞ

�
þOðl4

PÞ; ð117Þ

which when expanded out in terms of the different configurations ϕðnÞ
k takes the form

Knð2; 1Þ ¼
Z

Φ2

Φ1

DΦneiS½Φn�
�
1 −

l2
P

2n
Dab

Xn
k¼1

ðiSa½ϕðnÞ
k �Sb½ϕðnÞ

k � þ Sab½ϕðnÞ
k � − Sa½ϕðnÞ

k �IbcdDcdÞ

− i
l2
P

2n
Dab

Xn
k≠k0¼1

Sa½ϕðnÞ
k �Sb½ϕðnÞ

k0 �
�
þOðl4

PÞ; ð118Þ

in which the cross terms in the last term [i.e., the interaction
between ϕðnÞ

k and ϕðnÞ
k0 ] are written explicitly. This, as we

will see presently, is the CWL term, i.e., the term that does
not exist in conventional quantum gravity at order l2

P, and
which leads to path bunching. The four terms in (118) are
shown in Fig. 13.
Now, since each of the different paths in the sums in

(118) is indistinguishable from the others, we can easily
evaluate these sums. The result is conveniently expressed in
the form

Kn ¼ Kn
0 þ l2

PðAKn−1
0 þ ðn − 1ÞBKn−2

0 Þ þOðl4
PÞ; ð119Þ

where the single-path CWL contribution A ¼ Að2; 1Þ (i.e.,
the term arising from a single sum over paths) is

A ¼ Dab

2

Z
Φ2

Φ1

DϕeiSM ½ϕ�ðIbcdDcdSa½ϕ�

− Sab½ϕ� − iSa½ϕ�Sb½ϕ�Þ; ð120Þ

and the two-path CWL contribution B ¼ Bð2; 1Þ is

B ¼ −i
Dab

2

Z
Φ2

Φ1

Dϕ

Z
Φ2

Φ1

Dϕ0

× eiSM ½ϕ�þiSM ½ϕ0�Sa½ϕ�Sb½ϕ0�; ð121Þ

with a gravitational interaction mediated by Dab between
pairs of paths ϕ and ϕ0.
We can now reorganize Eq. (119), by defining new

correlators as follows:

A ¼ ðAK0 − BÞ=K2
0; B ¼ B=K2

0; ð122Þ

where we note that A≡Að2; 1Þ. We immediately see
where this l2

P approximation fails when K0 → 0, then A
and B are no longer small. This is precisely the same failure
of the linearized theory near the dark fringes of the two-
path system that we saw in the last section.
Assuming Ko is not too close to zero, we then have, to

order Oðl2
PÞ,

Kn ¼ Kn
0ð1þ l2

PAþ nl2
PBÞ þOðl4

PÞ
∼ ½K0ð1þ l2

PBÞ�nð1þ l2
PAÞ: ð123Þ

This result for Kn is in a form suitable to do the product
over n, to get a result for the full CWL propagator up to
order l4

P. We find

( i )

(iv)

(ii)

(iii)

FIG. 13. Graphical representation of the four terms in Eqs. (117)
and (118). In (i), (ii), and (iii) we have the graphs corresponding
to the first, second, and third terms in Eq. (118). In (iv) we have
the CWL graph corresponding to the last term in Eq. (118), in
which one sums over two different sets of paths.
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K ¼ lim
N→∞

�YN
n¼1

½K0ð1þ l2
PBÞ�nð1þ l2

PAÞ
�αN

; ð124Þ

with the result that we simply have

Kð2; 1Þ ¼ K0ð2; 1Þð1þ l2
PBð2; 1ÞÞ; ð125Þ

in which the term Að2; 1Þ, which refers to those terms in
the propagator that do not involve CWL terms,
has disappeared. Only the contribution from the fourth
graph in Fig. 13, i.e., the path-bunching term, has survived.
We have thus found that the propagator to lowest-order

