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We demonstrate that the location of a stable photon sphere (PS) in a compact object is not always an edge
such as the inner boundary of a black hole shadow, whereas the location of an unstable PS is known to be
the shadow edge; notably, in the Schwarzschild black hole. If a static spherically symmetric (SSS)
spacetime has the stable outermost PS, the spacetime cannot be asymptotically flat. A nondivergent
deflection is caused for a photon traveling around a stable PS, though a logarithmic divergent behavior is
known to appear in most of SSS compact objects with an unstable photon sphere. The reason for the
nondivergence is that the closest approach of a photon is prohibited in the immediate vicinity of the stable
PS when the photon is emitted from a source (or reaches a receiver) distant from a lens object. The finite
gap size depends on the receiver and source distances from the lens as well as the lens parameters. The mild
deflection angle of light can be approximated by an arcsine function. A class of SSS solutions in Weyl
gravity exemplify the nondivergent deflection near the stable outer PS.

DOI: 10.1103/PhysRevD.105.084014

I. INTRODUCTION

Since the first measurement by Eddington et al. [1], the
gravitational deflection of light has offered us a powerful
tool for tests of gravitational theories including the theory
of general relativity as well as for astronomical probes of
dark matter. The Event Horizon Telescope (EHT) team has
recently succeeded in taking a direct image of the imme-
diate vicinity of the central black hole candidate of M87
galaxy [2]. In addition, the same team has just reported
measurements of linear polarizations around the same black
hole candidate [3], which has led to an estimation of the
mass accretion rate [4]. These observations have increased
our renewed interest in the strong deflection of light in the
strong-gravity region.
The strong deflection of light by Schwarzschild black

hole was pointed out by Darwin [5]. This phenomena is
closely related with a photon sphere (PS) that, with
a horizon, features black holes and other compact objects
[6–40]. A photon surface for a less symmetric case is a
generalization of PSs [13].
Many years later, Bozza showed that the strong deflec-

tion behavior in Schwarzschild black hole can be well
described as the logarithmic divergence in the deflection
angle [6]. Such a strong deflection as the logarithmic
divergence also occurs in other exotic objects such as
wormholes. For instance, Tsukamoto conducted several
extensions of the Bozza method for the strong deflection of
light [7,8], in which the logarithmic behavior is shown to
be a quite general feature for a static and spherically
symmetric (SSS) compact object that has a PS, e.g.,
Ellis wormholes. The logarithmic behavior in the strong

deflection for a finite-distance receiver and source has been
recently confirmed [41] by solving the exact gravitational
lens that stands even for an asymptotically nonflat space-
time [42–44].
There exists a single PS outside the horizon of the

Schwarzschild black hole, while Ellis wormhole has a PS
without horizons. For both cases, the number of PSs is one.
Tsukamoto obtained the logarithmic behavior for such a
SSS spacetime with a single PS, which was assumed to be
unstable. In both of Schwarzschild black hole and Ellis
wormhole, there exists only the unstable PS. Cunha et al.
have recently proven that ultracompact objects have an
even number of PSs, one of which is stable [45]. Regarding
the proven theorem, Hod has found an exception for
horizonless spacetimes that possess no stable PS [46].
What happens, if the PS is stable and a light ray is deflected
around the stable PS?
The main purpose of the present paper is to study the

deflection of light around a PS when the PS is stable in a
SSS spacetime. This situation has not often been consid-
ered in detail e.g., [5–7,9,10], except for Hasse and Perlick
(2002) [47] which provided a theorem on a connection
among the three properties of (1) the presence of a PS for a
saddle point case and a stable case as well as an unstable
one, (2) the centrifugal force reversal, and (3) infinitely
many images in any SSS spacetime. However, Hasse and
Perlick (2002), did not calculate the deflection angle of
light, because they focused on the multiple imaging [47].
We shall show that, instead of the logarithmic type of strong
deflection, a mild deflection is caused near the stable PS.
This paper is organized as follows. In Sec. II, we

reexamine the deflection angle of light when there exists
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a stable outer PS in a SSS spacetime. In Sec. III, we study
how light is deflected in the presence of the stable outer PS.
It is shown that the deflection behavior is not too strong to
make the logarithmic divergence but mild enough to be
approximated by an arcsine function. As an example for
such a mild deflection of light, we consider a class of
Weyl gravity model in Sec. IV. Section V concludes the
present paper. Throughout this paper, we use the unit
of G ¼ c ¼ 1.

