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We study the structure of scattering amplitudes of the Kaluza-Klein (KK) gravitons and of the
gravitational KK Goldstone bosons in the compactified 5d general relativity (GR). We analyze the
geometric “Higgs” mechanism for mass generation of KK gravitons under compactification with a general
Rξ gauge-fixing and prove that the massive KK graviton propagator is free from the van Dam-Veltman and
Zakharov discontinuity. With these, we newly formulate a gravitational equivalence theorem (GRET) to
connect the longitudinal KK graviton amplitudes to the corresponding KK Goldstone amplitudes, which is
a manifestation of the geometric Higgs mechanism at S-matrix level. We directly compute the gravitational
KK Goldstone amplitudes at tree level and show that they equal the corresponding longitudinal KK
graviton amplitudes in the high-energy limit. We further use the double-copy method with color-kinematics
duality to reconstruct the KK longitudinal graviton (Goldstone) amplitudes from the KK longitudinal gauge
boson (Goldstone) amplitudes in the compactified 5d Yang-Mills (YM) gauge theory, under the high-
energy expansion. From these, we reconstruct the GRET of the KK longitudinal graviton (Goldstone)
amplitudes in the 5d GR theory from the KK longitudinal gauge boson (Goldstone) amplitudes in the 5d
YM theory. Using either the GRETor the double-copy reconstruction, we provide a theoretical mechanism
showing that the sum of all the energy power terms up to OðE10Þ in the high-energy scattering amplitudes
of four longitudinal KK gravitons must cancel down to OðE2Þ as enforced by matching the energy
dependence of the corresponding KK Goldstone amplitudes or by matching that of the double-copy
amplitudes from the KK YM theory. With the double-copy approach, we establish a new correspondence
between the two energy-cancellations in the four-particle longitudinal KK scattering amplitudes: E4 → E0

in the 5d KK YM theory and E10 → E2 in the 5d KK GR theory. We further analyze the structure of the
residual term in the GRET and uncover a new energy-cancellation mechanism therein.
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I. INTRODUCTION

The world is apparently four dimensional, but it could be
only part of a higher dimensional space-time structure, with
all the extra spatial dimensions compactified at the boun-
daries and with their sizes much smaller than the present
observational limits. The first of such theories was pro-
posed a century ago by Kaluza and Klein in an attempt to
unify the gravitational and electromagnetic forces with a

compactified fifth dimension (5d) [1]. This intriguing
avenue was subsequently extended and explored in various
contexts, including the (super)string/M theories [2] and
extra dimensional field theories with large or small extra
dimensions [3].
The Kaluza-Klein (KK) compactification of an extra

dimension leads to an infinite tower of massive KK states in
the low-energy 4d effective field theory for each type of
particle that propagates into the extra dimension. On the
one hand, the low-lying KK states in such extra dimen-
sional KK theories have intrigued much phenomenological
and experimental efforts over the past two decades [4], as
they may provide the first signatures for the new physics
beyond the standard model (SM), ranging from the KK
states of the SM particles to the spin-2 KK gravitons and
possible dark matter candidate. On the other hand, the mass
generation of these KK states has important implications
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for the theory side because it is realized by a geometric
“Higgs” mechanism through compactification itself and
without invoking any additional Higgs boson of the
conventional Higgs mechanism [5].
For the compactified 5d KK Yang-Mills (YM) gauge

theories, it was realized [6] that each massive KK gauge
boson Aaμ

n of KK level-n acquires its mass by absorbing the
fifth component Aa5

n (Goldstone boson) of the 5d gauge
field. This geometric KK Higgs mechanism is reflected by
the KK equivalence theorem for gauge theory (KK GAET)
[6] stating that the scattering amplitude of the longitudi-
nally polarized KK gauge bosons (Aan

L ) equals that of the
corresponding KK Goldstone bosons in the high-energy
limit. This is a direct consequence of the spontaneous
geometric breaking of the 5d gauge symmetry down to
the 4d gauge symmetry via KK compactification [6,7].
It was proven that the nontrivial cancellation of energy
power terms of OðE4Þ → OðE0Þ in the four longitudinal
KK gauge boson scattering amplitude in the high energy
limit is generally guaranteed by the KK GAETunder which
the corresponding KK Goldstone boson amplitude is
manifestly of OðE0Þ [6]. The extension of KK GAET to
quantum loop level via Becchi-Rouet-Stora-Tyutin (BRST)
quantization was given in Ref. [7]. It was realized that the
KK GAET (which ensures the energy cancellation of
E4 → E0) [6,7] originates from the 5d gauge symmetry
under compactification and the resulting BRST identity.
The 5d KK gauge boson scattering amplitudes were further
studied in the context of the deconstructed 5d YM theories
[7,8] and the compactified 5d SM [9].
It was realized even earlier that the compactified 5d

general relativity (GR) also exhibits a geometric mecha-
nism for the mass generation of KK gravitons.
References [10,11] gave formal discussions of such geo-
metric breaking by formulating an infinite-parameter
Virasoro-Kac-Moody group for the 4d effective KK
theory which is spontaneously broken down to the four-
dimensional translations and the U(1) gauge group by the
5d periodic boundary conditions. It is expected that the 5d
gravitational diffeomorphism invariance of the Einstein-
Hilbert (EH) action is spontaneously broken by the
boundary conditions to that of the 4d KK theory via a
geometric breaking mechanism, where at each KK level-n
the spin-1 components (hμ5n ) and the spin-0 component
(h55n ) of the 5d spin-2 graviton (ĥAB) are supposed to be
absorbed by the KK graviton (hμνn ) via a geometric Higgs
mechanism under the 5d compactification. However, there
is no quantitative formulation of this gravitational KK
Higgs mechanism at the S-matrix level so far.
There are recent works [12,13] which gave direct

calculations of the four-particle scattering amplitudes of
(helicity-zero) longitudinal 5d KK gravitons at tree level,
and explicitly showed large energy cancellations among the
individual contributions of OðE10Þ → OðE2Þ for a flat or
warped 5d model. Following Ref. [12], the authors of