perturbation theory becomes

Kð2; 1Þ ¼ K0ð2; 1Þ − iK−1
0 ð2; 1Þl2

P
Dab

2

Z
Φ2

Φ1

Dϕ

Z
Φ1

Φ1

Dϕ0eiS½ϕ�þiS½ϕ0�Sa½ϕ�Sb½ϕ0� þOðl4
PÞ

¼ K−1
0 ð2; 1Þ

Z
Φ2

Φ1

Dϕ

Z
Φ2

Φ1

Dϕ0eiS½ϕ�þiS½ϕ0�
�
1 − il2

P
Dab

2
Sa½ϕ�Sb½ϕ0�

�
þOðl4

PÞ; ð126Þ

where the path bunching term in the effective action is, to
this order in l2

P, is given by

SCWL½ϕ;ϕ0� ¼ −l2
P
Dab

2
Sa½ϕ�Sb½ϕ0�

¼ −
l2
P

8

Z
d4x

Z
d4x0Dμναβðx − x0Þ

× TμνðϕðxÞÞTαβðϕ0ðx0ÞÞ; ð127Þ

whereDμναβðx; x0Þ is the graviton propagator (again defined
with respect to the background field g0), and we rewrite Ss
in terms of the stress energy, using 2Ta ¼ Sa.
Occasionally we will rewrite the result (126) in the

exponentiated form

Kð2; 1Þ ¼ ∼K−1
0 ð2; 1Þ

Z
Φ2

Φ1

Dϕ

Z
Φ2

Φ1

Dϕ0eiðS½ϕ�þS½ϕ0�Þ

× eiSCWL½ϕ;ϕ0� þOðl4
PÞ; ð128Þ

but for the same reasons as given above, this form is only
valid if jSCWL½ϕ;ϕ0�j ≪ 1.
It is easy to see that we would have found find precisely

the same results as above if we had done the calculation in
the unscaled version of the theory. In both calculations the
extra factor of n, coming from the double sum over replicas
in the path-bunching term, singles out this term, and the
other three terms are eliminated.
The foregoing calculation is trivially modified to deal

with the propagator between general states defined by wave
functions ψαðxÞ and ψβðxÞ (for a particle). The relativistic
CWL propagator KðβαÞ becomes

KðβαÞ ∼ K−1
0 ðβαÞ

Z
β

α
Dq

Z
β

α
Dq0eiðS½q�þS½q0�ÞeiSCWL½q;q0�;

ð129Þ

where the arguments surrounding Eqs. (45)–(47) tell us how
to treat the path integrations

R
β
α Dq and

R
β
α Dq0; one has

Z
β

α
Dq ¼

Z
d4x1d4x2hβjx2ihx1jαi

Z
x2

x1

Dx; ð130Þ

Z
β

α
Dq0 ¼

Z
d4x01d

4x02hβjx02ihx01jαi
Z

x0
2

x0
1

Dx0; ð131Þ

as shown in Fig. 14(b).
It will also be obvious how one generalizes these

considerations to, e.g., a scalar field propagating between
different wave functionals (recall the discussion in
Sec. IVA).

B. Nonrelativistic regime

To get some intuition for these results, it is helpful to go
to the nonrelativistic regime—the one that will be relevant
for future lab experiments. We summarize the results for a
single particle, and then go on to discuss what happens if

x1

x1

x1 x2

x2

x2

(a)

(b)

FIG. 14. Graphical representation of two possible ways of
writing the path integration for the lowest-order CWL contribu-
tion toKðβ:αÞ in Eq. (129). In (a) the end points for the two paths
are the same, and in (b) they are different; the latter corresponds
to Eq. (131), and is the correct prescription. The graviton is
shown as a hatched line.
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one deals more realistically with an extended mass coupled
to its environment.

