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Future datasets will enable cross-correlations between redshift space distortions (RSDs) and weak
lensing (WL). While photometric lensing and clustering cross-correlations have provided some of the
tightest cosmological constraints to date, it is not well understood how to optimally perform similar
RSD/WL joint analyses in a lossless way. RSD is typically measured in 3D redshift space, but WL is
inherently a projected signal, making angular statistics a natural choice for the combined analysis. Thus, we
determine the amount of RSD information that can be extracted using projected statistics. Specifically we
perform a Fisher analysis to forecast constraints and model bias comparing two different fingers-of-God
models using both the 3D power spectrum Pðk; μÞ and tomographic CðlÞ. We find that because naïve
tomographic projection mixes large scales with poorly modeled nonlinear radial modes, it does not provide
competitive constraints to the 3D RSD power spectrum without the model bias becoming unacceptably
large. This is true even in the limit of narrow tomographic bins. In light of this we propose a new radial
weighting scheme which unmixes radial RSD scales in projection yielding competitive constraints to the
3D RSD power spectrum, while keeping the model bias small. This work lays the groundwork for optimal
joint analyses of RSD and cosmic shear.
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I. INTRODUCTION

Analyses of the RSD power spectrum from spectro-
scopic surveys have yielded some of the most precise
cosmological constraints to date [1–8]. These will further
improve as data from stage IV experiments including
Euclid1 [9,10], the Nancy Grace Roman Space Telescope2

[11] and the Dark Energy Spectroscopic Instrument (DESI)3

[12] become available.
As a stand-alone probe RSD provides extremely tight

constraints on gravity on cosmological scales and specifically
the logarithmic growth function f [13,14]. Measurements of
this parameter can distinguish between theories of modified
gravity which are indistinguishable from background expan-
sion probes alone [15].
Yet, small-scale radial modes (high-kk) are poorly

understood and there are large discrepancies between
models [16–21]. Thus, when performing parameter infer-
ence one typically assumes a nonlinear RSD model and
marginalizes over a set of nuisance parameters which

govern the behavior on intermediate nonlinear scales, while
removing (or severely down-weighting) scales deep into
the nonlinear regime [22]. This is the primary source of
modeling uncertainty limiting the constraining power of
RSD surveys.
Meanwhile, analyses of photometric surveys, using a

combination of weak lensing [23–25], galaxy clustering
[26] and the cross-correlation between the two [27],
provide complimentary information. Over the next decade,
data from Euclid, the Vera Rubin Observatory [28] and
Roman will enable these measurements to achieve unprec-
edented precision.
By breaking the degeneracy between cosmological and

nuisance parameters, the full “3 × 2 point” constraints
including galaxy-galaxy lensing are dramatically more
precise than those from photometric cosmic shear or
clustering alone. This has been shown with existing data
[27,29] and it is predicted [30] that for Euclid, the inclusion
of the cross-correlation between the two signals improves
the dark energy w0 − wa figure of merit by a factor of 5.
By constraining highly uncertain nonlinear RSD

models, increasing the signal-to-noise ratio and acting as
an important consistency check—a combined RSD/weak
lensing (WL) analysis could provide many of the same
advantages as a 3 × 2 point analysis and yield some of the
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most competitive constraints on dark energy and modified
gravity. The velocity and position of foreground galaxies
is correlated with lensing structure, so the WL and RSD
signals should be highly covariant provided that (1) the
spectroscopic RSD sample lies at a similar redshift to
the peak of the lensing kernel and (2) the WL and RSD
samples cover overlapping regions of the sky. This will
be the case for the DESI luminous red galaxies, emission
line galaxies, the bright galaxy sample (BGS) and Euclid
weakly lensed galaxies, and for the spectroscopic/
photometric overlap in Roman [31]. The Euclid spectro-
scopic sample meanwhile is likely at too high a redshift to
cross-correlate with WL.
Several studies have previously sought to exploit this

covariance. The analysis of [32] used weak lensing data to
constrain the galaxy bias of the RSD sample. However, as
the RSD and WL samples were in nonoverlapping fields,
the data vector in this study contained no RSD/WL cross-
correlation terms. Instead, a photometric sample was
constructed to match the properties of the RSD sample
and the resulting galaxy-galaxy lensing measurement was
used to constrain the galaxy bias. Other analyses have also
sought to exploit the cross-correlation between photo-
metric cosmic shear and spectroscopic galaxy clustering
by performing 3 × 2 point analysis [33,34]. Since these
studies use photometric redshifts for the lensed galaxies
and the tomographic bin widths were taken to be much
larger than the nonlinear RSD scale, one should not expect
this type of analysis to provide additional constraints on
nonlinear RSD, i.e., the high-kk modes. In fact, binning
the spectroscopic clustering sample into broad redshift
bins leads to a loss of information. But if one had
spectral information for the lensed galaxies from cross-
matching the RSD and WL catalogs, it is possible that,
by providing additional measurements of the small-scale
radial modes, the WL/RSD cross-signal could help con-
strain nonlinear RSD.
Given the large overlap between Euclid and DESI and

the Roman photometric and spectroscopic survey [31], we
anticipate a sample of approximately 30 million galaxies
where we will have both lensing and spectroscopic infor-
mation within the next decade.4 To take advantage of this
cross-probe signal, we first need an appropriate two-point
estimator.
While RSD studies typically use the 3D anisotropic

power spectrum5 Pðk; μÞ, the anisotropic two-point corre-
lation function ξðs⊥; skÞ, or Legendre multipoles PlðkÞ,

weak lensing is a projected observable, so cosmic shear
studies use angular statistics, in particular the tomographic
cosmic shear power spectrum CðlÞ or the two-point
correlation functions ξ�ðθÞ. Projection is not a completely
invertible operation, so we should seek to perform the joint
analysis in projected space.
This raises the question of whether it is even possible

to capture all the information in the anisotropic power
spectrum Pðk; μÞ using projected statistics. One may
naïvely wish to use classical projected tomographic power
spectra [37–42] CijðlÞ, binning galaxies in sufficiently
narrow redshift bins (with bin numbers i and j) to capture
the kk modes down to sufficiently small scales. As shown
in [37], this mixes large- and small-kk modes for each fixed
perpendicular scale k⊥. This has two problems:

(i) Cosmological constraining power is lost because each
k ¼ ðkk; jk⊥jÞ contains independent information.

(ii) As we are mixing kk scales for fixed l, we must cut
data points to avoid model bias from nonlinear RSD
scales, even when these data points also contain
useful information about linear kk scales.