Ref. [14] used Hodge and eigenfunction decompositions
[15] to show that at tree level such energy cancellations of
four-particle KK graviton amplitudes occur for compacti-
fication on general closed Ricci-flat manifolds. While
showing such intricate large energy cancellations in the
tree-level amplitudes of four KK gravitons are interesting
and valuable, it remains to be understood quantitatively
why such nontrivial cancellations must occur at the tree
level and even loop levels for the N-particle KK amplitudes
(N ≥ 4) in connection to the compactified diffeomorphism
(gauge) symmetry with geometric breaking in the 5d KK
GR or in the 5d KK YM gauge theory.
In this work, we present a general formulation of the

geometric Higgs mechanism for the compactified 5d GR in
the Rξ gauge, at both the Lagrangian level and scattering
S-matrix level. For this geometric Higgs mechanism, we
newly formulate a KK gravitational equivalence theorem
(GRET) which quantitatively connects each scattering
amplitude of longitudinally polarized KK gravitons to that
of the corresponding gravitational KK Goldstone bosons.
The formulation of GRET is highly nontrivial and differs
from theKKGAETof the 5dKKgauge theories [6], because
the gravitational Goldstone bosons contain both spin-0 and
spin-1 components. By inspecting the spin-0 gravitational
KKGoldstone scattering amplitudes and the residual term of
the GRET, we show that they are manifestly ofOðE2Þ in the
high-energy regimewithout invoking any extra energypower
cancellation. Using the GRET (based on BRST quantiza-
tion), we provide a theoretical mechanism showing that the
sum of all the energy power terms [up toOðE10Þ] in the four
longitudinal KK graviton scattering amplitude must cancel
down to OðE2Þ as enforced by matching the energy power
dependence in the corresponding KK Goldstone amplitude
(and residual term).Wewill also extend this conclusion to the
case of N-particle longitudinal KK graviton scattering
amplitudes and up to loop levels. This is in contrast to the
case of the Fierz-Pauli (FP) gravity and alike [16,17] where
the four-particle massive longitudinal graviton scattering
amplitudes generally scale as E10 [18]. By including addi-
tional nonlinear polynomial interaction terms in the liter-
ature, the high-energy behavior of the massive graviton
amplitudes could be improved to no better than E6 [19,20],
which is stillmuchworse than the final energydependence of
OðE2Þ in the massive KK graviton scattering amplitudes as
mentioned above.
In addition, using our general Rξ gauge formulation of

the massive KK graviton propagator, we demonstrate that
the spontaneous breaking of the 5d gravitational diffeo-
morphism invariance of the EH action under a geometric
Higgs mechanism can ensure the absence of the van Dam-
Veltman and Zakharov (vDVZ) discontinuity [21] in the
massless limit, in contrast to the case of the Fierz-Pauli
gravity and alike [16,17].
Furthermore, we attempt to reconstruct the 5d KK

graviton scattering amplitudes from the corresponding 5d
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KK gauge boson scattering amplitudes [6] under high-
energy expansion to the leading-order (LO) and the next-
to-leading-order (NLO) contributions, by extending the
conventional double-copy method of the color-kinematics
(CK) duality of Bern-Carrasco-Johansson (BCJ) [22,23]
which was proposed for connecting the massless gauge
theories to the massless gravity. The BCJ method was
inspired by the Kawai-Lewellen-Tye (KLT) [24] relation
which connects the product of the scattering amplitudes of
two open strings to that of the closed string at tree level.
Analyzing the properties of the heterotic string and open
string amplitudes can prove and refine parts of the BCJ
conjecture [25]. The conventional double-copy formulation
reveals a deep connection between the GR theory with
massless spin-2 gravitons and the YM theory with massless
spin-1 gauge bosons. This may be schematically presented
as follows [26]:

GR ¼ ðGaugeTheoryÞ2: ð1:1Þ

We extend the double-copy method to the 5d massive
KK gravity and KK gauge theories, and compute the LO
and NLO four-particle scattering amplitudes under the
high-energy expansion. This provides an extremely simple
and efficient way to construct the complicated KK graviton
amplitudes from the 5d KK gauge boson amplitudes.
Indeed, we find that our LO longitudinal KK graviton
amplitudes as reconstructed from the LO amplitudes of 5d
KK gauge bosons [6] are equal to the KK graviton
amplitudes as obtained by the lengthy direct calculations
of [12,13]. Because the 5d KK gauge boson amplitudes [6]
are of OðE0M0

nÞ, our double-copy approach shows that the
reconstructed KK graviton amplitudes must be of
OðE2M0

nÞ, where Mn denotes the relevant KK mass.
Moreover, we use the KK Goldstone amplitudes of the
5d YM theory [which are manifestly of OðE0M0

nÞ] to
reconstruct the corresponding gravitational KK Goldstone
amplitudes by the double-copy method, and find that these
gravitational KK Goldstone amplitudes must be of
OðE2M0

nÞ. We further compare the reconstructed gravita-
tional KK Goldstone amplitudes with the reconstructed
longitudinal KK graviton amplitudes under the high-energy
expansion, and find that they are equal to each other at
the leading order of OðE2M0

nÞ and their difference is
only OðE0M2

nÞ.
Hence, for the four-particle scattering processes, we

establish the GRET in the 5d KK GR theory from the
KK GAET in the 5d YM theory [6] by using the double-
copy reconstruction method. By doing so, we will dem-
onstrate a nontrivial new correspondence from the energy
cancellation of E4 → E0 in the four-particle amplitudes for
longitudinal KK gauge bosons of the 5d KK YM theory
(YM5) to the energy cancellation of E10 → E2 in the four-
particle amplitudes for longitudinal KK gravitons of the 5d
KK GR theory (GR5). Schematically, we illustrate this

correspondence between the two energy cancellations as
follows:

