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We carefully perform a Hamiltonian Dirac’s constraint analysis of the v = —3 Brans Dicke theory with
the Gibbons-Hawking-York boundary term. The Poisson brackets are computed via functional derivatives.
After a brief summary of the results for the w # — case [G. Gionti S. J., Canonical analysis of Brans-Dicke
theory addresses Hamiltonian inequivalence between the Jordan and Einstein frames, Phys. Rev. D 103,
024022 (2021)] we derive all Hamiltonian Dirac’s constraints and constraint algebra in both the Jordan and
the Einstein frames. Confronting and contrasting Dirac’s constraint algebra in both frames, it is shown that
they are not equivalent. This highlights that the transformations from the Jordan to the Einstein frames are
not Hamiltonian canonical transformations.
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I. INTRODUCTION

We consider a scalar-tensor theory action [1] with the
Gibbons-Hawking-York (GHY) boundary term [2—4]
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Varying with respect to ¢ and imposing that its variations
on the boundary are zero as well, 6¢ = 0, the equation of

= [ asvEa( 7R - Sup o000 - v)) oo for s
w2 [ a ik, (1) POR SO+ AP~ V() =0. (4)
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) ) ) Nowadays, one says to pass from the Jordan, where the
where f(¢) is a generic function of ¢ as well as A(¢) and K action is a scalar-tensor theory (1), to the Einstein frame

is the trace of the extrinsic curvature. Varying the previous [6,7] through a Weyl (conformal) transformation of the

action with respect to the metric ¢* with the condition that  metric tensor, keeping the scalar field ¢(x) unchanged,
on the boundary the variation of it be zero, 6¢"* = 0, we

obtain the equation of general relativity for the case of a
scalar-tensor theory of gravity

~/41/ = (167[Gf(¢))"_zzgﬂw
$(x) = ¢(x), (5)

1 -
f (45) <R;w —Eg,u,R> + G tf (¢) \ va (¢) ;fu, (2) I and ¢(x) being the transformed metric tensor and scalar
field. In the Einstein frame the action (1) becomes
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where
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U
Y =G 7

Varying this equation with respect to @ we get Einstein
equations, and varying with respect to ¢ we get the
equation for ¢(x).

In literature [6,7] when (g, (x), ¢(x)) is a solution of the
equations of motion in the Jordan frame, the corresponding
couple (§,,(x,¢),¢(x)) is assumed to be solution of the
equations of motion in the Einstein frame. In this way, the
two frames are considered physically equivalent. In fact,
one is doing nothing else but imposing the same solutions,
linked by a Weyl (conformal) transformation, in the two
frames.

The physics behind this transformation dates back to
an idea of Dicke. He, in a seminal paper [6], observed
that physics is invariant under redefinition of the unit of
measurements. If we rescale the length unit by a factor
of 1 such that the value of the square of the line
element, in the new unit, is d52 = A2ds? (recall that the
definition of the line element is ds’ = Gudx'dx"), the
relation between the metric coefficients under unit
length rescaling is g, = /IZgW. Therefore invariance
of the physical observables under rescaling of units
of measurements implies invariance under Weyl rescal-
ing of the metric tensor [6].

Physical equivalence of the observable quantities in
the Jordan and in the Einstein frames have been very
much debated [8-17]. On average, the community
seems to be in favor of the physical equivalence
although the interpretation of the experiments might
be different [18]. We personally think that the equiv-
alence works mathematically as long as one is sure the
solutions can be mapped from one frame to the other,
although some mathematical concerns have been raised
as well [19].

We continue to study the Hamiltonian canonical
equivalence between the two frames started in the article
[5]. From now on, we analyze the question of the
equivalence using the Hamiltonian Dirac’s constraint
analysis for the particular value of the Brans-Dicke param-
eter w = —3.

We will summarize in Sec. II the results of the
Hamiltonian analysis of the Brans-Dicke theory for
w # —% and the (Hamiltonian) canonical inequivalence
between the two frames for this case II B. Section III deals
with the Hamiltonian analysis of the case w = —%: after
having shown the extra Weyl (conformal) symmetry
of the action for this case III A, we perform the ADM
decomposition IIIB and study the constraint algebra

among Dirac’s Hamiltonian constraints III C; the o =
—% Hamiltonian Brans-Dicke theory is examined in the
Einstein frame III D; and the final remark, regarding the
different Dirac’s Hamiltonian constraint algebra, is
addressed in Sec. III E. We conclude in Sec. IV.

II. BRANS-DICKE THEORY FOR o # - %

In recent years, much research has been done to study the
classical Hamiltonian equivalence between Jordan and
Einstein frames [20-23] as well as their quantum equiv-
alence [24-28]. We summarize here the results of Dirac’s
constraint Hamiltonian analysis [29-31] (see also [32-38]
for complementary cases) of the Brans-Dicke theory in the
two frames [5].

The Brans-Dicke theory [39] is a special case of (1) when

f(#) = ¢ and A(p) =22 [1]:
S = / d*x\/=g (¢4R - 99"”8,@@47 -U (45))
M ¢
) / BxvVhpK. (8)
oM

The equations of motion for the metric tensor g, are a
particular case of (2):
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while the equation of motion for ¢, a particular case
of (4), is

(3 +20)0¢ :¢‘Z—2U(¢). (10)

A. ADM decomposition and definition of the ADM
Hamiltonian density function

The Arnowitt-Deser-Misner (ADM) decomposition [40]
is based on the assumption that the topology of the
spacetime (M, g) is M = R x X [30], where R is a one-
dimensional space, the time direction, and X is a three-
dimensional spacelike surface embedded in M. g is the
ADM-metric tensor defined as

g=—(N?>=N;N)dt @ dt + N;(dx' @ dt + dt ® dx')
+hijd.xi ®d.xj, (11)

where N = N(1, x) is the lapse function and N* = N'(z, x)
are the shift functions [5,30,41].
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The ADM Lagrangian density Lpy iS

Lapm = Vh|Np(PR + K, K7 — K?)

- N% (N2WiD,pD p — (¢ — N'D;gh)?)

+2K(¢p — N'D;¢p) — NU(¢p) + 2h"/D;ND ,¢] :

(12)
and K;; is the extrinsic curvature defined as follows [30]:
K= (=i pn s DN (13)

YUOAN\ o T )

The canonical momenta (zy,7;, 7"/, ;) associated with
(N7 Niv hij’ ¢) are

_ OLspm _ O0Lspm
iy =———=0, = —— ~ 0,
ON ON

. OLapMm \/—{ y o hY . ]

=—"—=—Vh|p(KY - Kh')+—(¢p— N'D;) |,
= # )+ (= N'Dg)

OLapm \/—( 20 )

o =22 5 (#=NDig) (14)

which show the momenta 7, and z; are primary constraints
(~ meaning the quantity is zero on the constraint surface)
[29,30,42].