To sidestep these issues, we will show how to construct a
radial weighting function (basis) which sorts kk scales in
projection. For radial weights wðηa; zÞ and wðηb; zÞ in this
new basis, we write the angular power spectrum as
CηaηbðlÞ. We will demonstrate there are tight correspond-
ences between η − kk and l − k⊥. This can be thought of as
the RSD analog of k-cut and x-cut cosmic shear which sorts
lensing two-point statistics by sensitivity to difference
structure scales [43–46].
We will show that one must still use the RSD power

spectrum Pðk; μÞ to optimally extract information from
large linear radial scales before discussing how to use the
two estimators CηbηbðlÞ and Pðk; μÞ in a joint analysis. This
is somewhat similar to the hybrid estimator developed in
[47] except we work in projected space on small scales
while [47] worked in spherical-Bessel projected space on
large scales to handle wide-angle effects. Although this
means in the future we will not be able to extract
information from large-scale radial modes in the WL/
RSD cross-signal, this is acceptable as we are primarily
interested in the cross-correlations on smaller radial scales
to constrain nonlinear RSDs.
The structure of this paper is as follows. In Sec. II we

summarize the formalism of projected RSD before pre-
senting our new basis. In Sec. III we perform a Fisher
analysis. Using two phenomenological fingers-of-God
(FOG) models, we compare the precision and model bias
when using the RSD power spectrum Pðk; μÞ, standard
tomography CijðlÞ and our new basis CηaηbðlÞ, before
concluding in Sec. IV. Finally we discuss issues related to
performing a likelihood analysis with real data in
Appendix E. Throughout the remainder of the paper we
take Ωm ¼ 0.315, Ωb ¼ 0.04, h0 ¼ 0.67, ns ¼ 0.96 and
σ8 ¼ 0.8.

4There are also proposals to perform kinematic weak lensing
studies which will provide spectra for lensed galaxies [35]. A first
detection of this signal was recently made in [36].

5We will use Pðk; μÞ and Pðkk; k⊥Þ interchangeably through
the remainder of the text using the relations kk ¼ kμ and

k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2k þ k2⊥

q
.
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II. RSD ANGULAR POWER SPECTRA

A. A brief review of the RSD anisotropic
power spectrum

Before discussing projected RSD, we first review the
formalism of the anisotropic RSD power spectrum, Pðk; μÞ.
We decompose the RSD spectrum into isotropic and
anisotropic parts [38]

Pðk; μÞ ¼ Ã2
RSDðμ; kμÞPðkÞ; ð1Þ

where μ ¼ cosðθÞ, θ is the angle between the wave vector
and the line of sight, PðkÞ is the matter power spectrum and
Ã is the RSD operator which takes the power spectrum into
redshift space and accounts for galaxy bias. As in [38], we
decompose it as

ÃRSDðμ; kμÞ ¼ bgð1þ βμ2ÞÃnlðμ; kμÞ; ð2Þ

where bgð1þ βμ2Þ is the Kaiser term [48] acting on linear
scales, bg is the linear galaxy bias, β ¼ f=bg and Ãnl is the
operator that accounts for the nonlinear RSD model. In this
paper we consider two simple phenomenological nonlinear
models which account for the FOG. For a Gaussian FOG,
the nonlinear RSD operator is [16]

ÃGaussðkμÞ ¼ exp

�
−
1

2
f2σ2vk2μ2

�
; ð3Þ

while for the Lorentzian model it is given by

ÃLorentzðkμÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ f2σ2vk2μ2
p : ð4Þ

Throughout the remainder of this work we use the
nonlinear power spectrum from HALOFIT [49] to generate
the isotropic part, PðkÞ and take the Lorentzian FOG as the
fiducial model6 unless explicitly stated otherwise. This
phenomenological model is as accurate as more physically
motivated models [37]. We choose to ignore the impact of
spectroscopic redshift uncertainty as this is subdominant
to the FOG.

B. Survey selection functions, windows and
tomographic bins

In this section we aim to clarify some definitions which
will be used through the remainder of the text. Given a
spectroscopic survey, the observed radial distribution of
galaxies will have some distribution in redshift z, which we
will refer to as the survey radial selection function and
which we write as NðzÞ.

We divide the radial selection function into several
coarse redshift bins which we will refer to as radial
windows or simply as windows. We use the notation
WðzÞ to denote the galaxy redshift distribution of a
window. It is standard practice in RSD anisotropic power
spectrum studies to subdivide the survey selection func-
tion into coarse redshift bins, assume there is no redshift
evolution of the power spectrum in the window and
analyze each redshift bin separately. For the remainder
of this work we compute distances and the power
spectrum at the average redshift of the window zw ¼R
dz zWðzÞ=R dzWðzÞ, writing rw for the comoving dis-

tance at zw. The impact of choosing an effective redshift is
studied in [50]. We will also restrict our attention to a
single window for the remainder of the paper. Finally
when we consider projected tomographic power spectra
we will further subdivide the window into tomographic
bins in redshift. In this case we denote the ith tomographic
bin window as WiðzÞ.

C. Angular tomographic power spectra
in the flat-sky approximation

Since the RSD power spectrum Pðk; μÞ is anisotropic,
care must be taken when projecting to angular statistics.
For the remainder of this work we will assume the plane-
parallel approximation [37,38,51] which is an extremely
good approximation for l > 100 assuming that the radial
separation of tomographic bins is small [51]. Then for
tomographic bin numbers i and j, following the notation
of [38], we can write the projected tomographic angular
power spectrum7 as

CijðlÞ ¼
1

rirj
C
�
k⊥ ¼ lþ 1=2

r0
; ri; rj

�
; ð5Þ

where ri and rj give the comoving radial distance to
tomographic bins i and j, r0 ¼ ðri þ rjÞ=2 and

Cðk⊥; ri; rjÞ ¼
1

π

Z
∞

0

dkkPðk; μÞK̃ijðkkÞ; ð6Þ

where k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2⊥ þ k2k

q
and μ ¼ kk=k, and we define the

“radial-mode efficiency kernel” K̃ijðkkÞ as

K̃ijðkkÞ ¼ W̃�
i ðkkÞW̃jðkkÞ: ð7Þ

Here W̃iðkkÞ is the Fourier transform of the radial window
for tomographic bin i, so that

6In this work we are primarily interested in the difference
between the two models as proxy for nonlinear RSD model
uncertainty.

7Formally since the RSD field is anisotropic Cll0 ≠ 0 for
l ≠ l0. We choose to ignore this effect since the coupling is weak
and contained to a few adjacent l modes [52]. In practice with
real data, one must also use wide bandpowers in l to deconvolve
the survey mask, mitigating the impact of coupling.
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W̃iðkkÞ ¼
Z

r½zmax�

r½zmin�
drWiðr½z�Þ exp ð−ikkr½z�Þ; ð8Þ

with the normalizationZ
r½zmax�

r½zmin�
drWiðr½z�Þ ¼ 1: ð9Þ

The radial-mode efficiency kernel K̃ijðkkÞ, defined in
Eq. (7), is an important quantity. We will refer to it at
many points in the remainder of this work as it defines
how sensitive the projected spectra are to different kk
modes. It is important to note that it depends on the
comoving distance r and hence is a function of the
background cosmology.
In the absence of a survey mask, the expected observed

power spectrum is a sum of the signal in Eq. (5) and
the shot noise. The shot noise is strictly a function of the
number of galaxies in the bin Ni;gals, so we can use
the expression from the isotropic case [9]

NijðlÞ ¼
δij

Ni;gals
; ð10Þ

where δij is the Kronecker delta.

