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We study the structure of scattering amplitudes of the Kaluza-Klein (KK) gravitons and of the
gravitational KK Goldstone bosons in the compactified 5d general relativity (GR). We analyze the
geometric “Higgs” mechanism for mass generation of KK gravitons under compactification with a general
R: gauge-fixing and prove that the massive KK graviton propagator is free from the van Dam-Veltman and
Zakharov discontinuity. With these, we newly formulate a gravitational equivalence theorem (GRET) to
connect the longitudinal KK graviton amplitudes to the corresponding KK Goldstone amplitudes, which is
a manifestation of the geometric Higgs mechanism at S-matrix level. We directly compute the gravitational
KK Goldstone amplitudes at tree level and show that they equal the corresponding longitudinal KK
graviton amplitudes in the high-energy limit. We further use the double-copy method with color-kinematics
duality to reconstruct the KK longitudinal graviton (Goldstone) amplitudes from the KK longitudinal gauge
boson (Goldstone) amplitudes in the compactified 5d Yang-Mills (YM) gauge theory, under the high-
energy expansion. From these, we reconstruct the GRET of the KK longitudinal graviton (Goldstone)
amplitudes in the 5d GR theory from the KK longitudinal gauge boson (Goldstone) amplitudes in the 5d
YM theory. Using either the GRET or the double-copy reconstruction, we provide a theoretical mechanism
showing that the sum of all the energy power terms up to O(E'?) in the high-energy scattering amplitudes
of four longitudinal KK gravitons must cancel down to (O(E?) as enforced by matching the energy
dependence of the corresponding KK Goldstone amplitudes or by matching that of the double-copy
amplitudes from the KK YM theory. With the double-copy approach, we establish a new correspondence
between the two energy-cancellations in the four-particle longitudinal KK scattering amplitudes: E* — E°
in the 5d KK YM theory and E'® — E? in the 5d KK GR theory. We further analyze the structure of the

residual term in the GRET and uncover a new energy-cancellation mechanism therein.

DOI: 10.1103/PhysRevD.105.084005

I. INTRODUCTION

The world is apparently four dimensional, but it could be
only part of a higher dimensional space-time structure, with
all the extra spatial dimensions compactified at the boun-
daries and with their sizes much smaller than the present
observational limits. The first of such theories was pro-
posed a century ago by Kaluza and Klein in an attempt to
unify the gravitational and electromagnetic forces with a
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compactified fifth dimension (5d) [1]. This intriguing
avenue was subsequently extended and explored in various
contexts, including the (super)string/M theories [2] and
extra dimensional field theories with large or small extra
dimensions [3].

The Kaluza-Klein (KK) compactification of an extra
dimension leads to an infinite tower of massive KK states in
the low-energy 4d effective field theory for each type of
particle that propagates into the extra dimension. On the
one hand, the low-lying KK states in such extra dimen-
sional KK theories have intrigued much phenomenological
and experimental efforts over the past two decades [4], as
they may provide the first signatures for the new physics
beyond the standard model (SM), ranging from the KK
states of the SM particles to the spin-2 KK gravitons and
possible dark matter candidate. On the other hand, the mass
generation of these KK states has important implications

Published by the American Physical Society
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for the theory side because it is realized by a geometric
“Higgs” mechanism through compactification itself and
without invoking any additional Higgs boson of the
conventional Higgs mechanism [5].

For the compactified 5d KK Yang-Mills (YM) gauge
theories, it was realized [6] that each massive KK gauge
boson A" of KK level-n acquires its mass by absorbing the
fifth component A%> (Goldstone boson) of the 5d gauge
field. This geometric KK Higgs mechanism is reflected by
the KK equivalence theorem for gauge theory (KK GAET)
[6] stating that the scattering amplitude of the longitudi-
nally polarized KK gauge bosons (A§") equals that of the
corresponding KK Goldstone bosons in the high-energy
limit. This is a direct consequence of the spontaneous
geometric breaking of the 5d gauge symmetry down to
the 4d gauge symmetry via KK compactification [6,7].
It was proven that the nontrivial cancellation of energy
power terms of O(E*) — O(E?) in the four longitudinal
KK gauge boson scattering amplitude in the high energy
limit is generally guaranteed by the KK GAET under which
the corresponding KK Goldstone boson amplitude is
manifestly of O(E®) [6]. The extension of KK GAET to
quantum loop level via Becchi-Rouet-Stora-Tyutin (BRST)
quantization was given in Ref. [7]. It was realized that the
KK GAET (which ensures the energy cancellation of
E* = EY) [6,7] originates from the 5d gauge symmetry
under compactification and the resulting BRST identity.
The 5d KK gauge boson scattering amplitudes were further
studied in the context of the deconstructed 5d YM theories
[7,8] and the compactified 5d SM [9].

It was realized even earlier that the compactified 5d
general relativity (GR) also exhibits a geometric mecha-
nism for the mass generation of KK gravitons.
References [10,11] gave formal discussions of such geo-
metric breaking by formulating an infinite-parameter
Virasoro-Kac-Moody group for the 4d effective KK
theory which is spontaneously broken down to the four-
dimensional translations and the U(1) gauge group by the
5d periodic boundary conditions. It is expected that the 5d
gravitational diffeomorphism invariance of the Einstein-
Hilbert (EH) action is spontaneously broken by the
boundary conditions to that of the 4d KK theory via a
geometric breaking mechanism, where at each KK level-n
the spin-1 components (h’,‘ls) and the spin-0 component
(hy?) of the 5d spin-2 graviton (") are supposed to be
absorbed by the KK graviton (/},") via a geometric Higgs
mechanism under the 5d compactification. However, there
is no quantitative formulation of this gravitational KK
Higgs mechanism at the S-matrix level so far.

There are recent works [12,13] which gave direct
calculations of the four-particle scattering amplitudes of
(helicity-zero) longitudinal 5d KK gravitons at tree level,
and explicitly showed large energy cancellations among the
individual contributions of O(E'?) — O(E?) for a flat or
warped 5d model. Following Ref. [12], the authors of

Ref. [14] used Hodge and eigenfunction decompositions
[15] to show that at tree level such energy cancellations of
four-particle KK graviton amplitudes occur for compacti-
fication on general closed Ricci-flat manifolds. While
showing such intricate large energy cancellations in the
tree-level amplitudes of four KK gravitons are interesting
and valuable, it remains to be understood quantitatively
why such nontrivial cancellations must occur at the tree
level and even loop levels for the N-particle KK amplitudes
(N > 4) in connection to the compactified diffeomorphism
(gauge) symmetry with geometric breaking in the 5d KK
GR or in the 5d KK YM gauge theory.

In this work, we present a general formulation of the
geometric Higgs mechanism for the compactified 5d GR in
the R; gauge, at both the Lagrangian level and scattering
S-matrix level. For this geometric Higgs mechanism, we
newly formulate a KK gravitational equivalence theorem
(GRET) which quantitatively connects each scattering
amplitude of longitudinally polarized KK gravitons to that
of the corresponding gravitational KK Goldstone bosons.
The formulation of GRET is highly nontrivial and differs
from the KK GAET of the 5d KK gauge theories [6], because
the gravitational Goldstone bosons contain both spin-0 and
spin-1 components. By inspecting the spin-0 gravitational
KK Goldstone scattering amplitudes and the residual term of
the GRET, we show that they are manifestly of O(E?) in the
high-energy regime without invoking any extra energy power
cancellation. Using the GRET (based on BRST quantiza-
tion), we provide a theoretical mechanism showing that the
sum of all the energy power terms [up to O(E'?)] in the four
longitudinal KK graviton scattering amplitude must cancel
down to O(E?) as enforced by matching the energy power
dependence in the corresponding KK Goldstone amplitude
(and residual term). We will also extend this conclusion to the
case of N-particle longitudinal KK graviton scattering
amplitudes and up to loop levels. This is in contrast to the
case of the Fierz-Pauli (FP) gravity and alike [16,17] where
the four-particle massive longitudinal graviton scattering
amplitudes generally scale as E'° [18]. By including addi-
tional nonlinear polynomial interaction terms in the liter-
ature, the high-energy behavior of the massive graviton
amplitudes could be improved to no better than E® [19,20],
which is still much worse than the final energy dependence of
O(E?) in the massive KK graviton scattering amplitudes as
mentioned above.

In addition, using our general R; gauge formulation of
the massive KK graviton propagator, we demonstrate that
the spontaneous breaking of the 5d gravitational diffeo-
morphism invariance of the EH action under a geometric
Higgs mechanism can ensure the absence of the van Dam-
Veltman and Zakharov (vDVZ) discontinuity [21] in the
massless limit, in contrast to the case of the Fierz-Pauli
gravity and alike [16,17].

Furthermore, we attempt to reconstruct the 5d KK
graviton scattering amplitudes from the corresponding 5d
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KK gauge boson scattering amplitudes [6] under high-
energy expansion to the leading-order (LO) and the next-
to-leading-order (NLO) contributions, by extending the
conventional double-copy method of the color-kinematics
(CK) duality of Bern-Carrasco-Johansson (BCJ) [22,23]
which was proposed for connecting the massless gauge
theories to the massless gravity. The BCJ method was
inspired by the Kawai-Lewellen-Tye (KLT) [24] relation
which connects the product of the scattering amplitudes of
two open strings to that of the closed string at tree level.
Analyzing the properties of the heterotic string and open
string amplitudes can prove and refine parts of the BCJ
conjecture [25]. The conventional double-copy formulation
reveals a deep connection between the GR theory with
massless spin-2 gravitons and the YM theory with massless
spin-1 gauge bosons. This may be schematically presented
as follows [26]:

GR = (Gauge Theory)?. (1.1)

We extend the double-copy method to the 5d massive
KK gravity and KK gauge theories, and compute the LO
and NLO four-particle scattering amplitudes under the
high-energy expansion. This provides an extremely simple
and efficient way to construct the complicated KK graviton
amplitudes from the 5d KK gauge boson amplitudes.
Indeed, we find that our LO longitudinal KK graviton
amplitudes as reconstructed from the LO amplitudes of 5d
KK gauge bosons [6] are equal to the KK graviton
amplitudes as obtained by the lengthy direct calculations
of [12,13]. Because the 5d KK gauge boson amplitudes [6]
are of O(E°MY), our double-copy approach shows that the
reconstructed KK graviton amplitudes must be of
O(E*MY), where M, denotes the relevant KK mass.
Moreover, we use the KK Goldstone amplitudes of the
5d YM theory [which are manifestly of O(E°M?)] to
reconstruct the corresponding gravitational KK Goldstone
amplitudes by the double-copy method, and find that these
gravitational KK Goldstone amplitudes must be of
O(E*MY). We further compare the reconstructed gravita-
tional KK Goldstone amplitudes with the reconstructed
longitudinal KK graviton amplitudes under the high-energy
expansion, and find that they are equal to each other at
the leading order of O(E*MY) and their difference is
only O(E°M?).

Hence, for the four-particle scattering processes, we
establish the GRET in the 5d KK GR theory from the
KK GAET in the 5d YM theory [6] by using the double-
copy reconstruction method. By doing so, we will dem-
onstrate a nontrivial new correspondence from the energy
cancellation of E* — E¥ in the four-particle amplitudes for
longitudinal KK gauge bosons of the 5d KK YM theory
(YMS5) to the energy cancellation of E'® — E? in the four-
particle amplitudes for longitudinal KK gravitons of the 5d
KK GR theory (GRS). Schematically, we illustrate this

correspondence between the two energy cancellations as
follows:

E* —» E°(YM5) = E'° - E?(GR5),  (1.2)
which will be established later in Eq. (5.38) of Sec. VB. In
addition, with the double-copy approach, we analyze the
structure of the residual terms in the GRET and further
uncover a new energy-cancellation mechanism of E2 — E°
therein. It is clear that the GRET and its reconstruction from
the 5d KK YM gauge theory via double copy can provide a
deep quantitative understanding on the structure of the KK
graviton (Goldstone) scattering amplitudes and thus the
realization of the geometric Higgs mechanism of KK
compactification.

This paper is organized as follows. In Sec. II, we present
the general R; gauge quantization for the 5d KK GR. We
derive the propagators for the KK graviton and KK
Goldstone bosons. We will show that the KK graviton
propagator in the R; gauge is free from the vDVZ
discontinuity, in contrast to that of the Fierz-Pauli gravity.
In Sec. III, we present the formulation of the GRET and use
it to establish a theoretical mechanism which ensures the
nontrivial energy cancellations in the longitudinal KK
graviton scattering amplitudes. This cancellation mecha-
nism holds not only for the four-particle amplitudes at tree
level, but also can be applied to the general N-particle
amplitudes (N > 4) and up to loop levels in principle. In
Sec. IIT A, we first derive the formulation of the GRET,
which has highly nontrivial difference from the KK GAET
of the 5d KK gauge theories [6]. Then, in Sec. [l B we
present a general method of energy power-counting (2 la
Weinberg) to determine the leading energy dependence of
the high-energy scattering amplitudes in the KK GR theory
and in the KK YM theory. In Sec. IV, we present the
explicit analyses of the scattering amplitudes of longi-
tudinal KK gravitons and of the corresponding gravita-
tional KK Goldstone bosons to demonstrate how the GRET
works. In Sec. V, we establish the double-copy construc-
tions of the longitudinal KK graviton scattering amplitudes
and the corresponding KK Goldstone scattering ampli-
tudes. We give in Sec. V A the full scattering amplitudes of
the KK longitudinal gauge boson amplitudes and the KK
Goldstone amplitudes, and derive their LO and NLO
contributions under high-energy expansion. Then, in
Sec. V B, we use the double-copy approach to reconstruct
the LO KK graviton amplitudes and KK Goldstone
amplitudes. With these, we establish the GRET in the 5d
KK GR theory from the KK GAET in the 5d YM gauge
theory at the LO. In Sec. V C, we systematically study the
double-copy construction at the NLO and further propose
an improved double-copy construction of the NLO gravi-
tational KK amplitudes of O(E°M2). In Sec. VD, we
analyze the structure and size of the residual term in the
GRET. We establish a new correspondence from the KK
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GAET to the KK GRET, and uncover a new energy-
cancellation mechanism of E> — E° in the residual term
of the GRET. We conclude in Sec. VI. Finally, the
Appendixes A—G present a number of analyses used for
the text discussions.

II. GAUGE-FIXING AND PROPAGATORS
WITHOUT vDVZ DISCONTINUITY

In this section, we first setup the 5d compactification
under the S! /Z, orbifold, including the notations and KK
expansions. Then, we present the quadratic Lagrangian
terms from the 5d EH action, construct a general R: gauge-
fixing, and also derive the relevant KK graviton and KK
Goldstone propagators. Finally, we prove that the massive
KK graviton propagator is naturally free from the vDVZ
discontinuity.

A. Setup and weak field expansion in 5d
For the current study, we consider the five-dimensional
general relativity on a compactified flat space under
orbifold Sl/ 22.1 Thus, the compactified fifth dimension
is a line segment with 0 < x> < zr,, where r, stands for the
compactification radius. Based on this, the 5d Einstein-
Hilbert action is given by

2 A
SEH = \/dS.)CA2 \/ —gR,
K

(2.1)

A

where R is the 5d Ricci scalar curvature, & is the 5d
gravitational coupling with mass-dimension —% and it is

related to the 5d Newton constant G via & = V32zG. The
5d metric tensor is g4p (A,B=0, 1, 2, 3, 5) and its
determinant is given by § = det(g,5). We also adopt the
metric signature (—,+,+,+, +). In addition, we denote
the 4d Lorentz indices by the lowercase Greek letters (such
as =0, 1, 2, 3), and the 5d Lorentz indices by the
uppercase Latin letters (such as A =y, 5).

We make the following weak field expansion of the 5d
EH action (2.1) around the flat Minkowski metric 74p:

Jap = fap + Rhag. (2.2)

where the graviton field izAB has the mass-dimension %

Then, it is straightforward to derive

PE =B — kP 4+ IR = PR Cheph®” + O(hY),
(2.3a)

'The extension of our present study to the case of nonflat 5d
space (such as warped 5d [27]) does not cause any conceptual
difference regarding all the major conclusions in this work, which
will be addressed elsewhere.

Re R .0 ..
V=§=1+=h+—(h*=2hh")
2" TR
~3
+ :—8 (h® — 6hhy B B + 8hi,hECh) + O(i*).

(2.3b)

where we have defined i = #*8h,5. Now, the 5d scalar
curvature R can be decomposed in terms of the metric
tensors §45 and ' as follows:
R="PRyp = PRy, (2.4a)
Racs® = 0l 45 — 04T cp + TP 45T pe = TP 5l

(2.4b)

A

I, R R R
[ =3P (980pa + 0alsp — Opias)-

3 (2.4c)

With the above formulas, we can expand the 5d EH
action Sgy = [ d°xLgy shown in Eq. (2.1) as

ﬁEH - ﬁo+f<ﬁl +k222+k32,3 + e, (25)

where each expanded Lagrangian term £ ; (j=0.1,...)

contains j 4 2 graviton fields. The effective 4d Lagrangian

is obtained by integrating over the extra dimension coor-
dinate x> under proper compactification:

©. L
ﬁeff = E / dx5 l?lﬁl
=070

The realization of 5d compactification will be given in the
next subsection. Finally, the corresponding effective 4d
coupling x = v/32zG is connected to the k and the reduced
Planck mass Mp, via

(2.6)

K 2
K‘:i:i,
VL Mp

where we have denoted L = zr, as the length of the
fifth dimension under the compactification of S!'/Z,,
and the reduced Planck mass is represented as Mp =
(82G)~1/2.

(2.7)

B. Geometric Higgs mechanism and gauge-fixing
under KK compactification

In this subsection, we will make KK compactification
of the 5d EH action. This can be realized for the 5d
obifold compactification S'/Z, with proper boundary
conditions, and the resulting 4d effective KK theory
contains the KK tower of massive graviton states.
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The 5d gravitational diffeomorphism invariance of the
EH action is expected to be spontaneously broken by
the boundary conditions to that of the 4d KK theory via
a geometric breaking mechanism, where at each KK
level-n the vector components (h’;s) and the scalar
component (h)°) of the 5d spin-2 graviton (izAB) are
supposed to be absorbed by the KK graviton (h}").
There are formal discussions of such geometric breaking
in the literature [10,11], by formulating an infinite-
parameter Virasoro-Kac-Moody group for the 4d effec-
tive KK theory which is spontaneously broken down to
the four-dimensional translations and the U(1) gauge
group. These formal discussions [10,11] did not provide
a practical formulation as needed for our current study
of perturbative KK theory and for the scattering ampli-
tudes at the S-matrix level.

In the following, we present an explicit formulation of
this geometric Higgs mechanism at the Lagrangian
level, and then at the S-matrix level via the GRET
(Sec. II). The 5d geometric Higgs mechanism was
previously established for the compactified 5d Yang-
Mills theories in Ref. [6].7 In this study, we present an
explicit formulation of the 5d geometric Higgs mecha-
nism for the 5d Einstein gravity, with which we will
identify the gravitational Goldstone bosons (K, h3%) for
each massive KK graviton /,". Then, we explicitly
construct the R gauge-fixing term and derive the
propagators for KK gravitons and their corresponding
Goldstone bosons.

The 5d graviton field /1,5 can be parametrized as

S R
hSu ¢
where the (1,1) block is the 4d component of h 4 and the
additional term wnﬂ,/g?ﬁ corresponds to a Weyl transforma-
tion® with a nonzero coefficient w.* The (2, 2) block of /i,
is a scalar field known as the radion field (g?b = fzss). The
blocks (1, 2) and (2, 1) correspond to the vector component
of the 5d graviton field lAzAB.
With the 5d metric tensor (2.2) and the 5d graviton field
(2.8), we derive the squared 5d interval

d3? = [, + &(hy, + wr,,¢)|dx dx”

+ 2&h,sdxdxS + (1 + R @)dx3dx®.  (2.9)

“The extension to the deconstructed 5d YM theories was given
in Ref. [8] and to the compactified 5d SM was given in Ref. [9].
More pre01sely, under the Weyl transformation the 4d metric
is rescaled as g, — G = "9,
“In Ref. [17], w is expressed as w = 2/(d —2), which gives
w = lin4d and w = 2/3 in 5d. We will determine the value of w
from a consistency requirement in the following analysis.

We compactify the 5d space under S'/Z, orbifold and
require d§? to be invariant under a Z, orbifold reflection
x5 — —x5. Hence, this requires that the graviton’s tensor
component fz,w and the scalar component a; to be even
under Z, symmetry, while the vector component fzﬂs should
be Z, odd:

],:lllb(x/)’ xS) = l,/\lﬂp(x/)y _xs)y (210a)
ilﬂ5 (xp, x5) = _ilyS (x,, —xs), (2.10b)
gz(xp’ .Xs) = (27()6,;, —X5>. (210C)

This is equivalent to imposing the Neumann boundary
conditions on fzﬂ,, and q;ﬁ at the ends of the 5d interval
[0,L], and imposing the Dirichlet boundary condition
on }Az”5

85¢|x5:0.L =0, hys |x5:0,L =0.

(2.11)

ashﬂb|x5:O$L =0,

With these, we can make the following KK expansions for
the 5d graviton fields via Fourier series in terms of their
zero modes and KK states,

. hy* (x”) + \/Eih’”(xp)cos na
\/Z ’ n=1 ’ L ’

" (x?, x5)

(2.12a)
WS (xv, x \/‘ Z 1S (x7) sin (2.12b)
H(xP. x5) = Nis [gbo (x”) + \/_Zqﬁ” ) cos nﬂsz]

Then, we examine the quadratic Lagrangian ﬁo, which
takes the following form:

Z:() — (aAi:l)z - % (acilAB) 8AhABth + BA CthB

N[ =

(2.13)

Substituting Eq. (2.8) into the quadratic Lagrangian (2.13),
we thus derive
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1ony 1 a1 1, - . . .
= E (ayh)z + 5 (85}1)2 - E (aph;w)z - 5 ((95//1””)2 - (8ﬂhl/5)2 + (ayhﬂs)z + 3W(W + 1)(8ﬂ¢)2
+ 6w (95¢)? = 0,/ D, h + 0,1 & h,, — 2w + 1)(0, 1" 0, — 9,hd"P)
—20,"395h + 2051 9,,h,,, — 6wD,h* sp + 3wdshd . (2.14)

In terms of the KK expansions (2.12) and integrating over x°, we can further expand the Lagrangian (2.14) as follows:

© M 1
=2 [5 (O, + 5 M3, = 3 (P = 5 MR )2 — (04 A4 = (9, AL
n=0
* 3W(W + 1)(8ﬂ¢n)2 + 6WZM% % - aﬂh,:’yauhn + a}thﬁﬂabhw,n

— 2w+ 10,1 0,y — Dy hy) + 2M 1, 0, Al — 2M WD, A,

+ 3WM%hn¢n + 6WMn8'u-AI:l¢n ’ (215)

where for convenience we have denoted the vector field as A% = hﬁs, and M,, = nx/L stands for the mass of KK states of
level-n.

Inspecting the Lagrangian (2.15), we set w = —1 to remove the two undesirable mixing terms in its third line. We can
further eliminate the rest of the mixing terms in the third and fourth lines of Eq. (2.15) by introducing the following R:-type
gauge-fixing terms:

oS e

where &, is the gauge-fixing parameter for the zero-mode gravitons (n = 0) and KK gravitons (n > 1). By imposing the
gauge-fixing term (2.16) to remove the quadratic mixing terms, we explicitly verify that both the vector component A and
scalar component ¢, are absorbed (“eaten”) by the KK graviton /", and identify them as the gravitational KK Goldstone
fields, which are the direct outcome of realizing the 5d geometric KK Higgs mechanism.

From the above, we can explicitly integrate over x> and derive the effective 4d KK action at the quadratic order:

1 RERE 20,442

eff - /d4xz hﬂy ,uuaﬁnn A”D;v nnAD +¢n nn¢n) (217)

where the inverse KK propagators take the following forms:

2 12
—1 — 2
Dﬂya/}.nn - |:1 gn (1 - 25") :|’7/w77aﬂa + <1 25 )nyynaﬂM

1 1
+ 5 (’7;4(1771//} + 77;4[)”11/(1)(82 - M%) + 5 (77/,!(1771//)’ + 77;4/3’71/(1) (82 - M%)
1 2 1 1
+ (5_ - 1> (nmzaaaﬁ + ”aﬁayau) - 5 (1 - §_> ('I/mavaﬂ + n;tﬁavaa
+ 1,00, 0p + 1,50,04). (2.18a)
Dpifon = Mu (0% = &,M7) + ; & 9,0, (2.18b)
Dy = 0° = (36, = 2)M}, (2.18¢)

and we have also rescaled the vector and scalar fields by
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1
Ali'll d _A’;h
V2

(2.19)

2
¢}’l - \/;¢n’

which ensure that their kinematic terms have the correct normalization factor% . Furthermore, the propagators of the KK
graviton and KK Goldstone bosons are the inverse of Eq. (2.18) and satisfy the following conditions:

oo i
/d4ZD;vla/Lnn (%, 2) D" (z,) = 3 (8087 + 5500)6Y (x = y),
/d4ZD;yl.nn ()C, Z)DZ/;L (Z, y) - 15’;5(4> (x - y),

/ d*zD;) (x, 2)Dyn(z,y) = 6@ (x — ).

(2.20a)

(2.20b)

(2.20¢)

Substituting Eq. (2.18) into Eq. (2.20), we finally derive the following compact form of the propagators for the KK
gravitons (/4,") and for the KK Goldstone bosons (A5 and ¢,) in momentum space:

Db () = — o {(ﬂ”“ﬂ”ﬂ + 00— n)

2 p>+M?