The Hamiltonian density Hapy 1S

Hapm = ”ijhij + 7T¢€'{7 — Lapwm- (15)

This definition holds on the constraint surface defined by
the Dirac’s primary constraints 7y ~0 and 7' ~ 0 found
above (14) [29,30]. The Hamiltonian density Hapm 1S

Haom = Vi N[ L (i, =7
e i)

N DI+ N2DIDG+ NV ()

¢
1 N
o ( = Zw) (51 ¢n¢>2}
—ON'Dxl + N'D,my, (16)

where 7, = 7'/ h;
form:

ij» and it can be written in the following

Hapm = NH + N'H;, (17)

where the H is the Hamiltonian density constraint

o ”112
H_\/EH ¢3R+¢h< im 2)]+¢D¢D¢
1

: 1
2D'D;p+V — | — - 25, (18
DDV + i (5 ) r—dmeP e (19
and H; is the momentum constraint

H; = —2D;z} + Dipm,. (19)

Therefore the total Hamiltonian Hy [30] is
HT :/dBX(lﬂ'N+/1iﬂi+NH+NiHi), (20)

A = A(t,x) and A'(t,x) being Lagrange multipliers.

If we indicate the canonical variables (N,N', h;;,
7y, 7, /) generically with (Q',11;) the Poisson brackets
between two arbitrary functions A and B of the canonical
variables are [42]

X 5B O0A OB
(4.8} = / ¢ <5Q’ () 5Hi(y)5Qi<y)>' @)

In Ref. [5] it has been shown that the algebra of the
secondary constraints is like Einstein’s geometrodynamics

{Hi(x), H;(x) } =Hi(x')0;6(x,x") = H,;(x) 96 (x,x),
{H(x), Hi(x')} = —H(x')96(x,X),

{H(x),H(x")} =H(x)0;8(x,x") = H!(x')D:8(x,x"). (22)

As extensively argued in [43,44], once a matter source is
introduced with its own canonical variables, many different
inequivalent theories of gravity coupled with matter can
generate the same constraint algebra (22).

B. Transformations from the Jordan to
the Einstein frame

The Weyl (conformal) transformation (5) entails an
ADM metric in the Einstein frame (cf. [21,45]),

g=—(N*-N;N)dt ® dt + N;(dx' ® di + dt @ dx')
+ ilijdxi ® dxj, (23)
where
NV = (162Gf(¢))=N,  N; = (162Gf($))7N,,
hij = (162G f($))7h;;. (24)

The canonical momenta in the Einstein frame, associated
with the variables (24), in the w # —% Brans-Dicke case,
are (cf. [5])
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i aZ:ADM \/Z e 7l
1 = : — K — BRI =
" oh;; 167rG( ") 162G¢’
aZADM \/Z(Cl) = %)
= — _ Nio. _
T T0p  8aGNg? (#-N0p) =5 gy~ )

(25)

The transformations (24) and (25) are assumed to be a
canonical set, in the Hamiltonian sense, of variables [21].
But this is not completely true (cf. [37]) since (see also [5]
for more details)

87GN

N,y =——=#0 and {N; 7,} =162GN; #0,
{N.7,} 1677:G¢¢ and {N; 7,} T #

(26)

where, obviously, the Poisson brackets are calculated in the
Jordan frame. Therefore, since the transformations from the
Jordan to the Einstein frames are not canonical, one is not
allowed to pass from the Jordan to the Einstein frame to
perform the constraint analysis of the Brans-Dicke theory
as it is usually done (cf. [45]).

The Hamiltonian canonical transformations [5] hold the
lapse and the shifts N N* = N and N*' = N while h;; and ¢
and their respective momenta 7/ and r,, transform accord-
ing to Egs. (24) and (25). These transformations generate
an anti-Newtonian gravity as explained in [46-49]. They
correspond to the following scaling relation on the ADM
metric:

N +— N; N N';

hi; > 2hy,  (27)

ijs
and for 1> 1 they emulate a large value of the Newton
constant G and also enhance spacelike distances over to
timelike ones [46,47]. They correspond to the strong
gravity limit or Carrolian gravity limit; G +— oo or
ct> 0 cf. [50]. In practice the Weyl (conformal) trans-
formation is implemented only on the three-dimensional
metric h;; of the three-dimensional space surfaces X.

In Ref. [5], we considered the finite dimensional case of
a mini-superspace model built from the action (8) evalu-
ated on a flat Friedmann Lemaitre Robertson Walker
(FLRW) metric. The correspondent set of transformations
from the Jordan to the Einstein frame, analogous to (24)
and (25) for this particular case, still shows to be not
canonical (in the Hamiltonian sense). The anti-Newtonian
gravity transformations (27) represent still the canoni-
cal ones.

III. BRANS-DICKE THEORY
FOR THE CASE 0= -3

In this section we study in detail the particular case of
Brans-Dicke action (8) for @ = —3

§(=3/2) = / d*x\/=g <¢R + —%a $0,p — U(¢)>

+2 / &ExvVhpK. (28)
oM

We introduced the superscript - - -(=3/2) in order to underline
3

when a quantity is evaluated in the particular case w = —3
(see also [33,48]). M is a manifold with a boundary OM on
which is defined the three-metric &, the pullback of g on
the boundary OM, and the extrinsic curvature K;;. The
potential U(¢) is the same as in Eq. (8) and is always, for
consistency reasons from Eq. (10), of the form ag?, where

a is a generic constant. The action (28) is made out of two

terms: a bulk term § M3/ 2),

s03D = / d4x\/_<¢R+—ﬂ

2 0,00,0-U@) ). (29)

and a boundary term S< 3/2) )

) /) ’ BxvVhoK. (30)

A. (Invariance under) Conformal transformations

If we perform the following Weyl (conformal) trans-
formation:

(31)

transforms in the

G = ng;un

the trace R of the Ricci tensor R,
following way [51]:

. 60Q 2,0,

The Weyl (conformal) transformation on the field ¢ is

p=2

(32)

(33)

If we apply the previous Weyl (conformal) transformations

D) — gD 4 =302 (=3/2)

on the action S~ , we geton Sy,

6010 Q,Q, -
e /d4x\/_{[¢R+—¢—12 D

+§?aﬂ¢av¢ +5 g” 9,00,
6 - .
+ ﬁqﬁgﬂvaﬂgayg —ad? } (34)
while on S( 3/2)
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S — / PV hpK -6 / PV, (39)
om oM Q

where K is the Weyl (conformal) transformed extrinsic
curvature and 7# is the Weyl (conformal) transformed
normal vector to the boundary OM, as can be found in
the appendix of [1].