D. Generalized angular power spectra
in the flat-sky approximation

To extract information we weight every galaxy by some
radial weight function wðη; zÞ. Then inside each window
the cosmological information is contained in the “gener-
alized power spectra” Cηa;ηbðlÞ. Power spectra with gen-
eralized weights have previously been proposed for weak
lensing [53,54]. It should be noted that standard tomog-
raphy is just a special case of the generalized power spectra
where one takes fwðη; zÞg to be a set of narrow non-
overlapping top-hat functions.
After applying the weightingwðη; zÞ, the radial window is

Wðη; r½z�Þ ¼ wðη; zÞWðr½z�Þ: ð11Þ

Generalizing the expressions in the previous section, it
follows that

CηaηbðlÞ ¼ 1

r2w
Cηaηb

�
k⊥ ¼ lþ 1=2

rw
; rw

�
; ð12Þ

where

Cηaηbðk⊥; rwÞ ¼
1

π

Z
∞

0

dkkPðk; μÞK̃ðkk; ηa; ηbÞ; ð13Þ

and the “generalized radial-mode efficiency kernel”
Kðkk; ηa; ηbÞ, is given by

K̃ðkk; ηa; ηbÞ ¼ W̃�ðηa; kkÞW̃ðηb; kkÞ: ð14Þ

The Fourier transform of the radial windows in the new
basis is

W̃ðη; kkÞ ¼
Z

r½zmax�

r½zmin�
drWðη; r½z�Þ exp ð−ikkr½z�Þ: ð15Þ

Finally the shot noise is given by

NηaηbðlÞ ¼ 1

Ngals

Z
zmax

zmin

dzWðzÞwðηa; zÞwðηb; zÞ; ð16Þ

where in this case we assume the normalizationZ
zmax

zmin

dzWðzÞ ¼ 1: ð17Þ

We refer the reader to [55] for the derivation of the shot noise
with a generic weighting function. In practice the shot noise
can be estimated from random realizations.

E. The tomographic radial-mode efficiency kernel
for top-hat window functions

It is in general difficult to compute the radial-mode
efficiency kernels at each point in cosmological parameter
space rapidly enough for cosmological parameter inference
if the window (and hence tomographic bin windows) are
not simple analytic functions. We discuss a fast numerical
approach8 in Appendix A for more realistic windows. For
the time being, we restrict our attention to top-hat tomo-
graphic bin windows WiðzÞ, since it is possible to proceed
analytically. This is a good starting point since in the limit
of narrow tomographic bins, the tomographic bin windows
are well approximated by top-hat functions.
Assuming the tomographic bin window is centered at ri,

with bin width Δri, noting that the Fourier transform of a
top-hat function is a sinc function, we find [37,38]

K̃iiðkkÞ ¼ sinc2
�
kkΔri
2

�
; ð18Þ

where sincðxÞ ¼ sinðxÞ=x.
In Fig. 1 we plot the radial-mode efficiency kernels for

tomographic top-hat windows of different widths Δz at a
redshift z ¼ 0.5. Taking the bin width to be Δz ¼ 0.1,
we see that almost all nonlinear RSD information is
lost as the radial-mode efficiency kernel is effectively
zero for kk ≳ 0.03 h Mpc−1. Decreasing the bin width to
Δz ¼ 0.01, we start to probe the mildly nonlinear regime
kk ≲ 0.2 h Mpc−1. But if we decrease the bin width to

8In practice all results in this paper are computed using the fast
numerical approaches given in Appendixes A and B.
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Δz ¼ 0.001 the tomographic power spectra will remain
sensitive to radial modes extremely deep into the non-
linear regime, up to kk ≲ 3h Mpc−1. Hence we see that
decreasing the bin width yields sensitivity to larger kk
modes. We will restrict our attention to Δz > 0.01 to avoid
sensitivity to the deeply nonlinear regime for the remain-
der of this work.
It is worth emphasizing two key points. First, tomo-

graphic RSD angular power spectra probe nonlinear radial
modes even in the limit of low-l [see Eqs. (5) and (6)].
Unlike in photometric galaxy clustering studies, taking
l-cuts cannot be used to completely mitigate bias from
poorly understood nonlinear scales. Second, the mixing of
scales in the radial direction is not a consequence of the
plane-parallel approximation. This can be seen by taking
the high-l limit where the plane-parallel power spectra
are equivalent to the full non-Limber spherical power
spectra [38]. Instead the mixing of scales is a direct
consequence of the anisotropy of the RSD field.
Let us suppose that we have a model of nonlinear RSD

which is unbiased for all kk < kmax
k , for some kmax

k . This

suggests that we should keep decreasing Δz as long as
K̃ijðkkÞ ∼ 0 for all k > kmax

k . This ensures we capture

information from all modes with kk < kmax
k , while remov-

ing sensitivity to all modes with kk > kmax
k .

With this choice of bin width, we still do not retain all the
information available in Pðk; μÞ. To see this, note that each
kk mode yields independent information. In fact, many of
the parameters of interest such as the galaxy bias, growth
function and FOG velocity dispersion all impact Pðk; μÞ in
different regions of kk − k⊥ space. This is shown in Fig. 2,

where we plot the RSD power spectrum derivatives with
respect to these parameters, normalized against the RSD
power spectrum. Yet from Eq. (6) we see that the tomo-
graphic CðlÞ are given as an integral over kk modes
weighted by the kernel K̃ijðkkÞ. These kernels are broad
in kk leading to a mixing of modes across a wide range
of radial scales so that, in projection over kk, detailed
information about Pðk⊥; kkÞ and hence cosmological

FIG. 1. The radial-mode efficiency kernels K̃ijðkkÞ for top-hat
tomographic windows with redshift widths Δz, centered around
z ¼ 0.5. The radial-mode efficiency kernel defines the sensitivity
of the tomographic CðlÞ to kk modes in the RSD power spectrum
[see Eq. (6)]. Smaller bin widths lead to more sensitivity to
smaller scale parallel modes. Since the kernels are broad in kk,
even in the limit of small bin widths, information is still lost when
using tomographic CðlÞ as we mix independent kk modes across
a broad range of scales.

FIG. 2. The derivative of the RSD power spectrum Pðkk; k⊥Þ
with respect to bg, f and σv. Each parameter affects the power
spectrum in different regions of kk − k⊥ space. This information
is partially lost when integrating over kk to compute tomographic
CðlÞs [see Eq. (6)]. We quantify this statement in Sec. III.
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parameters is lost. This is also manifested in additional
degeneracies between cosmological parameters in projec-
tion. We quantify these statements in Sec. III.

F. Angular radial-harmonic power spectra

As we have just argued, the primary problem with
tomographic CðlÞ is that the radial-mode efficiency kernels
K̃ijðkkÞ are broad in kk. In this section, we will use the
generalized power spectra formalism and find a set of
weight functions fwðη; zÞg which ensure that K̃ðkk; ηa; ηbÞ
are narrow in kk and form a spanning set over kk.
For the sake of argument, let us suppose the window

Wðr½z�Þ is flat in redshift. It follows from Eqs. (11), (14)
and (15) that, to ensure the radial-mode efficiency kernels
are narrow in kk, we should choose a set of weight
functions, fwðη; zÞg, which are narrow in Fourier space.
Meeting this criteria, the key insight of this paper is to note
that the Fourier transform of a cosine is a delta function,
inspiring the choice

wðη; zÞ ¼ cos

�
2πηrref ½z�
Δrref ½z�

�
: ð19Þ

Here, rref and Δrref are the comoving distance to the
window and the width of the window assuming a fiducial
reference cosmology. In a likelihood analysis this weight
should be applied to the data only once, and when
computing the theory vector, the weight remains invariant
even as the background cosmology is changed while
sampling cosmological parameter space. The prefactors
are chosen so that the weight function has a period of
Δrref=η. With this choice of weight function, we refer to the
resulting CηaηbðlÞ as the “radial-harmonic power spectra.”