1. Particle dynamics

To be specific, we begin again with the simple case of a
single particle of mass Mo, moving along some path in
spacetime. In this case the path-bunching term in Kð2; 1Þ is

SCWL½q; q0� ¼ −
l2
P

2

Z
d4x

Z
d4x0

×Dμναβðx; x0ÞTμνðq; xÞTαβðq0; x0Þ; ð132Þ

where TμνðxjqÞ is again the stress energy for a particle
following trajectory qðsÞ.
If we then go to the limit where the particle is moving

slowly, with velocity v ≪ c, and spacetime is flat, we get
the very simple result

lim
v≪c

SCWL½q; q0� ¼ SCWL½r; r0�

¼ 1

2

Z
t2

t1

dt
GM2

o

jrðtÞ − r0ðtÞj ; ð133Þ

where rðtÞ is the spatial coordinate of the particle. We then
just have a Newtonian interaction between the two paths in
the CWL propagator.
We have previously noted some of the effects of this

Newtonian term on particle propagation in CWL theory
(compare Sec. 5.2.3 in Ref. [12] and Ref. [17]). It is useful
to describe things here in more detail. Quite generally we
can say that
(1) There are two key scales inherent in the attractive

Newtonian potential in (133),

lGðMoÞ ¼ ðMP=MoÞ3lP;

ϵGðMoÞ ¼ ðMo=MPÞ5EP: ð134Þ

The length scale lGðMoÞ is the analog of the Bohr
radius for this potential, and the energy scale ϵGðMoÞ
is the analog of the Coulomb-binding energy (ion-
ization energy). HereMP, lP, and EP are the Planck
mass, length, and energy respectively (see the first
paragraph of this paper). In Fig. 15 we show these
scales graphically for a wide range of masses.

(2) Any external potential VðrÞ acting on the mass
Mo can upset the effects of the Newtonian
attraction between paths. Roughly speaking, if
lGðMoÞj∇VðrÞj ≥ ϵGðMoÞ, then the Newtonian at-
traction will be destabilized.

(3) Both lGðMoÞ and ϵGðMoÞ are extremely rapid
functions of Mo. To get a feel for the numbers it
is useful to look at some examples; three will suffice:

(a) For an electron, lGðMoÞ ∼ 3.6 × 106RH,
where RH is the Hubble radius, and ϵGðMoÞ∼
1.4 × 10−84 eV;

(b) For an object like a vaccinia virus, of linear
dimension 3 × 10−7 m and mass 10−17 kg (i.e.,
6 × 109D), one has lGðMoÞ ∼ 1.7 × 10−7 m,
and ϵGðMoÞ ∼ 2.6 × 10−19 eV;

(c) For an object like a Dunaliella salina alga, with
linear dimension 10 μmandmass 1.5 × 10−13 kg
(i.e., 9 × 1013 D, or 7 × 10−6M̃p), one has
lGðMoÞ∼ 4.9× 10−20 m, and ϵGðMoÞ∼ 200 eV.

From these numbers it is clear that the point-particle
model used to calculateKð2; 1Þ in the l2

P approximation, to
give (126) or (128), is extremely accurate for an electron,
where however it gives utterly negligible corrections to
standard QM; the vaccinia virus ϵGðMoÞ is still fantastically
small, so SCWL½q; q0� is also very small, and the l2

P
approximation is still valid, as is QM. However lGðMoÞ
is by then smaller than the virus, and at this point one
expects the point-particle approximation to be breaking
down—one then needs to redo the calculation for an
extended body.

P

M P

(a)

Mo (kg)

E P

(b)

Mo (kg)

FIG. 15. The length and energy scales which emerge in the l2
P

approximation for the dynamics of a single free particle in CWL
theory, according to Eq. (134). In (a) we plot the length scale
lGðMoÞ, and in (b) we plot the energy scale ϵGðMoÞ.