1 1 1

+= - " — 2p°p" n
3p*+ME p?+ (38, -2)M3 M M

1 1 1
_|_ P —_
M [pz + M2 p?+EM;

0 2pap/)’)

} (M,aP’ PP + M,50" P* + NP PP + 150" p%)

4p'p*p°p’ 1 1
4 2202 2 7 ) (> (2.21a)
gnMn p + ani‘l p + gnMn
—is Hpr(] —
Dita(p) = g2y _PPA=S0)) (2.21b)
p™+ &M, p™+ &M,
—i5
D (p) — _ 221
wlP) = e, - ] 22

The Faddeev-Popov ghosts can be further included for the
loop analysis although this is not needed for our present
study of KK scattering amplitudes at tree level. The
unphysical states of the massive KK gravitons correspond
to the spin-0 and spin-1 Goldstone bosons, and we see that
the above Goldstone propagators (2.21b) and (2.21c)
have the same ¢&,-dependent unphysical mass poles as
those of the KK graviton propagator (2.21a).

It is instructive to consider the Feynman-"t Hooft gauge
with &, = 1. In this gauge, the above R:-gauge propagators
take the following simple forms:

B iénm nuanuﬁ + ,,ly/};,]ya _ nyunaﬂ

DB (1) = . (222

(p) > Py (2.22a)
v 1'7MD5nm
DY (p) = ——nm 2.22b
(p) M ( )
i

D - 2.22

am (D) Py (2.22¢)

I
We can find that all the mass poles are identical to
p> = —M>. Then, we take the limit £, — co and derive
the propagator under unitary gauge:

~ iénm ﬁ/mﬁvﬂ + ﬁﬂﬁﬁva _ %ﬁ/ﬂ/ﬁaﬂ
2 p*+ M

Dt (p) = . (2.23)

where 7 = g + ptp*/M?%. As we will discuss in
Sec. IIC, this just coincides with the massive graviton
propagator (2.25) of the 4d Fierz-Pauli Lagrangian.

Appendix B gives more detailed discussions about the
graviton propagator under the unitary gauge.

C. Massless limit and absence of vDVZ
discontinuity in R; gauge
In this subsection, we examine the massless limit
M, — 0 under the R: gauge as constructed in Sec. II B.
We will demonstrate that our R propagator (2.21a) of KK
gravitons has a smooth massless limit and is free from the
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conventional vDVZ discontinuity [21] of the Fierz-Pauli
massive gravity [16,17].

We recall the 4d Fierz-Pauli Lagrangian describing the
massive graviton fields ##** with mass M [16,17],

1 1
£FP = 5 (aﬂh)z - E (aahm/)z - ayhlwauh

sty — AT S
FpP ) p2 n M2

. (225)

where 7 = p* + p#p*/M?. In comparison, for the 4d
Einstein gravity under a harmonic gauge-fixing

1 1 2
agy 1 Lop =~ (0" =0 ) | 2.26
+ 0D by + 5 MR = 1), (2.24) Fe < T2 220
which has the following propagator the massless graviton propagator is given by
|
” i [nn’? +nPn — n*p*p” + 0 p*p* + uppP + ' p p
D™ (p) = -5 5 +(&-1) . (2.27a)
2
p p
T UL UP V0 ol aff
AT TN (gor g = 1), (2.27b)

2 p2

This can also describe the propagator for the zero-mode
gravitons in the KK theory under the harmonic gauge-
fixing (2.26). We inspect the massless limit M — 0 of
the massive graviton propagator (2.25) of Fierz-Pauli. In
the massless limit, we note the following features of the
numerator in Eq. (2.25): (i) the graviton propagator (2.25)
has singularities from all the mass-dependent terms like
p*p¥/M? inside those 7#*’s; (ii) the coefficient —% of the
pure metric term 7**7 in the numerator does not match the
coefficient —1 of the corresponding term in the massless
graviton propagator (2.27b), which is the so-called vDVZ
discontinuity [21]. This discontinuity is unique for dealing
with the spin-2 massive gravitons a la Fierz-Pauli. We note
that the origin for such vDVZ discontinuity is due to the
mismatch of physical degrees of freedom between the
massive gravitons in the Fierz-Pauli gravity and the mass-
less gravitons in GR: the massive graviton has 5 helicity
states (4 = £2,+1,0), while the massless graviton only
has two (4 = £2), namely, 5 # 2.

For the singularities mentioned above, we note that
similar singularity exists for the spin-1 gauge fields in the
massive Yang-Mills theory (as well as the Maxwell theory
with a massive photon) when considering the massless
limit. To see this, we recall the propagator of the spin-1
massive gauge fields Ay:

"+ ptpt/M?
P M

DI (p) = v (2.28)

where the term p* p¥ /M? becomes singular in the massless
limit. The appearance of the singularities in the massive
graviton propagator and massive gauge boson propagator is
also due to the mismatch of physical degrees of freedom. In
the case of massive spin-1 gauge field A%, it has three
helicity states A = +1, 0, whereas the massless gauge field
only has two helicity states 4 = 1. This mismatch is the
cause of the singular term p# p* / M? in the massless limit. But
in the R, gauge of the spontaneously broken gauge theories
with the conventional 4d Higgs mechanism [5] or with the
geometric Higgs mechanism under compactification [6], the
propagator of a massive gauge boson A% (with mass M) can
smoothly reduce to the massless gauge boson propagator
under the limit M — 0 without causing any singularity or
discontinuity. This is because the massive gauge field A%
(with M # 0) has three physical degrees of freedom, and in
the massless limit M — 0O the physical states of A% reduces
to two transverse polarization states and its longitudinal com-
ponent disappears while the “eaten” would-be Goldstone
boson becomes a physical massless scalar. Hence, the
physical degrees of freedom remain conserved, 3 =2 + 1,
before and after taking the massless limit.

Then, we examine the massless limit for the propagators
of massive KK gravitons. For this, we take the massless
limit M, — O for the R; gauge propagator (2.21a) and
expand it up to the zeroth order of M,. We find that under
the limit M,, — 0, the sum of all the negative powers of M,
vanishes, and the remaining nonzero part takes the form:

D’ (p) =

+ 0P pt p®* = 20 pPpP — 2P ptp¥) — 4(1 = &,) |

18 [0 + P =) 1-¢,
4

p (n**p* pP + P p* p* + n** p* pP

H oyl n f
3PP PP (2.29a)
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5. phagb UP v _ v paff
:_%’1 i +”p2 T (for &, = 1).

(2.29b)

From the above, we see that under the massless limit there is
no singular term, and the pure metric terms (p"n*’ +
v — "y in the numerator agree with the massless
graviton propagator (2.27) (the £, = 1 part) in the conven-
tional 4d Einstein gravity. Hence, it is impressive to see that in
the massless limit the R gauge propagator (2.21a) of massive
KK gravitons is free from singularity and the vDVZ
discontinuity. Our R, gauge formulation of the KK theory
has a well-defined massless limit because the physical
degrees of freedom are conserved before and after taking
the massless limit under the geometric Higgs mechanism. A
massive KK graviton A, (having five helicity states
A= £2,+£1, 0) acquires its mass via the geometric Higgs
mechanism (compactification) by absorbing (eating) the
corresponding vector-Goldstone component A}, (having
two helicity states 4 = £1) and scalar-Goldstone component
¢, (having helicity A = 0) of the 5d graviton field 248 In the
massless limit, /#},° becomes massless (having only two
helicities 4 = 42), and the vector and scalar Goldstone
bosons (A%, ¢,) become massless physical states (having
241 helicities 4 = £1, 0). Namely, each massive KK
graviton 7}, has its three extra helicity states (4 = %1, 0)
originate from those of the vector component A} (A = +1)
and the scalar component ¢,, (A = 0). Hence, we see that the
total physical degrees of freedom remain conserved before
and after taking the massless limit: 5 =2 + 2 + 1. This
shows that the compactified KK GR theory provides a
consistent description of the massive spin-2 gravitons and
is free from the vDVZ discontinuity as well as singularities
under the massless limit, because the KK gravitons acquire
their masses via the geometric Higgs mechanism without
explicitly breaking the diffeomorphism invariance in the 5d
bulk (except realizing the compactification at the 5d boun-
daries).

Finally, we also note that the &, # 1 part of our KK
graviton propagator (2.29a) differs from the conventional
massless graviton propagator (2.27a) under the harmonic
gauge-fixing (2.26). This is because under the massless
limit our R; gauge-fixing term (2.16) reduces to

Lo — ‘i% [ayhf,;” - (1 —22 )aﬂhnr, (2.30)

n=0 >" n

where the coefficient (1 —i) differs from that of the
conventional harmonic gauge-fixing (2.26) except &, = 1.

III. FORMULATION OF GRAVITATIONAL
EQUIVALENCE THEOREM AND
ENERGY CANCELLATION MECHANISM

In the previous section, we have presented the R: gauge
formulation of the geometric Higgs mechanism for massive

KK gravitons 4, and the corresponding KK Goldstone
bosons Ak(= K¢) and ¢,(= h3®), under which we can
derive the propagators.

In the Sec. Il A, we apply our R; gauge formulation in
Sec. II B to establish a gravitational equivalence theorem
for the 5d KK GR theory, which quantitatively connects the
high-energy scattering amplitude of the (helicity-zero)
longitudinal KK gravitons 4} to that of the corresponding
KK Goldstone bosons ¢,,. Then, in Sec. III B, we will show
that the GRET identity provides a theoretical mechanism
which guarantees the longitudinal KK graviton scattering
amplitudes to have nontrivial energy cancellations, such as
E'® — E? for the four-particle amplitudes and E>N*2 — E?
for the N-particle amplitudes. We derive a generalized
naive power-counting method (a la Weinberg [28]) on the
leading energy dependence of the scattering amplitudes,
and apply this to analyze the leading energy dependence of
the relevant amplitudes on both sides of the GRET identity
(3.15). With these, we can demonstrate the above-men-
tioned nontrivial energy cancellations in the longitudinal
KK graviton scattering amplitudes.

A. Formulation of gravitational equivalence theorem

We first express the R gauge-fixing term (2.16) in the
following form:

Lo ==Y 3P = = (3P + (P3P, (1)

1
28

Fl=o,n" — <1 - )8”h,, + &M, AL (3.1b)

N =

Accordingly, we can write down the Faddeev-Popov ghost
term Lgp and the BRST [29] transformations. With these
and using the method of Ref. [30] (cf. Appendix A of the
first paper therein), we can derive a Slavnov-Taylor-type
identity

(OITFiy (x1 ) Fi (x2) - - Fop, (1) Fiy, (v2) - - @]0) =0,
(3.2)
where @ denotes any other on-shell physical fields after the
Lehmann-Symanzik-Zimmermann (LSZ) amputation. In
the momentum space, the identity (3.2) takes the form
(OF 7 (k1 ) Fii (kp) - - oy (1) Fany (p2) - - @[0) = 0,
(3.3)

where we will set each external momentum to be on shell
(according to the mass of the corresponding physical KK
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graviton y): ki =-M; and p;=-M; (with
j=1,2,...). For the case of just one external line of F
or F3, we obtain the following identities of the scattering
amplitudes:

M[F(k),®] =0, MIF3(k),®] =0, (3.4)
where we have not yet imposed the LSZ amputation on the
external line Fi or F>.

Now, combining Egs. (3.1b) with (3.1c), we can
eliminate the vector Goldstone field A% and derive the
expression:

1
8/4Fﬁ - gnMnFrsz = aﬂavhl’;l/ - 5 [(2 - 5;1)82 + gnMgl]hn
3
Then, choosing the Feynman-’t Hooft gauge &, = 1 for
simplicity and imposing the on-shell condition k> = —M?
in momentum space, we derive the following formula:

ik, Fy + M,F5 = \/%Mf,f,,, (3.6a)
2k, ., 2
Fu=0\[3 A”42 R+ \/;h,, — . (3.6b)

where we have made the rescaling (2.19) for ¢, and defined
the external momentum k* to be incoming in Eq. (3.6a).
For the longitudinal polarization tensor ¢;~ of the massive
KK graviton, we make the high-energy expansion under
E=K> M,

v 1 v v v
e = %(G’ie_ + el +26h€l) = \/; e

2 -
B \@8‘& + 7,

where the longitudinal polarization vector ¢ =
(K°/M,,)(|k| /KO, k/|k|) = € + v with €% = k#/M, and
v =0O(M,/E,). In the above, the scalar-polarization
tensor is defined to be & = ese% = k*k*/M; and the
residual term has the energy scale 7#* = O(E®). Thus, we
can further express Eq. (3.6a) as

F,=h-Q,=ht-Q,, (3.8a)

~ 2 .~ 2 ~ ~
W=, B= 2 T = e B

(3.8¢)
W = €L h =)+, By = T h (3.8d)
K+ ” kH k¥
€§:ﬁ, 8’; :€§€g~: M2 . (386)
Then, using Egs. (3.4) and (3.6a), we deduce
M[F,(k),®] =0, (3.9)

for one external F,, line. In the Feynman-"t Hooft gauge, all
the KK fields of level-n have mass-pole k> = —M?. Also,
due to our R; gauge-fixing (3.1a) or (2.16), all the KK
fields have diagonal propagators at tree level. So we can
amputate the external line 7, a la LSZ by multiplying the
propagator-inverse (k> + M2) — 0. Thus, the amplitude in
Eq. (3.9) will take the same form except that the external
line F,, is amputated. After this, we can rewrite the identity
(3.9) as follows:

Ml (k), @] = M[Q, (k), @], (3.10)
or, equivalently,
MIRE (K), @] = M[Q,(k), ®] + M[7,(k),®]  (3.11a)
= M|, (k). ®] + M[A,(k),®],  (3.11b)

where Q, = ¢, —h, and A, =, — h,.
For the N external F, lines, we thus deduce the
following identity with all F, lines amputated and on shell

MF, (k). Fp,(ky), ... Fy (ky), @] =0,  (3.12)

where F, = hk — Q, and ® denotes any possible ampu-
tated on-shell external physical fields. Then, we derive an
identity for the scattering amplitude of N longitudinally
polarized KK gravitons:

MU (K)o (), @] = MR, (K1), o R (), @),

(3.13)
Using the identity (3.12), we can prove the GRET identity
(3.13) directly by computing its righ-hand side (RHS)
ML, (ky). ... 2, (ky), ©]
= M[h:]f,(kl) -Fu, (k1) s hﬁN(kN) - an(kN):‘b]
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In the last step of the above derivation, we have
used the fact that an amplitude including one (or
more) external F, line plus any other external on-
shell physical fields must vanish according to the identity
(3.12).

Expanding the RHS of Eq. (3.13), we can derive
an identity that connects the longitudinal KK gra-
viton amplitude to the corresponding KK Goldstone
boson amplitude and will be called the GRET identity
hereafter:

Mbs (K1), oo b (k) @) = My, (K)o b (i), @)
+ My, (3.15a)
Ma= Y M{A, . ¢} @), (3.15b)

1<j<N

where A, =7, — h, with the notations 7, = U,y and
h, = nﬂyﬁﬁ”. The last term M, on the RHS of
Eq. (3.15) denotes the residual term of GRET which is
the sum of individual amplitudes where each amplitude
M[{Anl_,c],’znl_,},d)] contains j external states of A, with
je{l,2,...N} and j/(=N
We note that an on-shell KK graviton has five physical
helicity states (1 = +2,+1, 0) and their polarization
tensors, as given by Eq. (A6) of Appendix A, are all

traceless. Hence, the external KK graviton Z,, is an
unphysical state. This means that the amplitudes containing

one or more external ﬁn state(s) are unphysical amplitudes.

This is why we arrange all the £,,-related amplitudes on the
RHS of the GRET identity (3.15) as part of the summed
residual term M.

Besides, we can further extend the above proof of
the GRET identity (3.15) beyond tree-level and to be
valid for all R; gauges by using the gravitational BRST
identities. Then, each external Goldstone boson state ¢,
in the amplitudes on the RHS of Eq. (3.15) will receive a
multiplicative modification factor Cy,q = 1+ O(loop),
which is energy independent and similar to the case of
the KK GAET formulation in the compactified 5d YM
theories [7] and in the 4d SM [30—32].5 So, such energy-
independent factor C,,,q does not affect the energy
power-counting of the (Goldstone-related) amplitudes
of Eq. (3.15) at loop levels. Since we focus on the
scattering amplitudes and the application of GRET at tree

— j) external states of gz’)nj,.

Our KK GRET formulation is based on the quantized BRST
symmetry and thus can be readily extended up to loop levels. This
means that our new mechanism of energy cancellation based on
the KK GRET or KK GAET (cf. Secs. IV and V) will generally
hold up to loop orders, which differs from the recent literatures
for the explicit verifications of energy cancellations in the tree-
level KK graviton amplitudes [12-14].

level for the current study, we will present a generalized
loop-level formulation elsewhere [33].6

Next, inspecting both sides of the GRET identity (3.15a),
we can readily make naive power-counting on the energy
dependence of the individual Feynman diagrams for each
scattering amplitude. For the four-particle scattering at tree
level, the longitudinal KK graviton amplitude on the LHS
of the identity (3.15) contains the contributions by indi-
vidual diagrams via quartic contact interactions or via
exchanging KK (or zero-mode) gravitons. Since each
external longitudinal KK graviton has polarization tensor
(3.7) scales like &/ o« k*k“/M? in the high-energy limit,
the contribution by each individual diagram behaves as
O(E'?), where the energy power 10 = 8 + 2 contains the
energy power of 8 =2 x 4 arising from the four external
longitudinal KK gravitons and the energy power 2 con-
tributed by the internal couplings and propagators. On the
other hand, we can make naive power-counting on the
energy dependence of the individual diagrams in each
amplitude of the RHS of Eq. (3.15a). Because the external
states (either the KK Goldstone boson ¢n, or, the KK

gravitons such as v, = v, /1, or h, = nm,h’,ﬁ”) in all such
amplitudes have no extra enhancement or suppression
factor, we can readily make naive power-counting on their
energy dependence and deduce that they all behave as
O(E?) under the high-energy expansion. Hence, the GRET
identity (3.15a) provides a general mechanism for the
energy power cancellation of E'© — E? in the longitudinal
KK graviton scattering amplitudes at tree level.

We note that on the RHS of Eq. (3. 15a) the residual term

M, contains individual amplitude M [{ A,, . bn, }. @] with

external states of the type A =7, — h The external state
U, = Uy, M is not suppressed under high- -energy expansion

due to 7" = O(E®), and the external state i, = 1, h" is

unsuppressed either by any factor of M, /E. Thus, there is
no apparent “equivalence” between the (helicity-zero)
longitudinal KK graviton /47 amplitude and the KK
Goldstone ¢, amplitude in Eq. (3.15a) under the high-
energy expansion. This differs essentially from the conven-
tional equivalence theorem (ET) for the spin-1 massive
gauge bosons in the SM and in the compactified KK gauge
theory, where the residual term is suppressed in the high-
energy limit because of the corresponding residual factor
v =€} —eég=0O(M,/E,). In fact, we observe that the
GRET re51dua1 term M, in Eq. (3.15b) is glven by the sum

of amplitudes like M[{A,,,} ®] with An =T, — h,

containing both the external fields v, and hn, which do
not receive additional suppression under the high-energy

®The 4d ET in the presence of the Higgs-gravity interactions
was established in Refs. [34,35] which can be applied to studying
cosmological models (such as the Higgs inflation [35-37]) or to
testing self-interactions of weak gauge bosons and Higgs bosons
[34,35,38].
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expansion. As we will show in Secs. IV B and V D for the
four longitudinal KK graviton scattering, the residual term

M, as asum of the Z,,-dependent individual amplitudes in
Eq. (3.15) has O(E?) by the naive power-counting and will
be further cancelled down to O(E®) in comparison with the
leading Goldstone ¢, amplitude of O(E?) under the high-
energy expansion.

With the above observations, we can express the GRET
as follows:

M(hg, (k). ... by, (ky). @]

:M[¢)1|(kl)’"'7¢nN(kN)7(I)}+O(Zn)’ (316)
where the residual term M, is denoted by O(Z,,) summing
up all the remaining amplitudes with at least one external

state being A,,. We will demonstrate later in Secs. [V B and

VD that the sum of residual terms O(A,) is indeed
suppressed by M, /E factors relative to the leading
Goldstone amplitude on the RHS of the GRET (3.16)
for the high-energy scattering processes (with two or more
external longitudinal KK gravitons).

In principle, the GRET identity (3.15a) and the GRET
(3.16) hold for any number of external longitudinal KK
graviton states, although in the above we take the case of
four longitudinal KK graviton scattering (N = 4) at tree
level as an important example for discussing the naive
energy power-counting and energy cancellations. In the
following, we will extend the above naive power-counting
analysis on energy dependence of the longitudinal KK
graviton amplitudes, the KK Goldstone amplitudes and the
residual term amplitudes in the GRET identity (3.15a) to
the general case of N > 4 and up to loop levels.

B. Energy cancellation mechanism for
KK graviton scattering amplitudes

We recall that Weinberg originally derived a power-
counting rule of energy dependence for the ungauged
nonlinear ¢ model as a description of low-energy QCD
interactions [28]. This power-counting rule has two major
ingredients: (i) The total mass-dimension Dg of a scattering
S-matrix element S is determined by the number of
external states (£) and the spacetime dimension, namely,
Dg=4-¢&, for 4d field theories. (ii) Consider that
the typical scattering energy E is much larger than all
the relevant mass poles in the internal propagators of the
scattering amplitude S. Then the total mass-dimension D,
of the E-independent coupling constants contained in the
amplitude S can be directly counted according to the type
of vertices therein. With these, one can deduce the total
energy power dependence Dy of the amplitude S as
Dy = Dg — D. We note that the point (i) is fully general,
and the point (ii) holds for any field theory in which the
particle masses are much smaller than the scattering energy
E and the nontrivial energy dependence of the polarization

tensors (vectors) for the possible longitudinally polarized
KK gravitons (gauge bosons) can be properly taken
into account. Hence, we can generalize Weinberg’s
power-counting rule to the compactified 5d theories’
including KK graviton (Goldstone) fields and/or KK gauge
(Goldstone) fields, and study the high-energy scattering
amplitudes of KK particles whose masses are much smaller
than the scattering energy E.

Consider a scattering S-matrix element S having &
external states and L loops (L > 0). Thus, the amplitude
S has a mass dimension

Dg=4-¢, (3.17)
where the number of external states £ = E + &, with
Ep(EF) being the number of external bosonic (fermionic)
states. For the fermions, we only consider the SM fermions
whose masses are much smaller than the scattering energy
E. We denote the number of vertices of type-j as V;. Each
vertex of type-j contains d; derivatives, b; bosonic lines
and f; fermionic lines. Then, the energy-independent
effective coupling constant in the amplitude S is given by

3
D¢ = Zvj(zt—dj —b; —Ef,-). (3.18)
J

For each Feynman diagram in the scattering amplitude S,
we denote the number of the internal lines as I = Iz + I
with Ip (Ir) being the number of the internal bosonic
(fermionic) lines. Thus, we have the following general
relations:

J

S Vify =2+ &, (3.19)
J

where V = ), V; is the total number of vertices in a given
Feynman diagram. The amplitude S may include &),
external longitudinal KK graviton states. Then, using
Egs. (3.17)-(3.19), we deduce the leading energy power
dependence Dy = Dg — D of the high-energy scattering
amplitude S as follows:

1
Dy =28, +(2L+2)+ >V (d_,- -2+ 2fj). (3.20)
j

Then, we consider the pure 5d KK GR theory without
involving any matter fields. Thus, for the pure longitudinal
KK graviton scattering amplitude with N external states
S =MIhk ,....hk ], we have £, = N and f; = 0. Each

"Weinberg’s power-counting rule was extended previously
[32,39] to the 4d gauge theories including the SM, the SM
effective theory (SMEFT), and the electroweak chiral Lagran-
gian.
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pure KK graviton vertex always contains two partial
derivatives and thus d; = 2. For the loop level (L > 1),
the amplitude may contain a gravitational ghost loop which
involves graviton-ghost-antighost vertex, but the number of
partial derivatives d; should be no more than two. This
means that the leading energy dependence is always given
by the diagrams containing only the KK gravitons and/or
zero-mode gravitons. Hence, to count the leading energy
dependence of the pure longitudinal KK graviton scattering
amplitudes, we can further derive the power-counting
formula (3.20) as

Dy[NhL] = 2(N + 1) + 2L, (3.21)

where the notation [NhL] just denotes the N external
longitudinal KK graviton states (h%) whose KK indices
can differ from each other in an inelastic scattering ampli-
tude. Similar notations, such as [N¢,] for N external KK
Goldstone states and so on, will be used for other amplitudes.