G. kk-mode separation in the radial-harmonic basis
and the Pðk; μÞ−CηaηbðlÞ hybrid estimator

In Fig. 3, we plot the radial-mode efficiency kernels for a
stage-IV-like survey centered on z ¼ 0.5. The radial win-
dow Wðr½z�Þ is shown in the top panel. This is not flat in
redshift to demonstrate that the weight function in Eq. (19)
works as intended in a more general setting.
The radial-mode efficiency kernels normalized against

their maximal values are shown in the middle row. As the
value of η is increased, the kernels become narrower and
peak at higher values of kk. This means that, in contrast to
the tomographic power spectrum which mixes kk scales, for
η≳ 3 the radially harmonic power spectrum CηηðlÞ is only
sensitive to kk modes inside a narrow range and we probe
different kk scales for different values of η. Very roughly the
scaling goes as

kk ∼
2πη

Δr
: ð20Þ

In fact, for η≳ 3 (kk ≳ 0.05 h Mpc−1) there is a nearly a
one-to-one correspondence between kk and η. From
Eq. (12) there is also a one-to-one correspondence between
l and k⊥. Thus, nearly all the cosmological information
that exists in the RSD power spectrum Pðkk; k⊥Þ is retained
after projection to CηaηbðlÞ—at least in the regime
where kk ≳ 0.05 h Mpc−1.
As η → 0, we approach the tomographic case as the

wavelengths of the radial weighting become much larger

FIG. 3. Top: the radial window function of a stage-IV-like
survey. Middle: the radial-mode efficiency kernel normalized
against its maximal value. With the hybrid estimator we use
Pðkk; k⊥Þ to probe scales to the left of the black dashed line in
gray and CηaηbðlÞ to probe scales to the right of the line. In this
regime the kernels are narrow so there is a nearly one-to-one
correspondence between η and kk, implying that in contrast to the
tomographic case (see Fig. 1), radial kk scales are unmixed
in projection. Bottom: the radial-mode efficiency kernels. For
ηa ≠ ηb the magnitude of the radial-mode efficiency kernel is
much smaller than for the autocorrelations between η modes.
Hence for fixed l, CηaηbðlÞ is nearly diagonal.
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than the window. The fact that the kernels are broad
and mix kk scales for low-η (low-kk) motivates the choice
of a new Pðk; μÞ − CηaηbðlÞ hybrid estimator. We shall
refer to this as the “radial-harmonic hybrid estimator.”
In the high-kk (high-η) regime we will use the projected
radial-harmonic power spectra CηaηbðlÞ, enabling a cross-
correlation with lensing at high-kk to constrain nonlinear
RSD. Meanwhile on large radial scales, we will use the
RSD power spectrum Pðkk; k⊥Þ.
We combine the two estimators as follows:
(i) Choose a minimum η value, ηmin. This choice is not

formally defined, but it should be as small a value as
possible while ensuring that the radial-mode effi-
ciency kernel K̃ðkk; η; ηÞ is narrow.

(ii) Using the correspondence between η and kk, define a
scale kmax

k ðη ¼ ηminÞ which is the largest value of kk
such that K̃ðkk; ηmin; ηminÞ is “small.” This ensures
that Pðkk; k⊥Þ and CηaηbðlÞ probe different kk scales
so that there is negligible covariance between
the two. For the remainder of this paper we will
take kmax

k ðηminÞ as the maximum kk such that

Kðkk; ηmin; ηminÞ is less than 20% of its maximal
value over kk, corresponding to the horizontal dotted
line in the middle row of Fig. 3.

Following this procedure, if we choose ηmin ¼ 3, then
kmax
k ðηminÞ ¼ 0.04 which is indicated by the dotted black
line in the middle panel of Fig. 3. The gray shaded region to
the left of this line indicates the kk modes which are probed
with Pðkk; k⊥Þ and the unshaded region denoted scales
which are probed with CηaηbðlÞ.
The bottom panel of Fig. 3 shows the radial-mode

efficiency kernels for ðηa; ηbÞ ¼ ð1; 1Þ; ð5; 5Þ; ð1; 5Þ. We
see that for ηa ≠ ηb, the magnitude of the radial-mode
efficiency kernel is much smaller than for the autocorre-
lations between η modes so that for fixed l, CηaηbðlÞ is
nearly diagonal.

H. Comparison of radial-harmonic and tomographic
power spectra

We start by validating our tomographic code against
COSMOSIS [56]. For this test we assume no anisotropic RSD
contributions, i.e., we set Ã2

RSD ¼ 1 in Eq. (1) and assume
a top-hat window in the range z ∈ ½0.45; 0.55�. All data
points agree within 5% with average agreement within 1%
for l ∈ ½100; 1000�. COSMOSIS makes the Limber approxi-
mation [57] and assumes a temporally evolving power
spectrum while we assume that the power spectrum is fixed
inside the tomographic bin and assume the plane-parallel
approximation [37]. In both cases we use CAMB [58] to
generate the linear power spectrum and HALOFIT [49] to
generate the nonlinear power spectrum, which we call from
PyCAMB in our code.

In Fig. 4 we plot the tomographic CiiðlÞ that cover the
top-hat window over the range z ∈ ½0.5; 0.75� for 1, 2 and
10 subdivisions corresponding to tomographic bin widths
Δz of 0.25, 0.125 and 0.025, respectively.

FIG. 4. Tomographic CðlÞ in the redshift range z ∈ ½0.5; 0.75�.
Top, middle and bottom panels correspond to 1, 2 and 10
tomographic subdivisions, corresponding to tomographic bin
width Δz of 0.25, 0.125 and 0.025, respectively. The CiiðlÞ of
narrow bins have more power as these functions probe high-kk
modes in addition to low-kk modes (see Fig. 1). For a given
tomographic bin width, the CðlÞ of each tomographic bin probe
approximately the same scales so that CiiðlÞ ≈ CjjðlÞ for i ≠ j.
This implies that if CiiðlÞ is biased for some l mode due to
modeling uncertainty, then so is CjjðlÞ for i ≠ j.
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Comparing the three panels of Fig. 4, we notice that as
the tomographic bin width is decreased the magnitude of
the CiiðlÞ increases. This is precisely as expected because
on comparison with Fig. 1, it is clear that narrow tomo-
graphic bins are sensitive to high-kk modes as well as the
low-kk modes which are probed with broader tomographic
bins. It is important to note that, for narrow tomographic
bins, even though we must use all tomographic bin pairs
to maximize the signal-to-noise ratio, they are all sensitive
to the same poorly modeled nonlinear kk modes, even
for low-l.
In Fig. 5 we show the radial-harmonic power for

different values of η. Unlike in the tomographic case,
the projected spectra probe different kk scales at each η
value, resulting in differences in the power spectra. One can
easily remove sensitivity to poorly modeled kk modes by
taking an η-cut to the data vector. For some fixed l mode,
this preserves useful information at low-η while removing
data points which are biased due to nonlinear RSD
modeling uncertainty at high-η.
For parameters f, bg and σv, in Fig. 6 we plot the