II. DEFLECTION ANGLE INTEGRAL

A. SSS spacetime

We consider a SSS spacetime, for which the metric reads

ds2 ¼ −AðrÞdt2 þ BðrÞdr2 þ CðrÞðdθ2 þ sin2 θdϕ2Þ; ð1Þ

where AðrÞ > 0, BðrÞ > 0, andCðrÞ > 0 are assumed to be
finite. If the SSS spacetime possesses a horizon, we focus
on the outside of the horizon. We do not assume the
asymptotic flatness of the spacetime. Actually, the present
paper considers an asymptotically nonflat case. A lemma
on this issue is given at the end of the present section.

B. Photon orbits

Without loss of generality, we can consider a photon
orbit on the equatorial plane ðθ ¼ π=2Þ because of the
spherical symmetry of the spacetime. On the equatorial
plane in the SSS spacetime, a light ray has two constants of
motion. One is the specific energy E≡ AðrÞ_t and the other
is the specific angular momentum L≡ CðrÞ _ϕ, where the
overdot denotes the derivative with respect to the affine
parameter λ along the light ray.
By using the two constants E and L, the impact

parameter of light becomes b ¼ L=E. Without loss of
generality, we assume b > 0.
In terms of b, the null condition ds2 ¼ 0 is rearranged as

the orbit equation

_r2 þ VðrÞ ¼ 0; ð2Þ

where VðrÞ is defined as

VðrÞ≡ −
L2FðrÞ
BðrÞCðrÞ : ð3Þ

Here,

FðrÞ≡ CðrÞ
AðrÞb2 − 1: ð4Þ

The closest approach of a light ray is denoted as r0,
which satisfies Vðr0Þ ¼ 0 from the definition of r0.
Henceforth, evaluation at r ¼ r0 is indicated by the sub-
script 0. For instance, Vðr0Þ ¼ 0 is equivalent to F0 ¼ 0,

where F0 ≡ Fðr0Þ. By combining F0 ¼ 0 and Eq. (4), we
obtain

b ¼
ffiffiffiffiffiffi
C0

A0

s
: ð5Þ

This offers a relation between b and r0.
Following Hasse and Perlick [47], we use a particular

form of the potential ṼðrÞ that is defined as

ṼðrÞ≡ AðrÞ
CðrÞ ; ð6Þ

which is conformally invariant. Thereby, Eq. (2) is re-
written as

AðrÞBðrÞ_r2 þ L2ṼðrÞ − E2 ¼ 0: ð7Þ

This simplifies the analysis of the photon sphere and its
linear perturbation, because VðrÞ depends on b as well as r,
whereas ṼðrÞ does not include b. The potential ṼðrÞ plays
the central role in the proof of a theorem that clarifies a
connection among three properties of the presence of a PS,
the centrifugal force reversal, and infinitely many images in
any SSS spacetime [47].
For later convenience, we write down the first and

second derivatives of ṼðrÞ,

Ṽ 0ðrÞ ¼ −
AðrÞDðrÞ
CðrÞ ; ð8Þ

Ṽ 00ðrÞ ¼ −
AðrÞ
CðrÞ ½D

0ðrÞ −DðrÞ2�; ð9Þ

where the prime denotes the differentiation with respect to
r, and the functions D is defined as

DðrÞ≡ C0ðrÞ
CðrÞ −

A0ðrÞ
AðrÞ : ð10Þ

From Eq. (7), we obtain

½AðrÞBðrÞ�0 _r2 þ 2AðrÞBðrÞ̈rþ L2Ṽ 0ðrÞ ¼ 0: ð11Þ

Equations (7) and (11) tell us that a photon orbit is a circle
if and only if r ¼ rm satisfies ṼðrmÞ ¼ ðbmÞ−2 and
Ṽ 0ðrmÞ ¼ 0, where rm denotes the radius of the PS and the
subscript m denotes the value at r ¼ rm. From ṼðrmÞ ¼
ðbmÞ−2, the impact parameter for the PS is obtained as

bm ¼
ffiffiffiffiffiffiffi
Cm

Am

s
; ð12Þ

where Eq. (6) is used.
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C. Classification of PS stability

We consider a small displacement δr around the PS orbit,
r ¼ rm þ δr. At the linear order in δr, Eq. (11) gives

d2

dλ2
ðδrÞ ¼ −

L2Ṽ 00ðrmÞ
2AmBm

δr

¼ L2D0
m

2BmCm
δr; ð13Þ

where Eq. (9) and DðrmÞ ¼ 0 from Ṽ 0ðrmÞ ¼ 0 are used.
The linear stability of the perturbed orbit is determined

only by the sign of D0
m, because AðrÞ > 0, BðrÞ > 0,

CðrÞ > 0, and L ≠ 0. A PS is stable if D0
m < 0, whereas it

is unstable for D0
m > 0.