The Weyl (conformal) transformation on the full action
§(=3/2) simplifying the previous expression, is

S(—3/2) — S](l/;?’/z) +S( 3/2)

oM
:/ d4x\/:§<(7>k+%gﬂ—faﬂiﬁ8yc7)—U(r7))>
M ¢
N
+2/0de ho K. (36)

This proves that Brans-Dicke (28) is invariant under Weyl
(conformal) transformations (31)—(33) in the particular
case w = —

(ST

B. ADM decomposition and definition of the ADM
Hamiltonian density function
The ADM Brans-Dicke Lagrangian density Lapwms
introduced in Eq. (12) for a generic w, is here specified
for v = —

SIS

LGP =V |Np(OR+K ;KT - K?)

3 ; i
g VHIDD - (¢—N'Di)?)

+2K(p—N'D;p)—NU(¢)—2hND:D;p|. (37)

In this case, the canonical momenta (zy,7;, 7"/, 7,) asso-
ciated with (N, N, h; s ¢) are obtained from (14) for
= —%. As in the general case w # —%, the momenta
zy and 7; associated with the lapse N and the shifts N are
primary constraints. An extra primary constraint, a conse-
quence of the Weyl (conformal) symmetry discussed
above, is

[see Eq. (25)], and we name it conformal constraint.

The ADM-Hamiltonian H zpy is, as usual, defined in the
following way [see (15)]:

Hapm = ”ij]:lij + 7T¢€25 — Lapwm- (39)

The explicit form is

Ho = \/E{N[—¢3R 4L <7rijn',»j - ”—’fﬂ

3N
29
—2N'D;z} + N'D;gn,, (40)

D;¢pDi¢p + N2D'D;¢p + NU((/))}

and can be rewritten in the following form:

3/2)

H G = NH32) 4 Nin( ), (41)

where H(=3/2) is the Hamiltonian constraint and is just

H312) _WH ¢3R+L< iz _”_hz>]
oh 2

_ %Di(pDi(p +2D'D;¢p + U(¢)}, (42)

and H

1s the momentum constraints

The total Hamiltonian HT 3/2) [30] is

H(T3/2 /d3 (lﬂN‘f'/lﬂ' +/1{/,C¢
FNHED 4 N )y, (44)

where 1= A(r,x), A'(t,x), and Z,(r,x) are Lagrange
multipliers.

The preservation of the primary constraints zy = 0
and 7; ~0 along the dynamic generated by the total

Hamiltonian H -3/2) (44) gives

(- 3/2)}

iy = {ny, Hy ~H=3/2) %0 (45)

and

~H 7 ~o0; (46)

-3/2)
ﬂ - {ﬂl’ H } - 1
therefore, we found, again, that the Hamiltonian constraint

H(=3/2) and the momentum constraints H§_3/ 2

dary Dirac’s constraints.
The next step is the preservation of the primary con-
straint C; defined in (38),

are secon-

3/2
C¢ - {C¢’HT / )}

= {c¢, / d3foH§‘3/2>} + {c¢, / d3xNH<—3/2>},

(47)
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having C; nonzero Poisson brackets with the Hamiltonian
constraint (=32 and the momentum constraints />
In the Appendix, we calculate these Poisson brackets using
smearing functions; in particular, we employ a generic,

non-null, function f(x) for C, and the shift functions N'(x)
for H —3/2)

{/ﬁm@<)/fwwﬂ#wwﬁ

- / By f(y)De(NH () = ¢my))

. The final results are

= [ 3D IV ) %0 (48)
equivalent to
{Co(x) HTP ()} = =06(x.x)Cy(x').  (49)

and

{/d3xf(x)C¢(X),/d3x’N(x’)H(—3/z)(x,)}

- %/ ByNY)F(y)YHD(y) 20, (50)

which, pairwise, can be rewritten in the differential form as

{Cy(x). HD(x)} = %H<_3/2)(x)6(x, x). (51)

Finally, the condition for the preservation of the primary
constraint Cy(x) is

{/fw(WA>H*m}

- / PyDf () (NC,)

+ % / FyNE) fHTP (y) %0, (52)

C. The constraint algebra of the Poisson brackets
of the secondary constraints

Now we calculate the preservation of the secondary
constraints along the dynamic. In doing this we will follow
Ref. [42] adapted to our case of the Brans-Dicke theory for
w=-3 5- Repeating the calculations, we have

{m,( ) [ @ >H§‘3/2><y>}—£Nhi,~<x>, (53)

where Ly is the Lie derivative along the three-dimensional
vector field N defined by the shift functions N’. Analogously
as in [5], but with a longer calculation, one has

{w00. [ @™o} = exwi. 4
We observe that

o romar-=e)

= 5 ] LI IDAEIN)
= N(0)D$(x) = Lnd (), (59)

and while repeating the same reasoning on the momentum
74 conjugated to ¢, we obtain

{n¢ /N’ 2 )d3y}

_ _Wx) / Py (y)Dip ()N (y) = D; (5 (x) N (x)).
(56)

The momenta calculated by the Legendre transformation
using the Lagrangian £apy (12) are densities as well, as it
is immediate looking at momenta (14). Then = \/Z is a scalar

function. So

)

— Ln(Vh) \77% +Vilx (\’;%)

_ i Tp \ ni
(VN + 0,y N' =520, ()N
p(N'(x)),  (57)

= ﬂ(/;aiN + 0i(zy)N' = Di(=

and therefore, f d*xN'H, is the generator of space diffeo-
morphisms on the three surfaces X of the canonical
variables (h;;, ¢, 7%, ;) and any function F(h;;,¢.
7', my) of them, in particular of the density functions H
and H;. Therefore, we have

LxvV'h = VhDN', (58)

and then we have
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—3/2)
L R = Ve B+ H T DN

3/2 3/2) 3/2)

= NoH TP + 1PN + 1T PoN,

(59)

which entitle us to write

o frimeon)

= NoH TP + HTZoN + HT PN, (60)

and then the constraint algebra among the momenta
constraints

(R0 170} = HTP () 9)8(x. )
-1 ()5 ). (61)

As regards the Hamiltonian constraint H, we start from
the following

LNH(—3/2) _ { -3/2) /Ns

and repeating the same reasoning above, we get

(=312 y>d3y}, (62)

3D -3
=VhL - Lxvh
N \/E \/E N

= N'OH?) + HE2 9N (63)

LNH /2

Finally, we can write

{HE2 (@) 17 ()} = “HD()93(x.x'). (64)
One of most complicated calculations in the canonical
analysis of gravitational theories is the Poisson brackets of
the Hamiltonian constraint. These brackets, using the lapse
N(x) as a smearing function, are usually expressed as