absolute value of the derivatives of the tomographic power
spectra normalized against the power spectrum. This is a
measure of how sensitive the tomographic power spectra
are to these parameters (see Sec. III A for more details). As
before we consider tomographic bins widths Δz of 0.25,
0.125 and 0.025. In each case we only consider the lowest
redshift tomographic bin, since the differences between
each bin’s power spectra are small (see Fig. 4).
The normalized derivative in the top panel of Fig. 6 is

largest for narrow tomographic bins implying that the
sensitivity to the high-kk modes yields additional con-
straining power on f. From the bottom plot in Fig. 6 we
find that the power spectra of narrower bins are signifi-
cantly more sensitive to σv, as these power spectra probe
high-kk modes (see Fig. 2). More generally data points that

are sensitive to σv are those which are most prone to
nonlinear RSD model bias. This plot shows that although
narrow bins would yield the tightest constraints on f, this
comes at the cost of model bias.
Finally the normalized derivatives of the radial-harmonic

power spectra are shown in Fig. 7. In this case we find that

FIG. 5. Radial-harmonic power spectra inside the redshift range
z ¼ ½0.5; 0.75�. Different values of η probe different kk modes
resulting in differences between spectra in contrast to the tomo-
graphic case (see Fig. 4).

FIG. 6. The absolute value of the derivatives of the tomo-
graphic power spectra normalized against the power spectrum.
This is a measure of how sensitive the tomographic power spectra
are to different parameters (see Sec. III A). The top row indicates
that narrow tomographic bins are the most sensitive to f.
However, from the bottom row, narrow tomographic bins are
the most sensitive to σv and, more generally, nonlinear RSD
modeling uncertainties, so this binning strategy is the most prone
to model bias.

TAYLOR, MARKOVIČ, POURTSIDOU, and HUFF PHYS. REV. D 105, 084007 (2022)

084007-8



at low-l, the lower value η modes are sensitive to f.
Crucially these data points are extremely insensitive to σv
and nonlinear RSD scales in general, so the model bias
is small. Meanwhile from the bottom panel of Fig. 7 it is
evident that we are most sensitive to σv, and nonlinear RSD
in general, for large-η. These data points can easily be

removed from the data vector to mitigate model bias, while
constraining f with the data points at low-η.

III. FISHER RESULTS

A. Fisher formalism

To compare the constraining power and model bias
of the anisotropic power spectrum, tomography and the
radial-harmonic hybrid estimator, we will perform a Fisher
analysis. For this analysis we will assume a Gaussian
covariance neglecting both the super-sample covariance
[59–61] and non-Gaussian [61,62] terms.
Given a set of model parameters fθαg, if we assume the

data vector follows a Gaussian likelihood and that it is
linear in the model parameters, then a good estimate of the
marginal error on θα is

σðθαÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðF−1Þαα

q
; ð21Þ

where F is the Fisher matrix. For tomographic CðlÞ the
Fisher matrix is [9]

Ftomo
αβ ¼

Xlmax

l¼lmin

X
ij;mn

∂CijðlÞ
∂θα ½ΔC−1ðlÞ�jm

×
∂CmnðlÞ

∂θβ ½ΔC−1ðlÞ�ni; ð22Þ

where α and β label the cosmological parameters, i, j, m
and n label tomographic bins, and

ΔCijðlÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

ð2lþ 1ÞfskyΔl

s
CijðlÞ: ð23Þ

Here Δl is the multipole bandwidth and fsky is the fraction
of the sky covered by the survey.
Let us suppose that we have two different nonlinear RSD

models for the tomographic power spectra CijðlÞ and we
write the difference between the two models Cm1

ij ðlÞ and
Cm2

ij ðlÞ by defining

δCijðlÞ ¼ Cm1

ij ðlÞ − Cm2

ij ðlÞ: ð24Þ

Then for parameter θα, the expected bias between models
bα is given by [63]

btomo
α ¼

X
β

½ðFtomoÞ−1�αβBtomo
β ; ð25Þ

where

FIG. 7. Same as Fig. 6, but for the radial-harmonic power
spectra. From the top row all power spectra are sensitive to f.
Crucially from the bottom row, only the high-η power spectra are
sensitive to σv and more generally nonlinear RSD modeling
uncertainties. These data points can be easily removed from the
data vector, while preserving data points at low-η which constrain
the growth function f. This is in contrast to the tomographic case,
where we choose a tomographic bin width at the outset so that all
data points are affected by modeling uncertainties.
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Btomo
β ¼

Xlmax

l¼lmin

X
ij;mn

δCijðlÞ½ΔC−1ðlÞ�jm

×
∂CmnðlÞ

∂θβ ½ΔC−1ðlÞ�ni: ð26Þ

In terms of the RSD power spectrum the Fisher matrix is
given by [64]

F3D
αβ ¼ Vs

8π2
Xkmax

k¼kmin

X1
μ¼−1

k2
∂Pðk; μÞ
∂θβ

∂Pðk; μÞ
∂θβ

× Cov½Pðk; μÞ; Pðk0; μ0Þ�; ð27Þ

where Vs is the survey volume and the RSD power
spectrum covariance is

Cov½Pðk; μÞ; Pðk0; μ0Þ� ¼ 2

Nk

�
Pðk; μÞ þ 1

n̄g

�
2

× δðk − k0Þδðμ − μ0Þ; ð28Þ

and the number of modes in the survey volume Nk is

Nk ¼
k2ΔkΔμ
4π2

Vs: ð29Þ

Assuming that we have two different nonlinear RSD
models with power spectra Pm1ðk; μÞ and Pm2ðk; μÞ, and
we write

δPðk; μÞ ¼ Pm1ðk; μÞ − Pm2ðk; μÞ; ð30Þ

and

B3D
β ¼ Vs

8π2
Xkmax

k¼kmin

X1
μ¼−1

k2δPðk; μÞ ∂Pðk; μÞ∂θβ
× Cov½Pðk; μÞ; Pðk0; μ0Þ�; ð31Þ

the bias between models, for cosmological parameter α, is

b3Dα ¼
X
β

½ðF3DÞ−1�αβB3D
β : ð32Þ

This result can be derived by following the derivation given
in the Appendix of [65], which computes the linear bias for
any estimator with a Gaussian likelihood.
For the angular radial-harmonic power spectra CηaηbðlÞ,

we define Fharm
αβ , Bharm

β and bharmβ exactly as in the tomo-
graphic case, but now i, j, m and n label the η modes rather
than the tomographic bins.
In the hybrid case we cut scales as described in Sec. II G

and compute Fharm
αβ , Bharm

β , F3D
αβ and B3D

β as described above
using the new scale cuts. Using the fact that the two

estimators used in the hybrid approach probe different
scales, the hybrid Fisher matrix is