Next, we consider the corresponding gravitational KK
Goldstone boson scattering amplitude M(g,, . .... ¢, ]
with N external states. Its leading energy dependence is
given by the diagrams containing ¢, — ¢,, — h.” type of
cubic vertices and the pure (KK) graviton self-interaction
vertices, where each of these vertices includes two deriv-
atives (d; = 2). Hence, to count the leading energy
dependence, we can further derive the power-counting
formula (3.20) as follows:

Dg[Ng,] =2 +2L. (3.22)

Here we also note that each external Goldstone boson state
¢, in the amplitudes on the RHS of Eq. (3.15) will receive a
multiplicative modification factor C,oq = 1 + O(loop) at
loop level, which is energy independent as mentioned
earlier. Hence such loop factor C,q will not affect the
energy power-counting of the Goldstone ¢, amplitudes.
Comparing the energy power-counting formulas (3.21) and
(3.22), we note that their difference arises from the leading
energy dependence of the polarization tensors &) ~
k*k¥ /M2 for the N external longitudinal KK gravitons in
the high-energy scattering:

Dg[NhE) — D[N, = 2N. (3.23)

We further examine the leading E power dependence of
the individual amplitudes in the residual term M, of the
GRET (3.15). A typical leading amplitude can be
M([v,,....,v,,], in which all the external states are KK
gravitons contracted with the tensor v* = ¢’ — &’ =
O(EY), such as 7, =, k. Hence, we can count the
leading energy dependence of this amplitude in the same
way as Eq. (3.21) for the longitudinal KK graviton
amplitude M(h% ..., hk | except taking out the energy
enhancement factor E> from each external longitudinal
polarization tensor . Then, we deduce the following

energy power dependence of the leading residual amplitude

Mv, . Ty

Dg[Nv,] =2+ 2L, (3.24)

which gives the same energy power dependence as
Eq. (3.22) for the leading scattering amplitude of N KK
Goldstone bosons. We will establish a further energy
cancellation in the residual term M, in Sec. V D based
upon the double-copy construction.

Applying the leading energy power-counting results
(3.21)—(3.24) to both sides of the GRET identity (3.15a),
we thus establish an energy cancellation by E? in a
scattering amplitude of N longitudinal KK gravitons
MIhk ... kL ]. For the case of four longitudinal KK
graviton scattering amplitudes (N =4) at tree level
(L =0), we can deduce the energy power cancellation
E'" — E?, which reduces the energy powers by
(10 —2) = 8, as we mentioned earlier. For another case
of four KK graviton scattering amplitudes containing two
external longitudinal KK gravitons and two external trans-
verse KK gravitons (£, =2), we have the E-power-
counting Dg[2h} + 2h’] = 6 + 2L. For the corresponding
KK Goldstone amplitudes, we have energy-counting
Dg[2¢, + 2h}] = 2 4 2L. The leading residual term con-
tains the amplitudes such as M(v, ,7,,,hL AL ], which
has the same energy power dependence as the residual term
amplitude with all external states being v,,’s [cf. Eq. (3.24)].
Namely, we can deduce D[2v, + 2h%] = 2 + 2L. Hence,
from the GRET identity (3.15a), we deduce that the KK
graviton amplitude M kL  h5 Al k] ] has an energy
cancellation down by a factor of E*. This energy mecha-
nism holds not only for the tree level, but also for the loop
levels (L > 1) since, as we noted earlier, the loop-induced
multiplicative modification factor Coq = 1+ O(loop)
associated with each external KK Goldstone state is energy
independent and thus does not affect the naive energy
power-counting on the RHS of Eq. (3.15).

In the rest of this subsection, we consider the energy
power-counting in the compactified 5d KK YM theory
(YM5) under S'/Z, [6]. For a scattering amplitude
containing & " external longitudinal KK gauge bosons
A" and &, external KK gauge bosons v; = v,A% (with

V" = €] — €k), we can derive the following leading energy
dependence Dy = Dg — D from Egs. (3.17)—(3.19),

1
Dy = Ex —5v+(2L+2)+Zvj<dj—2+§fj>.
J

(3.25)

Inspecting the interaction Lagrangian of the zero modes
and KK modes of gauge bosons, we note that it con-
tains only cubic and quartic vertices. Some of the cubic
vertices contain one partial derivative and others do not
(including all quartic gauge boson vertices). For notational
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convenience, we denote the gauge fields V, = Ay,
V, = A}, and 17,, = A%, After the BRST quantization,
the ghost term contains the cubic interactions between KK
ghost-antighost (c¢,¢%) and KK gauge bosons with
one partial derivative in each vertex [7]. Thus, the cubic
vertices with one partial derivative have the types of
VoV,V,,V,V, Vs, c,c,Vy) and (VoV,V,,V,V, V).
Hence, we have

> Vid; =V, (3.26a)
J
Vd = V3<V0ann) + V3(VanVf) + V3(Cn6mvf)
+ V3(V0ann) + VS(VnT/mT/f)’ (326b)

where )V, denotes the number of all cubic vertices including
one partial derivative and V;(XYZ) denotes the number of
cubic vertices of type XY Z. For the YMS5 theory, we further
have the following relations:

V = ZV/ == V3 + V4, (327&)
J
V3 =Vy+Vp+Vs, (3.27b)
Vi = Vs(Vofufn) + Vs(Vafufe) + Va(Vafufe),
(3.27¢)
]_}3 = V3(V0ann) + VB(VanVf) + V3(C”6me),
(3.27d)
Vi =Va(VoVoV, Vi) +Va(VoV,V, V)
+ V4(anmvkvf) + V4(VOV0VnVn)
+V(VoV Vo Vo) + Va(V,VuViVy), (3.27¢)

where the possible fermions and their KK states are
included although they are not needed for analyzing
the pure KK gauge theory in the present work. Using
Egs. (3.26)—(3.27), we further derive the leading energy
power dependence (3.25) as follows:

Dp=Ep =€+ (L +2) = (Vy+ Vi +2V3 +2V).
(3.28)

Then, using the general relation L =1+ 1 —) given by
Eq. (3.19) and the following relation of the YMS theory
21 + &€ =3V +4V,, (3.29)

we can express the leading energy dependence (3.28) as

Dp=(4-¢&)+ (€AZ -&,) = Vs, (3.30)
where & stands for the total number of the external states
and V5 denotes the number of cubic vertices containing
no partial derivative. In Eq. (3.30), £, denotes the
number of external KK gauge bosons contracted with
the vector v* = ¢ — €5 = O(M,/E). So each external
state v§ = v,Ay" contributes an energy suppression factor
E~'. The naive power-counting formula (3.30) does not
depend on the loop number L and takes similar form to
that of the SM case [39], because the structure of each
individual vertex of the KK YMS theory is similar to that
of the SM while the nonrenormalizability nature of the
KK YMS theory is reflected by its infinite tower of KK
states.

Inspecting Eq. (3.30), we note that for the pure longi-
tudinal KK gauge boson scattering amplitude with £ =
Ear = N(>4) and £, = 0, the leading energy dependence
is given by

Dg[NA}| =4, (3.31)
which corresponds to V5 = 0. This means that the leading
energy power dependence of the pure longitudinal KK
gauge boson scattering is always given by the diagrams
containing only cubic derivative gauge vertices and/or
quartic gauge vertices. We stress that the leading energy
dependence Dy = 4 does not depend on the number of
external longitudinal KK gauge bosons (EAZ = N). The
case of N = 4 scattering amplitudes was studied before [6].
Then, we consider the scattering amplitudes of pure KK
Goldstone bosons (A%) with £ = Ear = N external A®

states. This also means £, =0 and &, = 0. Thus, using
Eq. (3.30), we deduce the leading energy dependence of N
KK Goldstone boson scattering amplitude as
Dg[NAY =4 — N = Vpn, (3.32)
where the number of the external KK Goldstone states
N >4 and the involved minimal number of nonderivative
cubic vertices VI'" = 0(1) for N = even (odd).
It was established [6,7] that the longitudinal KK gauge
boson scattering amplitude and the corresponding KK
Goldstone boson scattering amplitude are connected by

the KK equivalence theorem for gauge theory (KK GAET)
under the high-energy expansion:

TIAS™ LAWY @] = CpogT[AS™, ..., AW @] + T,

(3.33a)

N
Ty = ClogT o™, oo v AL AD™ D]
=1

= O(M,/E), (3.33b)
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where @ denotes any other external physical state(s).
The modification factors Cyq, Chog = 1 + O(loop) are
energy-independent constants and do not affect the energy
power-counting, which are generated at loop level [7,32]
and are not needed for the tree-level analysis in the
current study.

Then, we consider the scattering amplitudes of N
longitudinal KK gauge bosons and of the corresponding
N KK Goldstone bosons. Their leading energy powers are
given by Egs. (3.31) and (3.32). Thus, we deduce the
following difference between their leading energy powers:

Dg[NAL] — Dg[NAZ] = N + Vin, (3.34)
where VJ'" denotes the involved minimal number of
nonderivative cubic vertices in the KK Goldstone ampli-
tude and V" = 0(1) for N = even (odd). Next, we make
naive energy-counting on the residual term 7, of the
KK GAET (3.33). To extract the leading energy depend-
ence, we start with the pure KK Goldstone amplitude
TIAS™, ..., AS"] and replace one external KK Goldstone
state (say, As'"") by the KK gauge boson contracted with
the v# factor (v#Ay'"" = v®™). For the case of N = even,
this means to replace a derivative vertex by a nonderivative
vertex and add the factor ¢”, so the leading energy
dependence Dy will be reduced by E~2. For the case of
N = odd, this means to replace a nonderivative cubic
vertex by a derivative cubic vertex and add a »* factor.
So the leading energy dependence D will not change.
Thus, we conclude that the leading energy dependence of
the residual term (3.33b) is given by

Dg[T,)=2-N

(for N =even), (3.35a)

Dg[T,|]=3-N (for N=odd). (3.35b)
Comparing this with the leading energy power-counting
(3.32) of the N KK Goldstone boson amplitudes in the
high-energy scattering, we deduce that for the case of N =
even the residual term (3.33b) is suppressed by M?2/E?
factor relative to the leading KK Goldstone amplitude on
the RHS of the KK GAET (3.33) and thus can be ignored,
while for the case of N = odd the residual term (3.33b) has
the same leading energy dependence as that of the leading
KK Goldstone amplitude. In either case, the KK GAET
(3.33) guarantees that the leading energy dependence E* of
the pure longitudinal KK gauge boson amplitudes in
Eq. (3.31) has to be cancelled down to the leading energy
dependence of the corresponding KK Goldstone ampli-
tudes in Eq. (3.32). This energy cancellation shows that
even though the N-particle longitudinal KK gauge boson
scattering amplitudes have superficial leading energy
dependence E* as contributed by individual Feynman
diagrams, these must be cancelled down by an energy
factor E°PF to match the leading energy dependence of the

corresponding KK Goldstone boson amplitudes, where the
energy power factor changes by

1—(=1)¥
2

This energy cancellation of 6Dy coincides with the above
formula (3.34). For the case of four longitudinal KK gauge
boson scattering amplitudes (N = 4), it was proven [6]
that the leading energy cancellation E* — E° is guaranteed
by the KK GAET to match the leading energy dependence
of the corresponding KK Goldstone boson amplitudes. This
fully agrees with the above general analysis for the N-
particle scattering amplitudes. In the following, we will
focus on the four-particle KK amplitudes (N = 4) for the
explicit analysis of the GRET in Sec. IV and for the double-
copy construction in Sec. V. We will pursue the analysis of
the N > 4 case in future works [33].

8Dp =N + (3.36)

IV. STRUCTURE OF KK GRAVITON
SCATTERING AMPLITUDES FROM
GRAVITATIONAL EQUIVALENCE THEOREM

The compactified five-dimensional Yang-Mills theory
under orbifold S'/Z, generates a tower of massive gauge
bosons via KK construction. The KK gauge boson mass
generation can be formulated by the geometric Higgs
mechanism in a generic R; gauge [6], where each massive
longitudinal KK gauge boson Ay acquires its mass by
absorbing the corresponding KK-state Goldstone A% from
the fifth component of the 5d gauge field. Reference [6]
has established the KK GAET which states that each on-
shell scattering amplitude of the longitudinal KK gauge
bosons (A%) equals the amplitude of the corresponding
Goldstone bosons (A%%) down to O(E’) under the high-
energy expansion,

TIALALL — ACEAIL) =T [AP ALY - ASAB]+ O(M3 | E?).
(4.1)

This formulation was extended to gauge theories in decon-
structed extra dimension [8] and to the realistic compactified
5d standard model [9].

In this section, we will systematically compute the 2 — 2
scattering amplitudes of gravitational KK Goldstone
bosons for the first time. Then, we will explicitly demon-
strate the validity of the GRET by comparing our gravi-
tational KK Goldstone amplitudes with the corresponding
helicity-zero KK graviton amplitudes obtained in [13]. For
the case of 2 — 2 scattering, we first deduce the GRET
identity from Eq. (3.15):

Mg, by, — by by = M[Q,, Q,, - Q,,Q,].  (4.2)
where Q, =¢,+ A, and A, =7, — h,. Furthermore,
according to Eq. (3.16), we reexpress our four-point
GRET identity (4.2) as
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MIRE BE = BE hE ) = Mb, b, = Gnihn,] + O(A,).
(4.3)

As we will show in the following Sec. IV B, the leading
gravitational KK Goldstone amplitude on the RHS of the
GRET (4.3) is of O(E?) and equals the corresponding
leading longitudinal KK graviton amplitude on the LHS of
Eq. (4.3). However, it is highly nontrivial to demonstrate
that the full residual term O(A,) = O(E®) actually holds
and thus can be neglected relative to the leading gravita-
tional KK Goldstone amplitude on the RHS of the GRET
(4.3). This is because the naive power-counting shows each
individual amplitude in the residual term O(A,) is of
O(E?). This can be understood by noting that the tensor
v = O(E") and thus the external state v, = v,,h}" is
unsuppressed under high-energy expansion. The same is
true for the external state h, = nﬂﬁﬁ” which has no extra
suppression factor. Thus, by naive power-counting of
energy, each individual residual term O(A,) = O(E?)
which has the same energy dependence as the leading
Goldstone amplitude and is not superficially suppressed.
This is an essential difference from the KK GAET [6] of the
compactified 5d KK gauge theories [6], where the residual
term is suppressed by the vector v* = ¢} — s = O(M,,/E)
and thus is of O(M2/E?) for the case of four-particle
scattering process as shown in Eq. (4.1).* We will dem-
onstrate this additional energy canellation of E* — E° in
the residual term O(A,) in Sec. IVB by the explicit
calculations and in Sec. VD by the double-copy con-
struction from the KK GAET of 5d YM theory.

A. GRET for the 5d gravitational scalar QED

In this subsection, we first consider the 5d gravitational
scalar QED (GSQEDS) compactified under S'/Z,, as an
example to explicitly test the GRET. This will provide
important insights for our general formulation of the GRET
and double-copy reconstruction analysis in Sec. V.

In this GSQEDS, both graviton and scalar fields live in
the 5d bulk. Therefore, we can write down the 5d action
for the matter part, including a general gauge-fixing term
for the gauge field,

- | ESSN "
Sm:/dev _g{_ZQMPQNQFMNFPQ

1 ~ N N
- ORIy P + m3\8|2}, (4.4)

The residual term of O(v,) is defined as the difference
between the longitudinal gauge boson amplitude and the corre-
sponding Goldstone amplitude. In the 5d KK GAET for spin-1
KK gauge bosons [6], the residual term has the size of
O(M?/E?), which is similar to that of the conventional ET of
4d gauge theories [40].

where FMN = 6MAN - 8NAM and DM = aM + léAMg
From this, we derive the action of the graviton-matter
interactions:

A

Sint = —;/dsx(ilMN?MN)
- -* / 2T, + 4R5T s — W51, — 2Fs5)],
(4.5)
where the 5d energy-momentum tensor is defined as

i 2 88y
Ny

Therefore, we can derive the energy-momentum tensors for
both the photon field and scalar field as follows:

(4.6)

My = %F%’Q + FlyFpy + 2L§N (0°Ap)*,  (4.7a)
TS5y = (DyS)*DyS + (DyS)*DyS
— i (IDpSP + m3[SP). (4.7b)

Then, we make KK expansions for the 5d photon field and
scalar field, under the boundary conditions of the orbifold
§'/2,

A 1 = nmx
A, X)) = — {Ag(x”) + \/EZA’,’,(x”) COST:| ,
n=1

L
(4.8a)
- nmx’
Ad(x¥, %) = \/%ZAZ(X”) sin——. (4.8Db)
n=1
Sy = s Vays i
(x,x)—L{o(x)+ ; 2 (xY) cos L]'
(4.8¢)

With these, we can derive the effective KK Lagrangian in
4d and obtain the corresponding Feynman rules, which are
presented in Appendix C.

’In Eq. (4.4), we have imposed a minimal gauge-fixing term
for photon field with gauge-fixing function (9,,A"). One could
optionally choose the usual covariant gauge-fixing function for
photon (V,,AM) [41], which contains additional interaction
vertices proportional to 1/¢ and will not affect physics. We have
explicitly verified that for the scattering amplitudes of relevant
physical processes, the sum of all {-dependent contributions
vanishes at tree level, as expected.
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FIG. 1. Scattering processes of zero-mode photon and longitudinally (scalar-)polarized KK graviton, hiAl — S;S; and
hiAg -8 S, via the (s,1, u)-channels and contact interactions. Here the blue double-waved line denotes the KK graviton /",
the black-waved line denotes zero-mode photon Af, and the black dashed line denotes the zero-mode scalar S, or KK scalar S,

To test the GRET explicitly, we consider the scattering 3
of zero-mode photon and KK graviton into a pair M[Q,] = M[p,] - M[ﬁn] = _\/:ek( p3-€5), (4.10b)
of scalar bosons, hL(p)Al(p,) — Sy(p3)Sy(ps) and 2
R (p)AL(p2) = S5(p3)Sit(ps), where the initial state

here the notation Q, = ¢, —h introduced i
KK graviton is either longitudinally polarized h% or where ‘the notation &, = ¢, —h, was introduced in

] ~5 Eq. (3.8). Inspecting the scalar-polarized KK graviton

scalar-polarized f,, and the zero-mode photon A§ = amplitude (4.9) and the summed amplitude (4.10b), we

eZA’(’) is massless. The final state includes the zero-mode deduce an equality,

scalar boson S; and the KK scalar boson S,;. We present

the relevant Feynman diagrams in Fig. 1. M['ﬁﬁ] = M[Q,], (4.11)
We first compute the diagrams in Fig. 1 for the initial

state with scalar-polarized KK graviton Zﬁ Thus, the  which explicitly verifies the GRET identity (3.10). We also

scattering amplitude is derived as note that for the current scattering process, the Q, ampli-
tude contains contributions by both the gravitational KK

Goldstone boson ¢,, and the trace part of the KK graviton
h,, which are of the same order of magnitude. This shows

) ) ) ) an essential difference from the case of the pure KK gauge
Then, we consider the corresponding scattering amplitudes  heories (without gravity), where for each longitudinal KK

M) = =Bt <5). (49)

$uAG = Sy Sy and h,Af — S;S;f, as shown in Fig. 2. gauge boson A%, its corresponding KK Goldstone boson is
From Fig. 2, we compute the scattering amplitudes with  just given by the scalar component A3 [6].

initial state KK Goldstone boson ¢, and the unphysical Then, in order to compute the scattering amplitudes
trace part of the KK graviton field %, respectively. We  explicitly, we choose the momenta in the center-of-mass
further derive their summed scattering amplitude. Now,  frame and make the initial state particles move along the z
these scattering amplitudes are presented as follows: axis. Then, the momenta for the initial state particles and

final state particles are given by

1 /2 ~ 2
M(a,] :5\/;(3K(p3-€2i), Mih,] :2\/;9K(P3'€zi)7 Pl =—E(1,0,0.). p"=—-EB(1,0,0,—1),
(4108') pg:Eﬂ(l’sﬂvO’Cﬁ)’ pZ:E(L_ﬂsﬂ’O’_ﬁCF))’ (412)

.
o
[y —
3
(PUpey S
.

*
(Y

n n n n

FIG. 2. Scattering processes of the zero-mode photon and the KK gravitational Goldstone boson or the trace part of the KK graviton,
¢ AL — Sy Sy and h, AT — Sy S, viathe (s, £, u)-channels, where the red solid line denotes the KK gravitational scalar Goldstone ¢,,
and the blue double line denotes the trace part of the KK graviton #,,.
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TABLE L. Classification of the 12 Lorentz-invariant interaction vertices in £ 1 [izr}ﬁz] where the six operators in the
second row can be converted into the combinations of the operators in the first row via integration by parts.

‘Cl [ila’z] i’”yau(?)ayfﬁ

0" $0,¢

" $0,0,¢
(0,0, )d?

ho, 0"
d,h v

hosdpd
dshdp

h 05
(95h)°

ho i
(D39’

where = /1 —M2/E? and (sg, cy) = (sin, cos §) with
0 being the scattering angle. For simplicity of illustration,
we consider the zero-mode mass my << M,, and thus m, is
negligible for this analysis. The polarization vectors of the
KK graviton /5 (p;) and zero-mode photon Al (p,) in the
initial state take the following forms:

o1 , , .
e :\76(6‘1‘+el_ +ej_ef, +2€],€; ),
1
eﬂ = — O,:l:l,_i,o l
1= ﬁ( )

E 1
¢, =——($.0.0.1), €, =—-—=(0,%1.i,0).
=3 (P.0.0.1). == (0.51i0)
With the above, we compute explicitly the scattering
amplitudes of hxAl — SyS, and hy AL — Sy S;t under the
high-energy expansion:

(4.13)

M) = =23 (s VM) | o),
(4.14a)
€K eK zs
M) = =B () + Mo o)
(4.14b)

where we have chosen the transverse polarization ¢ for
the initial state photon A!. For the other transverse
polarization €5_ of A?, all of the corresponding amplitudes
will flip an overall sign.

According to the GRET identities (3.10) and (3.11b), we
can compute the residual term:

M[Zn] = M[fﬁn] - M[F]/;zz} = M[hﬁ] - M[¢n]’ (415)

where we have used the abbreviations M[Zn] =
MIA,AF = 8581, M[o,] = M[3,A] > S8, and
M(h,] = M[h,AT — S;S;;]. Using the longitudinal KK
graviton amplitude (4.14a) and KK Goldstone amplitude
(4.14b), we derive the residual term (4.15) as follows:

- P 2
M[An}:—z\/f (Es,ﬁ—k@(%), (4.16)

which has the same energy order as the longitudinal KK
graviton amplitude M [h%]. This demonstrates that for the

case of one external KK graviton line, although the GRET
identity (4.11) holds as expected,

M[hﬂ - M[ﬁn] + M[’ﬁn] = M[(pn] + M{Kn]’ (417)

the GRET itself no longer holds. This is because the
residual term M(A,] in Eq. (4.16) has the same order of
magnitude as the longitudinal KK graviton amplitude
M|[hL] or the KK Goldstone amplitude M]gp,] in
Eq. (4.14) under the high-energy expansion.

B. Gravitational KK Goldstone boson
scattering amplitudes

In this subsection, we explicitly compute the elastic and
inelastic scattering amplitudes of four gravitational KK
Goldstone bosons in the compactified 5d GR, which will be
compared quantitatively with the corresponding longi-
tudinal (helicity-zero) KK graviton scattering amplitudes.

1. Elastic gravitational KK Goldstone boson
scattering amplitudes

To compute the scattering amplitudes of the gravitational
KK Goldstone bosons, we first derive the relevant interaction
vertices. We will show that the leading contributions arise
from the Feynman diagrams with zero-mode graviton and
KK graviton exchanges. For the cubic interaction vertices
containing one graviton and two KK scalar-Goldstone
bosons, we expand the EH Lagrangian up to O(&?), denoted

as £, [h?]. We inspect the structure of £, [h*] and classify it
into 12 Lorentz-invariant terms, as presented in Table 1.
We note that in Table I all six operators in the second
row contain partial derivatives acting on the graviton fields,
but we can always shift the partial derivatives on to the
scalar fields via integration by parts, and thus they can be
converted into combinations of the six operators in the first
row. In this way, we can organize the cubic vertices in the

Lagrangian £, [h¢?] as follows:

21 VA“.?’Z] =da ilﬂyay$8u‘27 + azil’}wé\ﬁaﬂab$ + a3il(ay$)2

+a4fzg?)8iéﬁ+a5f1(85$)2+a6fz(258§$, (4.18)
where the coefficients are given by
1 3 I 1
=|-=,-1,-,1,—=,—=|.
{al’a2’a39a49a57a6} ( 2’ ’4’ ’ 2’ 2)
(4.19)
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Next, by substituting Eqs. (2.12a)—(2.12¢) into the Lagrangian (4.18) and integrating over x°,

corresponding effective Lagrangian in 4d,

Z {al

nmf 1

L [h¢?*] =

we derive the

/Wa ¢Oav¢0 + hgyay¢may¢f5mf + hﬁyaﬂd)mapd)oanm + hﬁ”aﬂd)oaud)fénf)

+ hﬁpay¢)nap¢fA3(n7 m, f)] + aZ[\/E(hgy¢anav¢O + hl(;y¢mayay¢f5mf + hﬁyd)maﬂapd)oanm
+ hﬁpqﬁoaﬂauqﬁfénf) + h};ll/¢maﬂau¢fA3(n’ m, Z’ﬂ)] + a3[\/§(h08ﬂ¢oaﬂ¢0 + h08ﬂ¢nlaﬂ¢f5mf
+ hnau¢maﬂ¢06nm + hn8u¢()aﬂ¢f5m”) + hnau¢maﬂ¢fA3 (nv m, f)] + a4[\/§(h0¢06;24¢0

+ h0¢m

a/%¢f5mf + hn¢ma;24¢06nm + hn¢06;24¢f5nf) + hn¢ma;24¢fA3 (n7 m, l’ﬂ)]

+ asM MoV 2ho b Sme + hubmprBs(n.m., )] — asM2[N2(hobuprSme + hubobedur)

+ hn¢m¢fA3(n7 m, f)]}’

where As(n,m,¢) and Ay(n, m,£) are given by

As(nym, &) =6n+m—-¢)+6n—m—-¢)+6(n—m+7),

As(n,m, &) =8(n+m—7¢)

Hence, using Eq. (4.20), we can derive the Feynman rules
for graviton-scalar-scalar interactions as shown in Fig. 3.