{/d3xN(x)H('3/2)(x),/d3xN’(x’)H('3/2)(x’)}, (65)

where H(=3/2) is the Hamiltonian constraint in (42). As it is
discussed in [42], a nonzero contribution to these Poisson
brackets are given by nonalgebraic variation 6h;; of the
metric function multiplied by algebraic variations &z'/
and, similarly, nonalgebraic variation o¢ of the field
with algebraic variation 6z, of its relative momentum. A
detailed discussion is provided in Appendix B where we
find that Dirac’s constraint algebra generated by the
Poisson brackets of the Hamiltonian constraint (65) is

{ / BxN (Y H (), / d3xN’(x’)H<‘3/2><x’)}

= / Py(ND'N' = N'DINYH /)

+ / @y(ND'N' — N'D'N)(D; log ¢)C. (66)

and it can be rewritten in differential form

{’H(—3/2) (x), H(—3/2) (x/)}
= H§_3/2) (x)0'6(x, x') — 'H ~3/2) (x)0'5(x, x)

+[D'(log (x))]Cy (x)0;6(x. x')

— [D'(log (x))]Cy (') i (x. x'). (67)

Notice that the algebra of the Hamiltonian constraint
contains a first term proportional to the momentum con-
straints as in Einstein’s geometrodynamics. This term
accounts for the evolution of the three-dimensional spatial
surfaces in four-dimensional space. The extra term, propor-

tional to the primary first class constraint Cy, is due to
conformal invariance of the theory [52].

D. Transformations from the Jordan
to the Einstein frame

As we have already remarked, the following Weyl
(conformal) transformation on the metric tensor

G = (162G f ()29, (68)

implies that the ADM metric tensor in the Einstein frame is
—(N? = N;N)dt @ dt + N;(dx' @ dt + dt @ dx')

+ hjjdx' @ dx/, (69)

where the expressions of N, N, h can be found in (24). It
is not difficult to see that the actlon (28) in the Einstein
frame, once one performs the transformation (68) for the

Brans-Dicke case f(¢) = ¢, becomes
(=3/2) — d 4 4R
S 16JrG/ VR = V(@)
1 =
— d3 hK, 70
"8G Vi (70)

where the potential V(¢), defined in (7), becomes simply a
constant

(71)

where K is the trace of the extrinsic curvature K; ; in the
Einstein frame. As usual, we continue to make the 3 + 1
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decomposition: following the procedure as in Eq. (13)
and the curvature 3 + 1 splitting [30,41], the action (70)
becomes

S5 — / dtdxViNCR + KR, — K2 - V)
167G RxY
1 o
e dg hK. 72
e i (72)

The extrinsic curvature K;; is, of course, defined as follows:

P aiz,jJr
YTON\ o

where D is the covariant derivative defined with the Levi-
Civita connection I'¢, corresponding to the metric tensor

DN, + DN, ) (73)

71,- Following [51], the relation between I¢ cp and I, is

oy =Toy+ (85[(162G )3, + 85[(162Gh)H],,

(162Gg):
= hayph[(162G )] ). (74)

Using the last equation and relations (24), one easily finds

T a N

K = (162Gp)K

The action (72) indicated that the ADM-Lagrangian density

function EI(A_SK,IZ) in the Einstein frame is

£ = W ViNCR+ Kk, - K> - 7).  (76)

The definition of the momenta 7"/ associated with 7;; is

L3/ N/
ADM =~ (KT -KRY). (77)

=

which, using (75) and definition (14), implies that

7 = il (78)

In the case w # —% [5] the momentum 7, conjugated to
¢ is defined as

5EADM B \/71(60 + %)
op  8aGNg?

Ty = ((b - Ni8i¢)

1
=9 (pry — mp).
(79)

Therefore, it is evident that ——" is mapped into 7, by the

45
Weyl (conformal) transformation. Then in the particular

case m = —%, the primary constraint in the Einstein
frame
oL 3/2
Ty = ADM_ ~ 0 (80)
8(15

corresponds to Cy, ~ 0 in the Jordan frame. The canonical
Hamiltonian density 7:(C [29,30] coincides with the ADM
Hamiltonian density 7y, in analogy to the corresponding

definition in the Jordan frame (15), and it is defined on the
constraint surface where the primary constraints are zero,

3/2) 7(=3/2)
By = aﬁA ~ 0, fr,-:aﬁAiPiMwo, #y=0,
8N ON
(81)
so we have
3/2) _ 4 3/2)
HADM = h ‘CADM
\/ZN . (162G)? [ _.. 72\ .
- Lo U616 (Giz BTN Ly
162G 2
—2N'D; 7
NHD 4+ N (82)

where now the Hamiltonian constraint 7(~/2) is

Vi (. (162G)? (_.. &
FH3/2) = _3p - P h Vv
162G g iy
(83)
while the momentum constraints H ~3/2) are
H P = 2D 7. (84)
3/2

The ADM-Hamiltonian density ! ApM has the same
functional form as Hpy in Einstein geometrodynamics
[42] plus a constant term V which looks as a cosmological
constant in (83). The total Hamiltonian density H (=3/2) i a
linear combination of the canonical Harmltonlan with the

primary constraints with Lagrange multipliers [29,30]

H(T 3/2) /d3 (ﬂ.ﬂN‘Fﬂﬂ' +ﬂ¢C¢
+ NH 4 N ), (85)

confronting and contrasting it with the analogous quantity
in the Jordan frame (20). We, again, notice that C{/ qﬁzz,/,
through Weyl (conformal) Hamiltonian transformations.
It is very easy to see, in analogy to Egs. (42) and (46), the
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Hamiltonian constraint 7 and the momentum constraints

H; are secondary constraints; quite straightforward to see,
as well, is the fact that

Cp=1{Cp B}y = 0. (86)
|
(Cp HEDY = 0.{C,
(HTP (), 7P
(R ), H7P ()} = R
{HEY) (0,

Note the first two Poisson brackets are identically zero and
not weakly zero.

E. Canonical transformations and the passage
from the Jordan to the Einstein frame

The transformation formulas from the Jordan to the
Einstein frame in the canonical (Hamiltonian) formalism
[see Egs. (24), (78), and (81)] are

N=N(162Gp):, N;=N,(162Gg),
- N
- 167[G hl", Ty = ’
(162G P)h. 7 (162G p):
. i m Pl - - ~0. (88
T 162G’ 6nGy ¢=¢ Fam0. (83

In the Hamiltonian theory, a transformation (Q(q, p),
Pi(q,p)) between two sets of variables (¢', p;) and
(Q', P;) is canonical if the “symplectic two form” @ =
dq' A dp; is invariant—that is, @ = dQ' A dP,—which is
equivalent to saying that the Poisson brackets fulfill the
following conditions:

{Qi(q’p%P‘(q’p)}q,p :5;,

{0'(9.p).Q'(q.P)}4, ={Pi(q.P).Pi(q.P)},,=0. (89)
These properties of the canonical transformations imply
that if one computes the Poisson brackets between two
functions with respect to two different sets of variables
connected by a canonical transformation, the final results
will be the same.