PROPAGATORS IN THE CORRELATED WORLDLINE THEORY OF … PHYS. REV. D 105, 084015 (2022)

084015-27



Finally, for the Dunaliella alga, it is clear that both the l2
P

approximation and the point-particle approximation have
broken down irretrievably—the CWL interaction energy
now being ∼200 eV—and we need to do completely
change the calculation. Even at this point we are still far
below the Planck mass—we see clearly that CWL effects
become prominent already for masses ≪ MP [11,12,17].
In the context of CWL theory, in this l2

P approximation,
it is clear that if we are examining the behavior of a particle
at length scales L ≫ lGðMoÞ, then the particle will look as
though it is a point particle; at low energies the paths will
seem so closely bound as to behave like a single path. On
the other hand if L ≪ lGðMoÞ, the opposite is true; the two
separate paths are clearly visible at length scale L.
This is as far as we can go in the l2

P approximation for
point particles. We now turn to a brief description of what
one can do to go beyond these calculations.

2. Extended body coupled to an environment

In the following, for completeness, we describe quali-
tatively how one can go beyond the point-particle model—
a full derivation of these results appears elsewhere (see
Ref. [44,59]). One can extend the calculations in three
different ways. Within the l2

P approximation one can
(a) generalize to an extended mass, (b) add a dissipative
coupling to an environment, and (c) one can go to higher
orders in l2

P. We look at these in turn.

Extended Mass.—In the point mass l2
P approximation,

even when ϵGðMoÞ ∼ 10−13 kg, more than five orders of
magnitude below the Planck mass, we still have lGðMoÞ∼
3 × 10−19 m, already far less then the typical size (∼10−5 m)
of an object with this mass. Clearly, one has to do
calculations for an extended mass to get realistic results.
To study this problem in an l2

P approximation, one
describes the mass as a nanoscopic or mesoscopic body of
some shape, assembled from a set of particles distributed
either in some crystalline array, or as in an amorphous solid
[59]). The mass is concentrated almost entirely in the
atomic nuclei, and one must take account of the fluctua-
tions of these nuclei around their equilibrium positions
(which at low temperature T are zero point in nature, of
amplitude ξo ∼ 1–5 × 10−11 m). The result can be entirely
characterized in terms of the phonon spectrum of the solid,
the sample shape, and T.
One finds that when the size L of the extended mass

≫ lGðMoÞ, then the nonrelativistic 1=jrðtÞ − r0ðtÞj inter-
path CWL potential in (133) is replaced by a very different
low-T interaction with two potential wells, one of range
∼L, the other, inside the first, of range ∼ξo. At low
energies, this latter zero-point potential well has a low-
energy harmonic form.
As an example, one can consider a solid made entirely

from a total of No ¼ Mo=m ions of mass m particles [59].
Then the oscillation frequency ωeff in the zero-point

harmonic well which now binds the two paths is
ω2
eff ¼ ð21=2GNm=3π1=2ξ3oÞ, a result also found using the

Schrödinger-Newton equation [91]. Thus ωeff is indepen-
dent both of the shape of the extended mass, and of its
mass; it depends only on microscopic details of the object.
We can evaluate this for a crystalline SiO2 system

(quartz); one finds an oscillation period to ¼ 2π=ωeff ∼
16 secs. Thus the relative oscillatory motion of pairs of
paths, in the l2

P approximation, is rather slow.

Dissipative Effects.—Just as radiative coupling to a pho-
tonic bath is required for decay of an orbit in QED, the
effect of dissipative coupling to the environment will
facilitate the path-bunching process. To treat this process
in the l2

P approximation, one calculates the dynamics of the
reduced density matrix for the matter degrees of freedom,
once the environmental modes are integrated out.
Dissipative (anddecohering) effects are typically described

by coupling the system to an ‘oscillator bath’ [92,93], which
describes delocalized environmental modes (phonons, pho-
tons, electronic quasiparticles, etc.), or to a spin bath [94]
which describes localized modes (solid-state defects, nuclear
and paramagnetic spins, etc.). One then integrates out these
modes to derive an influence functional for the matter
dynamics, in the presence of CWL interactions.
One simple conclusion emerges in the regime of low

dissipation, which can modeled for many systems of
relevance here [93,95] in terms of a simple friction
coefficient η. In the l2