With the above, we are ready to analyze the elastic
scattering of the gravitational KK Goldstone bosons,
¢uh, = ¢nd,. Figure 4 shows the Feynman diagrams at
tree level, which include the scattering via the zero-mode
graviton exchange and the KK graviton exchange at level-
2n. By straightforward power-counting, we find that each
diagram in Fig. 4 has the leading contribution of O(E?) in
the high-energy limit. We stress that our gravitational KK
Goldstone boson scattering amplitudes in our study do not
invoke any energy cancellation among the individual
diagrams and the leading energy dependence of O(E?)
is manifest in each diagram. This feature is an essential
difference from the longitudinal KK graviton amplitudes
which involve complicated large energy cancellations from
O(E"™) to O(E?) as in [12,13]. In fact, as we will
demonstrate, our formulation of the GRET (Sec. III)
together with the double-copy construction (Sec. V) can

¢, (1)

— f

iy (ps) =

—iK

\ \ 1 +52n,m + 2&377“” (pl : p2) N

¢n (p2)

FIG. 3.
’&'4 =ay + (_1)52”,05 — ag, Wlth m = O, 21’1

—dn—m—-¢)+6n—m+7).

(4.20)

(4.21a)

(4.21b)

|
provide a general mechanism for these large energy
cancellations.

By using the trilinear interaction vertices Fig. 3 and the
KK graviton propagator (2.22a) as well as the kinematics
defined in Appendix A, we can compute all the Feynman
diagrams of Fig. 4 in a straightforward way. Summing up
the individual diagrams, we derive the elastic scattering
amplitude of ¢, ¢, — ¢,¢, to the leading order of O(E?)
under the high-energy expansion:

3 0
Moty = butha] = 55 [%} S0 (4.22a)
3x% [(7 20)?
= EKS [%] 5o, (4.22b)

Then, the expansion to the next-to-leading order gives the
subleading amplitude:

a; (Pps+piph) |
+ a, (PP +15p5)

| — 2" M

Feynman rule for the cubic interaction vertex between KK graviton and gravitational KK Goldstone bosons, where we define
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FIG. 4. Elastic scattering of gravitational KK Goldstone bosons, ¢,¢, — ¢,¢,, via (s, t, u)-channels mediated by the zero-mode

graviton and by the KK graviton of level-2n.

My = buthy

K2M2
= — 128n (—1318 + 2865C29 — 522C49 — C69)CSC49,

(4.23)

which is a mass-dependent contribution of O(E°M?2). We
see that this NLO amplitude (4.23) is much smaller than the
LO amplitude (4.22) of O(E’MY) in the high-energy
scattering.

In order to explicitly demonstrate our GRET, we will first
compare our gravitational KK Goldstone boson amplitude
(4.22b) with the corresponding longitudinal KK graviton
amplitude M [k} h} — h}h}] as given in Ref. [13] [cf. its
Eq. (70)]. For this comparison, we note a notational
difference: our 4d gravitational coupling constant x is
defined in Eq. (2.7) as k = &/+/L and differs from that
of Ref. [13] by a factor \/LZ since their definition leads to

k = k/v/2L. Hence, our KK Goldstone amplitude (4.22b)
should be rescaled by a factor % for the comparison:

M- Mx— 20

1 3x? [(7 + cos 26)?
= {7} so. (4.24)

which equals the KK graviton amplitude in its Eq. (70) of
Ref. [13]. This is truly impressive because our independent
computation of the KK Goldstone amplitude (4.22b) fully
differs from that of the KK graviton amplitude which
contains much more complicated energy cancellations from
O(E'") to O(E?). Naively and intuitively, this equivalence
seems quite expected for us because the scalar component
of the KK graviton field ¢, (=) should be converted to
the degree of freedom of the helicity-zero longitudinal
component of the KK graviton, and thus we would have

MR} — hihi] = Mpudn = butpn] + O(MLE).
(4.25)
However, in the actual situation it is far more nontrivial to

quantitatively demonstrate the equivalence between the two
amplitudes in the high-energy limit. This is because our

quantative formulation of the GRET (4.3) (as systemati-
cally presented in Sec. III) shows that the second term on
the RHS of the GRET contains a combination of both the

KK Goldstone bosons ¢, and trace part of graviton Z,, due
to the structure of our R; gauge-fixing functions in
Egs. (3.1b) and (3.1c) and (3.6a). To fully demonstrate
such an equivalence as in Eq. (4.25), we have to further

show that all the Zn-related Goldstone amplitudes on the
RHS of the GRET (4.3) together with the O(v,,) amplitudes
could be of O(MZE®) at most. We will present this
nontrivial demonstration in Sec. V based on our double-
copy construction.

Next, we compute the subleading contributions to the
elastic KK Goldstone amplitude ¢,,¢,, — ¢, ¢, as shown in
Fig. 5, where the relevant Feynman rules are presented in
Appendix D. These include the subleading contributions
via (s, 1, u)-channels mediated by a vector 45, (the first
row), a scalar ¢, or ¢,, (the second row), and a contact
interaction (the second row). Thus, we derive the following
three kinds of subleading contributions accordingly under
the high-energy expansion:

Malbuths = butb] = 30N (4260
9
Mclgubn = dutpn] = 512 M. (4.26¢)
Their sum is given by
51,
MA+M¢+MCZ_ZK M;,. (4.27)

We see that the above subleading contributions are all of
O(E°M?). The same feature also holds for the subleading
contributions to the inelastic channels.

Finally, we sum up the contributions of both Figs. 4 and
5, and derive the complete elastic scattering amplitude of
KK scalar-Goldstone bosons without energy expansion:
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2n
2n
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0,2n

0,2n
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FIG. 5.

n n n
2n
n n n
n n n n
0,2n
n n n n

Gravitational KK Goldstone boson scattering ¢, ¢, — ¢,¢, from Feynman diagrams of subleading contributions. The

diagrams in the first row arise from exchanging the KK vector A}, via (s, ¢, u)-channels, while the diagrams in the second row arise from
exchanging both the zero-mode and KK scalar (¢, ¢,,,) via (s, ¢, u)-channels and a KK scalar-Goldstone contact interaction.

KM (X0 + X3¢ + Xicqo + Xoceo)

My = buh

where 5o = so/M3, 5 = s/M; =5, + 4, and

X} = —2(395 — 12125} — 782453 — 1068852).

X0 = —(35) + 457).

From the above, we expand the full amplitude (4.28)
(Mppy = Pup,] = M[4¢,]) down to the subleading

_ , 4.28
51250(5y + 4)[2s353 + 325, + 128]s3 (4.28)

X = 2(2555) + 1334854 + 16862453 4 98438453 + 35143685, + 6012928), (4.29a)
X9 = —42953 — 127325% — 15628853 — 77772852 — 25722885, — 5210112, (4.29b)
(4.29¢)

(4.29d)

2M2
SM4g,] = — K128n (=706 + 2049¢5,
— 3186‘49 — C69)CSC49. (430(3)

order under the high-energy expansion sy M2 (or
- 10
So > 1),

M[4¢n] = M0[4¢n] + oM [4¢n]’ (4303)
2 0 2
Mold,) = % [%} - (4.30b)

10As a clarification of the notations, in Secs. III and IV we do
not put an extra “tilde” symbol above the ¢,-amplitude M and
OM such as those in Egs. (4.28) and (4.30), but we willAa}dd a
“tilde” on top of the same ¢,,-amplitude symbols such as M and

SM in Sec. V as well as in Appendix F for the convenience of
notations.

We see that the above leading amplitude M,[4¢,] =
O(E*MY) is mass independent and agrees with
Eq. (4.22), while the subleading amplitude M [4¢,] =
O(M2E®) is mass dependent. As a consistency check, we
also note that the above subleading amplitude s M[4¢,,]
just equals the sum of the two NLO amplitudes (4.23) and
(4.27) which are computed earlier.

2. Inelastic gravitational KK Goldstone boson
scattering amplitudes

In this subsection, we further analyze the inelastic
scattering processes for the gravitational KK Goldstone
bosons. Based on the analysis of the previous section, we
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o) n3 Ny

m Ty ny

3 Ty n3
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FIG. 6. General four-point scattering process of the gravitational KK Goldstone bosons, ¢, ¢,, = ¢,,$,,. via (s, t, u)-channels
mediated by a KK graviton of level N, where Ny, >0 and s; € (s, 1, u).

have demonstrated that the longitudinal-Goldstone equiv-
alence (4.25) holds down to O(E?) under the high-energy
expansion, which is equivalent to taking the high-energy
limit M,,/E — 0.

From the trilinear interaction vertex Fig. 3, we can
deduce a relation between the hj” — ¢, — ¢, coupling
(Vo) and Iy, — ¢, — ¢, coupling (V5,):

VE = V2Vh. (4.31)
Thus, for each channel of the elastic scattering process, the
corresponding amplitudes with the exchanges of zero-mode
graviton /" and KK graviton A, are connected by the
relation: M?” = %M(]) Hence, for a given channel-j, we
have M; = M? + Mf" = %M? in the high-energy limit
M,/E — 0. With these, we can reproduce the elastic KK
Goldstone scattering amplitude (4.22) by

My = bu] =33 M0 (432)
J

where j € (s,t,u). The above amplitude ./\/l? arises from
the exchange of zero-mode graviton and is given by
MY = —iv9, DV, (4.33)

With the above, we can extend our analysis of the elastic
scattering amplitude to a general case as shown in Fig. 6,
including all the inelastic scattering channels. In Fig. 6, the
external KK Goldstone bosons have KK levels of
(ny,ny,n3,n4), and we denote the intermediate graviton
with levels (N, N,,N,) > 0, respectively.

In the following, we consider two types of the inelasic
scattering processes:

(1) For the inelastic scattering ¢,¢, = @b, (With
n # m), we have

ng=ny, =n,

N, =0,

ny =ny =m,

N,=N,=|ntm

, (4.34)

where only the s-channel diagram includes the
exchange of zero-mode graviton because of KK

number conservation. With these, we compute the
inelastic KK graviton scattering amplitude in the
high-energy limit as follows:

MUy = Busb] = M +2 53 (M + M)
2
= gM[d)nd)n - ¢n¢n]’ (435)

where /\/l? is defined in Eq. (4.33) and equals the
elastic amplitude of if;’ exchange in the channel-j.

(ii) For the inelastic scattering ¢, ¢, — ¢, ¢, (With
n#k+#m#¢), we have

ng=n, np=k,
Ny=|ntkl=|m+t7|,

N,=|ntm|= k7|

n=m, ng==¢,

N,=|n+¢|=k+ml,
(4.36)

In this case, the process of exchanging zero-mode
graviton is prohibited because of the KK number
conservation, while the process by exchanging
the relevant KK gravitons is allowed via (s, 1, u)-
channels. Thus, we have

1
1
= gM[d)nqsn - ¢n¢n]' (437)

As we checked, our above inelastic KK Goldstone
boson amplitudes (4.35) and (4.37) also equal the inelastic
longitudinal KK graviton amplitudes [13] [cf. its Eq. (76)]
after taking into account the notation difference.

V. CONSTRUCTION OF GRAVITATIONAL KK
AMPLITUDES FROM GAUGE KK AMPLITUDES
WITH DOUBLE COPY

In this section, we study the double-copy construction of
the massive gravitational KK scattering amplitudes from
the corresponding massive gauge KK scattering amplitudes
under the high-energy expansion. The conventional
double-copy approaches (such as [22,23]) are realized
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for massless gauge theories and massless GR. The exten-
sion to the massive YM theory and massive Fierz-Pauli
gravity is difficult without modification [42]. We stress that
the KK YM gauge theory and KK GR are truly distinctive
because they can consistently generate masses for KK
gauge bosons and KK gravitons via geometric Higgs
mechanism (under compactification) as shown in our
Secs. Il and III and in Refs. [6,7,10,11]. Hence, we expect
that extending the conventional double-copy method to
the KK theories should be truly promising even though
highly challenging due to the KK mass poles in the
scattering amplitudes. Unlike the conventional double-
copy approaches in the literature, we propose to realize
the double-copy construction by using the high-energy
expansion order by order, and we will demonstrate
explicitly how such a double-copy construction can work
up to the leading order and the next-to-leading order. We
are well motivated to use this high-energy expansion
approach for realizing the double-copy construction also
because it perfectly matches our KK GAET and GRET
formulations. So it should appropriately reconstruct the
GRET based upon the KK GAET. Under the high-energy
expansion, we find that the LO KK gauge boson
(Goldstone) amplitudes and KK graviton (Goldstone)
amplitudes are mass independent, so we can directly
realize the double-copy construction of the LO KK
amplitudes. Then, we show that the gauge and gravita-
tional KK scattering amplitudes at the NLO are mass
dependent. We find that the double-copy construction for
the mass-dependent NLO KK amplitudes is highly non-
trivial, where the conventional double-copy methods (such
as BCJ [22,23]) could not fully work. We will present an
improved BCJ-type double-copy construction for the KK
gauge and gravitational amplitudes at the NLO.

In Sec. VA, we will first analyze the structure of KK
scattering amplitudes for the compactified 5d KK YM
gauge theories without gravity. We present the exact tree-
level four-particle scattering amplitudes of the KK longi-
tudinal gauge bosons (A7") and of the corresponding KK
Goldstone bosons (A$"). With these, we analyze the
structure of the KK A¢" amplitudes and KK A$" amplitudes
at both the LO and NLO under the high-energy expansion.
We show explicitly that the BCJ-type numerators hold the
kinematic Jacobi identity for the LO KK amplitudes, but
the numerators of the NLO KK amplitudes do not. Then,
we show that the NLO numerators can be properly
improved to obey the kinematic Jacobi identities. We also
show explicitly how the KK equivalence theorem for gauge
theory (KK GAET) [6] is realized in such KK YM gauge
theories. Then, in Sec. VB, we demonstrate that the
scattering amplitudes of massive longitudinal KK gravitons
(h}) and the amplitudes of their KK Goldstone bosons (¢,,)
in the 5d KK GR can be reconstructed from the corre-
sponding scattering amplitudes of the massive longitudinal
KK gauge bosons and KK Goldstone bosons in the 5d KK

YM gauge theory by using the double-copy method at the
LO of the high-energy expansion, where the reconstructed
LO KK amplitudes of 4? and of ¢, have O(E*M?) and are
mass independent. The reconstructed NLO gravitational
KK amplitudes have O(E°M?) and are mass dependent.
We find that their double-copy construction is highly
nontrivial. In Sec. V C, we show that by direct extension
of the double-copy method to the NLO KK amplitudes, we
can reconstruct the correct kinematic structure of the KK 4}
amplitude and ¢, amplitude, but not their exact coeffi-
cients. For the difference between the 4} amplitude and ¢,
amplitude, such a naive extension fails to reproduce even
the correct structure in the original gravitational amplitude
difference at the NLO. We will present an improved method
to realize the correct structure of the NLO gravitational
amplitude difference, and then further demonstrate how to
fully reconstruct the exact KK A} amplitude and ¢,
amplitude separately. In Sec. V D, we apply the double-
copy approach of Secs. VB and V C to reconstruct the
residual term of the KK GRET and show it has O(E°M?)
and is indeed suppressed relatively to the leading KK
Goldstone ¢, amplitude. In this way, we can build the KK
GRET in the 5d KK GR theory from the KK GAET in the
5d KK YM gauge theory.

A. Structure of amplitudes for KK gauge bosons
and KK Goldstone bosons

Consider a non-Abelian gauge group G, such as
G =SU(N), with group structure constant C%*. For
convenience, we denote the products of two structure
constants as

(C“ C,, Cu) = (Caheccde’ Cadecb(?e’ Cacecdbe). (51)
Thus, the Jacobi identity for the group structure constants
takes the following form:

C,+C,+C,=0. (5.2)
This maybe called the ‘“color” Jacobi identity since it
contains the gauge group’s structure constants only.

We compactify a 5d YM gauge theory on S'/Z,. This 5d
compactification leads to a geometric Higgs mechanism [6]
for the KK gauge boson mass generation, where the
longitudinal KK gauge boson A¢" arises from absorbing
the fifth component of the KK state A¢". We start with the
elastic scattering of longitudinal KK gauge bosons
A" Abr — AS"AYM and the elastic scattering of the corre-
sponding KK Goldstone bosons Ag‘"Ag’” — Ag”Agl”. For the
KK Goldstone amplitude, we choose the Feynman-’t Hooft
gauge under which each KK Goldstone boson A¢" has the
same mass M, as the KK gauge boson Aj;". In the center-of-
mass frame of the four-particle elastic scattering, we recall
the kinematic variables defined in Eq. A3:

084005-23



YAN-FENG HANG and HONG-JIAN HE

PHYS. REV. D 105, 084005 (2022)

s = 4k2, (5.3a)
S0

to = —5(1 + Cg), (53b)
So

Uy = —E(l - Cg), (530)

where the on-shell condition k*> = E? — M2 and k = |p|.
The notations (s, #y, ug) correspond to the massless
limit whose sum obeys sy + ¢y, + uy = 0. They are con-

For the longitudinal KK gauge boson scattering and the
corresponding KK Goldstone boson scattering in 5d YM
under S'/Z,, the leading tree-level scattering amplitudes
were given before [6] under high-energy expansion. For the
current study, we have further computed the exact tree-level
KK longitudinal gauge boson amplitude 7 [A%"Ab" —
A$"Adn = T[4A7] and KK Goldstone boson amplitude

TIAZ AL — A A"] = T[4AZ] as follows:

nl — 2
nected to the Mandelstam variables of the massive case via T1aAL] = g (CKs + Gk + CuKy), (5.42)
(50, 2o, ttg) = (s —4M?2 ., t,u), where s +t + u = 4M?%. We _ _ _ ~
choose the convention that the momenta of all external T[4A5] = g (CK +CK, +C,K,), (5.4b)
particles are outgoing and the external particle numbers
(1, 2, 3, 4) are arranged clockwise in the scattering plane. where
|
452 + 275, + 36 ~ 35, +4
ICS:—( SO+_SO+ )CQ’ ICS:_( S0_+ )Cg’ (553)
2(50 + 4) 2(s0 +4)
Qo+ Qg+ Orcy9 + O3c39 = 0y + 01¢g+ 0rag
Ki=-=- = : § = — , (5.5b)
450[8 + 5o (1 + c)](1 + ¢p) 450[8 +So(1 + cp)](1 + cp)
00— Qicg+ 0rc29 — Q33 = 0y — 01¢5 + Orcay
L= — , K,=—— — , (5.5¢)
450[8 +50(1 = cg)](1 = ¢p) 450[8 +50(1 = cg)](1 = cp)

with

E():SO/M%, E:S/M%:§0+4, 029:C0829, C39:COS39, (563)

Qo = 853 + 3353 — 485, — 128, 0, = 2(7s} + 4053 + 645, (5.6b)

0, = 853 + 5155 + 325, — 128, 03 = 2(53 + 255 — 85). (5.6¢)

Qo = 1552 + 1445, + 256, 0, =4(353 +45)), 0, =35 (5.6d)

We note that the scattering amplitudes (5.4a) and (5.4b) have the leading high-energy behavior of O(E"). We make the
high-energy expansion for the amplitudes (5.4)—(5.6) down to the subleading order:

T[4A?) =Ty, + 6T . T[4A1) = Tos + 67 s, (5.7a)
Top = P(CKY +CKD +C,KD), Tos = ¢(CK) +CK] +C.KD), (5.7b)
8T = P (CKC, + COK, + C,0K,). 6T s = P(C0K, + CoK, + C,0K,), (5.7¢)

where (K;,K;) = (K9 + SK;, KY + 6K;) are given by
11 - 3
Ky = —5 Co Ky = —5Co (5.8a)
5—1lcg—4c ~o0 3B -c¢p)
Ko == "0 700 i Sy 5.8b
! 2(1 +cy) " 2(1 + ¢y) (5.8b)
5+ 11C0—4C29 =0 3(3+C9)
0 _ = Y. 5.8
Ku M—cy) = T T, (5-8¢)
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and

. 4C9

5’Cy — T 6’E\ i (5.9a)
So 50
sk, — 22 =3¢ =2c2 = c39) sk — __ 8o (5.9b)
’ (14 co)to ’ (et |
sk — _2(2+43cg = 2¢59 + c3p) K. — __ 8c (5.9¢)
‘ (1= co)ty St (I-cm ‘

We note that the leading-order amplitudes K, IE? =
O(E°MY) are both energy independent and mass indepen-
dent, while the subleading amplitudes oK s 6/2,- =
O(M?2/E?) which will vanish in the high-energy limit
M2/E? - 0.

Inspecting the leading amplitudes of O(E°MY) as in
Eq. (5.7b) and Eqgs. (5.92)—(5.9c), we find that longitudinal
KK gauge boson amplitude and KK Goldstone boson
amplitude differ by the same amount in each channel:

KO—K)=K0— k) = KO — K2 = —4¢cy,  (5.10)
which has zero contribution to the scattering amplitude
due to the color Jacobi identity (5.2). Hence, we have
explicitly demonstrated the longitudinal-Goldstone equiv-
alence between the longitudinal KK gauge boson scattering
amplitude and KK Goldstone boson scattering amplitude at
the leading order:

Tor =T os. (5.11)
We note that since our above leading amplitudes are
obtained by the high-energy expansion of M2 /s, instead
of M?2/s, our present longitudinal KK amplitude 7,
differs from that of Ref. [6] [in its Eq. (17)] by a common
term of —8g’c, in each of the (s,t, u)-channels, whose

contribution to the amplitude vanishes due to the Jacobi
identity (5.2). On the other hand, the leading KK Goldstone

boson amplitude 7 o5 coincides with that of Ref. [6] [in its
Eq. (21)]. This is because there is no extra energy
cancellation in the KK Goldstone boson amplitude and
the leading Goldstone amplitude does not depend on the
choice of the expansion parameter as M2 /s, or M2/s.

We note that the subleading amplitudes (5.7c) and
(5.92)~(5.9c) are of O(M2/E?). Thus, we deduce the
KK longitudinal-Goldstone equivalence at the LO under
the high-energy expansion:

TIAG AL — A AN = T AL AL — A AL+ O(M2/E2),
(5.12)

|
which coincides with the KK equivalence theorem (KK-
ET) [6].

For the convenience of double-copy construction, we
define the notations:

NG NLNL) = (56K, 16K, 16KC,), (5.13a)
N NN = (50K 10K, 46KC,), (5.13b)
N =N9+6N; = s50;(K} + 6K;), (5.13c¢)
N =N+ 6N; = 50;(K? + 5K;), (5.13d)

where s¢; € (s9. 7). Up) and j € (s, t, u). With these, we can
reexpress the elastic KK longitudinal and Goldstone
scattering amplitudes as follows:

T[4A7] = ¢ (CS sy ONG C“N“), (5.14a)
Y} A g

T[4A1] = & <C“‘N S 4+ CN + C”N”>. (5.14b)
S0 to Ug

Inspecting the leading-order kinematic quantities
(N9 N, NY) and (N?,N?,Nﬁ) as given Egs. (5.13a),
(5.13b), and (5.8), we find that they are mass independent
and satisfy the following kinematic Jacobi identities:

NI+ N9+ NG =0, (5.15a)

N+ N+ N, =0, (5.15b)
We can compare the two types of Jacobi identities (5.2) and
(5.15): the former depends on the color factor (group
structure constants) and the latter depends on kinematics.
Since our above kinematic Jacobi identities (5.15a) and
(5.15b) are mass independent, they bear a similarity with
the conventional color-kinematics duality [22,23] which
was constructed for the 4d massless YM gauge theory and
massless GR.

Furthermore, we note that, because of the Jacobi identity
(5.2), the above amplitudes (5.14a) and (5.14b) are invari-
ant under the shifts:
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N = Ni=N;+ A xs, (5.16a)

Nj =N =N+ A x s, (5.16b)
where (A, A) can be arbitrary local functions of kine-
matic variables. These shifts may be called the gen-
eralized gauge transformations since its form bears
some similarity to the gauge transformation. From
Eq. (5.16), we deduce the sum relation for numerators,
|

N(s) :ng —4cyso,

N? :.i\vf? _4C9t0,

SN =3 N, due to the fact of so+ 1y +ug = 0.
This will no longer hold for our double-copy construc-
tion under the 1/s expansion in Sec. VC2 because
of s +1+4u=4M>.

Then, we compare the formulas of the leading KK
longitudinal and Goldstone boson amplitudes in
Egs. (5.8), (5.13c), and (5.13d). With these we derive
the following relations between the two sets of kinematic

quantities (N9, N9, N?) and (K/?Kf?/?/ﬁ)

NO = No = 4cqu. (5.17)

The above relations (5.17) show that the leading longitudinal KK gauge boson scattering amplitude in Eq. (5.14a) and
the leading KK Goldstone boson scattering amplitude in Eq. (5.14b) differ by an amount —4¢*cy(C, +C, +C,),
which vanishes identically due to the Jacobi identity (5.2). As we noted earlier, this realizes the KK GAET as in Eq. (5.11)
or (5.12).