From Eq. (10), we obtain

D0ðrÞ ¼ C00ðrÞ
CðrÞ −

A00ðrÞ
AðrÞ −DðrÞ

�
C0ðrÞ
CðrÞ þ

A0ðrÞ
AðrÞ

�
: ð14Þ

On the PS, this is reduced to

D0
m ¼ C00

m

Cm
−
A00
m

Am
: ð15Þ

Bozza and Tsukamoto assumed D0
m > 0, which means

an unstable PS [6,7]. Henceforth, we focus on a stable case
D0

m < 0. Such an unusual case is realized in a class of Weyl
gravity model as shown in Sec. VI.

D. Total angle integral

From Eq. (2), we obtain

dr
dϕ

¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CðrÞFðrÞ
BðrÞ

s
; ð16Þ

for which we choose the plus sign without loss of general-
ity. Integrating this from a source (denoted as S) to a
receiver (denoted as R) leads to the total change in the
longitudinal angle.

IFðrS; rR; r0Þ≡
X
i¼S;R

Z
ri

r0

drffiffiffiffiffiffiffiffiffiffiffiffiffi
CðrÞFðrÞ
BðrÞ

q : ð17Þ

Note that a conventional method discusses the total
integral I for the asymptotic receiver and source (rR → ∞
and rS → ∞) e.g., [5–7], for which I − π gives the
deflection angle of light. On the other hand, the present
paper considers finite distance between the receiver and
source. In order to clarify this difference, we use IF in stead
of I. Rigorously speaking, IF − π is not the deflection angle
but IF is the dominant component of the deflection angle.
This issue is beyond the scope of this paper. See e.g.,

Refs. [48–51] on how to define geometrically the deflection
angle for the finite-distance receiver and source.
Following Bozza and Tsukamoto [6,7], we introduce a

variable as

z≡ 1 −
r0
r
; ð18Þ

to rewrite Eq. (17) as

IFðzS; zR; r0Þ ¼
X
i¼S;R

Z
zi

0

fðz; r0Þdz; ð19Þ

where we define zi ≡ 1 − r0=ri (i ¼ R, S),

Hðz; r0Þ≡ CF
B

ð1 − zÞ4; ð20Þ

and

fðz; r0Þ≡ r0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Hðz; r0Þ

p : ð21Þ

In the next subsection we shall examine the integrand
in Eq. (19).

E. Analysis in the vicinity of PS

By noting F0 ¼ 0, the function H is expanded around
r ¼ r0 (z ¼ 0) as

Hðz; r0Þ ¼
X∞
n¼1

cnðr0Þzn; ð22Þ

where

c1ðr0Þ ¼
C0D0r0

B0

; ð23Þ

c2ðr0Þ¼
C0

B0

�
D0r0

�
C0
0

C0

−
B0
0

B0

−3

�
þr20

2
ðD2

0þD0
0Þ
�
; ð24Þ

c3ðr0Þ ¼
C0

B0

�
D0r0

�
3B0

0r0
B0

−
3C0

0r0
C0

−
B0
0C

0
0r

2
0

B0C0

− 3

�

þ r20
2
ðD2

0 þD0
0Þ
�
C0
0r0
C0

−
B0
0r0
B0

− 2

�

þ r30
6
ðD3

0 þ 3D0
0D0 þD00

0Þ
�
: ð25Þ

When the closest approach is located near the PS
(r0 ¼ rm), Eqs. (23)–(25) become

c1ðrmÞ ¼ 0; ð26Þ

c2ðrmÞ ¼
r2mCmD0

m

2Bm
; ð27Þ
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c3ðrmÞ¼
r2mCm

2Bm

�
D0

m

�
C0
mrm
Cm

−
B0
mrm
Bm

−2

�
þrmD00

m

3

�
: ð28Þ

From Eqs. (26)–(28), we find

Hðz; rmÞ ¼ c2ðrmÞz2 þOðz3Þ: ð29Þ

If the PS is unstable (stable), namely D0
m > 0 (D0

m < 0),
then, c2ðrmÞ > 0 (<0). As pointed by Tsukamoto [7], the
angle integral IF by Eq. (17) is divergent logarithmically.
On the other hand, the stable PS case (c2ðrmÞ < 0) is
investigated below in detail.
Before closing this section, we mention a relation of the