E4 → E0ðYM5Þ ⟹ E10 → E2ðGR5Þ; ð1:2Þ

which will be established later in Eq. (5.38) of Sec. V B. In
addition, with the double-copy approach, we analyze the
structure of the residual terms in the GRET and further
uncover a new energy-cancellation mechanism of E2 → E0

therein. It is clear that the GRETand its reconstruction from
the 5d KK YM gauge theory via double copy can provide a
deep quantitative understanding on the structure of the KK
graviton (Goldstone) scattering amplitudes and thus the
realization of the geometric Higgs mechanism of KK
compactification.
This paper is organized as follows. In Sec. II, we present

the general Rξ gauge quantization for the 5d KK GR. We
derive the propagators for the KK graviton and KK
Goldstone bosons. We will show that the KK graviton
propagator in the Rξ gauge is free from the vDVZ
discontinuity, in contrast to that of the Fierz-Pauli gravity.
In Sec. III, we present the formulation of the GRETand use
it to establish a theoretical mechanism which ensures the
nontrivial energy cancellations in the longitudinal KK
graviton scattering amplitudes. This cancellation mecha-
nism holds not only for the four-particle amplitudes at tree
level, but also can be applied to the general N-particle
amplitudes (N ≥ 4) and up to loop levels in principle. In
Sec. III A, we first derive the formulation of the GRET,
which has highly nontrivial difference from the KK GAET
of the 5d KK gauge theories [6]. Then, in Sec. III B we
present a general method of energy power-counting (à la
Weinberg) to determine the leading energy dependence of
the high-energy scattering amplitudes in the KK GR theory
and in the KK YM theory. In Sec. IV, we present the
explicit analyses of the scattering amplitudes of longi-
tudinal KK gravitons and of the corresponding gravita-
tional KK Goldstone bosons to demonstrate how the GRET
works. In Sec. V, we establish the double-copy construc-
tions of the longitudinal KK graviton scattering amplitudes
and the corresponding KK Goldstone scattering ampli-
tudes. We give in Sec. VA the full scattering amplitudes of
the KK longitudinal gauge boson amplitudes and the KK
Goldstone amplitudes, and derive their LO and NLO
contributions under high-energy expansion. Then, in
Sec. V B, we use the double-copy approach to reconstruct
the LO KK graviton amplitudes and KK Goldstone
amplitudes. With these, we establish the GRET in the 5d
KK GR theory from the KK GAET in the 5d YM gauge
theory at the LO. In Sec. V C, we systematically study the
double-copy construction at the NLO and further propose
an improved double-copy construction of the NLO gravi-
tational KK amplitudes of OðE0M2

nÞ. In Sec. V D, we
analyze the structure and size of the residual term in the
GRET. We establish a new correspondence from the KK
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GAET to the KK GRET, and uncover a new energy-
cancellation mechanism of E2 → E0 in the residual term
of the GRET. We conclude in Sec. VI. Finally, the
Appendixes A–G present a number of analyses used for
the text discussions.

II. GAUGE-FIXING AND PROPAGATORS
WITHOUT vDVZ DISCONTINUITY

In this section, we first setup the 5d compactification
under the S1=Z2 orbifold, including the notations and KK
expansions. Then, we present the quadratic Lagrangian
terms from the 5d EH action, construct a general Rξ gauge-
fixing, and also derive the relevant KK graviton and KK
Goldstone propagators. Finally, we prove that the massive
KK graviton propagator is naturally free from the vDVZ
discontinuity.

A. Setup and weak field expansion in 5d

For the current study, we consider the five-dimensional
general relativity on a compactified flat space under
orbifold S1=Z2.

1 Thus, the compactified fifth dimension
is a line segment with 0 ≤ x5 ≤ πrc, where rc stands for the
compactification radius. Based on this, the 5d Einstein-
Hilbert action is given by

SEH ¼
Z

d5x
2

κ̂2
ffiffiffiffiffiffi
−ĝ

p
R̂; ð2:1Þ

where R̂ is the 5d Ricci scalar curvature, κ̂ is the 5d
gravitational coupling with mass-dimension − 3

2
and it is

related to the 5d Newton constant Ĝ via κ̂ ¼
ffiffiffiffiffiffiffiffiffiffiffi
32πĜ

p
. The

5d metric tensor is ĝAB (A;B ¼ 0, 1, 2, 3, 5) and its
determinant is given by ĝ ¼ detðĝABÞ. We also adopt the
metric signature ð−;þ;þ;þ;þÞ. In addition, we denote
the 4d Lorentz indices by the lowercase Greek letters (such
as μ ¼ 0, 1, 2, 3), and the 5d Lorentz indices by the
uppercase Latin letters (such as A ¼ μ; 5).
We make the following weak field expansion of the 5d

EH action (2.1) around the flat Minkowski metric η̂AB:

ĝAB ¼ η̂AB þ κ̂ĥAB; ð2:2Þ

where the graviton field ĥAB has the mass-dimension 3
2
.

Then, it is straightforward to derive

ĝAB ¼ η̂AB − κ̂ĥAB þ κ̂2ĥACĥC
B − κ̂3ĥACĥCDĥ

DB þOðĥ4Þ;
ð2:3aÞ

ffiffiffiffiffiffi
−ĝ

p
¼ 1þ κ̂

2
ĥþ κ̂2

8
ðĥ2 − 2ĥAĥ

AÞ

þ κ̂3

48
ðĥ3 − 6ĥĥABĥ

ABþ 8ĥAĥ
BCĥACÞ þOðĥ4Þ;

ð2:3bÞ

where we have defined ĥ ¼ η̂ABĥAB. Now, the 5d scalar
curvature R̂ can be decomposed in terms of the metric
tensors ĝAB and ĝAB as follows:

R̂ ¼ ĝABR̂AB ¼ ĝABR̂ACB
C; ð2:4aÞ

R̂ACB
C ¼ ∂CΓ̂C

AB − ∂AΓ̂C
CB þ Γ̂D

ABΓ̂C
DC − Γ̂D

CBΓ̂C
DA;

ð2:4bÞ

Γ̂C
AB ¼ 1

2
ĝCDð∂BĝDA þ ∂AĝBD − ∂DĝABÞ: ð2:4cÞ

With the above formulas, we can expand the 5d EH
action SEH ¼ R d5xL̂EH shown in Eq. (2.1) as

L̂EH ¼ L̂0 þ κ̂L̂1 þ κ̂2L̂2 þ κ̂3L̂3 þ � � � ; ð2:5Þ

where each expanded Lagrangian term L̂j ðj ¼ 0; 1;…Þ
contains jþ 2 graviton fields. The effective 4d Lagrangian
is obtained by integrating over the extra dimension coor-
dinate x5 under proper compactification:

Leff ¼
X∞
j¼0

Z
L

0

dx5 κ̂jL̂j: ð2:6Þ

The realization of 5d compactification will be given in the
next subsection. Finally, the corresponding effective 4d
coupling κ ¼ ffiffiffiffiffiffiffiffiffiffiffi

32πG
p

is connected to the κ̂ and the reduced
Planck mass MPl via

κ ¼ κ̂ffiffiffiffi
L

p ¼ 2

MPl
; ð2:7Þ

where we have denoted L ¼ πrc as the length of the
fifth dimension under the compactification of S1=Z2,
and the reduced Planck mass is represented as MPl ¼
ð8πGÞ−1=2.