We can further extend the above analysis to general processes including the inelastic KK scattering channels A4"A% —
A§mAY and AS"ALK — ASmAYY, where the KK numbers of the initial and final states obey the condition |n + k| = |m + £|.
For this, we derive the following relations under the high-energy expansion:

TIAPALS = ATAY] = Cuane TAT"AT" — ATAT"] + O(M/E?), (5.18a)
TIAL AL — AL AL] = £, TIAL AL — ALAL) + O(M3/E), (5.18b)

where €,nn = 1, Cppmm = % for n # m, and {3y = % for the cases where the KK numbers (n, k, m, ) have no more than
one equality. From the above, we derive the KK GAET for general scattering processes including inelastic channels:

TIAPAY — AmAY'] = T[A A — AS"AY ] + O(M3/E?), (5.19)

where the KK GAET for the elastic channel (n =k =m = ¢) and the inelastic channel (n = k # m = £) were

demonstrated in Ref. [6].
Next, we examine the subleading amplitudes in Egs. (5.9a)—(5.9c) and (5.13c) and (5.13d). From these, we derive

J J

X = —2(7 + C29)C‘9CS(329M%,

(5.20a)

(5.20b)

where j € (s, 7, u). We note that the next-to-leading-order sums of SN j and 5.&’ ; are equal and do not vanish. Then, we

compute the differences of the NLO numerators (5N; — SN ;) as follows:

SN =8N, =0, N, —6N,=83M2, SN, N, = —8s2M2. (5.21)

From the above results, we find that the sum of the dif-
ferences of these NLO numerators obeys a Jacobi identity:

J

(5.22)

This property is important for us to understand the structure
of the residual term in the GRET (3.15) or (3.16), as will be

shown in Sec. V B. Using (5.21) and from Egs. (5.7a) and
(5.14), we also derive the NLO amplitude difference:

5T, — 5T 5 = 8g*s2M> <9 - C—) (5.23)

fo U

As an extension, we may make two possible redecom-
positions of the sum y into the (s, 7, u) channels:
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(5.24)

X = Zx, = ZZ
J J

where the kinematics hold the relations y,(0) = —y, (7 — 0)
and y,(0) = —y,;(z — 0). Then, we define the following
modified subleading numerator factors:

Nz 7 ~
which keep Eq. (5.22) invariant and satisfy the kinematic
Jacobi identities separately:

> (0N - SN') =0,

J
Savi=0. Y aNj=o.
J J

Thus, from Eq. (5.14), we define the improved scattering
amplitudes for the KK longitudinal gauge bosons and KK
Goldstone bosons:

(5.26a)

(5.26b)

T'[4A7] = & (CS'N" + N + C“N“> , (5.27a)
S0 Iy ug

T'[4A1) = ¢ <CSN s GN | GN > (5.27b)
So fo Ug

We note that according to the Jacobi identities (5.15) and

(5.26b), the improved numerators N, = N ? + 6N’ and

K/ ; = JT/' ;) + 5]?f ; obey the kinematic Jacobi identities
separately:

N+ N+ N =0, (5.284)

N+ N+ N, =0. (5.28b)
Thus, the improved KK scattering amplitudes (5.28a) and
(5.28b) exhibit all the nice features required by the conven-
tional double-copy construction of BCJ type [22,23]. We
will present such a double-copy construction for the KK
graviton scattering amplitudes and the GRET in the next
subsection. For the subleading KK YM amplitudes and KK
graviton amplitudes, our focus will be on the residual term
T, in the KK GAET identity and the residual term M in
the GRET identity, which can be expressed respectively as
the difference between the NLO longitudinal KK amplitude
and the corresponding NLO KK Goldstone amplitude:

T,=06T, —67s. (5.29a)

My =M =M, (5.29b)

where we have used the notations SM = M|[4h}] and
oM = 6 M|[4¢,]. For deriving the above NLO KK GAET

identity (5.29a) and the NLO GRET identity (5.29b), we
have input the LO KK GAET identity (5.11) and the LO
GRET identity (F7a). The modified NLO numerators in
Eq. (5.25) give the modified NLO amplitudes as follows:

Coy.
5T, = 6T, — ZS’—)(’ (5.30a)
jo 0
_ . Cr.
5Ty = 6T 5 — Z;TXJ (5.30b)
J J

With the above, we can reexpress the NLO KK GAET
identity (5.29a) in the following form:

T = 68T, — 575, (5.31)

where 7/, denotes the modified residual term defined by
T,=T,->;Ci(xj—x;)/0;- We note that even though
in Eq. (5.31) the NLO KK longitudinal and Goldstone

amplitudes (577,57 5) are both modified as in Eq. (5.30),
the residual term is also modified as 77, accordingly.
Hence, the NLO KK GAET identity (5.31) is equivalent
to its original form (5.29a), which means that the gauge
symmetry of the KK YM theory is still retained by the
identity (5.31).

With the double-copy construction, we can justify the
size of the GRET residual term M, = O(M2E®) from the
KK GAET residual term 7, = O(M?2/E?), where T, is
well understood. We will demonstrate that the connection
between sizes of the two residual terms 7, = O(M?/E?)
and M, = O(M2E") is a general prediction of the double-
copy construction and does not depend on details of the
construction.

B. Constructing KK scattering amplitudes
and GRET by double copy

For the compactified 5d YM gauge theory and compac-
tified 5d GR theory, we expect the double-copy correspon-
dence:

A% @ A — h, (5.32a)
A @ AL - 35, (5.32b)
A% @ A - B, (5.32¢)

It is instructive to note that the physical spin-2 KK graviton
field hy” arises from the double-copy of spin-1 KK gauge
fields Ay ® A%. On the other hand, the A% is the would-
be KK Goldstone boson in the compactified 5d YM gauge
theory, and the double-copy counterparts /)’ (= ¢,) and
e just correspond to the scalar KK Goldstone boson and
vector KK Goldstone boson in the compactified 5d GR.
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From Eq. (5.32a), we further expect the double-copy
correspondence between the (helicity-zero) longitudinal
KK graviton and KK gauge boson: A} @ A" — hj.
We observe that in the high-energy limit the longitudinal
KK gauge boson A" = ¢ A" has its polarization vector
¢} ~ k*/M,, and the longitudinal KK graviton h} = &"h,
has its polarization tensor &} ~ k*k”/M?. Thus, we have
e’ ~éief in the high-energy limit, which also makes
the longitudinal correspondence (A" ® A" — hi) well
expected. The demonstration of the double-copy corre-
spondence between the longitudinal KK gauge boson
amplitudes and the longitudinal KK graviton amplitudes
is much more nontrivial than the above relation between the
on-shell longitudinal polarization vector/tensor, as we will
analyze further in this subsection.

In this subsection, we will first demonstrate a double-copy
construction from the KK gauge theory amplitudes to the KK
graviton amplitudes at the leading order of the high-energy
expansion, which corresponds to the limit M, /E — 0. We
find that such leading-order amplitudes are mass independent
and their kinematic Jacobi identities (5.15) hold, in addition
to the massless Mandelstam relation s + 7 + ©y = 0. Thus,
we will first extend the conventional double-copy method
[22,23] to the LO amplitudes in our 5d KK theory and
demonstrate how it works quantitatively.

We note that the (helicity-zero) longitudinal KK gauge
bosons A¢" and longitudinal KK gravitons A} are truly
distinctive in the KK theory because they do not exist in the
commonly studied massless YM gauge theory or massless
GR. Also, in the limit M, — 0, the KK Goldstone bosons
A¢" and ¢" (= hZs) both become massless and correspond
to the physical degrees of freedom. But, it is important to
observe that according to the KK GAET (cf. Sec. VA) [6,7]
and GRET (Secs. III and IV), the leading scattering
amplitudes of the longitudinal KK gauge bosons (KK
gravitons) equal the corresponding amplitudes of the KK
Goldstone bosons and are mass independent (which cor-
responds to the limit M2/E* — 0 under high-energy
expansion). Hence, we can construct a double copy from
the leading longitudinal KK gauge boson amplitudes of
O(E®) to the corresponding longitudinal KK graviton
amplitudes of (O(E?), in parallel to the double-copy
construction between the KK Goldstone amplitudes in
the KK YM theory and KK GR. The KK Goldstone
amplitudes are much simpler due to the absence of any
nontrivial energy cancellations in the KK Goldstone
amplitudes. Furthermore, since the compactified KK the-
ories have very different Feynman rules from the 4d
massless gauge theory or massless GR as commonly
studied, the double-copy realization in the KK theory is
far from obvious even for the leading-order amplitudes
before explicit demonstration. For instance, there are highly
nontrivial and intricate energy cancellations in the longi-
tudinal KK gauge boson scattering amplitudes [from
O(E*) down to O(E®)] [6] and in the (helicity-zero)

longitudinal KK graviton scattering amplitudes [from
O(E') down to O(E?)] [13]; all of these do not exist in
the 4d massless gauge theory and massless GR.

We inspect the structures of the KK longitudinal gauge
boson scattering amplitude (5.14a) and the KK correspond-
ing Goldstone boson scattering amplitude (5.14b) in the
compactified 5d YM gauge theory under the high-energy
expansion. We see from Eqgs. (5.7)—(5.9) that under high-

energy expansions, the leading amplitudes (7 o, , 7 o5) are of
O(E®) and mass independent, while the subleading ampli-

tudes (67,67 5) are of O(M2/E?) and vanish in the
massless limit M, — 0. We have formally expressed these
leading amplitudes in the form the massless gauge theories
with pole factors (sg, 7y, 4p) in the denominator of each
channel, even though these poles are no longer real poles
under the current high-energy expansion. For the current
study of the 5d KK YM gauge theories and 5d KK GR, we
present an extended formulation of the conventional BCJ
double-copy method of the massless gauge theories [22,23],
by making the high-energy expansion with M2/E*> < 1
under which all the nonzero KK mass poles are removed,
and the mass-dependent contributions can be treated order
by order.

From the numerators of the amplitudes (5.14a) and
(5.14b), we see that the kinematic factors (N, N, N,)

and (N, NV,, NV,,) may be viewed as dual to the color factors
(C,,C,,C,) according to the conventional double-copy
method in the massless gauge theories [22,23]. Thus,
we attempt to construct the elastic scattering amplitude
Mh}h} — h}h}] of the longitudinal KK gravitons
and the gravitational KK Goldstone boson amplitude
Mp, b, = ¢.p,] from the corresponding longitudinal
KK gauge boson amplitude 7 [A%"Ab" — AS"Ad"] and the
KK Goldstone boson amplitude 7 [A¢"A%" — AS"AZ"],
respectively. We realize an extended double-copy construc-
tion for the 5d KK YM gauge theory and 5d KK GR by the
following replacement:

(€. Ci.Cy) = (No. NN, (5.33a)

(€.Ci.Cy) = (NG NWN). (5.33b)
Applying this duality replacement to the scattering ampli-
tudes of the longitudinal KK gauge bosons and KK
Goldstone bosons in Egs. (5.14a), (5.14b), (5.8), (5.13c¢),
and (5.13d), we first construct the corresponding scattering
amplitudes of the longitudinal KK gravitons and gravita-
tional KK Goldstone bosons to the nonzero leading con-
tributions of O(E?) in the high-energy expansion:

0)2 0)2 0)2
Mol — i) = et | A2y A V]
S0 lo IZ0)
(5.34a)
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N ~0\5 0\ o A0 2
MO[¢n¢n - ¢n¢n] = 0092 (J\A:(;) + (A:(:) + (/\IZ;) '
(5.34b)

where the overall coefficient ¢ is a conversion constant due
to replacing the gauge coupling g by gravitational coupling «.
The constant ¢ is not known a priori before a unified UV
theory of gauge and gravitational forces becomes available.

Then, substituting Egs. (5.82)—(5.8c) into Egs. (5.34a)
and (5.34b), we explicitly reconstruct the longitudinal KK
graviton scattering amplitude and the gravitational KK
Goldstone scattering amplitude as follows:

Molhphy — 1] = Mol = butbal

_ [ 9cog\ [(3 + cos*0)* E
- 4 sin%6 0

(5.35a)

9 2
- (— C1069 ) [(7 + cos 20)% csc? O] sy

(5.35b)
|

V2 a2 a0
VD VD, Vs

M[hih} — hihi] = 0092{ { 5% o ”

= MO[qﬁnqﬁn - ¢n¢n]’

where in the last step we have made use of the kinematic
Jacobi identity (5.15b) and the Mandelstam relation
so + to + uy = 0. We see that the longitudinal KK gra-
viton scattering amplitude equals the gravitational KK
Goldstone scattering amplitude at the leading O(E2) and
they differ only by subleading terms of O(E°M?2). The
above Eq. (5.36) just demonstrates that the GRET holds for
the longitudinal KK graviton scattering amplitude and the
corresponding KK Goldstone scattering amplitude down to
O(E*MY) under the high-energy expansion,

MR = B = Mbupy = bubs) + O(EOMZ).
(5.37)

It is truly impressive to see that by building upon the
longitudinal-Goldstone equivalence of the KK GAET
(5.12) [or (5.19)], we have established the corresponding
longitudinal-Goldstone equivalence of the GRET for the
amplitudes of the longitudinal KK graviton scattering and
of the gravitational KK Goldstone scattering as in the above
Eq. (5.37) by using the double-copy construction. Hence,
this demonstrates a double-copy correspondence between

B 9cog?\ [(s3 + 13 + uj)?
o 4 Solouo ’
(5.35¢)

where we have dropped the mass-dependent subleading
term of O(M?) which is much smaller than the above
leading O(E?) amplitude in the high-energy scattering.

Strikingly, we find that our above leading amplitudes of
the longitudinal KK graviton and the gravitational KK
Goldstone boson in Eq. (5.35), as constructed by the
double-copy method, perfectly agree to the gravitational
KK Goldstone amplitude (4.22) at O(E?) which we
computed directly from the KK theory of compactified
5d GR.

Equation (5.35) also explicitly establishes the equiva-
lence between the longitudinal KK graviton amplitude
and the corresponding gravitational KK Goldstone boson
amplitude. In fact, we can demonstrate this equivalence in a
more elegant and transparent way, by making use of
the relation (5.17). With this, we can express the KK
graviton amplitude (5.34a) in terms of the gravitational KK
Goldstone boson amplitude:

2 ~ ~ _
) —8c9(/\/'8+/\/? +N?,) + 16c§(s0+t0+u0)}

(5.36)

|
the KK GAET in the compactified 5d YM gauge theory and
the KK GRET in the compactified 5d GR.

We have the following comments in order:

(1) Impressively, we find that our reconstructed
gravitational KK Goldstone ¢,(=h;’) amplitude
Moldnb, — Pnd,] in Egs. (5.34b) and (5.35) from
the KK Goldstone A¢" amplitude 7 ([A2"A%" —
Ag”A‘S’Z"] in Egs. (5.14b), (5.82)—(5.8c) in the com-
pactified 5d YM gauge theory via the double-copy
approach has exactly the same energy and angular
dependence as what we obtained by directly com-
puting the ¢, amplitude (4.22) in the compactified
5d KK GR theory. This double-copy reconstruction
is naturally expected via the correspondence AS" ®
A¢" — his where both the KK Goldstone bosons
A¢" and his(= ¢,) become effectively massless in
the high-energy limit M?2/E?> — 0. We note that both
the leading gravitational KK Goldstone amplitude
(5.34b) and (5.35) of O(E?) and the leading gauge-
theory KK Goldstone amplitude (5.14b), (5.8a)—
(5.8¢) of O(E®) are mass independent. Hence, their
structures reflect the 5d gauge symmetry of the KK
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(i)

YM theory and the 5d diffeomorphism invariance of
the KK GR theory.

Note that the (helicity-zero) longitudinal KK gauge
bosons A" and longitudinal KK gravitons A4} do not
exist in the massless YM gauge theory or massless
GR. Hence they are truly distinctive in the KK
theories. As we observe, the key point is that according
to the KK GAET (Sec. VA) [6,7] and GRET
(Secs. III-1V), the leading longitudinal scattering
amplitudes of A¢" and h} equal the corresponding
amplitudes of the KK Goldstone bosons (A$" and h55)
and are mass independent (corresponding to the limit
M?2/E? — 0 under high-energy expansion), despite
the fact that the longitudinal polarization vector ¢}
(tensor &;) of A¢" (h!}) has explicit mass dependence.
This is why we can construct a similar double copy
from the leading longitudinal KK gauge boson
amplitudes of O(E°MY) to the corresponding longi-
tudinal KK graviton amplitudes of O(E?MY). The
above also explains that even though the original
double-copy formulation [22,23] was shown to hold
in the massless theory, we can still extend it to our
current double-copy construction for the compactified
massive KK theories to the leading-order amplitude of
O(E*M?), which is mass independent. All the mass-
dependent terms belong to the subleading order of
O(E°M?) and are of the same order as the residual
term in the GRET, as we will analyze further in
Secs. V.C and V D.

We stress that our double-copy construction guar-
antees that the leading longitudinal KK graviton
(Goldstone) amplitude (5.34)—(5.35) must scale as
O(E*M?) under the high-energy expansion. According
to our double-copy construction, this O(E>MY) high-
energy behavior just corresponds to the O(E°MY)
leading energy behavior of the KK gauge (Goldstone)
boson amplitude (5.14), which are both mass inde-
pendent. In fact, our double-copy construction (based
on the scattering amplitudes of 5d YM gauge theory
and the KK GAET [6,7]) gives an independent
proof that the longitudinal KK graviton scattering
amplitudes must have large energy cancellations of
O(E'%) - O(E?). We achieve this by establishing a
new correspondence between the two energy cancella-
tions of the four-particle longitudinal KK scattering
amplitudes: E* — E° in the 5d KK YM theory (YM5)
and E'° — E? in the 5d KK GR (GR5). Here, with the
double-copy construction, we use the first energy
cancellation of E* — E° (YMS5) to deduce the second
energy cancellation of E' — E? (GRS). Thus, we may
present schematically this new correspondence between
the two energy cancellations as follows:

E* - E°(YM5) = E'° - E2(GR5).  (5.38)

In passing, some recent literature on the double-copy
construction for certain specific KK models appeared
[43,44], in which [43] briefly discussed a scalar model
compactified on R* x S! with an extra spectral con-
dition imposed on the KK mass spectrum, and [44]
discussed a KK inspired action with extra global U(1)
symmetry to have certain special mass condition for
double copy. But these special KK models differ from
the standard KK theory with obifold S' / Z, in our study
and their methods do not apply to our case, so they do
not overlap with our current study.

(iii) Our reconstructed gravitational KK Goldstone bo-
son scattering amplitude (5.34b), (5.35) by the
double-copy method is confirmed by our direct
computation of the gravitational KK Goldstone
amplitude in Eq. (4.22), which also equals our
reconstructed (helicity-zero) longitudinal KK grav-
iton amplitude (5.35). In addition, we find that our
longitudinal KK graviton amplitude in Eq. (5.35) as
reconstructed from our longitudinal KK gauge
boson amplitude (5.14a) has exactly the same energy
and angular dependence as those obtained by direct
Feynman-diagram calculations of the longitudinal
KK graviton amplitudes in Refs. [12,13]."""

(iv) The amplitudes (5.34a) and (5.34b) have no double
poles, so its denominator should be proportional to
the product sytyuy, which is permutation invariant
among (sg, fp, Ug). We note that for the elastic
scattering (n,n) — (n,n), the above amplitude
should be invariant under all possible permutations,
so the structure of this amplitude should take the
form of (sotou)®(s3 + 13 + u3)? with (a,b) being
certain integers. Since the denominator of the
scattering amplitude should scale like sgfyugy sg,
so we have a = 1. Note that the whole amplitude is
expected to scale like O(s!), so the numerator has to
scale as O(s*). This means that the only possibility
for the numerator is to scale as (s3 + 72 + u3)? with
b = 2. With these, we can generally deduce that the
kinematic structure of the amplitude (5.34) behaves
as (s3+ 13 +ud)?/(sotouy), which explains why

“Incidentally, we notice that Eq. (4) of Ref. [12] (both arXiv
and PRD versions) has an angular dependence (7 + c,y) with a
power-factor 2 missed, which we initially found by comparing
with our double-copy construction (5.34b). We worried about
this, but then realized it was a pure typo of Eq. (4) since the
Eq. (70) of a later paper [13] did show the correct angular
dependence of (7 4 cy)?, in full agreement with our double-
copy construction (5.34a) and (5.34b) based on the longitudinal
KK gauge (Goldstone) boson amplitudes alone.

"2After submitting this paper to arXiv:2106.04568, we learnt
from colleagues Sekhar Chivukula and Elizabeth Simmons via
private communication that their postdoc Xing Wang also
checked that the double copy gave the correct expression for
massive KK graviton scattering in the case of orbifolded torus.
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our explicit construction should lead to the formula
of (5.35¢) indeed.

(v) The overall conversion constant ¢, in Eqs. (5.34)
and (5.35) is undetermined by the double-copy
construction itself, but is expected to be universal
at least for each given spacetime dimension. To
match our double-copy result (5.35) with the gravi-
tational KK Goldstone amplitude (4.22), we choose
the following conversion constant:

K2

— 5.39
24g2 ( )

Co = —

We also notice that in the traditional massless 4d
theory, the graviton amplitude reconstructed from
the BCJ double copy can fully match the graviton
amplitude in 4d massless GR with the conversion
constant

~ K2

=, 5.40

€o 1 692 ( )
Our definition of the group structure constant C¢¢
differs from the group structure constant f*¢ of
Refs. [22,23] by a simple normalization factor:

\/Lifabc _ _\/LETI'([T“, Tb]TC>,

where 7 is the generator of the SU(N) group.
Next, we further extend the above analysis to general
processes A9 Ak — A AIY and AZ ALK — ASmAYY includ-
ing the inelastic KK scattering channels. According to
Egs. (5.14a), (5.14b), and (5.18), we write the LO inelastic
scattering amplitudes as follows:

Cobe = (5.41)

0 0 0
TolAP" AL = AT AL ) = G L ome (CSNS + G, + CuN”) ;
So Iy Uy
(5.42a)
~0 ~0 ~0
~ C C C
TO [Ag”Al;k - AgmAgf] = gzgnkmf ( SNS + tNt + uNM) E)
0 fo Ugy
(5.42b)

where Z.”nnrm =1, é’nnmm = % for n # m, and gnkmt’ = % for
(n, k,m,£) having no more than one equality. Thus, using
the color-kinematics duality relations (5.33a) and (5.33b)
and up to an overall conversion constant ¢,, we can further
reconstruct the general scattering amplitude of longitudinal
KK gravitons and the scattering amplitude of the corre-
sponding gravitational KK Goldstone bosons by using the
following relations:

M(hphi = W7 hi) = Cume ML R — HE R )+ O(E°M3),
(5.43a)

Mputbic = Gutbe) = Copme M bty = busps] + O(EOM?).
(5.43b)

Then, using Eq. (5.37), we can deduce the GRET
by double-copy reconstruction for the general scattering
process:

MIEHE — 0] = Mpudi — b + O(EOM?),
(5.44)

where the KK numbers of the initial and final states
obey |n+ k| =|m=+7|

We observe that our double-copy constructions in
Egs. (5.37) and (5.44) have explicitly established the
KK GRET from the KK GAET (5.12) and (5.19): the
leading amplitude of the longitudinal KK graviton scatter-
ing equals that of the gravitational KK Goldstone scattering
at O(E?) (which is mass independent) under the high-
energy expansion, and their difference is only of O(E°M?).
This means that in our general formulation of the KK
GRET (3.16) the sum of all the (’)(Zn) residual terms must
be of O(E°M?), even though the naive power-counting on
their individual amplitudes containing one or more external
states of v,(=7,,h") or (= nyﬁ’,‘,”) gives O(E?).
Hence, we deduce that the double-copy construction of
the KK GRET identity (3.15) from the KK GAET identity
[7] in the KK YM gauge theory provides a new mechanism
of energy cancellation from O(E?) down to O(E?) in the
sum of all the O(A,,) residual terms on the RHS of the KK
GRET (3.16). We will further demonstrate the realization of
this new energy cancellation mechanism of E? — E? for the
residual terms of GRET in the next subsections.

C. Constructing mass-dependent KK amplitudes
from double copy

In this subsection, we study the extended double-copy
construction of the mass-dependent KK scattering ampli-
tudes at the NLO. We will make two types of high-energy
expansions by using the expansion parameter 1/sy or 1/s,
where the Mandelstam variable s = s, + 4M? for the four-
point elastic KK amplitudes. As we will show, the
advantage of the 1/s, expansion is that it can automatically
ensure that the LO numerators of the KK amplitudes are
mass independent, but then the mass-dependent NLO
numerators cannot obey the kinematic Jacobi identity even
after the generalized gauge-transformation due to so + 7 +
uy =0 [cf. Eq. (A3)]. So additional modifications are
needed. In contrast, under the 1/s expansion the LO
numerators of KK amplitudes depend only on the s and
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6 (where the mass dependence is contained only in s via
s = so +4M?), and we can make the gauge-transformed
numerators obey the kinematic Jacobi identity order by
order in the 1/s expansion due to s+ f-+u=4M?
[cf. Eq. (A2)]. Hence, the 1/s expansion is expected to
realize the double-copy construction more successfully. In
the following, we will present the extended double-copy
constructions for the NLO massive KK amplitudes by using
the high-energy expansion of 1/s, in Sec. VC 1 and the
high-energy expansion of 1/s in Sec. V C2.