emergence of the stable outermost PS (SOPS) and the
spacetime asymptotic flatness.
Lemma: If a SSS spacetime has the SOPS, the space-

time cannot be asymptotically flat, for which Ṽ 0ðrÞ ¼
½AðrÞ=CðrÞ�0 is positive everywhere outside the SOPS.
Proof: We denote the radius of the SOPS as rSOPS. At the

location of the SOPS, Ṽ 0ðrSOPSÞ ¼ 0 and Ṽ 00ðrSOPSÞ > 0.
There exist no PSs outside of the SOPS, because the SOPS is
the outermost PS. Therefore, Ṽ 00ðrÞ > 0 for r > rSOPS. This
means that Ṽ 0ðrÞ is an increasing function of r when
r > rSOPS. Hence, Ṽ 0ðrÞ > 0 for r > rSOPS.
Here, we add an assumption that the spacetime were

asymptotically flat. Then, we can employ a coordinate
system in which Eq. (1) approaches the Minkowski metric
in the polar coordinates asymptotically as r → ∞. Namely,
AðrÞ → 1þOð1=rÞ and CðrÞ → r2 þOðrÞ, which lead to
A0ðrÞ → Oð1=r2Þ and C0ðrÞ → 2rþOðr0Þ. Thereby,

Ṽ 0ðrÞ ¼
�
AðrÞ
CðrÞ

�0
¼ −

2

r3
þO

�
1

r4

�
→ 0; ð30Þ

in the limit as r → ∞. This means that Ṽ 0ðrÞ has an
extremum between rSOPS and r ¼ ∞, because of its con-
tinuity. This contradicts with that Ṽ 0ðrÞ is an increasing
function for r > rSOPS. Therefore, the spacetime is not
asymptotically flat. A proof of the lemma is thus completed.
According to Ref. [35], if an axisymmetric, stationary

and asymptotically flat spacetime possesses light rings
(LRs), the outest LR is unstable. This means that if a SSS
spacetime with PSs is asymptotically flat, the outermost PS
is unstable. The contraposition of this is that, if the
outermost PS in a SSS spacetime with PSs is stable, the
spacetime is not asymptotically flat. This proves a part of
the above lemma but tells us nothing about the positivity of
Ṽ 0ðrÞ for r > rSOPS.
On the other hand, it is clear that the asymptotic flatness

is allowed, if the outermost PS (OPS) is unstable
[Ṽ 00ðrOPSÞ < 0]. In the rest of this paper we consider that
a receiver and source are located outside of a stable outer
PS. However, it is not specified below whether or not it is
the outermost.

Before closing the section, let us briefly mention the
stability of a spacetime that admits a stable PS. Horizonless
ultracompact objects with a stable PS may suffer from
instabilities due to slowly (at most logarithmically)
decaying of perturbations leading to the formation of a
trapped surface [45,52–54]. In Sec. VI, therefore, we
consider a black hole model with a stable PS in Weyl
gravity. On the other hand, the above lemma may suggest
another possibility compatible with the instability argu-
ments in Refs. [45,52–54]. One such candidate is a compact
object without a black hole horizon but with a stable PS and
a cosmological horizon that is consistent with the asymp-
totic nonflatness. Its stability issue is beyond the scope of
the present paper.

III. MILD DEFLECTION NEAR THE
STABLE OUTER PS

A. Stability classification of the outer PS

In the neighborhood of the closest approach z ∼ 0, higher
order terms ofHðz; rmÞ in Eq. (22) are negligible compared
with z and z2 terms. The dominant part of fðz; r0Þ for
r0 ∼ rm thus becomes

fDðz; r0Þ≡ r0ffiffiffiffiffiffiffiffiffi
hðzÞp ; ð31Þ

where hðzÞ is defined as

hðzÞ ¼ c1ðr0Þzþ c2ðr0Þz2: ð32Þ
Associated with fDðz; r0Þ, we define the dominant part