Fhybrid
αβ ¼ F3D

αβ þ Fharm
αβ ; ð33Þ

and the bias

bhybridα ¼
X
β

½ðFhybridÞ−1�αβBhybrid
β ; ð34Þ

where

Bhybrid
β ¼ B3D

β þ Bharm
β : ð35Þ

B. Fisher results z ∈ ½0.5;0.75�
We use the Fisher formalism described in the previous

section to compute the errors on f, σv and bg for different
kk-cuts, while simultaneously computing the linear model
bias between the Gaussian and Lorentzian FOG. The
primary aim of this analysis is to determine how tightly
the three estimators can constrain cosmology and, in
particular, the growth function, while keeping the nonlinear
RSD model bias in check. Since the Gaussian and
Lorentzian FOG models disagree at high-kk [see Eqs. (3)
and (4)], we use the linear bias between the two models as a
proxy for RSD nonlinear model uncertainty.
For this analysis we assume that fsky ¼ 0.3 and that the

radial window contains 7.5 million galaxies uniformly
distributed in the range z ∈ ½0.5; 0.75�. This is chosen to
match the redshift range of the highest-z window in [66],
so that we can use the measured σv from this study. For
comparison the DESI [12] catalog will cover approximately
a third of the sky and comprise roughly 20 million
objects in the redshift range z ∈ ½0.5; 1.5�.9 We cut all
perpendicular scales with k⊥ > 0.25, corresponding to
l > 350 in the projected case. We take ηmin ¼ 5, ensuring
the radial-mode efficiency kernels are narrow.
The Fisher results as a function of the radial-mode scale

cut are displayed in Fig. 8. In the anisotropic power
spectrum case, the scale cut is defined by a simple cut
in kk, while for the radial-harmonic power spectrum, the cut
corresponds to an η-cut which is converted to an effective
cut scale10 keff;cutk . Meanwhile the scale for tomography is

given by the bin width. Smaller bin widths correspond to
more optimistic cuts in kk.

9An additional BGS will comprise an extra ten million objects
with a median redshift of z ∼ 0.2.

10For fixed η, we define the cut scale keff;cutk as the maximum kk
such that the radial-mode efficiency kernel is within 50% of its
maximal value. Since the kernels are narrow in kk-space (see
Fig. 3) the precise way the cut is defined will have a negligible
effect.
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From Fig. 8 we see that as expected, for each of the three
estimators, the model bias increases with more optimistic
scale cuts as the precision of the constraints improve. This
is particularly true for σv which is the most sensitive to
nonlinear scales.
A comparison of the three estimators is displayed in Fig. 9.

Each column corresponds to a different estimator. The gray
shaded region in the hybrid case corresponds to the scales
probed using the anisotropic power spectrum while the white
regions indicate scale probed by the radial-harmonic power
spectrum as in Fig. 3. In the first row of Fig. 9 we display the
linear model bias normalized against the Fisher error jbj=σ.

The error on the growth function after marginalizing over σv
and bg is shown in the bottom row. While jbj and σ should
respectively increase and decrease monotonically with more
optimistic scale cuts, jbj=σ is not necessarily strictly mon-
otonic and it is not in the tomographic case.
We say that a parameter is unbiased if the normalized

bias jbj=σ < 0.1, i.e., the bias is less than 10%. This is
similar to the criterion used in [67] and corresponds to
approximately a 95% overlap in the marginalized posterior
probability distribution function [67]. The scale cut at
which the growth function f becomes biased is delineated
by the dashed line in Fig. 9.

FIG. 8. The Fisher 68% and 95% confidence regions for tomography, the anisotropic power spectrum and the radial-harmonic hybrid
estimator. The axes do no match for the three cases. For a direct comparison see Fig. 10. The contours are shifted by the linear model bias
between the Lorentzian and Gaussian FOG simulating the impact of an incorrect nonlinear RSD model. The model bias increases with
more optimistic scale cuts and as the precision of the constraints improves. This is particularly true for σv which is the most sensitive to
nonlinear scales.
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Since we are primarily concerned with the growth
function, the parameter which distinguishes between
gravitational models [15], we take the point at which f
becomes biased as our fiducial choice of scale cut. In
the anisotropic power spectrum case this corresponds to
kcutk ∼ 0.1 h Mpc−1, in the tomographic case this corre-
sponds to a tomographic bin width of Δz ¼ 0.05 or 5
tomographic bins covering the range z ∈ ½0.5; 0.75�, and in
the radial-harmonic case this corresponds to an effective cut
at keff;cutk ∼ 0.13 h Mpc−1. We do not expect the kcutk in the

anisotropic power spectrum case and keff;cutk in the radial-

harmonic hybrid case to be identical. This is because the
kk-η correspondence is not absolute since the radial mode,
although narrow in kk-space by construction, still has some
width. We have also been intentionally conservative when
transitioning from Pðkk; k⊥Þ to CηaηbðlÞ to ensure kk modes
are not double counted. This results in a small loss of
information (see Sec. II G for more details). In a real analysis
on data we recommend experimenting with the precise value
of ηmin, but we reiterate that it should be chosen to be as
small as possible while ensuring that the information loss
from the mixing of parallel scales is small. To avoid
information loss from the transition scales as we have done
in this analysis to avoid double counting kk modes, we
recommend probing the transition kk scales with both the
anisotropic power spectrum and the radial-harmonic power
spectra and accounting for this in the covariance matrix,
estimated from simulations.

In the second row of Fig. 9 we plot the error on the
growth function σðfÞ as a function of the cut scale. For our
fiducial choice of scale (i.e., jbjσ < 0.1), σðfÞ ¼ 0.013 for
the anisotropic power spectrum, σðfÞ ¼ 0.013 for the
radial-harmonic hybrid estimator and σðfÞ ¼ 0.055 for
tomography. This amounts to a factor of 4 degradation
in constraining power when using tomography compared to
the anisotropic power spectrum, caused by mixing of kk
scales in projection. Meanwhile the radial-harmonic power
spectrum constraints are almost identical to the anisotropic
case demonstrating the harmonic weight works as intended.
We plot the Fisher contours and bias for the three

estimators in Fig. 10 assuming the fiducial scale cuts.
The dotted line indicates the input cosmology, while the
contours are shifted by the linear model bias between the
Lorentzian and Gaussian FOG simulating the impact of
using an incorrect nonlinear RSDmodel. Tomography is by
far the least constraining for all parameters. The anisotropic
power spectrum yields slightly tighter constraint on σv, but
the constraints are otherwise indistinguishable.

C. Fisher results for z ∈ ½1;1.25�
To ensure that our method works over a broad range

in redshift, we repeat our analysis for the redshift bin
z ∈ ½1; 1.25�. Assuming the fiducial cosmology, at this
redshift f ¼ 0.89. As before we assume fsky ¼ 0.3 and
that the radial window contains 7.5 million galaxies.
Assuming σvðzÞ scales with the growth factor DðzÞ [9]
and using our previous fiducial value σvðz ¼ 0.675Þ ¼ 5.1

FIG. 9. Top: the linear bias normalized against the Fisher error jbj=σ as a function of cut scale. Bottom: the error on the growth
function σðfÞ. The dashed black line indicates the maximum cut scale where the growth function constraints are unbiased in the sense
that normalized bias is less than 10%, i.e., jbj=σ < 0.1. This delineates our fiducial scale cuts. For this choice σðfÞ ¼ 0.013 for the
anisotropic power spectrum, σðfÞ ¼ 0.013 for the radial-harmonic hybrid estimator and σðfÞ ¼ 0.055 for tomography. This amounts to
a factor of 4 degradation in constraining power when using tomography compared to the other two estimators. The dashed blue line in
the lower right panel indicates the constraints using only the radial-harmonic angular power spectra [i.e., only the second term in
Eq. (33)]. The full Fisher constraints are shown in Fig. 10.
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implies σvðz ¼ 1.125Þ ¼ 4.2. We cut perpendicular scales
k⊥ > 0.25, which corresponds to l > 519 in the projected
case. We take ηmin ¼ 3.4. This is intended to correspond to
the same kk mode as in the previous section, but we have
rescaled ηmin by the fractional change in the window width
following the scaling relation in Eq. (20).