1. Double copy of NLO KK amplitudes
under 1/s, expansion

In Sec. V B, we focused on the double-copy construction
of the KK gravitational amplitudes (5.34a) and (5.34b) at
the leading order of the high-energy expansion. For this
subsection, we study the double-copy KK amplitudes
(5.14a) and (5.14b) of the 5d KK YM gauge theory up
to the next-to-leading order of the 1/s, expansion. For this,
we extend the reconstructed KK gravitational amplitudes
(5.34a) and (5.34b) as follows:

2 2 2
M[4h}] = cog? {(N“) + W) + V) ] = My + M,
8o lo )

(5.45a)

. N’ 2 IVaY A7 O\2 N N

) ot [0 O P o
So to Ug

(5.45b)

where the conversion constant ¢, = —x?/(24¢?) is given by

Eq. (5.39), as determined by matching the corresponding
leading-order gravitational KK amplitude (4.22). According
to Egs. (5.13c) and (5.13d), we expand the numerator factors
(M;.N;) to the NLO and naively derive the following
reconstructed subleading-order gravitational KK amplitudes:

0 0 0
SM = 2¢y? (NSéNS + NioN, + NﬁN“) . (5.46a)
So A g
~0 ~ - - ~ ~
SM = 2¢09° <NS5NS + N%Nt + NﬁN") . (5.406b)
S0 to Ugy

We first note that the above double-copy construction should
give the correct powers of the (energy, mass) dependence of
the corresponding NLO gravitational KK amplitudes under
the high-energy expansion. The structure of the KK ampli-
tudes in the 5d KK YM gauge theory has been well
understood as we showed in Egs. (5.4)—(5.9), (5.13),
and (5.14) of Sec. VA. We see that in the 5d KK YM gauge
theory, the LO and NLO amplitudes in each channel

are (K%, K7) = O(E°MY) and (5K,,8K;) = O(M3/E).

Thus, the LO and NLO numerators are (N ?/T/?) =

O(E’M)) and (6N;,6N ;) = O(E°M3). Hence, we gen-
erally deduce that the reconstructed double copy of the
LO and NLO KK amplitudes for gravitational KK scattering
should have the following power dependence on the
(energy, mass):

02 ( Ar0\2
vt g = 0 P oy,
0j
(5.47a)
— 0N - NN .
(M, M) = o<;<2 w> = O(K®E°M?),
0/

(5.47b)

where so; € (50, fo. g) = O(E*) and we have used cog* ~
O(x?) according to Eq. (5.39). The above power-counting
fully agrees with the explicit calculations of the KK graviton
(Goldstone) amplitudes of the compactified 5d GR (GRS) in
Egs. (4.30) and (F7b) and (F7c). The above general power-
counting results (5.47a) and (5.47b) are predicted by the
double-copy method based upon the amplitude structure of
the well-understood 5d KK YM gauge theory (Sec. VA).
These are important for our GRET formulation as we will
discuss further in Sec. V D.

As we noted in Eq. (5.20), the NLO numerators

(6N;,6/N;) do not satisfy the kinematic Jacobi identity.
Thus, we expect that the reconstructed NLO amplitudes by
double copy may not exactly reproduce the corresponding
gravitational amplitudes. Using Eqgs. (5.8), (5.9), (5.13c¢),
and (5.13d), we can directly compute the reconstructed
NLO amplitudes (5.46a) and (5.46b) as follows:

K.QMZ
oM = — 192n (2050 + 9596‘29 + 62049 + 666) CSC4 9,
(5.48)
. 2M2
SM = =527 (494 + 513¢5 + 18c4g — cop)esc?d,

(5.48b)

where the conversion constant ¢ is given by Eq. (5.39) as
determined by matching the double-copy amplitudes with
the gravitational amplitudes at the leading order. It is
instructive to compare the above NLO double-copy ampli-
tudes (5.48a) and (5.48b) with the corresponding gravita-
tional amplitudes (F7b) and (F7c) as directly computed
from the 5d KK GR theory. It is good to see that the
reconstructed NLO double-copy amplitudes (5.48a) and
(5.48b) indeed have the same kinematic structures as that of
the corresponding gravitational amplitudes (F7b) and (F7c)
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because they all contain the angular terms of the type
(1, cag, Cags Cop) X csc* @ though their coefficients differ.
Their differences in the coefficients are quite expected
because our Eq. (5.20) shows that the NLO numerators

(6N j,(sK/ ;) do not satisty the kinematic Jacobi identity
even though in each channel of the NLO amplitudes (5.46a)

and (5.46b) the numerator N ?5/\/' ; or K/?SK/ ; contains

product of both LO and NLO factors where the LO factors

(N (,-), N(,) ) still obey the kinematic Jacobi identities. Thus,
we do not expect the current BCJ-type double-copy method
would exactly hold.

Next, we further compute the differences between the
NLO amplitudes of the longitudinal KK graviton scattering
and of the KK gravitational Goldstone bosons for the
original gravitational amplitudes (F7b) and (F7c) of the
GRS and for the above reconstructed amplitudes (5.48a)
and (5.48b) by double copy (DC) at the NLO:

3K2M?

AM(GRS) =86M -5 M =— (19.54cpy).  (5.49a)
K>M?

12

AM(DC) =M —SM ==—"(=69+4cp + C49)csc?6,

(5.49b)

which exhibit different angular structures.

We see that the GRS result (5.49a) contains only the
terms of (1, ¢y9) types due to rather precise cancellations
of the (cug,ceg) X csc* O terms between the amplitudes
(F7b) and (F7c), while the double-copy result (5.49b)
contains an extra noncancelled angular term ¢4y and an
extra overall angular factor csc? f. This shows the failure
of the double-copy result (5.49b) to correctly reconstruct
even the structure of (1,c¢py) in the original GR5 result
(5.49a). In fact, this precise cancellation is highly non-
trivial because after careful examination we observe that
this precise cancellation depends on all the coefficients in
the angular structure (1, ¢y, C49, Cog) X csc* @ of both the
original gravitational amplitudes (F7b) and (F7c). We find
that if one changes by hand any one of these coefficients
[even for the constant term inside the parentheses of
(--+) x csc* @] by any small number (such as +1 or —1)
in either the KK graviton amplitude (F7b) or the KK
Goldstone amplitude (F7c), then it has to destroy
this precise cancellation in the amplitude-difference

|

AM, =M - M = ZCOgZZ

J

AM, =M —sM' = 200922
J

N3N ;= 6N)

NOY(GN ;= 6N})

AM(GRS) of Eq. (5.49a) and thus all the terms of
(1, cag, Cags Cop) X csc* @ in the original amplitudes have
to reappear in the difference AM(GRS).

We can understand the failure of the correct cancellation
in the reconstructed result AM(DC) of Eq. (5.49b) by
noting the violation of the kinematic Jacobi identity for the

NLO numerators (6N, SN ;) as shown in Eq. (5.20). In
fact, by inspecting Eqgs. (5.46a) and (5.46b), we note

that for each given channel the amplitude-difference
AM(DC) = 6M =M has the numerator NN ; —

N ?5]\/ ; which could not even be factorized into any
BClJ-type product X ;Y ; with each factor (X or ¥;) obeying
the kinematic Jacobi identity separately. Hence, it is no
surprise that the reconstructed amplitude-difference
AM(DC) could not even reproduce the correct structure
of the original GRS result (5.49a).

In the following, we will try to construct an improved
amplitude-difference AM (DC) in which the numerator of
each channel can take the BCJ-type product form X;Y;
with each factor (X; or Y;) obeying the kinematic Jacobi
identity separately. For the above purpose, we first rewrite
the reconstructed NLO KK scattering amplitudes (5.46a)
and (5.46b) by using the relation (5.17):

SM =M — 800920925./\[]- =M’ —8cog’cox,
J
(5.50a)

5M = 5./W/ + 8C092C925/vj = 5.7\\//[/ + SCOQZCQ)(,
J

(5.50b)
NN, —~ NN
SM' = ZCOgZZ I M = 2cogzz I
7 st 7 st
(5.50¢)

where s(; € (8. to. tg), and we have used Eq. (5.20) in the
last step of Egs. (5.50a) and (5.50b). It is clear that the last
terms on the RHS of Egs. (5.50a) and (5.50b) are propor-

tional to >, 6N; = > ;6N ; =y # 0, which violate the
kinematic Jacobi identity.

Then, we can compute the difference between the NLO
KK longitudinal and Goldstone amplitudes:

= —K2M3(7 + C20>, (5518.)

SOj

= —K2M3(7 + ng), (551b)
S()j
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where in the last steps of Eqs. (5.51a) and (5.51b), we have computed each sum directly by using the LO and
NLO numerators of the KK gauge (Goldstone) amplitudes (Sec. VA) as well as Eq. (5.39) for the conversion constant c¢.
This explicit calculation shows an equality AM; = AM,. We can prove this equality in a more general way. Using
Egs. (5.51a), (5.51b), and (5.50a), (5.50b), we reexpress the difference (5.49b) of the NLO double-copy amplitudes

as follows:

AM(DC) = M — M = AM, — 8coPcoy ON; =AM, — 8c092c,,25ﬂf )
J J

where » . SN; =3 i SN j =X because of the equality
(5.20a). This leads to AM; = AM,, which agrees with
the explicit calculations of Eq. (5.51). Hence, we deduce

AM(DC) = AM(DC) - X, (5.53a)
X = 8cog’coy = %K‘ZM,%(7 + ¢a9) cOt? 0, (5.53b)
and
AM(DC) = AM; = AM, = —PM2(T + cpg).  (5.54)

It is important to note that in Eq. (5.53a) we have identified
and separated a special term X from the amplitude-
difference AM(DC), where X « y violates the kinematic
Jacobi identity at the NLO as shown in Eq. (5.20a). By
doing so, we observe that the improved amplitude-
difference AM(DC), as defined in Eq. (5.51), does have
a good feature, namely, each numerator of Eq. (5.51a)

[Eq. (5.51b)] just equals the product of the LO factor N ?

(N9 and the NLO factor 6N; —6N;, which satisfy
separately the kinematic Jacobi identities (5.15) and (5.22).

This is just the desired feature as required by the
conventional BCJ-type double-copy construction [22,23].
On the other hand, the situation of AM(DC) [Eq. (5.492)]
is different because in each channel the numerator of
AM(DC) cannot be factorized into a simple product of
two factors which could hold the kinematic Jacobi identity
separately.

Then, it is instructive to compare our improved ampli-
tude-difference AM(DC) [Eq. (5.54)] by double-copy
construction with the original gravitational amplitude-
difference AM(GR5) [Eq. (5.49a)] as computed in the
compactified 5d GR. It is impressive that our improved
amplitude-difference AM(DC) in Eq. (5.54) does have a
much simpler structure than the naive double-copy con-
struction AM(DC) in Eq. (5.49b), because the undesired
extra c4 term and extra overall factor csc? @ of AM(DC)
fully disappear in our improved amplitude-difference
AM(DC). This comparison shows that our improved
amplitude-difference AM(DC) does share the same kin-
ematic structure of (1,c,g) as that of AM(GRS) in the
GRS, although their coefficients are still different. Given

(5.52)

|

the fact that the conventional BCJ approach was formulated
only for the massless gauge and gravity theories, it is
expected that for constructing the mass-dependent scat-
tering amplitudes such as the NLO amplitudes of our 5d
KK theories, the conventional BCJ approach would not
exactly work. Nevertheless, we have shown that our
reconstructed KK longitudinal graviton and Goldstone
scattering amplitudes (5.48a) and (5.48b) indeed exhibit
the same kinematic structure (1, cag, C49, Cop) X csc* 6 as
that of the corresponding gravitational KK amplitudes
(F7b) and (F7c).

Furthermore, the double-copy reconstruction of the KK
amplitude difference at the NLO is much more nontrivial
because the original gravitational amplitude-difference
AM(GRS5) [Eq. (5.49a)] contains very precise cancella-
tions of the terms (cap. cep) % csc* @ between the ampli-
tudes (F7b) and (F7c). The naive double-copy construction
of the NLO amplitude-difference AM(DC) [Eq. (5.49b)]
fails to reproduce the correct kinematic structure of the
AM(GRS5). But, it is impressive that after we properly
define the improved amplitude-difference AM(DC) as in
Egs. (5.54), (5.51a), and (5.51b) by removing the Jacobi-
violating term and ensuring its numerator in each channel
factorized into product factors (obeying the kinematic
Jacobi identities respectively), we find that the improved
double-copy result AM(DC) [Eq. (5.54)] does exhibit the
same kinematic structure as that of the original gravita-
tional amplitude-difference AM (GRS5) [Eq. (5.49a)]. This
is encouraging evidence showing that as long as the BCJ-
type numerators can be properly improved to satisfy the
kinematic Jacobi identities, such a double-copy approach is
still quite meaningful to a certain extent, predicting the
correct structure of the corresponding gravitational ampli-
tudes and the (energy, mass) dependence up to NLO, even
for the mass-dependent amplitudes.

In the rest of this subsection, we will attempt to make an
improved double-copy construction of the NLO KK
amplitudes and reproduce the original NLO KK graviton
(Goldstone) amplitudes (5.48a) and (5.48b) by following

our proposal of the improved NLO numerators (SN, SN ;)

in Eq. (5.25) which have the desired property of satisfying
the kinematic Jacobi identities (5.28a) and (5.28Db).
Moreover, the corresponding improved NLO KK longi-

tudinal and Goldstone amplitudes (677, 5T %) still obey the
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KK GAET identity (5.31) which reflects the KK YM gauge
symmetry.

Using the improved KK gauge (Goldstone) boson
amplitudes (5.27a) and (5.27b), we construct the fol-
lowing new NLO gravitational KK amplitudes by double

copy:

05 ! 05 ! 05 !

SM" =2¢og? <NS NS+N’ N’+N“ N“), (5.55a)
So ) Ugy

N N 5~/ ~05~/ ~06~/

6./\/1//:2c0g2<'/v(s) NS+N’ N‘+N” N“), (5.55b)
So Iy Ugy

where the improved NLO numerators SN, = 6N; — y; and

5/\/; = 5./\/]- — % as defined in Eq. (5.25). Since the NLO
gravitational KK amplitudes (5.48a) and (5.48b) only
contain angular factors cosm@ (with m =2, 4, 6) and
csc* @ = 1/ sin* @ which are invariant under 8 — 7 — 6, we
may choose the decomposition terms in Eq. (5.24) as

(st)(tv)fu) = (Z’ < _Z) and O?S’)?t’)?u) = (Z”Z’ _Z)’ where
x 1s given by Eq. (5.20). Thus, using Eq. (5.25) we express
the improved NLO numerators as follows:

(6N, 6N, 6N = (N 'y — ., 0N, — 2, 6N, + 2),
(5.56a)

(NN 6N) = (6N, = 1. 6N, = Z. 6N, + 7).
(5.56b)

The new parameters (z,7Z) are functions of 6 and
will be determined by matching the reconstructed NLO

KK amplitudes (5M”,5M”) in Egs. (5.55a) and (5.55b)
with the original NLO KK graviton (Goldstone) amplitudes

(5M,5M) in Egs. (F7b) and (F7c) of the 5d KK GR:
M = sM.

SM" = 5 M, (5.57)

Thus, we can solve the parameters (z,7) from Eq. (5.57) as
follows:

- M%(614 + 3716‘20 + 426'49 - 3C69)
B 16(7 + cyp) sin? @ '

(5.58a)

~ M%(]666 - ]025029 + 382049 + 069)
¢ 16(7 + c2)sin®0 ‘

(5.58b)

Finally, by substituting the improved NLO numerators
(5.56) with Egs. (5.81a) and (5.81b) into Egs. (5.55a) and
(5.55b), we obtain the reconstructed NLO KK amplitudes:

5M"(DC)

K*M?

= — 128 (650 + 2616‘29 + 102049 + 11C69)CSC49,

(5.59)

sM"(DC)
K2M?
T 128

(—706 + 2049C29 — 31 8C49 — C69)CSC49,

(5.59b)

which reproduce precisely the original NLO gravitational

KK amplitudes (6M, M) in Egs. (F7b) and (F7c) of the
5d KK GR theory, as expected. This gives a consistency
check of the above analysis.

In passing, it would be useful to extend our present LO
and NLO analyses to the scattering processes with five or
more external particles in our future work. We also note that
the original BCJ conjecture was inspired by the KLT
relation that connects the amplitudes of the massless
gravity theory to that of the massless YM gauge theory.
The KLT kernel may be further reinterpreted as the inverse
amplitude of a biadjoint scalar field theory [45]. In Appedix
G, we will extend the KLT double-copy approach for
constructing the four-particle KK graviton amplitudes and
demonstrate the consistency with the above improved BCJ
construction.

2. Improved double copy of NLO KK amplitudes
under 1/s expansion

In this subsection, we present an improved double-copy
construction of the KK graviton (Goldstone) amplitudes
from the KK gauge boson (Goldstone) amplitudes under
the high-energy expansion of 1/s. With this we can
construct improved numerators for the KK gauge boson
(Goldstone) amplitudes which can fully satisfy the kin-
ematic Jacobi identity. We will show that this improved
massive double-copy approach is better than the double-
copy method by using the 1/s, expansion as we gave in the
previous Sec. VC 1.

In the following, we make the high-energy expansion of
1/s, where s is the conventional Mandelstam variable and
s = 5o + 4M? holds for the four-particle elastic scattering.
We use the notations (5,5) = (s,50)/M?2 and thus
5§ =5y + 4. For the exact tree-level KK longitudinal gauge
boson amplitude 7 [4A}] and the KK Goldstone boson

amplitude 7[4A%] in Eq. (5.4), we can reexpress their
kinematic factors (5.5) in terms of the conventional
Mandelstam variable 5 as follows:

(45> =55 -8)cy ~ (35— 8)cy

K= 25 I
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Qo+ Qicg+ Or¢99 + Q3¢39

K = -

2(5—4)[(35 +4) +45c) + (5 —4)cag]’
_ Qo — Qicg+ Orcag — O3¢39
Y23 -4)[(Bs+4) —dscy+ (5—4)cag)’

where the functions {Q;, 0 ;} are given by

Qo = 85 — 6352 + 725 + 80,

0, = 2(753 — 445 + 805 — 64),

0, = 85° — 4552 + 85 + 48,
Q3 = 25(5% — 105 + 24).

Then, we make the 1/s expansion for Eq. (5.60) and derive
the LO expressions,

3Cg

07 = ——, 5.62
,CS 2 ’ N 2 ( a)
13+5CQ+4C29 =0 3(3—6'9)
KO=— =9 2 K, = ———=, 5.62b
T 2 o) TR
]C0:—13_SCH+4629 k0:_3(3+09)
" 2(1 —_ Cg) ’ “ 2(1 —_ Cg) ’
(5.62¢)
and the NLO expressions,
5K, =20, 5k, =20
s s
(5.63a)
5’Ct _ _4(2 - 3C9 - 2C§9_— C39) ’ 5,’61 _ 16C9
(1+cp)°s (14 cp)*s
(5.63b)
5’Cu _ 4(2 + 3Cg - 2C§2+ C39) ’ 5,’614 - 16C9 5
(1 =cp)*s (1 —cq)*s
(5.63¢)

We further define the BCJ-type numerators:

(5.64a)

(5.64b)

where the subscripts j € (s,7,u) and s; € (s,t,u). With
these, we reformulate the amplitudes (5.4) in the following
forms:

= @0+ élce+ ézcze

, (5.60b)

T2(5—-4)[(35 +4) +45cy + (5 — 4)cag)
= 0y — Qicg + 0rcyy
= G a5 1 4) —d5cy 1 G D] 00
0, = 1552 + 245 — 80,
0, = 4(35> = 205 + 32),
0, = -3(5-4)%,
(5.61)
[
T[AznAZn — AznAzn] — 92 <CSNS + CZNI + CuNu> ’
S t u
(5.65a)
T[A@Ab = A Ad) = g2 <CfN A )
S t u
(5.65b)

We note that the newly formed LO numerators { /' ? N (,)}

and NLO numerators {5\ .,-,5/?/ ;} are mass dependent
(through s), and their sums violate the kinematic Jacobi
identity:
ZNO 10c,M2, (5.66a)

Z/v? = —6coM3,
J

25/\/ =

13s 496 —125¢59 — (5+ 16) cyg]coesc? 0,

(5.66b)

ZéJ\f =

13s 448 — 4(35 + 16) cop — Scyg) coesco.

(5.66¢)

The violation of the kinematic Jacobi identity at both the
LO and NLO shows that the conventional BCJ double-copy
method of the massless gauge theories cannot be naively
applied to the case of the elastic scattering amplitudes of
KK gauge (Goldstone) bosons. But, we observe that the
amplitudes (5.65) are invariant under the generalized gauge
transformations of the kinematic numerators:

N;:NJ—FSJA, N;:NJ—FSJA (567)
Thus, we can realize the kinematic Jacobi identities for the
gauge-transformed numerators
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Sai=0. YN =0 (5.68)
J J

by generally solving the gauge parameters (A, K) for the
elastic amplitudes as follows:

1 1 ~
A=-pp 2N a2 2
o noj

Expanding both sides of Eq. (5.69), we derive the gauge
=(Ag+ A, A)+ Ay) at the LO and

A= (5.69)

parameters (A, A)

NLO:
1 2
Ay = 2 (9 + Tcpg)cocsc0,
-
AO Z (17 - CZQ)CHCSC 9 (5703.)
A, — — (626’9 —+ 5C39 —+ C59)CSC49
1 5 s
- 4
A —_ (15¢y + c39)csc 9' (5.70b)

K
Using Egs. (5.67) and (5.70a), we derive the gauge-

transformed LO numerators (N ?’ N ?/), which are equal to
each other:

N = N = Z5(7 + cap)cyesc6, (5.71a)
or o S(42 - 156‘9 + 6C29 - C39) 5

= = - , 71b

Nt Nt 16(1 _ C@) ( )

N = N = $(42 4+ 15¢9 + 629 + C39) (5.71¢)

16(1 + cy)

We see that the LO numerators (N, N (-)/) are of

O(E®MY) and the LO equality holds: N =N
Hence, we deduce the equivalence between the two LO
amplitudes 7 ([4A7] = T ,[4A%] at the O(E°MY), which is
an explicit realization of the KK GAET [6].

Then, substituting Eq. (5.70b) into Eq. (5.67), we further
derive the gauge-transformed NLO numerators S\ . for the

elastic KK gauge boson amplitude:

1
BN{v = —ZM%(246C6 —+ 7C39 —+ 3C59> CSC4 9, (5728.)
M?2(131 — 8¢y — 4 8
SN = a( Cop — 4Cop j €39 + Ca9) ’ (5.72b)
8(1 - Cg)
5N/ _ _M%’(131 +8C9—4C29—8C39+C4g) (5 720)
! 8(1 + cy)? ' '

and the gauge-transformed NLO numerators 5]\7 ’, for the
corresponding KK Goldstone boson amplitude:

~ 1
SN = —ZMﬁ(zasce + 19¢35 — cs9)csc?0), (5.73a)
5J’\V/.; :M%(99+8C9+28€262— 8C39+C49>’ (573]))
8(1 = co)
5'/’\7; _ M%(99 - 86’9 + 28C29 + 8C39 + 649) ‘ (573(:)

8(1+co)?

We see that these NLO numerators are of O(E°M?2), which
are mass dependent. It is straightforward to verify explicitly
that the gauge-transformed numerators (5.71) and (5.72)
and (5.73) obey the kinematic Jacobi identities (5.68) at the
LO and NLO, respectively.

Since the above gauge-transformed numerators hold the
kinematic Jacobi identities (5.68), they are expected to
realize the color-kinematics duality order by order. Thus,
we construct the following extended BCJ-type massive
double-copy formulas for the elastic scattering amplitudes
of KK gravitons and KK Goldstone bosons:

r 7\2 1\2 7327
M/[4h2} — C092 ('/\A/S‘S) + ('/\/lit) + ('/\/l;u) :M6+5M/’
- - (5.74a)
N A 2 N 2 N 27 N N
W) = [N B2 ORT s
_ _ (5.74b)

where the LO and NLO KK gravitational amplitudes are
given by

0/\2 02 0/\2
b= o [W;) + (Nt’ L (N;) } (5.75a)
—, 0/ A/O/ NO/ 2
My = cog? {( ; ) ( ; ( ;) }, (5.75b)
and
(V4 / 07 / (4 /
SM' = 2¢,g? (NS;WWM ;W’+N"5N“>, (5.76a)

N\ A N N A
—~ CON 0. 0.
SM' = 2cog? <N“ SN“ + N?tN’ + N uN“> . (5.76b)

In the above the conversion constant ¢, = —k*/(24¢%) is
given by Eq. (5.39).

Using the double-copy formulas in Egs. (5.75) and
(5.76) and the gauge-transformed numerators (N, N} )
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in Egs. (5.71) and (5.73), we construct the following LO
elastic KK graviton and KK Goldstone amplitudes:

My(DC) = My(DC) = = T+ 02007

5.77
128  sin%6 (5.77)

and NLO elastic KK graviton and KK Goldstone ampli-
tudes:

5 202
meg (1642 +297¢3 + 102c4

+ Tcep) csct 6,

SM'(DC) = —

(5.78a)

2202

— M
sM'(DC) = — K7 (6386 + 3837c5) + 30cyy

— 13cgg)csc*o,

(5.78b)

The above Eq. (5.77) shows that the reconstructed LO

KK amplitude Mj(Mj) equals the LO KK Goldstone
amplitude (4.22b) and the corresponding LO longitudinal
KK graviton amplitude [12,13]. It is impressive that
with Eq. (5.77) we have proven explicitly the KK GRET

relation M;,(DC) = M{,(DC) from the KK GAET realtion
To[4A}] = T([4A%] by using the double-copy construc-
tion. Note that we deduced the GRET relation M/, = M,
earlier in Eq. (4.25) based on the direct Feynman-diagram
calculations. Because our KK GAET relation 7, =7
generally holds for N-point longitudinal KK gauge
(Goldstone) amplitudes [6,7], we can make double copy
on both sides of 7,=7, and establish the GRET,
M}[DC] = My[DC], for N-point longitudinal KK grav-
iton (Goldstone) amplitudes.