of the total angle integral as

IFDðzR; zS; r0Þ≡
X
i¼S;R

Z
zi

0

fDðz; r0Þdz: ð33Þ

Before starting calculations of the angle integral, first we
investigate a photon orbit in the stable PS case. If
c1ðr0Þ < 0, hðzÞ is always negative for z > 0. This is in
contradiction with the non-negativity of hðzÞ. Hence, the
case of c1ðr0Þ < 0 is discarded. If c1ðr0Þ ¼ 0, then,
hðzÞ ¼ c2ðr0Þz2. The non-negativity of hðzÞ together with
c2ðr0Þ < 0 admits only z ¼ 0. This orbit is a circle. We do
not discuss this special case any more. For the last case
c1ðr0Þ > 0, the non-negativity of hðzÞ provides a nontrivial
situation; the allowed region for z is

0 ≤ z ≤ −
c1ðr0Þ
c2ðr0Þ

: ð34Þ

This means that only bound orbits are allowed, whereas the
scattering orbits are prohibited. Note that hðzÞ ¼ 0 does not
make the integral inEq. (33) divergent. Indeed,hðzÞ ∼ c1ðr0Þz
near a point z ¼ 0 and hðzÞ ∼ −c1ðr0Þ½zþ c1ðr0Þ=c2ðr0Þ�
near a point z ∼ −c1ðr0Þ=c2ðr0Þ. At the two points, therefore,
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the integral ofhðzÞ is not divergent as∼ R
z−1=2dz ∼ 2

ffiffiffi
z

p
. The

two points z ¼ 0 and z ∼ −c1ðr0Þ=c2ðr0Þ are the periastron
and apastron, respectively.

B. Angle integral for the stable outer PS

Henceforth, we focus on the case of c1ðr0Þ > 0, for
which the receiver and source positions satisfy

0 < zi ≤ −
c1ðr0Þ
c2ðr0Þ

: ð35Þ

Equation (33) is integrated as

IFDðzR;zS;r0Þ¼
r0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−c2ðr0Þ
p

×

�
π−

X
i¼S;R

arcsin

�
1þ2c2ðr0Þ

c1ðr0Þ
zi

��
: ð36Þ

It follows that the arcsine term in Eq. (36) is well defined
for the allowed region by Eq. (35), because

−1 ≤ 1þ 2c2ðr0Þ
c1ðr0Þ

zi < 1: ð37Þ

C. IF in terms of b

In most of lens studies including Refs. [6,7], it is
convenient to express the deflection angle in terms
of the impact parameter in stead to r0, mainly because
b ∼DLθ for the lens distance DL and the image angle
direction θ.
Therefore, we look for an approximate expression of b.

Near the PS, c1ðr0Þ and bðr0Þ are Taylor expanded as

c1ðr0Þ ¼
CmrmD0

m

Bm
ðr0 − rmÞ þOððr0 − rmÞ2Þ; ð38Þ

bðr0Þ ¼ bm þ bmD0
m

4
ðr0 − rmÞ2 þOððr0 − rmÞ3Þ: ð39Þ

From Eq. (38), we find

r0 < rm; ð40Þ

where c1ðr0Þ > 0 and D0
m < 0 are used. This inequality

means that the light ray passes by the slight inside of the
PS. This is because the PS is stable. This unusual behavior
of the photon orbit implies also

b < bm; ð41Þ
from Eq. (39). See Fig. 1 for the photon orbit behavior near
the PS.
By combining Eqs. (38) and (39), we obtain, near the PS,

an approximate relation between c1ðr0Þ and b as

c1ðr0Þ ≈
2rmCm

ffiffiffiffiffiffiffiffiffiffi
−D0

m

p
Bm

�
1 −

b
bm

�1
2

: ð42Þ

By substituting this into Eq. (36), we obtain

IFDðzR; zS; bÞ ≃
rmffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−c2ðrmÞ
p

�
π −

X
i¼S;R

arcsin
�
1 −

rm
ffiffiffiffiffiffiffiffiffiffi
−D0

m

p
2

�
1 −

b
bm

�
−1
2

zi

��
: ð43Þ

By direct calculations for a photon traveling near the PS, Eq. (35) is rearranged as