First, we notice that the Poisson brackets between the
conformal constraint Cy and the momentum constraints

(=31

; in the Jordan frame are

{Cpx). HTP ()} = =008(x. ) Cy(x'). (90)

Previous observations [cf. (82)] have shown the equiv-
alence of this Brans-Dicke theory with @ = —% in the
Einstein frame with Einstein general relativity. Based on
this equivalence, it is clear the Poisson brackets constraint

algebra among secondary first class constraints is

3/2)} 0

(@) = HT ()96, ) = T (1)958(x. ),

(-=3/2) ( /)8;-5()(/,)(),
2(x)} = HE2(x)9;8(x, ') = HE/P () d8(x, x).

(87)

|
while the analogous Poisson brackets in the Einstein frame
(recall here Cy = —¢it,)

{Cy(x). 7,2 ()} = 0. ©n

In an analogous way, the Poisson brackets of the
conformal constraint C, with the Hamiltonian constraint
H(3/2) s

1
{Cy(x), HZD ()} = EH(‘S/ D(x)s(x,x'),  (92)
the same Poisson bracket in the Einstein frame is
{Cp(x), HPP ()} = 0. (93)

The last couple of nonequivalent Poisson brackets in the
two frames are the Poisson brackets of two Hamiltonian
constraints (=32 evaluated in two different points. In the
Jordan frame, we have

{H(—3/2>( ), H(—3/2>( o
= 1D ()06 (x ') = HTD ()96 (. )
+ [D'(log ()| Cy (x)9:5(x. ')

— [D'(log p(x'))]Cy (x') 05 (x. ). (94)
and in the Einstein frame
{ﬂ<—3/2) (x), FH(=3/2) (x')}

= HEP(x)0:6(x, x') = HIZP () d5(x, 4'). (95)

This inequivalence of the three Poisson brackets in
the two frames is clear evidence that the Hamiltonian
transformations (88) are not—strictly speaking—a set of
canonical transformations.
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This result could appear a bit awkward. In fact, in
Sec. IIT' A, we showed that the Brans-Dicke action in the
case w = —3 Eq (8), is invariant under Weyl(-conformal)
transformatlons on the metric g,, Eq. (31), and on
the scalar filed ¢, Eq. (33). The transformations from
the Jordan to the Einstein frame, given by Eq. (68) on the
metric tensor and holding the scalar field ¢ = ¢, corre-
sponds to the particular Weyl (conformal) transformations,
Egs. (31) and (33),

1

Q = (162G, {b:@,

(96)
when one passes from the action (8) to (36). This conformal
symmetry should map solutions of the equations of motion
into solutions of the equations of motion. In other words,
the conformal symmetry should be an automorphism
among solutions of the equations of motion. Therefore,
the transformations from the Jordan to the Einstein frames

should be canonical transformations. Since ¢ = ﬁ, the
conformal transformations generate a set of new
Hamiltonian variables (Q'(q, p), P;(q, p)) such that
a i ) ) P[ )
det| 224 P). Pila. p)| _ (97)
(¢ p)

This implies that these transformations are singular and the
automorphism does not hold in this case.

IV. SUMMARY AND CONCLUSIONS

This essay aimed to continue, with further details, a
project started in [5]. The central point has been to
scrutinize whether the transformations from the Jordan
to the Einstein frames are Hamiltonian canonical trans-
formations as claimed in [21,32,53]. The tool we employed
was the Hamiltonian Dirac’s constraint analysis of the
Brans-Dicke theory in the particular case @ = — % In order
to fulfill the goals of our project, we started with a brief
summary of the results of the Hamiltonian Dirac’s con-
straint analysis of the Brans-Dicke theory in the case w #

—% [5], see also Table I. We showed, as it is extensively

TABLE L

argued in [43,44], that the algebra of the Poisson brackets
of the secondary first class constraints is the same as
Einstein’s geometrodynamics (22). This could suggest that
the transformations from the Jordan to the Einstein frames
are canonical transformations in the Hamiltonian theory
[21]. Unfortunately, this belief is wrong (26). Therefore,
one cannot perform the Hamiltonian Dirac’s constraint
analysis in the Einstein frame, where the calculations are
simpler, and pretend that it is the same in the Jordan frame
[45]. A set of Hamiltonian canonical transformations does
exist. They are called the anti-Newtonian gravity trans-
formations, Eq. (27) [46,47], and differ from the conformal
transformations (24). This inequivalence of the Jordan and
Einstein frames for the Brans-Dicke (BD) theory in the
Hamiltonian formalism addresses quantum inequivalence
[24,25,27,54] as well although, even at quantum level,
there are several papers arguing in favor of quantum
equivalence [26,55,56].

In literature [33,57], it is claimed that the lapse N and the
shifts N’ functions behave as “gauge” variables. They
appear only as Lagrangian multipliers in the total
Hamiltonian (20) after having performed Dirac’s con-
straint’s analysis. Therefore there is a general tendency
to discard these variables and their respective momenta zy
and z; as unessential. This is the main reason for which in
[21] the calculation to verify the conditions for canonical
transformations has been performed excluding these var-
iables and arriving to the conclusion that the Hamiltonian
transformations from the Jordan to the Einstein frames are
canonical. In our opinion, there is a fallacy of this line of
thought. First of all, if one discards the lapse NV and the shift
N, how could one pin down the ADM metric tensor
coefficients in (11) since they are functions of the lapse and
the shifts? In other words, we need to fix the values of the
lapse and the shifts, perform a gauge fixing, in order to
determine the values of the metric coefficients. Second, the
lapse and the shifts act as true canonical variables since by
preserving the momenta conjugated to the lapse and the
shifts one derives the Hamiltonian and the momentum
constraints. Maybe, these authors have in mind an example
employed by Dirac in his lecture notes [29]. He considered
a couple of second class constraints, ¢! ~ 0 and p; ~ 0, and

Dirac’s constraints and constraint algebra in Jordan and Einstein frames for @ # —% (see Ref. [5] for details).