We plot the normalized bias and the error on the growth
function in Fig. 11. As in the previous section, we take
the most optimistic scale cut while ensuring that the
normalized bias on f does not exceed 10%. For this choice
of scale cut, σðfÞ ¼ 0.010 for the radial-harmonic
hybrid estimator, σðfÞ ¼ 0.011 for the anisotropic power
spectrum and σðfÞ ¼ 0.052 for tomography. Thus, the
radial-harmonic hybrid estimator again yields an almost
fourfold improvement in constraining power compared to
tomography.

IV. CONCLUSION

We have presented the formalism for projected aniso-
tropic RSD spectra for an arbitrary radial galaxy weighting
in the flat-sky approximation. Writing the projected spectra
as a projection of the anisotropic power spectrum over kk
modes weighted by a radial-mode efficiency kernel has
provided insights into the efficacy of different radial
weighting schemes.
Although commonly applied to photometric survey

data, we have argued that the standard projected tomo-
graphic power spectra estimator (i.e., top-hat weighting)
has several drawbacks when applied to spectroscopic
datasets in redshift space. Narrow tomographic binning
leads to a mixing of poorly modeled small-scale radial
modes with well modeled large-scale radial modes, induc-
ing model bias. Although this can be avoided by choosing
wider tomographic bins, even then detailed information
about the structure of the anisotropic power spectrum in
ðkk; k⊥Þ-space is lost. This is because for standard tomog-
raphy the radial efficiency kernels are broad in kk.

FIG. 11. Same as Fig. 9, except the redshift range is now z ∈ ½1.; 1.25�. The dashed line indicates the maximum scale cut where the
growth function constraints are unbiased in the sense that normalized bias is less than 10%, i.e., jbj=σ < 0.1. For this choice of scale cut,
σðfÞ ¼ 0.010 for the radial-harmonic hybrid estimator, σðfÞ ¼ 0.052 for tomography and σðfÞ ¼ 0.011 for the anisotropic power
spectrum.

FIG. 10. Same as Fig. 8, but now all three estimators are shown
together to compare errors. We take the fiducial choice of scale
cut, which maximizes precision while ensuring the bias on f is
closest to 10% (see Fig. 9 for more details). The radial-harmonic
and anisotropic power spectrum constraints are nearly identical,
while the tomographic errors are much larger due to the loss of
information from mixing kk scales in projection.
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To avoid mixing between kk scales, one should choose a
weighting which gives narrow radial-mode efficiency
kernels in kk-space. One can then also cleanly cut the
parts of the data vector which are sensitive to poorly
modeled kk modes. Inspired by the fact that the Fourier
transform of a cosine is a delta function, we have argued
that a harmonic weighting, labeled by a wave mode η, is a
natural choice. We refer to the resulting power spectra as
the radial-harmonic power spectra.
A limiting factor is that, for low-η, the wavelength of

the weight function becomes significantly larger than the
window. In this regime the harmonic weighting is virtually
equivalent to tomography resulting in broad efficiency
kernels in kk and mixing of scales. Hence we advocate
using the anisotropic power spectrum to probe large
parallel wave modes and the radial-harmonic CðlÞ to
probe small wave modes, while carefully choosing the
scale cuts to ensure the covariance between the two
estimators is negligible.
We have performed a Fisher analysis for the three

estimators. In the tomographic and radial-harmonic case,
scale cuts are defined by the tomographic bin width and η,
respectively. Using the Fisher bias between a Gaussian
and Lorentzian FOG as a proxy for model bias due to
nonlinear RSD modeling uncertainties we established two
key results:

(i) When we choose the most optimistic kk-scale cut
for each method, while also ensuring the model
bias is small, the radial-harmonic hybrid and the
anisotropic power spectrum yield significantly
tighter constraints on the growth function f than
tomography.

(ii) The radial-harmonic hybrid estimator and aniso-
tropic power spectrum estimator yield almost iden-
tical constraints showing that it is possible to extract
nearly all the information in projection with a
suitable radial weighting.

In an upcoming paper wewill extend the radial-harmonic
formalism presented in this work to include cross-
correlations between weak lensing and RSD and explore
the prospects for this type of analysis using current and
future datasets.
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APPENDIX A: NUMERICAL EVALUATION OF
THE RADIAL-MODE EFFICIENCY KERNELS

IN THE TOMOGRAPHIC CASE

From Eq. (6) we see that to evaluate the tomographic
power spectra CijðlÞ, we must integrate the product of
the anisotropic power spectrum Pðk; μÞ and the efficiency
kernel K̃ijðkkÞ. Since the power spectrum is naturally
expressed in logarithmic space, this implies that, to evaluate
this integral numerically, we should evaluate K̃ijðkkÞ on
logarithmic intervals in kk. From Eq. (8) this reduces to
finding the Fourier transform of the tomographic bin
window Wiðr½z�Þ in log -space. We cannot use the Fast
Fourier Transform as it works on a regular grid.
Instead we approximateWiðr½z�Þ as a piecewise function

in z and integrate each piece analytically. This is the
strategy employed in [71] to evaluate integrals over
Bessel functions and may have further applications in
cosmological settings where one must rapidly evaluate
oscillatory integrals.
We start by approximating Wiðr½z�Þ as a sum of N

nonoverlapping top-hat functions in z. Suppose that
Wiðr½z�Þ is only nonzero in the range ½zmin; zmax�.
Defining Δz ¼ ðzmax − zminÞ=N, αn ¼ WiðrnÞ where
rn ¼ r½zmin þ ðnþ 1=2ÞΔz�, we can write

Wiðr½z�Þ ≈
XN−1

n¼0

αnTnðr½z�Þ; ðA1Þ

where Tnðr½z�Þ is a top-hat function

Tnðr½z�Þ ¼
�

1; if r−n < r½z� < rþn
0; otherwise:

ðA2Þ

Then

W̃iðkkÞ¼
XN−1

n¼0

αn

Z
r½zmax�

r½zmin�
drTnðr½z�Þ×expð−ikkr½z�Þ: ðA3Þ

If we then define Δrn ¼ rþn − r−n where rn ¼
r½zmin þ ðnþ 1=2ÞΔz�, rþn ¼ r½zmin þ ðnþ 1ÞΔz� and
r−n ¼ r½zmin þ nΔz� we can integrate Eq. (A3) analytically
[38], so that