0 < zi ≤
4

rm
ffiffiffiffiffiffiffiffiffiffi
−D0

m

p
�
1 −

b
bm

�
1=2

; ð44Þ

rmr0
Photon
Sphere

StableUnstable

FIG. 1. Schematic figure of photon orbits near a PS. The PS is
denoted by a solid circle with radius rm. The dotted circle has
radius r0, which is slightly smaller than rm. Namely, rm − r0 is
taken as a perturbation around the PS. The initial position of the
photon is r0, at which the initial radial velocity is vanishing. The
thick dashed blue (in color) arrow denotes a photon motion when
the PS is unstable. The orbital deviation grows because of being
unstable. Therefore, it is difficult for the inner photon to escape to
a far region. This is why the earlier papers focused on r0 > rm
when an unstable PS is assumed [6,7]. On the other hand, the
thick solid red (in color) arrow denotes a photon motion when the
PS is stable. The orbital deviation gets smaller because of being
stable. It is thus possible that the inner photon (r0 < rm) crosses
the PS to reach a distant observer.
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for which the arcsine function in Eq. (43) is well
defined.
In order to obtain Eq. (43) as an approximate

estimation of IF in terms of b, we have used the Taylor
series expansion as Eq. (39), which is valid if
bm > bmjD0

mjðr0 − rmÞ2=4. This requires that the closest
approach of light and the PS are close enough to satisfy

jr0 − rmj <
2ffiffiffiffiffiffiffiffiffiffijD0

mj
p : ð45Þ

Yet, a lower bound on jr0 − rmj exists in the neighborhood
of the PS as shown below.

D. Discontinuity between the closest
approach and the stable PS

Equation (44) suggests a proposition on the existence of
a gap between the allowed closest approach and the
stable PS.
Proposition: In a SSS spacetime which possesses a

stable outer photon sphere, the closest approach of a photon
from a source (or to a receiver) located at a finite distance
from the lens object is not allowed in the infinitesimal
neighborhood of the stable PS.
Proof: This proposition can be proven by contradiction

as follows. We consider a receiver (or a source) at
finite distance from the lens, namely ri > r0, which
leads to zi > 0. We assume the closest approach of a
photon orbit were in the infinitesimal neighborhood of the
stable PS.
On the stable PS, Fm ¼ F0

m ¼ 0, while F00
m < 0. The last

inequality comes from the unstable condition D0
m < 0. The

function F near the PS is thus Taylor expanded as

F0 ¼
1

2
F00
mðr0 − rmÞ2 þOððr0 − rmÞ3Þ: ð46Þ

From Eq. (20), H for r0 ≈ rm is expanded as

H ¼ CmF00
m

2Bm
ð1 − zÞ4ðr0 − rmÞ2 þOððr0 − rmÞ3Þ; ð47Þ

where Eq. (46) is used.
By using Bm > 0, Cm > 0, and F00

m < 0 for Eq. (47), we
find H < 0 if r0 − rm is sufficiently small. H < 0 contra-
dicts with the existence of the photon orbit. Our proof is
finished.
The above proposition prohibits the closest approach in

the infinitesimal neighborhood of the stable PS. However, it
does not tell about a size of the gap between the allowed
closest approach and the stable PS. In order to discuss the
gap size, we use Eq. (44), which is rewritten as

b
bm

≤ 1 −
r2mz2i ð−D0

mÞ
16

: ð48Þ

Note that Eq. (44) is based on a quadratic approximation
up to z2.
For finite zi and D0

m < 0, Eq. (48) demonstrates that b is
not allowed in the infinitesimal neighborhood of bm. From
Eq. (48), the upper bound on b is

bmax ¼ bm −
bmr2mz2Lð−D0

mÞ
16

: ð49Þ

The gap size Δb≡ bm − bmax is thus given by

Δb ¼ bmr2mz2Lð−D0
mÞ

16
; ð50Þ

where zL is the larger one of zR and zS, namely the value of
z for the more distant one of the receiver and source.
A separate treatment is needed for the marginal PSs

(D0
m ¼ 0Þ e.g., Ref. [8,55].

E. THE DOMINANT PART AND THE REMAINDER

Before closing this section we shall confirm that
IFR ≡ IF − IFD is really the remainder. It is written
simply as