Hamiltonian analysis of BD for @ # —%

In Jordan frame

In Einstein frame

Constraints

ay~ 0,7 ~0;H~0;H, ~O0;

Constraint algebra

{ﬂ'N,ﬂ'i} = 0; {ﬂN,H} = O; {ITN,H,'} = 0; {ﬂ',‘, H} = 0;
{mi. H;} = 0:{H(x), Hi(x') } = —H(x)0;6(x, x');
{Hi(x), H;(x")} = Hi(x")0;8(x, x') = H;(x)9;(x, x');
{H(x), H(x)} = H (x)9;6(x, x') — H (x")D:S(x, x');

Constraints
v~ 01 ~0,H~0,H; ~0;

Constraint algebra

{7y, 7} = 0; {@ty, H} = 0; {”NﬂH} 0; {7, H} = 0;
[T} = 0 {0, Fy(x)) = ~H) (. )
{Hi(x). H;(x")} = Hi(x')0;6(x. x") = Hi(x)0i6(x, x');

i) i
{H(x), 7))} = H'(x)9i3(x, x') — H'(x')9i5(x, x');
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TABLE II.

Dirac’s constraints and constraint algebra in Jordan and Einstein frames for o = —3

_3
7

Hamiltonian analysis of BD for o = —%

In Jordan frame

In Einstein frame

Constraints

ay 20~ 0;Cy =0, HT/Y % 0; H§_3/2) ~0;
Constraint algebra

{ay.m} = {ay HOPY = {my HTP Y = 0;
{2 HEY2) = {1 P} = o,

{Cpx). TP ()} = —036(x, ') Cy(x);
{Cp(x). HE¥D ()} = LHE) (x)5(x, )
{HEP () 1T ()} = —HED ()98 (x, x');
(M7 (0. 1P ()} = 7T (0)0,8(x.x)
—HP (0)5(x, )

J

PRSP () HERI()) = HED (09085, ) — HE) ()05, )

+ [ (log ()] (x)9,5(x. )
— D (log ()] ()8 x. x):

Constraints
7, 20,Cp =~y ~0; H ) ~ 0, H), % 0;
Constraint algebra
{ay. 7} = {iy. P} = 01 {zy 3/”} =0;
{it,v,H (=3/2) } _ {”ivHﬁ- 3/2)} _
{Cp(x), H; TP (&)} = 0;
{C¢( ), ﬁ“”( )} =0;
P (x)} = —=HE () dl8(x. x);
() = Hf ()06 (x. )
—HTD ()08 (x, x');
(A3 (x), KA ()} = AT (0)078(x, x')
—HTD (D5 (x, x');

{72((—3/2) (x)
(A7 (),

he got rid of them by simply imposing them strongly and
eliminating them as variables. He himself stressed that it
works only for this particular couple of canonical variables,
but not, necessarily, in general. Moreover, the lapse and the
shifts are not constraints.

The general impression is that these kinds of reasoning
presuppose there exists a transformation which divides the
set of variables into gauge variables and true (physical)
degrees of freedom of the dynamical system. In [58-60], it
has been extensively shown that there exist local canonical
transformations which map the first class constraints into
momenta variables P, =~ 0 and the second class constraints
into position and momenta variables ¢’ ~ 0, p; ~ 0. In [60],
it is shown that, in order to find the true, physical, degrees
of freedom, one has to make a gauge fixing for each first
class constraint (see also [61]). After treating the gauge
fixings as secondary constraints, the Poisson brackets
between each previous first class constraint and its relative
gauge fixing is nonzero. Then it is possible to find, locally,
a set of variables g* p, which are the true physical degrees
of freedom of the system. Therefore, there exist local
transformations capable of dividing the set of canonical
variables into two disjoint sets: the physical variables and
the gauge variables. Finally, one defines Dirac’s brackets
using all constraints, which now are second class con-
straints, and substitutes Poisson brackets with Dirac brack-
ets [29]. At this point, one can solve “strongly” the second
class constraints (use each of them to define one variable
as a function of the others) and reduce the degrees of
freedom of the system without any danger of generating
inconsistencies.

The main argument of this essay was to study Jordan and
Einstein frames under the light of the canonical analysis of

the Brans-Dicke theory in the case @ = —% with Gibbons-
Hawking-York boundary term. We showed explicitly that
this theory has a Weyl(-conformal) symmetry. The Dirac’s
constraint analysis was done, and we found five primary
constraints and four secondary constraints, see Table II. All
Dirac’s constraints are first class constraints according to
Dirac’s classification. The extra first class constraint is
generated by the extra Weyl symmetry. This study was
carried out through functional definition of the Poisson
brackets following [42] and gave several results in agree-
ment to [33], as regard the coefficients of the Dirac’s
constraint algebra, but also some differences, the main one
being the Poisson bracket (51). On the contrary, we seem to
be in perfect agreement with [48].

The o = —% Brans-Dicke action Eq. (8), transformed
through the conformal map, Eq. (5), from the Jordan to the
Einstein frame, becomes FEinstein’s theory of general
relativity with a constant potential that acts as a cosmo-
logical constant. The main argument for which Jordan and
Einstein frames are not canonically equivalent for @ ;é%
holds also in this case. Furthermore, in the Einstein frame,
the algebra of Dirac’s constraints, Eq. (87), is different with
respect to the Jordan frame, Egs. (66), (64), and (61). This
is even more crystal clear evidence of the noncanonicity.
This may sound strange since it was shown that @ = —%
Brans-Dicke is conformal invariant. The puzzle is solved
once one notices the conformal mapping, Eqs. (31) and
(33), transforms also the scalar field ¢(x), while the map,
Eq. (5), keeps ¢ unchanged. The conformal transforma-
tions from the Jordan to the Einstein frames are a particular
case of the conformal transformations (31) and (33) for Q
given by Eq. (96). However, these transformations are
singular, Eq. (97), for this value of €, and then it is not
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guaranteed that this map preserves the structure of the
Poisson brackets. A further application of this research
could be the analysis to a FLRW mini-superspace model
of the Brans-Dicke theory. Mainly, it is interesting for
physical reasons. This analysis could probe several com-
pelling questions. In fact, one could ask: in which sense are
the Hamiltonian transformations from the Jordan to the
Einstein frames are not canonical? We have already seen
[5] that, in the case w # —3/2, the canonical structure of
Poisson brackets is not preserved. Would it happen in the
case w = —3/2, and what could we say regarding the
equations of motion? Moreover, in this simpler finite
dimensional case, we could separate more clearly physical
degrees of freedom from the gauge degree of freedom by
making a gauge fixing on the lapse function and defining
Dirac’s brackets. One could check if the Hamiltonian
transformations from the Jordan to the Einstein frames
|

could be canonical and what this physically would mean in
light of all previous considerations. Finally, what implica-
tion does this Hamiltonian analysis have for the corre-
sponding Lagrangian theory?
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APPENDIX: DETAILED EVALUATION OF
SOME POISSON BRACKETS

1. Preservation of the conformal constraint Cy

Let us begin to calculate the Poisson bracket
{C4. N"H;(Z3/2)}, the first term of Eq. (47):

{ / Bxf(x)Ch(x), / d3x’Ni(x/)H§‘3/2>(x’)}_{ / Bxf (x) (hyn'l = pr,), / d3x’N"(x’)(—2hsb(x’)Daﬂ“b(x’)+6s¢7r¢)}

:{ / Bxf(x)(hmi), / d3x’NS(x’)(—2hsb(x’)Dafc“b(X’)>}

[ xrm), [ @xww)opmy )

=P +Pa,

where the previous expression splits into the sum of the two
Poisson brackets in virtue of the definition (21).