W̃iðkkÞ ¼
XN−1

n¼0

αnΔrne−ikkrnsinc
�
kkΔrn
2

�
: ðA4Þ
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Hence,

K̃ijðkkÞ ¼
X
n;n0

αnαn0ΔrnΔrn0 cosðkk½rn − rn0 �Þ

× sinc

�
kkΔrn
2

�
sinc

�
kkΔrn0

2

�
: ðA5Þ

APPENDIX B: NUMERICAL EVALUATION OF
THE RADIAL-MODE EFFICIENCY KERNELS IN

THE RADIAL-HARMONIC CASE

To evaluate the efficiency kernels in the radial-harmonic
case we use the same strategy as in the tomographic case.
As in Eq. (A1) we write

Wðη; r½z�Þ ≈
XN−1

n¼0

αnTnðr½z�Þ cos
�
2πηrref ½z�
Δrref ½z�

�
: ðB1Þ

Hence,

W̃ðη; kkÞ ¼
XN−1

n¼0

αn

Z
r½zmax�

r½zmin�
drTnðr½z�Þ

× cos

�
2πηrref ½z�
Δrref ½z�

�
exp ð−ikkr½z�Þ: ðB2Þ

Now we must write the weight, which is written as a
function of the comoving distance in the reference cosmol-
ogy, as a function of the comoving distance in which we are
trying to evaluate the efficiency kernels. Assuming Δz is
small, we can assume that the comoving distances in the
two cosmologies are linearly related inside each piecewise
step n, so that

rref ½z� ¼ anr½z� þ bn: ðB3Þ

To solve for an and bn we first assume than inside each
piecewise step the comoving distance is a linear function of
redshift

r½z� ¼ νnzþ βn;

rref ½z� ¼ νrefn zþ βrefn : ðB4Þ

A good choice is to take

νn ¼
rþn − r−n
Δz

;

νrefn ¼ rþ;ref
n − r−;refn

Δz
ðB5Þ

and

βn ¼ rn;

βrefn ¼ rrefn ; ðB6Þ

where we define rn etc. as in Appendix A. From
Eqs. (B3)–(B6) it follows that

an ¼
νrefn

νn
;

bn ¼ βrefn − βn

�
νrefn

νn

�
: ðB7Þ

Hence we can write

cos

�
2πmrref ½z�
Δrref ½z�

�
¼ cosðcnmr½z� þ dnmÞ; ðB8Þ

where

cnm ¼ 2πm
Δr

; dnm ¼ 2πmbn
anΔr

: ðB9Þ

Then using the factZ
b

a
dx cosðcxþ dÞe−ikx ¼ R½k; a; b; c; d� þ iI½k; a; b; c; d�;

ðB10Þ

where

R½k;a; b; c; d� ¼ R2½k; a; c; d� − R1½k; a; c; d�
þ R1½k; b; c; d� − R2½k; b; c; d�;

I½k;a; b; c; d� ¼ I1½k; a; c; d� þ I2½k;a; c; d�
− I1½k; b; c; d� − I2½k;b; c; d� ðB11Þ

and

R1½k; r; c; d� ¼ c cosðrkÞ sinðrcþ dÞ
c2 − k2

;

R2½k; r; c; d� ¼ k sinðrkÞ cosðrcþ dÞ
c2 − k2

;

I1½k; r; c; d� ¼ c sinðrkÞ sinðrcþ dÞ
c2 − k2

;

I2½k; r; c; d� ¼ k cosðrkÞ cosðrcþ dÞ
c2 − k2

; ðB12Þ

we can evaluate each piece of Eq. (B2) analytically as in the
tomographic case. We find

K̃ðkk;ηa;ηbÞ¼
X
n;n0

αnαn0 ðR½kk;r−n ;rþn ;cnηa ;dnηa �

×R½kk;r−n0 ;rþn0 ;cn0ηb ;dn0ηb �
þI½kk;r−n ;rþn cnηa ;dnηa �I½kk;r−n0 ;rþn0cn0ηb ;dn0ηb �Þ:

ðB13Þ
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APPENDIX C: POWER SPECTRUM
ESTIMATORS IN THE RADIAL-HARMONIC

BASIS

The radial-harmonic CðlÞ can be computed from a
spectroscopic galaxy catalog as follows:

(i) For each η, compute a pixelized map mηðθPÞ. For
some pixel P at an angle θP on the sky, the map is
defined as a weighted sum of all galaxies g inside the
pixel. That is

mηðθPÞ ¼
X
g∈θP

wðη; zgÞ; ðC1Þ

where zg is the redshift of galaxy g and wðη; zgÞ is
the harmonic weight defined in Eq. (19) assuming a
fiducial cosmology to convert redshifts to distances.

(ii) Use the map to compute the spherical-harmonic
coefficients almðηÞ using e.g., HEALPIX [72].

(iii) A good estimate of the pseudo-spectrum (including
shot-noise contributions) is then

C̃ηaηbðlÞ ¼ w−2
l

2lþ 1

Xm
l¼−m

almðηaÞa�lmðηbÞ; ðC2Þ

where wl is the pixel window function which
accounts for the suppression of power on small
scales due to pixelization [73].

(iv) A key feature of the harmonic weight presented in
this work is that it is not coupled to angular scales,
so that we can use the pseudo-CðlÞ method [74,75]
to deconvolve the angular survey mask and esti-
mate CηaηbðlÞ.

APPENDIX D: CONFIGURATION SPACE
RADIAL-HARMONIC FORMALISM

AND ESTIMATORS

Since the radial-harmonic weighting is independent of the
angular wave mode, it is possible to compute the radial-
harmonic two-point correlations function in configuration
space. This sidesteps the need to deconvolve the survey
mask which can lead to biases and information loss. If we

assume the coupling between l modes due to the RSD
anisotropy is weak,11 we can write the correlation function as
a function of the angular power spectrum as in the isotropic
case. Then in the flat-sky approximation, the radial-harmonic
correlation function wηaηbðθÞ is given by [27]

wηaηbðθÞ ¼ 1

2π

Z
dllJ0ðlθÞCηaηbðlÞ; ðD1Þ

where θ is the angular separation between pairs of galaxies
and J0 is the zeroth-order Bessel function. After applying
the radial-harmonic weight to the galaxy catalog, the data
vector can be computed using a public code such as
TREECORR

12 [76].

APPENDIX E: THE LIKELIHOOD OF THE
RADIAL-HARMONIC POWER SPECTRUM AND

HYBRID ESTIMATORS

In order to perform a radial-harmonic likelihood analy-
sis, we must know the functional form of the likelihood. In
the absence of a mask and assuming that the coupling of m
modes due to the RSD anisotropy is weak, each spherical-
harmonic coefficient almðηaÞ in the radial-harmonic basis
is statistically independent. From Eq. (C2), the radial-
harmonic power spectrum is a sum over independent,
identically distributed random variables, so from the central
limit theorem, we expect the likelihood to be Gaussian. For
the same reason, binning the data vector into bandpowers
further Gaussianizes the likelihood.
This Gaussian likelihood approximation must be explic-

itly checked in a follow-up study. This can be done by
performing a mock likelihood analysis using simulated data
and comparing to a likelihood-free (e.g., [77,78]) approach
as in [79].
Meanwhile the likelihood of the anisotropic power

spectrum Pðkk; k⊥Þ is effectively Gaussian except on
extremely large scales where the non-Gaussianity can be
handled with existing methods [80].
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