P approximation, one then sees pairs
of paths spiraling into each other on a timescale
τPB ∼Q=ωeff , where Q ¼ Moωeff=η is the quality factor
associated with the frictional damping. Thus, if Q ≫ 1, the
path-bunching time τPB can be extremely long.
Results like this are preliminary—they neglect the effect

of multipath CWL correlations (discussed immediately
below). Nevertheless they suggest that when Q ≫ 1 (as
for the mirrors in LIGO-type experiments) it may take a
long time for the classical path-bunched dynamics to
emerge, even for mirrors with mass ≫ Mp.

Multiple Paths and the Classical Limit.—To truly charac-
terize path bunching in Kð2; 1Þ, we clearly need to
incorporate higher-order terms in lP, in which graphs
containing three or more matter lines interact. The follow-
ing remarks should be viewed as preliminary.
Note first that the same sort of path bunching will take

place amongst n-tuples of lines for Kð2; 1Þ; and again, it
will be influenced by coupling to an environment. One can
then ask what happens once this path bunching has
taken place.
Notice first that in the nonrelativistic regime, for a set of

nmatter lines, the same energy and length scales emerge as
in the l2

P approximation (for n lines, the coupling between
each is ∝ 1=n). Suppose we now deal with a particle of
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massMo. In Fig. 16, we show what we expect to happen to
several graphs for Kð2; 1Þ, as path bunching occurs.
Suppose now that path binding has occurred over a

length scale L ≪ any experimental length. Then, for all
practical purposes, the matter lines all collapse onto each
other, so that the graviton lines now fold back onto the
single composite matter line that is left. These graviton
lines are still necessarily on shell, so we retain only the
classical gravity contributions to the loop diagrams.
Consider first Fig. 16(a). As we just saw, this is the only

graph ∼Oðl2
PÞ for Kð2; 1Þ in CWL theory. Once the two

matter lines have path bunched, we get the rainbow graph
shown in Fig. 16(a) at right. This graph is simply the
lowest-order contribution to the classical self-energy, in
which the perturbation of the metric caused by a mass
reacts back on the mass. If the mass is accelerating, then we
get a contribution ∼Oðl2

PÞ to the radiation damping and
radiation reaction in the classical theory.
The graphs in Figs. 16(b) and 16(c) show the same

features. The left-hand graphs are permitted by the CWL
graphical rules; after path bunching, the right-hand side gives
further contributions to the classical self-energy of the mass.
Note that this result allows us to address the two

paradoxes noted at the end of Sec. III regarding the absence
of loops containing gravitons in CWL theory. We see that in
the classical regime, defined here as the regime in which
path bunching has occurred, these graviton loop contribu-
tions are restored, along with classical self-energy and
radiation reaction terms.
Clearly one then needs to show that the CWL graphs, at

arbitrary order in l2
P, collapse precisely to those of the same

order in classical GR expanded in powers of l2
P. We

examine this question elsewhere.

This concludes our brief survey of results whose full
description is beyond the scope of this paper. We see that
although the l2

P approximation cannot be relied on for any
quantitative predictions, it can give a good qualitative idea
of some of the physics.

VIII. CONCLUSIONS

In this paper we have given an extended discussion of the
low-energy (i.e., E ≪ Ep) behavior of CWL theory. We
have focused on the behavior of the connected generating
functional W½J� and the matter propagator Kð2; 1Þ.
A combination of perturbative (in GN) and nonperturbative
large N analyses leads to exact results for these two
functions. We also give results for the weak-field approxi-
mation to CWL theory, where it can be linearized.
A key result of this work is that thematter fieldmoves in a

background metric field whose dynamics is determined by
thematter field, in away superficially reminiscent of (but not
the same as) semiclassical quantum gravity. To see in some
detail howCWL theoryworks, we give extended analyses of
both the two-path experiment and lowest-order perturbation
theory; the results show clearly how CWL predictions differ
from both conventional low-energy quantum gravity and
from semiclassical quantum gravity.
The key distinguishing feature of CWL theory is the way