The first Poisson bracket P; can be rewritten, after
integration by part of the covariant derivative in the second
integral, in the following form;

731:{ / Pxf (x) (hyy). / d3x/(2DaNshsb(x’)zr”b(x’))}

E,PM—F,P]b‘F'PlC. (AZ)

It is easy to see that this Poisson bracket generates three
terms: P, originated by the (non-null) Poisson Bracket of
h;;(x) with 7% (x'), Py, by 7'/ (x) with /g, (x'), and, finally,
Pi. by #/(x) with the metric terms in the covariant
derivative D, N*(x').

The first two terms are

PM:/fy/ﬁﬁmﬂ%%Fw

x [ @DV, ()P =) (a3

and

Pw——/fy/fﬁumwﬁﬁ—w
« / B 2D NP ()7 (¢)F (=), (Ad)

and clearly P, + P, = 0.
The three-dimensional covariant derivative D,N*(x') is

D, N* = 0,N* + T3, N*, (AS)
and variations with respect to the three-dimensional metric
tensor h;; affect the three-dimensional Levi-Civita con-
nection I'), in the following way [42]:

1
5F2k = zhlﬂ(Dk&hal + Daéhlk - Dléhak>'

(A6)
Multiplying the previous expression with the quantity
N¥z%hg,, we get

k

N
O N 2" hyy = = DySh. (A7)

At this point we can easily see that P, the third term of
(A2), is nothing else but the Poisson bracket between 7%/ (x)
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and the covariant derivative D, N*(x"),
P, =Pi. = /d3y/d3xf(x)hpq53(x—y)/d3x’Dk(Nk7tP‘1)63(x’ -y). (A8)
The term P, can be rewritten as
- [ @y [ @xrms =) [ @)oo -y)
= [ [ @xa6c-y) [ @rD NS =) (A9)
Collecting P, and P, terms, we obtain this expression for the Poisson bracket (Al):
{ [ @xrcy. [ denim <x'>} = [ @3FOIDUN = b)) = = [ DS OIN (= ) 0,
(A10)

where we have simply integrated by parts.
A further step toward the preservation, along the dynamics generated by the total Hamiltonian Hr, of the constraint C is

the calculation of the second term of (47), writing Cj4(x) and H(=3/?)(x') in explicit form:

{ / Pxf (x)Cy(x), / d3x’N(x')H<_3/2)(xl)}:{ / &xf (x)(hff””‘m)’/ dwﬁN(xl){ ¢3R+¢lh (” i %f>

3 i i
~5gDi#D'$+2D'Dip+ U(gb)] }

=Par+-+Pas+Pp1+-+Pps. (All)
The bilinearity and Leibniz’s rule for Poisson brackets [42] grant breaking up in two groups (A and B) of terms

originated, roughly speaking, by the Poisson brackets of 4; ﬂ” and —¢m,, with the integral of the Hamiltonian constraint.
Therefore, labeling all terms, we have, for the first group A

Py = {/d3xf( )(hym), /d%’x/EN(x’)H ¢3R+i< 7 —”—’12) —iD (D' +2D'D;¢p + U(¢)]; (A12)

P 2) "2
Py = { [ e, [ dsfo<xf><_¢3R,,hu>}¢z; (A13)
E{ [ s, [ dst<xf>¢1h}¢z<ﬂuﬂ,.,._”§>; (A14)
E{ [, [ v ><ﬂ ﬂ,,_%hz>}¢%; (ALS)
Pus={ [ @xs e, [ @xnie) (=2 p.g0is ) |V (A16)
Pro= { [ e, [ d3xN(x’)(2D"Di¢)}\/ﬁ. (A17)

The terms of the second group B are
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o= { [ @xsm). [ eevinewr):
(A18)
Py = _{/d3xf(X)(¢”¢)v/d3XN(x’)#}
§ h(n"fn,;,-—%>v (A19)

Pi= { / Pxf (x) (dry). / PN () (%D@Di(p) }\/z;

(A20)

P =={ [ @ar00(0m). [ @xw) 0D Vi
(A21)

Pps = —{/d3xf(x)(¢ﬂ,/,),/d3xN(x’)(U(¢))}\/1;,
(A22)

We notice 5v/it = Lh'/sh;; in Eq. (A12) (cf. [42]), then

{ / Bxf(x)(hyail), / d3x’ﬁzN(X’)}

= [ @xrowe(-3). (A23)
and so the term Py is
Pai= [ @) (=312 (a2

The term P, (A13) can be calculated in two steps. First
we notice that the variation Sk = —h'*h/"Shy,. This
entails that

{ / Bxf(x)(hyaV), / d3x'N(x’)(—¢3hif')}R,-j\/E
—— [ @y OINIVigR (A25)

In the second step, we face the more delicate and difficult
point of computing

{ / &xf(x)(hm), / d3x'N(x')(—¢3Rij)}hif\/Z. (A26)

Following [42]

/d3x(_\/ﬁN¢(53Rij>gij)
=- / &xV'héhi,(D'DI — hiD"D,,)(Ng);  (A27)

therefore,
{ / Pxf (x) (hyy). / d3x'N(x')(—¢3Rij>}hff\/Z

= /d3yf(y)\/z(—2DiDi(N¢))~ (A28)

Finally, we get for Eq. (A13)
Pio == [ ¥ OGINGIVIPR
- [ @pVaeDD ). (329

It is not difficult to check that the calculation of the term
Pz, in which we consider only the Poisson brackets
between 7/ and the inverse of the determinant h, gives
the result

Pas =[xV ) |2 (wimy - )] (430

One can easily see that the Poisson brackets P,4 = 0 as
the result

Pt — {/d3xf(x)(hijﬂij),/d3x’N(x/) (ﬂijmj—%hz>}

1
h— =0. A3l
x Vh y 0 (A31)
The term P,5 can be rewritten in the following way:
Pys = {/d3xf(x)hijﬂij,
3
X / d*x'VhN(x') <—§Da¢Dh¢h“”>}, (A32)

and, in virtue of the observation made in the calculation for
the P,, term regarding the variation of 6"/, it gives the
result