B. Geometric Higgs mechanism and gauge-fixing
under KK compactification

In this subsection, we will make KK compactification
of the 5d EH action. This can be realized for the 5d
obifold compactification S1=Z2 with proper boundary
conditions, and the resulting 4d effective KK theory
contains the KK tower of massive graviton states.

1The extension of our present study to the case of nonflat 5d
space (such as warped 5d [27]) does not cause any conceptual
difference regarding all the major conclusions in this work, which
will be addressed elsewhere.
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The 5d gravitational diffeomorphism invariance of the
EH action is expected to be spontaneously broken by
the boundary conditions to that of the 4d KK theory via
a geometric breaking mechanism, where at each KK
level-n the vector components (hμ5n ) and the scalar
component (h55n ) of the 5d spin-2 graviton (ĥAB) are
supposed to be absorbed by the KK graviton (hμνn ).
There are formal discussions of such geometric breaking
in the literature [10,11], by formulating an infinite-
parameter Virasoro-Kac-Moody group for the 4d effec-
tive KK theory which is spontaneously broken down to
the four-dimensional translations and the U(1) gauge
group. These formal discussions [10,11] did not provide
a practical formulation as needed for our current study
of perturbative KK theory and for the scattering ampli-
tudes at the S-matrix level.
In the following, we present an explicit formulation of

this geometric Higgs mechanism at the Lagrangian
level, and then at the S-matrix level via the GRET
(Sec. III). The 5d geometric Higgs mechanism was
previously established for the compactified 5d Yang-
Mills theories in Ref. [6].2 In this study, we present an
explicit formulation of the 5d geometric Higgs mecha-
nism for the 5d Einstein gravity, with which we will
identify the gravitational Goldstone bosons ðhμ5n ; h55n Þ for
each massive KK graviton hμνn . Then, we explicitly
construct the Rξ gauge-fixing term and derive the
propagators for KK gravitons and their corresponding
Goldstone bosons.
The 5d graviton field ĥAB can be parametrized as

ĥAB ¼
�
ĥμν þ wημνϕ̂ ĥμ5

ĥ5ν ϕ̂

�
; ð2:8Þ

where the (1,1) block is the 4d component of ĥAB and the
additional term wημνϕ̂ corresponds to a Weyl transforma-
tion3 with a nonzero coefficient w.4 The (2, 2) block of ĥAB
is a scalar field known as the radion field (ϕ̂≡ ĥ55). The
blocks (1, 2) and (2, 1) correspond to the vector component
of the 5d graviton field ĥAB.
With the 5d metric tensor (2.2) and the 5d graviton field

(2.8), we derive the squared 5d interval

dŝ2 ¼ ½ημν þ κ̂ðĥμν þ wημνϕ̂Þ�dxμdxν
þ 2κ̂ĥμ5dxμdx5 þ ð1þ κ̂ ϕ̂Þdx5dx5: ð2:9Þ

We compactify the 5d space under S1=Z2 orbifold and
require dŝ2 to be invariant under a Z2 orbifold reflection
x5 → −x5. Hence, this requires that the graviton’s tensor
component ĥμν and the scalar component ϕ̂ to be even
underZ2 symmetry, while the vector component ĥμ5 should
be Z2 odd:

ĥμνðxρ; x5Þ ¼ ĥμνðxρ;−x5Þ; ð2:10aÞ

ĥμ5ðxρ; x5Þ ¼ −ĥμ5ðxρ;−x5Þ; ð2:10bÞ

ϕ̂ðxρ; x5Þ ¼ ϕ̂ðxρ;−x5Þ: ð2:10cÞ

This is equivalent to imposing the Neumann boundary
conditions on ĥμν and ϕ̂ at the ends of the 5d interval
½0; L�, and imposing the Dirichlet boundary condition
on ĥμ5,

∂5ĥμνjx5¼0;L ¼ 0; ∂5ϕ̂jx5¼0;L ¼ 0; ĥμ5jx5¼0;L ¼ 0:

ð2:11Þ

With these, we can make the following KK expansions for
the 5d graviton fields via Fourier series in terms of their
zero modes and KK states,

ĥμνðxρ; x5Þ ¼ 1ffiffiffiffi
L

p
�
hμν0 ðxρÞ þ

ffiffiffi
2

p X∞
n¼1

hμνn ðxρÞ cos nπx
5

L

�
;

ð2:12aÞ

ĥμ5ðxρ; x5Þ ¼
ffiffiffiffi
2

L

r X∞
n¼1

hμ5n ðxρÞ sin nπx
5

L
; ð2:12bÞ

ϕ̂ðxρ; x5Þ ¼ 1ffiffiffiffi
L

p
�
ϕ0ðxρÞ þ

ffiffiffi
2

p X∞
n¼1

ϕnðxρÞ cos
nπx5

L

�
:

ð2:12cÞ

Then, we examine the quadratic Lagrangian L̂0, which
takes the following form:

L̂0 ¼
1

2
ð∂AĥÞ2 −

1

2
ð∂CĥABÞ2 − ∂Aĥ

AB∂Bĥþ ∂Aĥ
AC∂BĥBC:

ð2:13Þ

Substituting Eq. (2.8) into the quadratic Lagrangian (2.13),
we thus derive

2The extension to the deconstructed 5d YM theories was given
in Ref. [8] and to the compactified 5d SM was given in Ref. [9].

3More precisely, under the Weyl transformation the 4d metric
is rescaled as ĝμν → ĝ0μν ¼ ewκ̂ ϕ̂ĝμν.