IFRðzR; zS; r0Þ≡
X
i¼R;S

Z
zi

0

fRðz; r0Þdz; ð51Þ

where fRðz; r0Þ≡ fðz; r0Þ − fDðz; r0Þ.
From Eq. (51), we obtain, for zi < 1,

IFRðzR; zS; r0Þ ¼
X
i¼R;S

½fRðzi; r0Þzi þOðz2i Þ�: ð52Þ

For r0 ∼ rm, fðz; rmÞ ∼ fDðz; rmÞ when z < 1. Hence, by
using the Taylor-expansion method, one may think that
fRðz; rmÞ ¼ fðz; rmÞ − fDðz; rmÞ ¼ OðzÞ. However, let
us more carefully examine an asymptotic expansion of
fRðz; r0Þ for z < 1 [56]. By straightforward calculations,
the asymptotic expansion of fðz; r0Þ for small z is obtained as

fðz; r0Þ ¼
r0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

zc1ðr0Þ
p −

r0c2ðr0Þ
2c1ðr0Þ3=2

ffiffiffi
z

p þOðz3=2Þ: ð53Þ

Similarly, the asymptotic expansion of fDðz; r0Þ is

fDðz; r0Þ ¼
r0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

zc1ðr0Þ
p −

r0c2ðr0Þ
2c1ðr0Þ3=2

ffiffiffi
z

p þOðz3=2Þ: ð54Þ

By bringing together Eqs. (53) and (54), we find

fRðz; r0Þ ¼ Oðz3=2Þ: ð55Þ
By using this for Eq. (52), we find

IFRðzR; zS; r0Þ ¼ Oðz5=2R ; z5=2S Þ: ð56Þ
On the other hand, Eq. (36) is expanded, for small zR and

zS, as
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IFDðzR;zS;r0Þ¼
2r0ffiffiffiffiffiffiffiffiffiffiffiffi
c1ðr0Þ

p ð ffiffiffiffiffi
zR

p þ ffiffiffiffiffi
zS

p ÞþOðzR;zSÞ; ð57Þ

where arcsinð1 − εÞ ¼ π=2 −
ffiffiffiffiffi
2ε

p þOðεÞ is used.
For zR; zS ≪ 1, Eqs. (56) and (57) lead to

IFRðzR; zS; r0Þ ≪ IFDðzR; zS; r0Þ. Therefore, we can safely
say that IFD is the dominant part and IFR is the remainder.

IV. EXAMPLE: A CLASS OF WEYL
GRAVITY MODEL

In the Weyl gravity model, Mannheim and Kazanas
found a class of SSS solutions [57]. The metric reads

ds2¼−gðrÞdt2þgðrÞ−1dr2þr2ðdθ2þsin2θdϕ2Þ; ð58Þ

where

gðrÞ ¼ 1 − 3βγ −
βð2 − 3βγÞ

r
þ γr − κr2; ð59Þ

andwe consider gðrÞ > 0, namely the outside of the horizon.
The allowed region for the existence of the stable outer

PS is [58]

β > 0; ð60Þ

γ < 0; ð61Þ

κ < 0: ð62Þ

In this section, we focus on this parameter region.
We solve DðrÞ ¼ 0 to find two roots as r ¼ 3β and

r ¼ 3β − 2=γ. They are corresponding to PSs. One is a
stable PS and the other is an unstable one.
In the present case of γ < 0, the stable outer PS is located at

rm ¼ 3β −
2

γ
; ð63Þ

because

D0
m ¼ −

2

r2mgðrmÞ
¼ −

2b2m
r4m

< 0: ð64Þ

The other root r ¼ 3β is the radius of the unstable inner PS.
Note that rm is larger than 3β because of γ < 0. See

Fig. 2 for the effective potential VðrÞ in the Weyl gravity
model with the stable outer PS.
There is a constraint on κ as [59]

κ < −
γ2ð1 − βγÞ
ð2 − 3βγÞ2 : ð65Þ

Here, bm denotes the critical impact parameter corre-
sponding to the stable PS. It is obtained as

bm ¼ 2 − 3βγffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−κð2 − 3βγÞ2 − γ2ð1 − βγÞ

p ; ð66Þ

where the inside of the square root is always positive when
κ satisfies Eq. (65).
From Eqs. (43) and (56), we obtain

IFDðzS; zR; bÞ

≃ π −
X
i¼S;R

arcsin

�
1 −

bmffiffiffi
2

p
rm

�
1 −

b
bm

�
−1=2

zi

�
; ð67Þ

IFRðzS; zR; bÞ ≃ −βγ
�

bm
2

ffiffiffi
2

p
rm

�
3=2

�
1 −

b
bm

�
−3=4 X

i¼S;R

z5=2i ;