Pas = [ @yOWANG) (-3000°0).  (A3)

Now we pass to calculate the P,q term: D;D'¢p has a h'/
coefficient in the contraction of the covariant derivatives
D;Di¢p = D,D,h*¢, and in the second covariant deriva-
tive on ¢: D,Dyp = D,(0pp) = 0,0,¢p — 1'%, 0,¢p. First,
we note that the variation of 5,4’ generates
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{ / Bxf (x)hyat, / d%’ﬂN(x’)hab}(zDan(p)
— [ @3 IVING) DD, (A34)

We evaluate now the second term
{ / Bxf(x)h iz, / d3x’\/EN(x')(2Dan¢)}hab,
(A35)
remembering that variation &, of the term D, D¢ is
81 (DyDyp) = —0,17,0,9. (A36)
and using the formula (A6) one gets
1 .
habéh(Dan¢) - _Ehlp(ZDa(shpb - Dpéhab)habDi¢.
(A37)

After integration by parts, the Poisson brackets generated
by the presence of h;; in the connection I" are

{ / Pxf(x)hyal, / d3x’\/EN(x/)(2Dan¢)}hab

= / PyVhf(y) (2R h' S5, — k¥ h 58] ) hy; Dy (N D)

= [ @xVhs D (D) (A38)
Summing the two terms,
Pas = [ &y 0)VANG)2D.DY)
+ [ WD N, (439

Now we pass to the calculation of the second group (B)
of Poisson brackets. It is straightforward that the following
Poisson brackets Pp; (A18) give this result

o / PyVRFGING)FR,  (Ad0)

and the term Ppg, (A19) gives

NO)f() <”ijﬂ.ij _”7’12> (A41)

PBZ = —/d3y\/i_17

Now we want to calculate the term Pp; (A20); we separate
it into two terms. First, we evaluate

{ / Bxf(x) gy, d3x’%\/EN<;l)}DC¢DC¢

— [ @3 Vi %Dcw%

(A42)
The contribution for the remaining term, after integration
by parts, becomes

| @xf(x)pry | dxDe SNVACIP AP
2 ¢

=[x (30 Wn 382 . ).

(A43)

Adding the two terms we arrive to the result that the
Poisson bracket Pg; is

P [ @310V (300D -5 D409 ).

(A44)

The last involved passage of these series of calculations
is the evaluation of the term Ppy, Eq. (A21), the Poisson
brackets. Double integration by parts gives

Pps = —{/d3xf(x)¢7r¢,2/d3x’\/f_chDCN¢}

—> / V(DD N) (). (Ad5)

Finally, the term Ppgs, Eq. (A22), which is an immediate
calculation, is

Pys = —{ [ exropm,. [ w‘zNU(qb)d*y}

- / FyfyNg U

7 (A46)

We are now ready to collect all the pieces for the calculation
of the Poisson brackets, Eq. (A11),
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Exf(x)Cy(x), | dX'N(xXYH 32 (x')
{/ / |

= [ @[O0 (=3HP0)) = VAONER = 2 0)VD,D (49)

3vhN g 2 3 —-N
$ VNI (i - 2) 3 RN b gDegp(y) + 26 50N (DD, )
Ph 2 2 ¢
hN g
+VRFD D)~ ViR =) (i, ) 2 i
N ¢ Vhd(DE du(¢)
+3Vhf(y)D*(ND ) +2f(y)Vhp(DD.N) + f(y )1\’4157qu (A47)
I
Recalling that, from Eq. (10) in the case w = —3, { / xf (x)Cy ), e /2)}
— | &yD NkC
) | eprmwics)
¢—¢ —-2U(¢) =0, (A48) 1
45 [ @NOUOHIG) 0. (A50)
one finally finds
2. Poisson bracket of the Hamiltonian
constraint H(~3/2)
Since the momentum r, is absent in the Hamiltonian
3 3./ N (=3/2) (+ ¢

{ / &xf (x)C¢(x), / X' N(x')H (x)} constraint (42), our computations are restricted to the
1 variation of the metric functions %;; and its conjugate
=3 / ByNY)f(y)H T2 () = 0. (A49)  momenta /. Nonalgebraic variations of the metric tensor

Recapitulating—adding (A10) and (A49)—we obtain
the condition for the preservation of the primary constraint

Cy(x),

{/d3xN(x)H<‘3/2)(x),/d3xN’(x’)H(_3/2)(x')}

ol fesa(-

6h1m (x)
5hij(y)

)(Dle - h’”’Dka)(Nqﬁ)(

are generated, as it can easily be seen, by the trace of Ricci
tensor °R, as it can easily be seen in Eq. (A27), and the
double covariant derivative of the scalar field DD ¢ as
shown in Egs. (A36) and (A37). Therefore the previous
Poisson brackets (65) is equivalent to the calculation of the
following integrals:

s | g (+2na 5 i)

~ Nt [y () [ eavAN G b0~ 1 500) DN () Dig)

5hij ()

- <5ﬂ’f(y)

which, performing the calculations, reduces to

/ &X' N'(X')Vh ¢lh (::abna,, —”7”2»] — (N < N,

(AS1)
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{/ dxN(x)H /) (x), / dxN'(x'YH /2 (x’)}
= [ @y |~ - DD N T (2 = i) | = )
+2 [ ey o % (205 = hym) = (V= N) + [ EDN)De) % (1) — (N & N).  (AS2)

Further, we compute the double derivatives on N¢ and discard the term DD, ¢ since it cancels with its similar term in
N < N/,

{ / BxN(x)H 3 (x), / d3xN’(x’)H<‘3/2)(x’)}

= [ sy wn(X) e - 0w (5 ) ) + 20w 09 (5 ) 2y - 20w () 1)

/ /

00N (% ) ) + 200 (' ) )| - 0 )

w2 [ @yomo) () my - - o )+ [ @yomoan (5 )m - em. s

Simplifying, we get

!

{ [ @xwuerio. [ exvwymerin) = |- [eyopimesy - [ exomoa’y @)
— (N < N)). (A54)
Integrating by parts, the equation above becomes
{/ d3xN(x)H =32 (x), / d3xN’(x/)’H(_3/2)(x’)} = /d3y(NDiN’ — N'D'N)(-2D'n;; + 7y0;p — 140:h)
+/d3y(NDiN’ — N'DN)(D;log ¢)(x). (ASS)

At the end, we find that the Dirac’s constraint algebra generated by the Poisson brackets of the Hamiltonian constraint
(65) is

{ / d3xN(x)H =) (x), / d3xN'(x/)H<—3/2>(x')} = / &*y(ND'N' — N'D'N)H,;

+ / #y(ND'N' = N'D'N)(D;log $)C, ~0.  (A56)
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