4In Ref. [17], w is expressed as w ¼ 2=ðd − 2Þ, which gives
w ¼ 1 in 4d and w ¼ 2=3 in 5d. We will determine the value of w
from a consistency requirement in the following analysis.
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L̂0 ¼
1

2
ð∂μĥÞ2 þ

1

2
ð∂5ĥÞ2 −

1

2
ð∂ρĥμνÞ2 −

1

2
ð∂5ĥμνÞ2 − ð∂μĥν5Þ2 þ ð∂μĥ

μ5Þ2 þ 3wðwþ 1Þð∂μϕ̂Þ2

þ 6w2ð∂5ϕ̂Þ2 − ∂μĥ
μν∂νĥþ ∂μĥ

μρ∂νĥνρ − ð2wþ 1Þð∂μĥ
μν∂νϕ − ∂μĥ∂μϕ̂Þ

− 2∂μĥ
μ5∂5ĥþ 2∂5ĥμν∂μĥν5 − 6w∂μĥ

μ5∂5ϕ̂þ 3w∂5ĥ∂5ϕ̂: ð2:14Þ

In terms of the KK expansions (2.12) and integrating over x5, we can further expand the Lagrangian (2.14) as follows:

L0 ¼
X∞
n¼0

�
1

2
ð∂μhnÞ2 þ

1

2
M2

nðhnÞ2 −
1

2
ð∂ρhμνn Þ2 − 1

2
M2

nðhμνn Þ2 − ð∂μAν
nÞ2 − ð∂μA

μ
nÞ2

þ 3wðwþ 1Þð∂μϕnÞ2 þ 6w2M2
nϕ

2
n − ∂μh

μν
n ∂νhn þ ∂μh

μρ
n ∂νhνρ;n

− ð2wþ 1Þð∂μh
μν
n ∂νϕn − ∂μhn∂μϕnÞ þ 2Mnhn∂μA

μ
n − 2Mnh

μν
n ∂μAν;n

þ 3wM2
nhnϕn þ 6wMn∂μA

μ
nϕn

�
; ð2:15Þ

where for convenience we have denoted the vector field as Aμ
n ≡ hμ5n , and Mn ¼ nπ=L stands for the mass of KK states of

level-n.
Inspecting the Lagrangian (2.15), we set w ¼ − 1

2
to remove the two undesirable mixing terms in its third line. We can

further eliminate the rest of the mixing terms in the third and fourth lines of Eq. (2.15) by introducing the following Rξ-type
gauge-fixing terms:

LGF ¼ −
X∞
n¼0

�
1

ξn

�
∂νh

μν
n −

�
1 −

1

2ξn

�
∂μhn þ ξnMnA

μ
n

�
2

þM2
n

4ξn

�
hn − 3ξnϕn þ

2∂μA
μ
n

Mn

�
2
�
; ð2:16Þ

where ξn is the gauge-fixing parameter for the zero-mode gravitons (n ¼ 0) and KK gravitons (n ≥ 1). By imposing the
gauge-fixing term (2.16) to remove the quadratic mixing terms, we explicitly verify that both the vector componentAμ

n and
scalar component ϕn are absorbed (“eaten”) by the KK graviton hμνn , and identify them as the gravitational KK Goldstone
fields, which are the direct outcome of realizing the 5d geometric KK Higgs mechanism.
From the above, we can explicitly integrate over x5 and derive the effective 4d KK action at the quadratic order:

Seff ¼
Z

d4x
X∞
n¼0

1

2
ðhμνn D−1

μναβ;nnh
αβ
n þAμ

nD−1
μν;nnAν

n þ ϕnD−1
nnϕnÞ; ð2:17Þ

where the inverse KK propagators take the following forms:

D−1
μναβ;nn ¼ −

�
1 −

2

ξn

�
1 −

1

2ξn

�
2
�
ημνηαβ∂2 þ

�
1 −

1

2ξn

�
ημνηαβM2

n

þ 1

2
ðημαηνβ þ ημβηναÞð∂2 −M2

nÞ þ
1

2
ðημαηνβ þ ημβηναÞð∂2 −M2

nÞ

þ
�
1

ξn
− 1

�
2

ðημν∂α∂β þ ηαβ∂μ∂νÞ −
1

2

�
1 −

1

ξn

�
ðημα∂ν∂β þ ημβ∂ν∂α

þ ηνα∂μ∂β þ ηνβ∂μ∂αÞ; ð2:18aÞ

D−1
μν;nn ¼ ημνð∂2 − ξnM2

nÞ þ
1 − ξn
ξn

∂μ∂ν; ð2:18bÞ

D−1
nn ¼ ∂2 − ð3ξn − 2ÞM2

n; ð2:18cÞ

and we have also rescaled the vector and scalar fields by
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Aμ
n →

1ffiffiffi
2

p Aμ
n; ϕn →

ffiffiffi
2

3

r
ϕn; ð2:19Þ

which ensure that their kinematic terms have the correct normalization factor 1
2
. Furthermore, the propagators of the KK

graviton and KK Goldstone bosons are the inverse of Eq. (2.18) and satisfy the following conditions:Z
d4zD−1

μναβ;nnðx; zÞDαβρσ
nn ðz; yÞ ¼ i

2
ðδρμδσν þ δσμδ

ρ
νÞδð4Þðx − yÞ; ð2:20aÞZ

d4zD−1
μν;nnðx; zÞDνρ

nnðz; yÞ ¼ iδρμδð4Þðx − yÞ; ð2:20bÞZ
d4zD−1

nnðx; zÞDnnðz; yÞ ¼ iδð4Þðx − yÞ: ð2:20cÞ

Substituting Eq. (2.18) into Eq. (2.20), we finally derive the following compact form of the propagators for the KK
gravitons ðhμνn Þ and for the KK Goldstone bosons (Aμ

n and ϕn) in momentum space:

Dμναβ
nm ðpÞ ¼ −

iδnm
2

�ðημαηνβ þ ημβηνα − ημνηαβÞ
p2 þM2

n

þ 1

3

�
1

p2 þM2
n
−

1

p2 þ ð3ξn − 2ÞM2
n

��
ημν −

2pμpν

M2
n

��
ηαβ −

2pαpβ

M2
n

�
þ 1

M2
n

�
1

p2 þM2
n
−

1

p2 þ ξnM2
n

�
ðημαpνpβ þ ημβpνpα þ ηναpμpβ þ ηνβpμpαÞ

þ 4pμpνpαpβ

ξnM4
n

�
1

p2 þ ξ2nM2
n
−

1

p2 þ ξnM2
n

��
; ð2:21aÞ

Dμν
nmðpÞ ¼ −iδnm

p2 þ ξnM2
n

�
ημν −

pμpνð1 − ξnÞ
p2 þ ξ2nM2

n

�
; ð2:21bÞ

DnmðpÞ ¼
−iδnm

p2 þ ð3ξn − 2ÞM2
n
: ð2:21cÞ

The Faddeev-Popov ghosts can be further included for the
loop analysis although this is not needed for our present
study of KK scattering amplitudes at tree level. The
unphysical states of the massive KK gravitons correspond
to the spin-0 and spin-1 Goldstone bosons, and we see that
the above Goldstone propagators (2.21b) and (2.21c)
have the same ξn-dependent unphysical mass poles as
those of the KK graviton propagator (2.21a).
It is instructive to consider the Feynman-’t Hooft gauge

with ξn ¼ 1. In this gauge, the above Rξ-gauge propagators
take the following simple forms:

Dμναβ
nm ðpÞ ¼ −

iδnm
2

ημαηνβ þ ημβηνα − ημνηαβ

p2 þM2
n

; ð2:22aÞ

Dμν
nmðpÞ ¼ −

iημνδnm
p2 þM2

n
; ð2:22bÞ

DnmðpÞ ¼ −
iδnm

p2 þM2
n
: ð2:22cÞ

We can find that all the mass poles are identical to
p2 ¼ −M2

n. Then, we take the limit ξn → ∞ and derive
the propagator under unitary gauge:

Dμναβ
nm;UGðpÞ ¼ −

iδnm
2

ημαηνβ þ ημβηνα − 2
3
ημνηαβ

p2 þM2
n

; ð2:23Þ

where ημν ¼ ημν þ pμpν=M2
n. As we will discuss in

Sec. II C, this just coincides with the massive graviton
propagator (2.25) of the 4d Fierz-Pauli Lagrangian.
Appendix B gives more detailed discussions about the
graviton propagator under the unitary gauge.

C. Massless limit and absence of vDVZ
discontinuity in Rξ gauge

In this subsection, we examine the massless limit
Mn → 0 under the Rξ gauge as constructed in Sec. II B.
We will demonstrate that our Rξ propagator (2.21a) of KK
gravitons has a smooth massless limit and is free from the
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conventional vDVZ discontinuity [21] of the Fierz-Pauli
massive gravity [16,17].
We recall the 4d Fierz-Pauli Lagrangian describing the

massive graviton fields hμν with mass M [16,17],

LFP ¼ 1

2
ð∂μhÞ2 −

1

2
ð∂αhμνÞ2 − ∂μhμν∂νh

þ ∂μhμα∂νhνα þ
1

2
M2ðh2 − h2μνÞ; ð2:24Þ

which has the following propagator

Dμναβ
FP ðpÞ ¼ −

i
2

ημαηνβ þ ημβηνα − 2
3
ημνηαβ

p2 þM2
; ð2:25Þ

where ημν ¼ ημν þ pμpν=M2. In comparison, for the 4d
Einstein gravity under a harmonic gauge-fixing

LGF ¼
1

ξ

�
∂νhμν −

1

2
∂μh

�
2

; ð2:26Þ

the massless graviton propagator is given by

Dμναβ
00 ðpÞ ¼ −

i
2

�
ημαηνβ þ ημβηνα − ημνηαβ

p2
þ ðξ − 1Þ η

μαpνpβ þ ημβpνpα þ ηναpμpβ þ ηνβpμpα

p4

�
ð2:27aÞ

¼ −
i
2

ημαηνβ þ ημβηνα − ημνηαβ

p2
ðfor ξ ¼ 1Þ: ð2:27bÞ

This can also describe the propagator for the zero-mode
gravitons in the KK theory under the harmonic gauge-
fixing (2.26). We inspect the massless limit M → 0 of
the massive graviton propagator (2.25) of Fierz-Pauli. In
the massless limit, we note the following features of the
numerator in Eq. (2.25): (i) the graviton propagator (2.25)
has singularities from all the mass-dependent terms like
pμpν=M2 inside those ημν’s; (ii) the coefficient − 2

3
of the

pure metric term ημνηαβ in the numerator does not match the
coefficient −1 of the corresponding term in the massless
graviton propagator (2.27b), which is the so-called vDVZ
discontinuity [21]. This discontinuity is unique for dealing
with the spin-2 massive gravitons à la Fierz-Pauli. We note
that the origin for such vDVZ discontinuity is due to the
mismatch of physical degrees of freedom between the
massive gravitons in the Fierz-Pauli gravity and the mass-
less gravitons in GR: the massive graviton has 5 helicity
states ðλ ¼ �2;�1; 0Þ, while the massless graviton only
has two (λ ¼ �2), namely, 5 ≠ 2.
For the singularities mentioned above, we note that

similar singularity exists for the spin-1 gauge fields in the
massive Yang-Mills theory (as well as the Maxwell theory
with a massive photon) when considering the massless
limit. To see this, we recall the propagator of the spin-1
massive gauge fields Aa

μ:

DμνðpÞ ¼ −i
ημν þ pμpν=M2

p2 þM2
; ð2:28Þ

where the term pμpν=M2 becomes singular in the massless
limit. The appearance of the singularities in the massive
graviton propagator and massive gauge boson propagator is
also due to the mismatch of physical degrees of freedom. In
the case of massive spin-1 gauge field Aaμ, it has three
helicity states λ ¼ �1, 0, whereas the massless gauge field
only has two helicity states λ ¼ �1. This mismatch is the
cause of the singular termpμpν=M2 in themassless limit. But
in the Rξ gauge of the spontaneously broken gauge theories
with the conventional 4d Higgs mechanism [5] or with the
geometric Higgs mechanism under compactification [6], the
propagator of a massive gauge boson Aaμ (with massM) can
smoothly reduce to the massless gauge boson propagator
under the limit M → 0 without causing any singularity or
discontinuity. This is because the massive gauge field Aaμ