in which different paths in all path integrals are coupled to
each other via gravity—this causes ‘path bunching’ of the
matter paths, in a way which explicitly violates the usual
superposition principle in quantum mechanics. The formu-
lation of the theory in terms of Feynman paths is essential.
We note that no new interactions or constants of nature

are introduced, nor any fields apart from traditional metric
and matter fields. Thus, no ex cathedra noise fields or
classical fields are involved, and in fact the theory is
entirely quantum-mechanical in that all fields are quantized
in a universe defined by the dynamics of the quantized
metric field gμνðxÞ. The difference with conventional QM
or QFT is in the dynamical rules, and a key consequence of
these rules is that for large masses, the dynamics of gμνðxÞ
is classical, and governed by Einstein’s equation.
The resulting theory realizes the idea discussed by

Kibble [5,6], that QM and QFT are transformed into
nonlinear theories, violating QM, by the coupling to
gravity. As we have discussed elsewhere [13,14], CWL
theory appears to be a consistent theory; expansions in GN
and ℏ are consistent, the theory has a consistent classical
limit, and it obeys all Ward identities. In this paper we have
added to this work by finding exact results for the
dynamics. Thus, the consistency problems, which have
bedevilled earlier nonlinear theories, are circumvented.
It is clear that in CWL theory, measurements and

experiments are just ordinary physical processes; measure-
ments play no central role of the kind found in conventional
QM. The transition to classical behavior comes for macro-
scopic system via path bunching. For a microscopic system

(a)

(b)

(c)

FIG. 16. Diagrammatic representation of the transition to
classical behavior for sufficiently massive matter lines. On the
left-hand sidewe show three different diagrams, (a), (b), and (c) for
the propagator Kð2; 1Þ. On the right-hand side we show what
happens to each diagram in the massive limit, when path bunching
causes all matter lines to collapse to a single matter line, with the
result that graviton loops appear. Gravitons are shown as hatched
lines, matter lines as solid lines.
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S, it happens once it couples to some macroscopic system
M which is sufficiently massive and complex that it
exhibits path bunching [12].
Finally, we can ask what is CWL theory good for? Any

consistent theory still has to pass experimental tests to be
taken seriously. The present paper has laid the foundation
for this. Clearly, a more detailed analysis of specific real
experiments is now required, in which quantitative pre-
dictions are made. This will be the subject of several future
papers in which we work out these predictions for a solid
object of arbitrary composition and shape, for various
experimental designs.
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APPENDIX A: GENERATING FUNCTIONAL
FOR CONVENTIONAL THEORY

We derive here the results from Sec. II which relate the
generating functional to propagators; we do this for
ordinary QM and for scalar field theory.

1. QM from a generating functional

We begin with a nonrelativistic particle in an external
current jðtÞ; the generating functional is then

Zo½j� ¼
I

DrðtÞeiðSo½r�þ
R

dtj·rÞ ðA1Þ

[cf. Eq. (1)]. Recall that in the main text we were interested
in evaluating a function

ℵð2; 1Þ ¼
Z

dj1dj2e−iðj1·x1þj2·x2ÞZo½j1; j2� ðA2Þ

with cuts at times t1, t2, in which Zo½j1; j2�≡ Zo½j1δðt −
t1Þ þ j2δðt − t2Þ� [compare Eqs. (2) and (3)].
Let us write the ring path integral Zo½j� in Keldysh

form [96]. We define the times t� on the upwards/down-
wards parts of the ring contour respectively (see Fig. 17).
These times extend between tin and tf. We also define
particle coordinates qþðtþÞ and q−ðt−Þ on the upwards/
downwards paths, with limiting values

qf ¼ qðt ¼ tfÞ;
qþ
in ¼ qþðtinÞ;

q−
in ¼ q−ðtinÞ: ðA3Þ

Finally, we let tin → −∞, and tf → ∞.
The integral around the imaginary time loop at tin → −∞

defines the particle thermal density matrix ρiðqþ
in;q

−
in; tinÞ≡

hqþ
injρ̂iðtinÞjq−

ini. We can then write the generating func-
tional as

Zo½j� ¼
Z

dqþ
indq

−
in

Z
dqfρiðqþ

in;q
−
inÞGðqþ

in;q
−
in;qfjjÞ;