We can further compute the gravitational residual term of

the GRET from the difference between the two NLO
amplitudes (5.78a) and (5.78b):

AM'(DC) = SM'(DC) — SM'(DC) = —2M2(7 + c2p).
(5.79)

We see that the above reconstructed residual term (5.79) by
the extended double-copy approach does give the same size
of O(E°M2) and takes the same angular structure of
(1,cq9) as the original residual term (F8) although their
numerical coefficients still differ. It is impressive to note
that Eq. (5.79) also demonstrates a very precise cancella-
tion between the angular structures (1, cyg, Cag,Cep) X
csc* @ of the NLO double-copied KK amplitudes (5.78a)
and (5.78b) down to the much simpler angular structure
(1, ¢p9). This is the same kind of angular cancellations as
what we found for the original NLO KK graviton-
Goldstone amplitudes (F6b) and (F6c) and their difference
(F8). This shows that the above double-copied NLO KK

amplitudes have captured the essential features of the
original KK graviton-Goldstone amplitudes at both the
LO and NLO.

Finally, as a comparison, we also note that the above NLO
amplitude difference (5.79) does agree to our earlier inde-
pendent derivation of Eq. (5.54) which was deduced under
the high-energy expansion of 1/s, and by additionally
removing the Jacobi-violating terms in the NLO amplitude
difference (5.51) with the improved NLO amplitudes (5.50)
by double copy. We stress that the key advantage of the
current double-copy approach under 1/s expansion is that

our gauge-transformed numerators (N, N’ ;) in Egs. (5.67)
and (5.69) are generally guaranteed to obey the kinematic
Jacobi identities (5.68) under the high-energy expansion of
1/s. So they are expected to naturally realize the color-
kinematics duality order by order.

The above extended NLO double-copy results of the
NLO KK amplitudes (5.78a) and (5.78b) and their differ-
ence (5.79) are encouraging, because they already give the
correct structure of the NLO KK amplitudes including
the precise cancellations of the angular dependence from
Egs. (5.78a) and (5.78b) to Eq. (5.79). We have made the
gauge-transformed numerators (N, N ;) obey the kin-
ematic Jacobi identities, which is a necessary condition
for realizing color-kinematics duality, although not yet
sufficient. To further construct the exact KK graviton
(Goldstone) amplitudes by the extended double-copy
approach, we propose the following improved BCJ-respect-
ing numerators at the NLO:

(SN N 6N) = (SN, 6N — 2, 6N, + 7). (5.80a)

(N, 6N, 6N,") = (6N, 6N, = Z,6N, +3), (5.80b)

where the new parameters (z,z) are functions of 6 and can
be determined by matching our improved NLO KK
amplitudes of double copy with the original NLO KK
graviton (Goldstone) amplitudes of the GRS. Thus, we can
solve (z,7) as follows:

. M%(1390 ‘|‘ 603C29 + 66049 - 11C60)
N 12(13 = 12¢59 — c4p) '

z (5.81a)

~ M3(4546 — 3585¢5 + 1086¢4g + cop)
= 12(13 = 1255 — ca)

. (5.81b)

Using Egs. (5.80) and (5.81), we can reproduce the exact
NLO gravitational KK amplitudes (F6b) and (F6c) at
tree level.

D. GRET residual terms: Energy cancellation
from double copy

The main purpose of this subsection is to understand the
structure of the GRET (3.15) or (3.16) including its mass-
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dependent residual term in the 5d KK GR theory from the
structure of the KK GAET in the 5d KK YM gauge theory
by using the double-copy construction of Secs. V B and
V C. This will bring us important insights on the gravi-
tational KK scattering amplitudes and how the GRET
actually works.

We start by considering the compactified 5d YM gauge
theory and the KK GAET identity as derived in Ref. [7]
(cf. its Sec. III). For the application to the current study, we
consider the four-particle scattering of longitudinal KK
gauge bosons A%"Abk — A¢mAY” and the corresponding
KK Goldstone boson scattering A%"A% — ASmAdY.
According to Refs. [6,7], we can write the KK GAET
identity for the above four-particle scattering process:

T4A}) = T[4AZ + Y T[A%v,].  (5.82)
where the residual term 7 [AZ, v,] contains at least one
external field v, = v, A}/ with o = €] — e = O(M, /E,)
for the high-energy scattering. In this subsection, the
amplitudes such as T[4A”] or T [4A%] will denote either
elastic or inelastic scattering process. In Sec. VA, we
showed that the leading longitudinal KK gauge boson
amplitude 7 [4A}] and the leading KK Goldstone amplitude
T [4A] are of O(E°MY) under the high-energy expansion.
In the following, we expand them symbolically to the next-
to-leading order of E~2:

T[4A’lﬂ = TOL + 5TL7 (5833)

T[4A1) = T o5 4 67 s, (5.83b)

where the leading-order amplitudes T, 7 o5 = O(E°MY)
and the NLO amplitudes 67,675 = O(M2/E?). In
Egs. (5.11) and (5.19) of Sec. VA, we showed explicitly
that under high-energy expansion, the LO KK amplitudes
obey the longitudinal-Goldstone equivalence:

Tor = Tos = O(E'MY), (5.84)
which is the prediction of KK GAET [6]. Thus, from the
KK GAET identity (5.82), we can derive the residual term
as follows:

T,=) TAL v, =6T,—6Ts=0M:/E?). (585)

In the above, each residual term 7 [AZ, v, ] is no larger than
O(E7") by the naive power-counting. In fact, we can
explicitly compute the above four-particle amplitudes of the
longitudinal and Goldstone boson scattering, and our
Eq. (5.23) proves their difference is of O(M?2/E?). This
also agrees with the general estimate of Ref. [40], with
which we have the following power-counting formula for
the residual term:

Mgl o Mn
T, = 0<ﬁ>7[4Ag} + O(E—> TIAZ3A%],  (5.86)

n n

where E, denotes the energy of the relevant external KK
gauge boson and A’} denotes a transverse KK gauge boson.
The naive power-counting shows 7~'[4Ag’] = O(EY) and
T[A%,3A% = O(M,/E,). Thus, using Eq. (5.86), we also
deduce 7, = O(M?2/E?), which agrees with the (mass,
energy) dependence given in Eq. (5.85).

Next, we consider the four-particle scattering of the
longitudinal KK gravitons A7 h¥ — h"h% and the corre-
sponding KK Goldstone boson scattering ¢, ¢, — ¢,,¢,-
Thus, we can express the GRET identity (3.15) as follows:

M(ahy] = M[4g,] + Z M[A,, ], (5.87)
where A, =¥, — h, with ¥, = U, hy” and h, = r]mﬁ’,‘f.
We denote the residual term on the RHS of Eq. (5.87)

as My=>" M[Zn, ¢,]. We note that each amplitude
inside the residual term contains at least one external state

of Zn, which will further split into two amplitudes with
external fields v, and Zn, respectively. Since the naive
power-counting shows the residual term M, = O(E>MY)
under the high-energy expansion, we expect that M,
should contain further nontrivial energy cancellations of
O(E*MY) — O(E°M?), which we will justify shortly.
For high-energy scattering, we can expand the ampli-
tudes of the longitudinal KK gravitons and of their KK
Goldstone bosons into the LO and NLO contributions:

MI4RT] = Mg + SM, (5.88a)

MI4p,] = My + SM. (5.88b)
As shown explicitly in Sec. IV B and Appendix F for the
gravitational KK scattering, the LO KK amplitudes M, =
O(E*MY) and M, = O(E*M?), while the NLO KK
amplitudes SM = O(E°M?2) and M = O(E°M?).
Furthermore, using the double-copy construction from
the 5d KK YM gauge theory in Secs. V B and V C, we have
deduced independently the magnitudes of the LO and NLO
gravitational KK amplitudes in Egs. (5.47a) and (5.47b)
which agree with the direct calculations in the 5d KK GR
theory. According to Egs. (5.35) and (5.44) of Sec. V B, our
double-copy constructions of the LO longitudinal KK
graviton (Goldstone) amplitudes give
M,(DC) = My(DC) = O(E2MY).  (5.89)
In fact, our double-copy construction has explicitly dem-
onstrated in Secs. VA and V B that the gravitational

equivalence (5.89) between the two LO gravitational
amplitudes is generally built upon the KK GAET (5.84).
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The KK GAET identity (5.82) can be expressed as

T, =T[4A}] — T[4A%], and the double copy of its left-
hand side 7', > M 4 (DC) corresponds to the double copy
of its right-hand side:

T[4A7] — T[4A%] — M(DC) — M(DC)

= SM(DC) — SM(DC),  (5.90)

where in the last step we have used the LO double-copy
result (5.89). Using this double-copy construction from the
5d KK gauge theory amplitudes, we further demonstrated
in Eq. (5.47) of Sec. VC that under the high-energy
expansion (5.83), the NLO gravitational KK scattering
amplitudes depend on the KK mass, but not on the energy:

SM(DC) = O(E°M2), SM(DC) = O(E°M?). (5.91)
Given this result (5.91) and using Eq. (5.90), we deduce
that the double-copy construction of the residual term

T, — Mx(DC) is given by

T, - M,(DC) = 6M(DC) — SM(DC) = O(E°M?).
(5.92)

We can extend the above estimate (5.92) of the residual
term to the general case of GRET (3.16) for any KK
graviton amplitude containing two or more longitudinal
KK gravitons.13

Because in the residual term M, = > M[Zn ¢,] each
individual amplitude M [K,I, ¢,) = O(E?) by naive power-
counting, the conclusion of Eq. (5.92) proves that there is in
fact a nontrivial energy cancellation of O(E?) - O(E®) in
the residual term of the GRET. Hence, Eq. (5.92) ensures
our GRET to realize the equivalence between the longi-
tudinal KK graviton amplitude and its corresponding KK
gravitational Goldstone boson amplitude at O(E?).

In summary, based on the KK GAET identity (5.82) for
the 5d KK YM gauge theory (YMS) and the double-copy
construction in Secs. VB and V C, we have established a
new correspondence from the KK GAET of the YMS5
theory to the KK GRET of the 5d KK GR theory (GRS5):

KK GAET (YM5) => KK GRET (GR5).  (5.93)

We have demonstrated that the residual term in the GRET
(5.87) or (3.16) is indeed suppressed relative to the leading
KK Goldstone ¢, amplitude; and in the case of four-
particle longitudinal KK graviton scattering, the leading
(helicity-zero) longitudinal KK graviton amplitude and KK

We note that the special case including a single external
longitudinal KK graviton state is an exception, where the residual
term can be of the same order as the leading KK longitudinal
(Goldstone) amplitudes. We gave an explicit example of this kind
by our GRET analysis of the SQEDS model in Sec. IVA.

Goldstone amplitude scale as O(E*MY) and are equal to
each other; while the residual term of the GRET is only of
O(E°M?), as in Eq. (5.92), due to a nontrivial energy
cancellation of O(E?) — O(EP). This conclusion can be
readily extended to other longitudinal KK graviton scatter-
ing processes with two or more external longitudinal KK
graviton states. As a final remark, we build the above
correspondence (5.93) based on our current analyses of the
tree-level scattering amplitudes, and it will be worthwhile
to further extend it to loop orders by invoking the BRST
transformations in both the 5d KK YM gauge theory and
the 5d KK GR theory [33]. We also note that our power-
counting method presented in Sec. III B holds for the
general N-point amplitudes with L loops (L > 0), so our
present power-counting analysis can be extended up to loop
orders in a straightforward way.

VI. CONCLUSIONS

Studying the structure of scattering amplitudes of Kaluza-
Klein (KK) gravitons and that of the KK gauge bosons is
important for understanding the dynamics of KK theories
and the deep gauge-gravity connection. The KK gravitons
and KK gauge bosons serve as the key ingredients in all extra
dimensional models [3,4] and string theories [2] which
attempt to resolve the naturalness problem, the quantum
gravity, and the gauge-gravity unification.

In this work, we studied the structure of the scattering
amplitudes of the KK gravitons and their KK Goldstone
bosons (radions) with compactified fifth dimension. In Sec. II,
using a general R; gauge-fixing (2.16) for the quantization of
5d KK general relativity (GR), we derived the massive KK
graviton propagator and the corresponding Goldstone boson
propagators in Eq. (2.21). These propagators take particularly
simple forms of Eq. (2.22) under the Feynman-"t Hooft gauge
(&, =1). We proved that the KK graviton propagator is
naturally free from the vDVZ discontinuity [21], in contrast to
that of the Fierz-Pauli gravity [16].

With these, we presented in Sec. III A the formulation of
the gravitational equivalence theorem (GRET) to connect
the scattering amplitudes of longitudinally polarized (hel-
icity-zero) KK gravitons A} to that of the corresponding
gravitational KK scalar Goldstone bosons ¢, (=h;’). The
GRET is a manifestation of the geometric Higgs mecha-
nism at the S-matrix level. Starting from the general
Slavnov-Taylor-type identity (3.3) for the gravitational
gauge-fixing functions, we derived its LSZ amputated
form (3.12) under the Feynman-'t Hooft gauge at tree
level, which suffices for the present study. From this we
derived the key GRET identity (3.15) and gave the GRET
formulation in Egs. (3.15) and (3.16). Then, extending
Weinberg’s power-counting rule [28] for the low-energy
QCD, we presented a generalized power counting rule
(3.20) for the 5d KK GR theory. With this we derived the
leading energy dependence of the N-particle longitudinal
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KK graviton scattering amplitudes and of N-particle KK
Goldstone scattering amplitudes in Egs. (3.21) and (3.22),
namely, Dp(Nh:)=2(N+1)+2L and Dy(N¢,) =
2 4 2L. We further counted the superficial leading energy
dependence of the residual term M, as in Eq. (3.24),
which gives Dg(Nv,) =2+ 2L. Using the GRET identity
(3.15), we established a nontrivial energy cancellation in
the N-particle longitudinal KK graviton scattering ampli-
tudes by E?N as in Eq. (3.23), where the number of
external KK states N > 4. For the scattering amplitudes of
N longitudinal KK gravitons at tree level, this proves an
energy cancellation of EZ2N*2 — E?_ In the case of the four
longitudinal KK graviton scattering amplitudes (N = 4), this
establishes the energy cancellation of E'® — E?, which
we further demonstrated by explicit analyses in Secs. [V B
and V B. Hence, the GRET identity (3.15) provides a general
mechanism for guaranteeing the nontrivial large energy-
cancellations in the N-particle longitudinal KK graviton
amplitudes by E?, where N > 4. This conclusion holds
up to loop levels because the radiative multiplicative modi-
fication factor C,,,q associated with each external Goldstone
state is energy independent. Our present GRET formulation is
highly nontrivial because its residual term does not appear
superficially suppressed relative to the leading KK Goldstone
amplitude in high-energy limit by the naive power-counting.
The suppression of the residual term was further justified in
the following Secs. IV-V.

In Sec. IV, we performed systematically a direct com-
putation of the gravitational KK Goldstone boson scatter-
ing amplitudes at tree level. In Sec. IVA, we took a simple
model of 5d gravitational scalar QED (GSQEDS) as an
example and explicitly verified the GRET identity (4.11) or
(4.17) for the case of including a single external KK
graviton field. Our analysis showed that the GRET identity
in this case holds exactly. Then, in Sec. IV B, we derived
the exact four-particle KK Goldstone boson scattering
amplitude, and expanded it to the leading order and the
next-to-leading order under the high-energy expansion,
which are given in Egs. (4.22), (4.28), and (4.30). The
leading energy dependence in these KK Goldstone ampli-
tudes is manifestly of O(E?) without any extra energy
cancellations among the individual diagrams. So they are
substantially simpler than those of the longitudinal KK
graviton amplitudes in the literatures [12,13] since the latter
involve various intricate energy cancellations among indi-
vidual diagrams from O(E'?) down to O(E?). With these
we proved explicitly the equivalence between the leading
h? amplitudes and ¢, amplitudes at O(E?), which supports
the GRET (3.16). Hence, the longitudinal-Goldstone
equivalence of the GRET guarantees the nontrivial large
energy power cancellations in the longitudinal KK graviton
amplitudes. We further computed the difference between
the exact 4} amplitude and ¢, amplitude as in Eq. (F8),
which has O(M2E®) and determines the size of the residual
term of the GRET.

In Sec. V, we studied systematically the double-copy
construction of the gravitational KK scattering amplitudes
by using the corresponding KK gauge (Goldstone) boson
scattering amplitudes in the 5d KK YM gauge theory,
under the high-energy expansion. The conventional BCJ-
type double-copy approach [22,23]) is given for massless
gauge theories and massless GR. Because the KK gauge
theories and KK GR can consistently generate masses for
KK gauge bosons and KK gravitons by geometric Higgs
mechanism under compactification, we expect that extend-
ing the conventional double-copy method to the KK
theories should be truly promising even though highly
challenging due to the nontrivial KK mass poles in the
scattering amplitudes. Unlike the conventional double-
copy approaches, we proposed to realize the double-copy
construction by using the high-energy expansion order by
order. With this, we demonstrated explicitly how such a
double-copy construction can work at the LO and the NLO,
as in Secs. VB and V C. This high-energy expansion
approach for realizing our double-copy construction also
perfectly matches our KK GAET and GRET formulations.

In Sec. V B, under the high-energy expansion, we found
that the LO KK gauge boson (Goldstone) amplitudes have
O(E°MY) and the LO KK graviton (Goldstone) amplitudes
have O(E>M?Y), which are both mass independent. Thus, we
made an extended BCJ double-copy construction from our
LO KK gauge boson (Goldstone) amplitudes and fully
reconstructed the correct KK graviton (Goldstone) ampli-
tudes at the LO, as shown in Egs. (5.35) and (5.43). Then, in
Sec. V C, we studied the extended double-copy constructions
of the NLO KK gauge/gravity amplitudes by making two
types of high-energy expansions, under 1/s, expansion
(Sec. VC 1) and under 1/s expansion (Sec. V C 2), respec-
tively. We showed that the NLO KK gauge (Goldstone)
boson amplitudes have O(M2/E?) and the NLO KK
graviton (Goldstone) amplitudes have O(E°M?2), which
are both mass dependent. We demonstrated that the dou-
ble-copy construction for the mass-dependent NLO KK
amplitudes is highly nontrivial, where the conventional
double-copy method could not fully work. We found that
the reason for this problem is due to violations of the
kinematic Jacobi identities (5.20) at the NLO of the 1/s,
expansion, where the generalized gauge transformations
(5.16) cannot recover the kinematic Jacobi identities as we
explained below Eq. (5.20). But, for our extended double-
copy construction under the 1/s expansionin Sec. V C 2, we
successfully recovered the kinematic Jacobi identities as in
Eq. (5.68) by using the generalized gauge transformations
(5.67) and the solutions (5.69) and (5.70). With these, we
derived the NLO double-copied KK graviton/Goldstone
amplitudes (5.78) and their difference (5.79), which predict
the correct angular structure as in the original exact KK
graviton (Goldstone) amplitudes (F6b)-(F6c) and (F8).
Then, we further constructed a set of improved BCJ-
respecting NLO numerators (5.80) and (5.81), which can
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fully reconstruct the NLO KK graviton (Goldstone) ampli-
tudes and agree with the exact NLO gravitational KK
amplitudes (F6b) and (F6c). The above analyses and findings
are very encouraging and we will pursue along this direction
in future works.

In passing, motivated by the present study, we proposed
recently a first principle approach of KK string theory to
realize the exact massive double-copy construction for the
general N-point tree-level KK open/closed string ampli-
tudes and the corresponding KK gauge boson/graviton
amplitudes [46]. In addition, the double-copy construction
of the scattering amplitudes of massive gauge bosons/
grvitons in the 3d topologically massive Yang-Mills theory
(TMYM) and 3d topologically massive gravity (TMG) [47]
was recently studied [48]. There we newly proposed [48] a
topological equivalence theorem (TET) to formulate the
topological mass-generation and to uncover the nontrivial
energy cancellations in the massive Chern-Simons gauge
boson scattering amplitudes of the TMYM. Using the TET
and the double-copy construction, we further proved [48]
the striking large energy cancellations in the massive
Chern-Simons graviton scattering amplitudes of the TMG.

Finally, in Sec. V D, based upon the KK GAET identity
(5.82) in the 5d KK YM theory, we used double-copy
approach to reconstruct the KK GRET identity (5.87), and
demonstrated a new correspondence of KK GAET =
KK GRET in Eq. (5.93). Especially, we analyzed the (energy,
mass) dependence of the residual term M, in the GRET and
deduced M, = O(E°M?) in Eq. (5.92). This justifies that
even though the amplitudes in the GRET residual term M,
contain individual contributions having superficial energy
dependence of O(E?) by naive power-counting, they are
ensured to cancel down to O(E°M?2), in agreement with our
explicit computation of M, = 6 M — oM in Eq. (F8).

In summary, it is impressive that using the double-
copy approach, we established a new correspondence
between the two energy cancellations in the four-particle
longitudinal KK scattering amplitudes: E* — E° in the 5d
KK YM gauge theory and E'° — E? in the 5d KK GR theory.
This was presented schematically in Eq. (5.38). Furthermore,
using the double-copy approach, we analyzed the structure of
the residual term M in the GRET and further uncovered a
new energy-cancellation mechanism of E? — E° therein.
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APPENDIX A: KINEMATICS OF
KK PARTICLE SCATTERING

We consider the 2 — 2 KK scattering process, with the
four-momentum of each external state obeying the on-shell
condition p? = —sz-, (j=1, 2, 3, 4. We number the
external states clockwise, with their momenta being
outgoing. Thus, the energy-momentum conservation gives
>_p;j =0, and the physical momenta of the two incident
particles equal —p; and —p,, respectively. For illustration,
we take the elastic scattering X, X, — X, X,, (n > 0) as an
example, where X, denotes any given KK state of level-n
and has M;=M,. For the KK theory, the external
particle has mass M, for a given KK state of level-n.

In the center-of-mass frame (Fig. 7), we define the
momenta as follows:

P =—(E,0,0,k), ph =—(E,0,0,-k),
P = (E. ksg,0, key), Pl = (E,—ksy,0,—kcy), (Al)

where k = |p|. Then, the Mandelstam variables (s, 7, u)
take the following form:

s =—(p1+ p2)* = 4E%, (A2a)
—4M?

t=—(p1+pif = ——(1+¢).  (A2b)
s —4M>

u=—(py+p3)=- 7 (1 =cq). (A2c)

Optionally, with Eq. (A2), we can also use the relation
E? = k* + M? to define another set of Mandelstam vari-
ables (sg, fy, Up):

s = 4k2, (A3a)
zoz—%o(ucg), (A3b)
uoz—%o(l—cg). (A3c)
D3
0
D2 > < D1
D4

FIG. 7. Kinematics of the 2 — 2 scattering process in the
center-of-mass frame.
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The summations of the Mandelstam variables (A2)
and (A3) obey the identities s+ ¢+ u =4M> and
so + to + ug = 0, respectively.

Moreover, the above formulas can be extended to
the general scattering process X,X; — X,,X,, where
n,k,m,? > 0. Thus, the sum of these Mandelstam varia-
bles (s,t,u) satisfies s + 1+ u = M2 + M3 + M2, + M>.
The incident and outgoing states have the following
momenta in the center-of-mass frame,

’f —(E»,0,0,—k),
Ph= (E3,k’s9,0 k/Ce)

PZ = (E4, —k'sy,0,=k'cq),
(Ad)

where the energy conservation condition, /s = E; + E, =
E; + E,, determines the momenta k and k' as follows:

2\/—([5 — (M, + My)*[s — (M, — M5)*))'/2,

k’:m([s

Finally, as mentioned in Sec. II, a massive KK graviton
has five helicity states (4 = £2, +1, 0). Their polarization
tensors take the following forms:

= (M5 + My)*)[s — (M3 = My)?])' 2. (AS)

ey = ey, ey = 7—(6# Lep +epel),

8’“’:—(6"6 +elel + 26 €Y), (A6)
L \/— + L€

where (¢L.¢]) denote the (transverse, longitudinal)

polarization vectors of a vector boson with the same
four-momentum p*. These polarization tensors satisfy the
traceless and orthonormal conditions. They are also orthogo-
nal to the four-momentum p* of the KK graviton. Thus, the
following conditions hold:

e =0, ‘C’J/;DE;’,W =0, pue =0, (A7)
where 4, /(= 42, 1, 0) are the helicity indices of the KK

graviton.

APPENDIX B: FROM R; GAUGE TO
UNITARY GAUGE

We note that the KK graviton propagator (2.21a) in
the general R; gauge can be decomposed into the unitary
gauge propagator (2.23) plus the &,-dependent part. In
momentum space, we present this decomposition in the
following form:

Dini? (p) = D (P) + D (p). (Bla)
is ﬁ/mﬁl/ﬁ + ﬁ”ﬂﬁm _ zﬁﬂl/ﬁaﬂ
Dﬂmxﬁ _ _1 nm 3 , B1b
nm.UG(p) ) p2 + M%z ( )
16,m/2 p'p*\ p'p’ p*pP\ pp”
Dl (p) = Lom/= [(n"“+ + (7 +
N v EM3) &M M%) &M
o PPV PP . P\ P i8um2p P pep”
+(nr+ M2 7+ + 2 2| 2172 Z
gi’l §nM énMn gl’an (p + gnMn)ZjnMn
16,,,/6 2pt p* 2p°pf
TG, — 2 (""” 2 )\ ) (Blc)
p + ( 5}’[ ) n n n

where 7# = p* + p*p¥/M?. We see that the &,-dependent part D" vap (p) vanishes under &, — oo. So, the propagator

nm:f

D”,,’,’,fﬁ( p) will reduce to the unitary gauge form YZ'EZ;:/[}JG( p) in this limit. Also, the gravitational KK Goldstone propagators

Dyum(p) and D,,,,(p) in Egs. (2.21b) and (2.21c¢) vanish in this limit &, — oo, which removes the unphysical KK Goldstone
bosons in the unitary gauge as expected. For the Feynman-’t Hooft gauge (¢, = 1), we find that the £,-dependent part of the
KK graviton propagator takes a much simpler form:

5 _i6,,/6 2pt p¥ 2pep?
Dz (P) e —m Ve n? — M2

+ iénm/2
(p* + M;)M;,

(P*p°n? + p*p®n’ + p* pPu® + p¥ pPyie). (B2)
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In passing, a R; gauge-fixing was considered [49] in the
Randall-Sundrum model with warped 5d which contains
additional terms related to warp parameter; we note that
their KK graviton propagator was written in a rather
different form, but can be converted into the form con-
sistent with our (B1).