(with M ≠ 0) has three physical degrees of freedom, and in
the massless limitM → 0 the physical states of Aaμ reduces
to two transverse polarization states and its longitudinal com-
ponent disappears while the “eaten” would-be Goldstone
boson becomes a physical massless scalar. Hence, the
physical degrees of freedom remain conserved, 3 ¼ 2þ 1,
before and after taking the massless limit.
Then, we examine the massless limit for the propagators

of massive KK gravitons. For this, we take the massless
limit Mn → 0 for the Rξ gauge propagator (2.21a) and
expand it up to the zeroth order of Mn. We find that under
the limitMn → 0, the sum of all the negative powers ofMn
vanishes, and the remaining nonzero part takes the form:

Dμναβ
nm ðpÞ ¼ −

iδnm
2

�ðημαηνβ þ ημβηνα − ημνηαβÞ
p2

−
1 − ξn
p4

ðημαpνpβ þ ημβpνpα þ ηναpμpβ

þ ηνβpμpα − 2ημνpαpβ − 2ηαβpμpνÞ − 4ð1 − ξnÞ3
pμpνpαpβ

p6

�
; ð2:29aÞ
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¼ −
iδnm
2

ημαηνβ þ ημβηνα − ημνηαβ

p2
ðfor ξn ¼ 1Þ: ð2:29bÞ

From the above, we see that under the massless limit there is
no singular term, and the pure metric terms ðημαηνβ þ
ημβηνα − ημνηαβÞ in the numerator agree with the massless
graviton propagator (2.27) (the ξn ¼ 1 part) in the conven-
tional 4dEinstein gravity.Hence, it is impressive to see that in
themassless limit theRξ gauge propagator (2.21a) ofmassive
KK gravitons is free from singularity and the vDVZ
discontinuity. Our Rξ gauge formulation of the KK theory
has a well-defined massless limit because the physical
degrees of freedom are conserved before and after taking
the massless limit under the geometric Higgs mechanism. A
massive KK graviton hμνn (having five helicity states
λ ¼ �2;�1, 0) acquires its mass via the geometric Higgs
mechanism (compactification) by absorbing (eating) the
corresponding vector-Goldstone component Aμ

n (having
two helicity states λ ¼ �1) and scalar-Goldstone component
ϕn (having helicity λ ¼ 0) of the 5d graviton field ĥAB. In the
massless limit, hμνn becomes massless (having only two
helicities λ ¼ �2), and the vector and scalar Goldstone
bosons ðAμ

n;ϕnÞ become massless physical states (having
2þ 1 helicities λ ¼ �1, 0). Namely, each massive KK
graviton hμνn has its three extra helicity states (λ ¼ �1, 0)
originate from those of the vector component Aμ

n (λ ¼ �1)
and the scalar component ϕn (λ ¼ 0). Hence, we see that the
total physical degrees of freedom remain conserved before
and after taking the massless limit: 5 ¼ 2þ 2þ 1. This
shows that the compactified KK GR theory provides a
consistent description of the massive spin-2 gravitons and
is free from the vDVZ discontinuity as well as singularities
under the massless limit, because the KK gravitons acquire
their masses via the geometric Higgs mechanism without
explicitly breaking the diffeomorphism invariance in the 5d
bulk (except realizing the compactification at the 5d boun-
daries).
Finally, we also note that the ξn ≠ 1 part of our KK

graviton propagator (2.29a) differs from the conventional
massless graviton propagator (2.27a) under the harmonic
gauge-fixing (2.26). This is because under the massless
limit our Rξ gauge-fixing term (2.16) reduces to

LGF → −
X∞
n¼0

1

ξn

�
∂νh

μν
n −

�
1 −

1

2ξn

�
∂μhn

�
2

; ð2:30Þ

where the coefficient ð1 − 1
2ξn
Þ differs from that of the

conventional harmonic gauge-fixing (2.26) except ξn ¼ 1.

III. FORMULATION OF GRAVITATIONAL
EQUIVALENCE THEOREM AND

ENERGY CANCELLATION MECHANISM

In the previous section, we have presented the Rξ gauge
formulation of the geometric Higgs mechanism for massive

KK gravitons hμνn and the corresponding KK Goldstone
bosons Aμ

nð¼ hμ5n Þ and ϕnð¼ h55n Þ, under which we can
derive the propagators.
In the Sec. III A, we apply our Rξ gauge formulation in

Sec. II B to establish a gravitational equivalence theorem
for the 5d KK GR theory, which quantitatively connects the
high-energy scattering amplitude of the (helicity-zero)
longitudinal KK gravitons hnL to that of the corresponding
KK Goldstone bosons ϕn. Then, in Sec. III B, we will show
that the GRET identity provides a theoretical mechanism
which guarantees the longitudinal KK graviton scattering
amplitudes to have nontrivial energy cancellations, such as
E10 → E2 for the four-particle amplitudes and E2Nþ2 → E2

for the N-particle amplitudes. We derive a generalized
naive power-counting method (à la Weinberg [28]) on the
leading energy dependence of the scattering amplitudes,
and apply this to analyze the leading energy dependence of
the relevant amplitudes on both sides of the GRET identity
(3.15). With these, we can demonstrate the above-men-
tioned nontrivial energy cancellations in the longitudinal
KK graviton scattering amplitudes.