ð68Þ

where straightforward calculations at Oðz5=2Þ are done
in Eq. (56).
When zT ≡ zR ¼ zS ≪ ð1 − b=bmÞ1=2, Eq. (67) provides

an approximate expression of the deflection angle as

Δϕ ¼ IF ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

p
bm

rm

�
1 −

b
bm

�
−1=2

zT

s

þO

�
bm
rm

�
1 −

b
bm

�
−1=2

zT

�
: ð69Þ

where we use arcsinð1 − εÞ ¼ π=2 −
ffiffiffiffiffi
2ε

p þOðεÞ for
ε < 1.
It is natural that IFR is much smaller than IFD, as

discussed in Sec. III. Equation (67) shows the mild
deflection in terms of the arcsine function. Figure 3 shows
f. See Fig. 4 for a comparison of Eq. (67) and numerical

=–0.5, =–0.05

0 5 10 15 20 25 30

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

r

V

FIG. 2. Effective potential ṼðrÞ in the Weyl gravity model. The
solid blue (in color) curve corresponds to γ ¼ −0.5 and κ ¼
−0.05 in the unit of β ¼ 1, which leads to the SOPS at rm ¼ 7.
From ðbmÞ−2 ¼ ṼðrmÞ ¼ 0.0193878, bm ¼ 7.18184 is obtained.
ṼðrÞ does not vanish for large r, because the spacetime is not
asymptotically flat.
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calculations for IFD. As shown in Fig. 3, f is dependent
rather strongly on γ. The difference between the numerical
f and an approximate one becomes significant as z is larger.
On the other hand, the closest approach and its vicinity
make a dominant contribution to the total angle integral IF.
In Fig. 4, therefore, IF shows much weaker dependence on
γ and z.
Finally, we discuss the gap size. By using Eq. (64) for

Eq. (50), we obtain

Δb ¼ b3mz2L
8r2m

: ð70Þ

For bm ∼ rm, it becomes simply

Δb ≈
1

8
bmz2L: ð71Þ

In a SSS spacetime, the photon sphere was thought to be
always an edge such as the inner boundary of a black hole
shadow. However, Eqs. (70) and (71) provide a counter-
example, when the PS is stable.

V. CONCLUSION

We demonstrated that the location of a stable PS in a
compact object is not always an edge such as the inner
boundary of a black hole shadow. We showed also that a

FIG. 3. The integrands of Eqs. (19) and (33). The solid blue (in
color) curve denotes f (¼ dϕ=dz) in the integral IF, while the
dashed red (in color) curve denotes fD in IFD. The horizontal axis
means z. We assume κ ¼ −0.05 in the unit of β ¼ 1 that is
roughly corresponding to the conventional unit as mass¼ 1 in the
Schwarzschild or Kottler spacetime. The top and bottom panels
assume γ ¼ −0.5 and γ ¼ −0.1, respectively, each of which leads
to rm ¼ 7.0 and bm ¼ 7.18185, and rm ¼ 23 and bm ¼ 4.56815,
respectively. In both cases, the solid and dashed curves are
overlapped better for smaller z. For instance, the difference
between them is about 10% at z ∼ 0.2. A significant deviation
at large z is due to a departure from the quadratic approximation
of HðzÞ in z.

FIG. 4. The total angle integrals IF and IFD. The solid blue (in
color) curve denotes the present approximation of IFD by Eq. (67)
and the dashed red (in color) curve denotes numerical calcu-
lations of IF in Eq. (19), where we assume the same values for κ
and γ in Fig. 3. For the simplicity, we choose z≡ zR ¼ zS, which
is denoted by the horizontal axis. For z ≪ 1, the two curves are
very close to each other, because the quadratic approximation
works well especially near z ∼ 0. The two curves are close to each
other especially for smaller z. For instance, the difference
between them is roughly 20% at z ∼ 0.2. A significant deviation
at large z reflects a departure from the quadratic approximation of
HðzÞ in z.
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SSS spacetime cannot be asymptotically flat, when the
SOPS exists in the spacetime.
We proved a proposition that the closest approach of a

photon is prohibited in the immediate vicinity of the stable
PS when the photon is emitted from a source (or reaches a
receiver) distant from a lens object. We discussed the gap
size. Because of the existence of the gap, the mild
deflection is caused for a photon traveling around the
stable PS which exists in a class of SSS spacetimes.
Finally, we used a class of SSS solutions in Weyl gravity

in order to exemplify the mild deflection near the stable
outer PS. It would be interesting to examine whether a light
ray is mildly deflected around a stable photon surface in a
less symmetric or dynamical spacetime. It is left for the
future.
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