We note that the Lagrangian (2.15) is invariant
under the general coordinate transformation (gauge
transformation),

hap = Wyp = hap — 26(A)?B)7 (B3)
where 74 (x) is an infinitesimal translation which refers to a
vector field generating a one-parameter diffeomorphism
group in the background spacetime.

Taking Eq. (2.8) under the KK expansion (2.12), we
derive the following gauge transformations for the KK
fields:

WY = Bl = WY =200yt — My, (Bda)
Al — Al = A — 0"+ Moh, (B4b)

In the above the group parameters (yy.y;) arise from the
following KK expansions of the corresponding 5d param-

eters (7, 7°):

P =

. 2 . nax’
)(S(x”,xs)Z\/;;;(i(X”)sm T

where we set (7#, 7
of a 5d orbifold.

To transform into unitary gauge, we choose the gauge
parameters as follows:

<Aﬂ a¢"> )(Z:ﬂ

)+ \fZ)(” cos nzxs] ,

(B5a)

(B5b)

) as (even, odd) under the Z, reflection

Ih=-

M, M

Then, we derive the field transformations to the unitary

gauge:
=+ 2ok - (222,
(B7a)
Ay = Al =0, (B7b)
$u — ¢, = 0. (B7c)

Thus, under the unitary gauge, both the KK Goldstone
states A}, and ¢, (n > 0) are gauged away, so the 4d action
of the Lagrangian (2.15) becomes

0 1 1
_ d4 ——(O*h 2 — phl';l/z
o= [ oS
+ O, h O, hy — O W Dy

1

-SMI - L)@ (B9

2

APPENDIX C: FEYNMAN RULES FOR KK
GRAVITON INTERACTION WITH MATTER

In this Appendix, we present the relevant Feynman rules
of the 5d gravitational scalar QED (GSQEDY) as studied in
Sec. IV A, including the propagators of the matter fields and
the vertices for the KK graviton (Goldstone) interaction
with the matter fields. All the Feynman Rules are derived in
the Feynman-’t Hooft gauge (£, = 1).

We first present the photon propagator and scalar
propagator as follows:

15nm
9
p>+my

U
_1’7” 5nm

Dim(p) = ,
P+ M;

Dyn(p) = (C1)

where the KK number n > 0 and the KK mass for the scalar

field is m, = \/m§ + M.

Then, with the relations between the 4d coupling
constants and 5d couplings e = &/v/L and x = &/\/L,
we derive the cubic and quartic interaction vertices for the
KK graviton (Goldstone) interactions with matter, which
are presented in Fig. 8.
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Sy (p1)

— K4 1K v v v
B (1) AAAAARS = = [PiPs + s — 0" (pr-pa — m3) |

QA 5
5+p)

A(l pl

i,{‘ 1% 1% v v
= -5 {(pl-pz) (0?4 pPPre — v nB) 4 p ps
ht (ps)
— [P Ry pS + epips — PP ps 4 (nes ) | — M pSps }
A3
()
\\ ieﬁ; v [0 [0 1% ra
}» = T [77“ (p1—P2) -7 M<p1—p2) -7 (p1—p2)u]
Rt (ps)
Ag(Pl)
— / Ky v v
Ps) S = —ﬁ[plpz +pipy — " (p1-p2) ]
AY(p2)

FIG. 8. Feynman rules for the cubic and quartic interaction vertices between the KK graviton (KK Goldstone boson) and matter fields.

APPENDIX D: GRAVITATIONAL KK EAP) = b, 0,905 + by H$0,05).  (Dla)
GOLDSTONE AMPLITUDES FROM GOLDSTONE
EXCHANGES AND CONTACT INTERACTIONS

In this Appendix, we derive the Feynman rules of the KK Li[g) = c 1¢(aﬂ¢>2 + c2(95)*. (D1b)
Goldstone self-interactions which we will use to compute
the subleading diagrams in Fig. 5, for the analysis of A . . . .
Sec. IV B. L[] = di*(0,0)* + dod® (05)?, (DIc)
Under the basis defined in Table II, we can expand
the Lorentz-invariant structure of 5d Lagrangian terms  where we have computed systematically the coefficients
L\[A@?), £,[37], and L,[¢*] as follows: (b1, by, ¢y, ¢y,dy, dy) as follows:

TABLE II. Lorentz-invariant vertices in the 5d Lagrangian terms Z,[A$%], £;[¢°], and £,[¢")].

LA AD,0sp A(0,05¢) 3, A5 A0, p 8,05 4" ?
g 90,9 1059 Vo5 7%
L (3] 9*(0,4) P (059)? P2 PP
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1 2 1 11
by, by, cy,cr,dy,dy) = 0,—,\%——,——,—.
(1 2,61, 02,07 2) < \/E 3 \/6 8 4)

(D2)

Then, by integrating over x> on the 5d interval [0, L], we derive the 4d effective KK Lagrangian terms as follows:

L[Agp*] = _% Z {by Mo V240,006, + Aﬁaﬂfﬁmfﬁf&(m’”v ?)]
nm, =1
+ b, Mf[\/iAﬁgbOaﬂd)fénf + Aﬁ¢maﬂ¢fz3(m’ n, )},
_ KN

£1[¢3] - \/5 Z {cl[\/i(gbO(aﬂqSO)z + ¢Oa/,t¢maﬂ¢f5mf +¢nau¢08ﬂ¢m§nm
nm, =1

=+ ¢n8/4¢08”¢f5m") + ¢naﬂ¢maﬂ¢fA3 (n’ m, l’ﬂ)] + C2Mn1Mf[\/E¢0¢m¢f5mf
+ bubnd e Bs(n.m. )]},

K

'CZ [¢4] = E Z {d1{2(¢08,4¢0)2 + 2[(aﬂ¢0)2¢n¢m5nm + ¢08/4¢0¢na#¢f5nf
nm,C k=1

+ 000,000 DSk + P00, PP PrSui + P00, oD beSpmr + D50, 0" Py

+ V2(0,00bu P0G Dy (n,m, €) + 0, pobupm ¥ P (n, m, k) + 0, o pr 0 biAs(n. £, k)
+ om0, i D3 (M, €. k)| + §pn 0, o0 i As(n.m, €, k)} + dy MM [2(ho)*Prpibin
+ V2ob bbb (m. €. k) + V2hodupedi B (n. € K) + bupudbediBg(n.m. £, k)] },

where
®,(p1)
/2 k(by+ by) M,
Aﬂn E = —-——_— + 12
5.(P3) \ \/5 <p1 p2)
¢Ib(p2)
¢n(p1)
Z m = 0: 12k [c;(pT + 3 + p1- p2) + 2 My, |
— on-shell .
Ou(P3) \ = S5 12601 (pr p2) + (ca— 2¢) MY
m = 2n: —i\/ﬁlﬂ[ﬁ(]?rm)‘f’ M ]
¢n(p2)
¢n(p2) ¢n(p3)
\ / :i6l€2[d1(p%+p%+p1'p2—p3'p4)+2d2M3}

/ \ on-shell i 12/{2(611 . dQ)MTQL

¢n (pl) d)n (p4)

(D3a)

(D3b)

(D3c¢)

FIG. 9. Feynman rules for the cubic and quartic interaction vertices among the KK gravitational Goldstone bosons ¢, and Aj.
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Ay(nym, 0 k) =6(n+m+C—k)+6n+m—-¢—-k)+6n—m+¢—k)+8(n—m—¢—k)

+oén—-m—-¢+k)+6(n+m—-C+k)+6n—m+¢+k),

(D4a)

Ay(nym, 0 k) =6(n+m+C€—k)=6(n+m—-¢—k)+6(n—m+¢—k)—66n—m—7¢—k)

+oén—-m—-¢+k)—6(n+m—-¢+k)+6(n—m+7¢+k).

With these, we derive the cubic and quartic interaction
vertices of A¢?, ¢3, and ¢*, which are presented in Fig. 9.
By explicit calculations, we find that the scattering
amplitudes of ¢, ¢, — ¢,¢, from the ¢, (¢,,) exchanges
and from the contact interaction are all of O(M?) under the
high-energy expansion, which do not contribute to the LO
Goldstone boson amplitude of O(E?). This conclusion still
holds for the inelastic scattering process ¢,y = ¢, Pz-

APPENDIX E: MASSLESS GRAVITON
SCATTERING AND DOUBLE COPY IN 4D

For the sake of comparison, in this Appendix we
compute the scattering amplitudes of four gluons and of
four gravitons at tree level in 4d, by using the conventional
Feynman techniques and the reduced superstring ampli-
tudes, respectively. We also verify the double-copy
|

(D4b)

[

construction of massless graviton amplitudes from the
massless gluon amplitudes by using the color-kinematics
(CK) duality. We find that the conversion constant between
the gauge boson coupling and the graviton coupling in 4d
differs from what we have obtained in the 5d KK theory
analysis (Sec. V B).

1. Massless graviton scattering from
double-copy construction in 4d

For an SU(N) non-Abelian gauge theory, we can express
the four-gluon scattering amplitudes at tree level as follows:

Tlgg— 99 =T . +T,+T,+7,). (El)

where the amplitude contains the contributions from a
contact interaction diagram and the (s, 7, u)-channel pole
diagrams whose amplitudes are given by

T, =Cl(e1-€3)(€r-€4) — (€1 - €4)(€2 - €3)] + Cil(e) - €2) (€3 - €4) — (€1 - €3) (€3 - €4)]

+Cul(er - €4)(er-€3) = (€1 - €2)(e3 - €4)], (E2a)
T, = %[(Pl —p2)(€1 - €) +2(pa-€1)e; = 2(py - €)e]

“[(pa = p3)(e3 - €4) +2(p3 - €4)e3 — 2(ps - €3)e4), (E2b)
T, = —%[(—Pl + pa)(er - €4) =2(pa-€1)es +2(py - €4)e]

“[(=p2+ p3)(e2-€3) = 2(p3 - €2)e3 + 2(p2 - €3)€a], (E2c¢)
7, :%[(—m + p3)(€e1 - €3) =2(p3 - €1)ez3 +2(py - €3)e]

[(=p2+ pa)(er-€4) = 2(ps - €2)es +2(pa - €4)€2]. (E24d)

Here each external massless gauge boson (gluon) has two helicity states, as described by its two transverse polarization

vectors e’in (G=1,23,4):

1 1
e‘f+:e‘2‘_:—2(0,1,i,0), e’l’_:e’5+:—2(0,—1,i,0),

1 1
e, =¢€ =—=(0,icy, 1, —isy), e =¢€, =——=(0,icy, —1, —isp). E3
34 = €4 2( 0 0) 3 44 \/5( 0 0) (E3)

Then, we compute the helicity amplitudes of the gauge boson scattering:
3—2¢cy—c —3—-2¢cy+c
Tl +++ = T[- ——] = P Ci(-2¢p) + C;|———2| +C, | ———2| |, (E4a)
1 — Cy 1 + Co
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TH+-+-]=T[-+—-+= gZ{C,(—l —¢p) +C, [W] } (E4b)
Tl ——+] = T[=+ +-] = gz{Cl [W} re,- cg)}, (E4e)

where ¢,y = cos26, and all the helicity-flipped amplitudes vanish, which include the amplitudes like 7 [+ + +—],

7T [+ + —=], and so on. For convenience, we rewrite the above amplitudes (E4a) and (E4c) as follows:
CN, CN, CN,
T[++++}—T[————]—gz[ s } (ESa)
CN, CN, CWN,
T[+—+—]=T[—+—+]=92[ e } (E5b)
CNY CN? CN
T[+——+]=T[—++—]=92[ e } (E5c)
where the numerator parameters (N;, N7, N') are given by
Ny==2scp  Ni=3(3+2cp+cx). N, =35(3+2c)—cx). (E6a)
(2 + cg—2cy9 — €39) (=2 = cg+ 2¢9 + C39)
[ O, - s ; = s E6b
Ns ot S0—co) (1= co) (EGb)
N =0, N = 5(2—09—2029+C39)’ N = (=2 + g+ 2c2p — c39) (E6e)
8(1+C6> 8(1+C9)
Hence, we can readily verify that the numerators in Eq. (E6) obey the kinematic Jacobi identity:
N+ N, +N, =0, (E7a)
N+ N+ N, =0, (E7b)
NI+ NI+ N =0. (E7c)

Next, by using the double-copy approach with CK duality, we reconstruct the massless graviton scattering amplitudes as
follows:

23

Tocl+ + ++] = Tpe[- — ——] = —16¢yg*s csc? 0 = _KZ:_ (E8a)
u
B 6 2 3

Toclt = +-] = Tpel= + =+ = G 0 = === (E8b)

(1—=cp)* 4 su’

B 1 — )t 203
Toclt ——+] = Tocl-+ 4] = - 00 - 20 (Bsc)
Y 4 st

where we have applied the conversion constant (5.40) for the amplitudes in the last equality of Eqgs. (E8a) and (E8c) and
(4, —) = (+2, =2). The above reconstructed massless graviton scattering amplitudes agree with the results of Refs. [50,51]
which computed directly the graviton amplitudes by the conventional Feynman techniques.
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2. Massless graviton scattering from
type-II superstring theory

The massless graviton scattering amplitudes can be
computed by the conventional Feynman technique in
quantum field theory. The three-point and four-point
graviton interaction vertices were derived by DeWitt
[52]. It is clear that by using the conventional Feynman
diagram approach, the calculations of graviton scattering
amplitudes are extremely complicated and tedious. Hence,
we will use the amplitudes as computed within the type-II
superstring theory (SST-II) [2,53,54]. The massless grav-
itons are described by closed strings and their four-point
scattering amplitude at tree level in the SST-II is given by

MAAad3h) = R2C(3.1, u)gﬂagffﬁ% ﬁﬁk&/}?%
(E9)

where & is the 10-dimensional gravitational coupling
constant, and the Mandelstam variables (3,7,#) and the
Lorentz indices ({2, 7, - - -) are defined in 10d. In Eq. (E9),

the C function takes the following form:

1 T(=a3/2T(=di/2)T(~d'/2)

C A? 27 i) = ~ )
(0 8) = T + 3/2T0 + 22/ 2T(1 T ot )2)
(E10)
J
1
Ky, = _Z{[ st(ey
25

P2 €)(p3-e)(er-e3)] = 2t[(p

+ (
+ (P2 €1)(pa-e3)(er-€s) + (p3-€1)(ps-€r)(es-€4)] = 2ul(py
+ (p1-€s)(pa-e3)(e1-€) + (p3-€)(ps-€1)(e3-€s) + (p3-€s)(p2-€r)(er-€3)]},

where we denote the polarization vectors as e’f = ¢, i We
substitute the polarizations (E3) into the above kinematic
factor (E13). Thus, we can readily deduce the 4d graviton
scattering amplitudes at tree level:

M+ 4+ = Ml=-—]=-Z—.  (El4)

M[+—+—]=M[—+—+}:—K;£, (E14b)
K'2 u3

Mt ==+ =M=+ +-] = -7 (El4c)

These fully agree with the amplitudes (ES8) by the double-
copy construction from the corresponding gauge boson
amplitudes.

“€3)(€r - €4) + sule - €4) (€, - €3) + tu(e,

where we have set the Regge slope for the closed string to
be o =4

Using the relation of gamma functions I'(1 + z) =
z[(z), we can rewrite the function C(3,7, 1) as follows:

1 —a3/2)T(1 - d1/2)0(1 — d1)2)
+d5/2)C(1+d1/2)T(1+d01/2)
(E11)

With Ref. [53], we note that by imposing compactification
of (10 — d) spatial dimensions, the amplitude defined in
d-dimension has the same structure as that of the original
10-dimension case at tree level. In order to reduce the SST-
II amplitude (E9) to the amplitude in 4d, we take the limit
for Regge slope & — 0 and derive the reduced 4d graviton
scattering amplitude:

4

M[/I]/lzjgizt] - K/%’ﬂ/}f ﬂ/ 9 (EIZ)

where the K B, factor is given as follows [2,53,54]:

€)(e3 - €4)]

[(P1-€1)(p3-€)(€r-€3) + (P1-€3)(pa-€)(€r - €4) + (P2 €3)(pa-€1)(er-€4)

€)(p3 - €s)(€r - €3) + (p1-€3)(p2-€s)(e) - €2)
-€,)(pa-€3)(€ - €4)
(E13)

APPENDIX F: FULL AMPLITUDES OF KK
GRAVITONS AND GOLDSTONES IN 5D GR

For completeness, we summarize the full elastic ampli-
tudes of the four longitudinal KK graviton scattering [13]
and the four gravitational KK Goldstone boson scattering
(Sec. IV B) as follows:

K2M(Xo + X009 + Xyca9 + XoCep)C5C?0

Mldh?] = — ’
] 5125(s — 4)[s% — (5 — 4)%cyg + 245 + 16]
(Fla)
/\7[44,”] - _ KM (Xo + Xpc09 + Xycqg + XoCop)csc?d

5125(5 — 4)[s> — (5 — 4)%cyp + 245 + 16]
(F1b)
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where parameters X; and X ; are defined as

Xy = —2(25535° + 28245* — 1993653 + 3993652 — 2565 + 14336), (F2a)
X, = 4295° — 101525 + 308165° — 271365> — 499205 + 34816, (F2b)
X4 = 2(395° — 3125* — 27845% — 112645% + 263685 — 2048), (F2c)
X = 35° + 405" + 4165° — 153657 — 33285 — 2048, (F2d)
Xy = —2(2555° + 82485 — 414453 + 7910452 + 6425605 + 69632), (F2e)
X, = 4295° 4 41525* + 212165° — 15001652 + 11420165 + 182272, (F2f)
X, = 2(3955 — 19925* + 178085 — 5811252 + 701445 — 20480), (F2g)
X = 35° — 565* + 4165° — 153652 + 28165 — 2048. (F2h)

For our analyses in Secs. IV and V, it is also useful to express the above amplitudes in terms of the variable s:

KzMﬁ(Xg + X8C20 + X2C49 —+ chée) CSC2 9

MUl =512, (S0 + 4)[25253 + 325, + 128] (F3a)
v0 V0 V0 vO0
i A K K B
where we have the following coefficients:

X{ = 2(25555 + 792454 + 6604853 + 23500857 + 4116485, + 360448), (F4a)
X9 = —42953 + 157254 + 6297653 + 35737653 + 8376325, + 786432, (F4b)
XY = 2(=395) — 46853 + 15365] + 4966457 + 2273285, + 294912), (F4c)
X0 = — (353 4 10053 + 153657 + 921657 + 184325,), (F4d)
X( = 2(2555; + 1334853 + 1686245, + 98438453 + 35143685, + 6012928), (Fde)
X9 = —4295) — 1273254 — 1562885; — 7772853 — 25722885, — 5210112, (F4f)
X = —2(395) — 12125] — 78245, — 1068852), (F4g)
X0 = —(35) + 453). (F4h)

Then, we make high-energy expansion for the KK graviton (Goldstone) scattering amplitudes (Fla) and (F1b) or (F3a) and
(F3b) as follows:

M4R}] = Mo[4h}] + SM[4h}], (F5a)
Map,) = Molag,] + 5M[4d,]. (Fsb)

where the LO and NLO amplitudes are given by (M, /\N/lo) and (6 M, 5/\7) respectively. For the high-energy expansion in
terms 1/5, we derive from expanding Eqs. (Fla) and (F1b) the following KK graviton (Goldstone) scattering amplitudes at
the LO and NLO:
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— 352
Mo[4hy] = Mo[4e,] = 128 $(7 + c29)*csc?0), (F6a)
M
5/\/1[4}12] = —F; (1810 + 936’29 + 1266‘45 + 19C60> CSC4 0, (F6b)
N 2002
SM[4p,] = ——= (=902 + 3669¢,9 — T14cyy — Scep)csc. (Féc)

256

For the high-energy expansion in terms 1/5,, we can expand Egs. (F3a) and (F3b) and derive the following KK graviton

(Goldstone) scattering amplitudes at the LO and NLO:

2

M [ ] MO [4¢H] 128 (7 + C29>2CSC29, (F7a’)
K>M?

SM[4ht] = — 128" (650 + 261cag + 102¢49 + 11cgp) csc* 0, (F7b)
o KZMZ

5./\/1 [4¢n] = — 1 (—706 + 2049C20 — 3186’46 - C66)CSC49. (F7C)

128

Hence, we can derive the contribution of the residual
terms by computing the amplitude difference between
Egs. (F6b) and (F6c) [or Egs. (F7b) and (F7c)] as follows:

SMAR!] — SM[Ag,] = —

32M2 (39
) <7 -+ 029> . (FS)

APPENDIX G: EXTENDING KLT
CONSTRUCTION TO KK AMPLITUDES

In this Appendix, we extend the KLT [24] relation to
studying the double-copy construction of the KK ampli-
tudes, in comparison with the extended BCJ approach used
in Secs. VB and V C. The KLT relation was derived to
connect the product of the scattering amplitudes of two
open strings to that of the closed string at tree level. The
KLT kernel may be further reinterpreted as the inverse
amplitude of a biadjoint scalar theory in QFT (a la
CHY) [45].

We summarize the LO and NLO amplitudes for A} and
A5 as well as their difference:

C NO C; 5/\/
Tor = gzz o = gzz (Gla)
j ]
~ C; 5N
Tos = QZZ JSO = 922 (G1b)
j ]
AT =6T, —6T5 = gZZM, (Glc)

S()j

|
where j € (s,f,u) and their numerators satisfy the kin-
ematic Jacobi identities:
~0 -
DNI=NNj=0. D (8N;-8N;) =0.
J J

J

(G2)

Then, we expand the color factors (C;) in terms of traces
of group generators:

C, = %(—Tr[1234] + Tr[1243] + Tr[2134] — Tr[2143]),
(G3a)

C = %( —Tr[1423] + Tr[1432] + Tr[4123] — Tr[4132)),
(G3b)

C, = %(—Tr[1342] + Tr[1324] + Tr[3142] — Tr[3124]),
(G3c)

where the abbreviation {1,2,3,4} = {T“,Tb,TC,Td} is
used. Thus, each full four-particle scattering amplitude 7,
can be decomposed into the sum of color-ordered partial
amplitudes in terms of the trace of group factors:

Ty=g )  AJI234]Te[TeT TT).
P(234)

(G4)

We may further write the n-point color-ordered partial
amplitudes in the following general form [26,55]:
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(G5)

where the quantities {©;;} form a (n—2)!x (n-2)!
matrix containing massless scalar propagators, and the
numerators 7; include the kinematic information.

For the case of four-particle scattering (n =4), we
choose the partial amplitudes with ordering A[1234l
and A[1243] in the Kleiss-Kuijf basis [56,57].!
Thus, the amplitudes in Eq. (G1) can be reexpressed as
follows:
|

(ﬁﬁiiﬂ) —vox (). (o

where A = TOL? %05, AT and ﬁl = N?,N’?,(SNJ - 5./,(/}
The above propagator matrix ® takes the form

-1 1
5o to

0= ,
141 1
S0 20 Z0)

where we can readily check det ® = 0. Then, we can derive
the color-ordered LO amplitudes:

(G7)

NY O NY NY N,
TOL[1234} = g2 <— 5 + tot> s TOL {1243] = g2 (so — u0> s (GSa)

. Ny N - Ni_Na
705[1234} = gZ <— so + [_Of> N 705[1243] = gZ <§ — u—0> R (ng)

and the color-ordered NLO amplitudes:
AT[1234] = ¢ <— ON, S_ ON, + Ny t_ 5Nf> : (G9a)
0 0
AT[1243] = ¢ <‘WS — N _ ‘W”u_ ‘W“) (GYb)
0

With the above, we extend the KLT double-copy construction and compute the KK graviton scattering amplitudes at

the LO:

2

M0[1234] = §—4SOTOL[1234}TOL[1243] = 3LS0(7 + 029)2 CSC2 9,

2

Mo[1234] = %s0%05[1234ﬁ05[1243]

2

3 (G10a)

2

= ﬁs0(7 —+ 026)208029.

(G10b)

Then, with the definitions of (AM, AM,) in Egs. (5.51a) and (5.51b), we construct the KK graviton amplitudes at

the NLO:

2

2

AM,[1234] = ’1(—2505’05[1234]AT[1243} = ’;—stAT[1234]7~'05[1243]

= —K2M%(7 + ng), (Gl la)
K> K>
AM[1234] = = 50T, [1234]AT[1243] = T 5o AT [1234]T 0, [1243
= —K'ZM%<7 + ng). (Gllb)

From the above, we see that the amplitudes (G10a) and (G10b) and (G11a) and (G11b) agree with the amplitudes (5.35b)
and (5.51a) and (5.51b) which we derived by using the improved BCJ construction in the case of four-point amplitudes. We
will consider generalizing the present analysis to the KK graviton (Goldstone) amplitudes with five or more external lines in
future work.

"“Alternatively, one may choose .A[1324] instead of .A[1243] in the basis, because the U(1) decoupling identity gives
A[1234] 4+ A[1243] 4+ A[1324] = 0.
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