ðA4Þ

where Gðqþ
in;q

−
in;qfjjÞ describes the integration around the

rest of the ring, and is written as

Gðqþ
in;q

−
in;qfjjÞ¼

Z
qf

qþin

DqþeiðSo½q
þ�þ

R
dtþjðtþÞ·qþðtþÞÞ

×
Z

qf

q−in

Dq−eiðSo½q
−�þ

R
dt−jðt−Þ·q−ðt−ÞÞ: ðA5Þ

We can also write this expression in terms of the
Hamiltonian Ho of the system, as the trace

Zo½j� ¼ Tr

�
T̂
�
e
−i
R

tf
tin

dtþ½HoþjðtþÞ·q̂ðtþ�
	
ρ̂iðtinÞ

× T̂ −1fe−i
R

tf
tin

dt−½Hoþjðt−Þ·q̂ðt−�g
�
; ðA6Þ

in which T̂ is the time-ordering operator, and T̂ −1 is its
inverse.

t f

t int in

t t +-

	i (t in)

t f

q inq in
+-

q f

q (t  ) q (t ) 
+

+-
-

FIG. 17. The ring path integral written in Keldysh form. The
path begins and ends at times tin, with tin → −∞. It proceeds up via
the path qþðtþÞ, a function of time tþ, to time tf; we let tf → ∞. It
then proceeds back down via path q−ðt−Þ, a function of time t−.
The contribution around the closed imaginary time contour at tin
(compare Fig. 2) gives the density matrix ρiðqþ

in;q
−
in; tinÞ.
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We may now substitute this form directly into Eq. (A2) for ℵð2; 1Þ, to get

ℵð2; 1Þ ¼
Z

dj1dj2 e−iðj1·x1þj2·x2ÞTr ½e−iHoðtf−t2Þeij2·qe−iHoðt2−t1Þeij1·qe−iHoðt1−tinÞρ̂iðtinÞe−iHoðtf−tinÞ�

¼ hx2je−iHoðt2−t1Þjx1ihx1je−iHðt1−tinÞρ̂in eiHðt2−tinÞjx2i
≡ K0ð2; 1Þfð2; 1Þ; ðA7Þ

with no integration over x1 or x2. Thus we get the product
form for ℵð2; 1Þ given in Eq. (4) of the main text. We can
also define various time-ordered Keldysh propagators,
starting from here, using standard techniques [97].
At a temperature T the thermal density operator

ρ̂iðtinÞ ¼
P

n jnie−βϵnhnj, where the fϵng are the particle
eigenstates and β ¼ 1=kT. One then has the limiting cases:

(i) in the infinite temperature limit where β → 0, we get
fð2; 1Þ → hx1je−iHoðt1−t2Þjx2i, so that fð2; 1Þ ¼
K�

0ð2; 1Þ and ℵð2; 1Þ ¼ jK0ð2; 1Þj2;
(ii) in the T → 0 limit where β → ∞, and

ρ̂in → ρ̂o ≡ j0ih0j, the vacuum state density oper-
ator, we get fð2; 1Þ ¼ hx1j0ih0jx2ie−iϵ0ðt1−t2Þ, i.e.,
the time-dependent vacuum density matrix between
states jx1i and jx2i.

2. Extension to more complicated cases

This technique is easily generalized to cover other kinds
of propagator. In particular one has

(i) Density matrix: the propagator Koð2; 20; 1; 10Þ for
the density matrix, which in path integral language is
written as [16,92]

ρð2; 20; t2Þ ¼
Z

d1
Z

d10Koð2; 20; 1; 10Þρð1; 10; t1Þ;

ðA8Þ
where, e.g., ρð1; 10; t1Þ ¼ h1jρ̂ðt1Þj10i is the density
matrix element between states j1i and j10i at time t1.
The derivation of the path integral form from Z is
the same as for the propagator, only now we
introduce four cuts, instead of two.

(ii) Relativistic particle: Starting from the generating
functional for a relativistic particle, we can apply the
same techniques to find the propagator for this
particle while propagating on a fixed background
metric go. One gets

K0ð2; 1jg0Þ ¼
Z

∞

0

ds
Z

2

1

DXðτÞei
R

s

0
dτL0ðXjgo;jÞ;

ðA9Þ

where the action So½Xjs; go� ¼
R
s
0 dτL0ðXjgoÞ is a

functional of the background field go and a function
of the proper time s.

(iii) Scalar Field: Consider a scalar field ϕ with action
S½ϕ�, defined on a spacetime in which a hypersurface
Σ bounds a bulk spacetime regionM. The surface Σ
is divided into spacelike past and future surfaces Σ1

and Σ2, along with a region ΣB at spatial infinity.
Starting from Zϕ½J�, and using the same methods as

before (now imposing cuts on Σ1 and Σ2), we have a
propagator between scalar field configurations Φ1ðxÞ and
Φ2ðxÞ, localized on Σ1 and Σ2, given by

Kð2; 1Þ≡ KðΦ2;Φ1Þ ¼
Z

Φ2

Φ1

DϕeiSϕ½ϕ�: ðA10Þ

Here we have assumed flat spacetime for simplicity. The
same development can be carried out for a gauge field
theory like QED (for details see Refs. [42,44]). The
derivation of propagators in conventional quantum gravity
from the generating functional is described in the main text.

APPENDIX B: THE REGULATOR FUNCTION

Here we show how one fixes the form of the regulator
function cn introduced in Eq. (19), to get cn ¼ 1 for all
values of n. To do this, we will evaluate a typical
normalized correlation function for our scalar field system,
but this will be done for the case of a finite JðxÞ, instead of
the more usual case JðxÞ → 0; and we’ll do this in the
GN → 0, limit where we require conventional QFT to hold.
Before beginning we simplify the algebra by working in

a fixed background field goðxÞ, i.e., we drop the functional
integration over gðxÞ, so that

Qn½J; go� →
�
Zϕ

�
go;

J
cn

��
n
: ðB1Þ

Freezing the metric dynamics in this way, about a solution
go to the vacuum Einstein equation, is the same as taking
the GN → 0 limit of the theory.
We now calculate the correlation function

GlðfxkgjJoðxÞÞ, which in conventional QFT is given by
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GlðfxkgjJoðxÞÞ ¼ hΦ½Jo�jϕðx1Þ…ϕðxlÞjΦ½Jo�i; ðB2Þ

where jΦ½Jo�i denotes the vacuum state of the scalar field in
the presence of the current JoðxÞ.
Observe now that if we work this out explicitly,

according to the unscaled prescription (21), we find

GlðfxkgjJoðxÞÞ ¼
�X∞

n¼1

n
cln

�−1 ð−iℏÞlδl
δJðx1Þ…δJðxlÞ

lnQ½J�jJ¼Jo

¼
�X∞

n¼1

n
cln

�−1 X∞
n¼1

n
cln

hΦ½Jo=cn�

× ϕðx1Þ…ϕðxlÞjΦ½Jo=cn�ji: ðB3Þ

However, we now observe that the result in (B3),
with operators sandwiched between states jΦ½Jo=cn�i,
is not in general equal to the initial result in (B2),
with the same operators sandwiched between vacuum
states jΦ½Jo�i.
In fact the only way we can get consistency is if cn ¼ 1

for all values of n. Thus we conclude that

cn ¼ 1 ðB4Þ

for all values of n.
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