A. Formulation of gravitational equivalence theorem

We first express the Rξ gauge-fixing term (2.16) in the
following form:

LGF ¼ −
X∞
n¼0

1

ξn
ðFA

nÞ2 ¼ −
X∞
n¼0

1

ξn
½ðFμ

nÞ2 þ ðF5
nÞ2�; ð3:1aÞ

Fμ
n ¼ ∂νh

μν
n −

�
1 −

1

2ξn

�
∂μhn þ ξnMnA

μ
n; ð3:1bÞ

F5
n ¼

1

2
ðMnhn − 3ξnMnϕn þ 2∂μA

μ
nÞ: ð3:1cÞ

Accordingly, we can write down the Faddeev-Popov ghost
term LFP and the BRST [29] transformations. With these
and using the method of Ref. [30] (cf. Appendix A of the
first paper therein), we can derive a Slavnov-Taylor-type
identity

h0jT̂Fμ1
n1ðx1ÞFμ2

n2ðx2Þ � � �F5
m1
ðy1ÞF5

m2
ðy2Þ � � �Φj0i ¼ 0;

ð3:2Þ

whereΦ denotes any other on-shell physical fields after the
Lehmann-Symanzik-Zimmermann (LSZ) amputation. In
the momentum space, the identity (3.2) takes the form

h0jFμ1
n1ðk1ÞFμ2

n2ðk2Þ � � �F5
m1
ðp1ÞF5

m2
ðp2Þ � � �Φj0i ¼ 0;

ð3:3Þ

where we will set each external momentum to be on shell
(according to the mass of the corresponding physical KK
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graviton hμνn ): k2j ¼ −M2
nj and p2

j ¼ −M2
mj

(with
j ¼ 1; 2;…). For the case of just one external line of Fμ

n

or F5
n, we obtain the following identities of the scattering

amplitudes:

M½Fμ
nðkÞ;Φ� ¼ 0; M½F5

nðkÞ;Φ� ¼ 0; ð3:4Þ

where we have not yet imposed the LSZ amputation on the
external line Fμ

n or F5
n.

Now, combining Eqs. (3.1b) with (3.1c), we can
eliminate the vector Goldstone field Aμ

n and derive the
expression:

∂μF
μ
n − ξnMnF5

n ¼ ∂μ∂νh
μν
n −

1

2
½ð2 − ξ−1n Þ∂2 þ ξnM2

n�hn

þ 3

2
ξ2nM2

nϕn: ð3:5Þ

Then, choosing the Feynman-’t Hooft gauge ξn ¼ 1 for
simplicity and imposing the on-shell condition k2 ¼ −M2

n
in momentum space, we derive the following formula:

ikμF
μ
n þMnF5

n ¼
ffiffiffi
3

2

r
M2

nF n; ð3:6aÞ

F n ≡
ffiffiffi
2

3

r
kμkν
M2

n
hμνn þ

ffiffiffi
2

3

r
hn − ϕn; ð3:6bÞ

where we have made the rescaling (2.19) for ϕn and defined
the external momentum kμ to be incoming in Eq. (3.6a).
For the longitudinal polarization tensor εμνL of the massive
KK graviton, we make the high-energy expansion under
E ¼ k0 ≫ Mn,

εμνL ¼ 1ffiffiffi
6

p ðϵμþϵν− þ ϵμ−ϵ
νþ þ 2ϵμLϵ

ν
LÞ≡

ffiffiffi
2

3

r
kμkν

M2
n
þ evμν

¼
ffiffiffi
2

3

r
εμνS þ evμν; ð3:7Þ

where the longitudinal polarization vector ϵμL ¼
ðk0=MnÞðjk⃗j=k0; k⃗=jk⃗jÞ ¼ ϵμS þ vμ with ϵμS ¼ kμ=Mn and
vμ ¼ OðMn=EnÞ. In the above, the scalar-polarization
tensor is defined to be εμνS ¼ ϵμSϵ

ν
S ¼ kμkν=M2

n and the
residual term has the energy scale evμν ¼ OðE0Þ. Thus, we
can further express Eq. (3.6a) as

F n ¼ ehSn −Ωn ¼ hLn −Ωn; ð3:8aÞ

Ωn ¼ ϕn − ehn; Ωn ¼ Ωn þ evn ¼ ϕn þ eΔn;eΔn ¼ evn − ehn; ð3:8bÞ

hSn ¼ εSμνh
μν
n ; ehSn ¼ ffiffiffi

2

3

r
hSn; ehμνn ¼

ffiffiffi
2

3

r
hμνn ; ehn ¼ ημνehμνn ;

ð3:8cÞ

hLn ¼ εLμνh
μν
n ¼ ehSn þ evn; evn ¼ evμνhμνn ; ð3:8dÞ

ϵμS ¼
kμ

Mn
; εμνS ¼ ϵμSϵ

ν
S ¼

kμkν

M2
n
: ð3:8eÞ

Then, using Eqs. (3.4) and (3.6a), we deduce

M½F nðkÞ;Φ� ¼ 0; ð3:9Þ

for one externalF n line. In the Feynman-’t Hooft gauge, all
the KK fields of level-n have mass-pole k2 ¼ −M2

n. Also,
due to our Rξ gauge-fixing (3.1a) or (2.16), all the KK
fields have diagonal propagators at tree level. So we can
amputate the external line F n à la LSZ by multiplying the
propagator-inverse ðk2 þM2

nÞ → 0. Thus, the amplitude in
Eq. (3.9) will take the same form except that the external
line F n is amputated. After this, we can rewrite the identity
(3.9) as follows:

M½ehSnðkÞ;Φ� ¼ M½ΩnðkÞ;Φ�; ð3:10Þ

or, equivalently,

M½hLn ðkÞ;Φ� ¼ M½ΩnðkÞ;Φ� þM½evnðkÞ;Φ� ð3:11aÞ

¼ M½ϕnðkÞ;Φ� þM½eΔnðkÞ;Φ�; ð3:11bÞ

where Ωn ¼ ϕn − ehn and eΔn ¼ evn − ehn.
For the N external F n lines, we thus deduce the

following identity with all F n lines amputated and on shell

M½F n1ðk1Þ;F n2ðk2Þ;…;F nN ðkNÞ;Φ� ¼ 0; ð3:12Þ

where F n ¼ hLn −Ωn and Φ denotes any possible ampu-
tated on-shell external physical fields. Then, we derive an
identity for the scattering amplitude of N longitudinally
polarized KK gravitons:

M½hLn1ðk1Þ;…;hLnN ðkNÞ;Φ� ¼M½Ωn1ðk1Þ;…;ΩnN ðkNÞ;Φ�:
ð3:13Þ

Using the identity (3.12), we can prove the GRET identity
(3.13) directly by computing its righ-hand side (RHS)

M½Ωn1ðk1Þ;…;ΩnN ðkNÞ;Φ�
¼ M½hLn1ðk1Þ − F n1ðk1Þ;…; hLnN ðkNÞ − F nN ðkNÞ;Φ�
¼ M½hLn1ðk1Þ;…; hLnN ðkNÞ;Φ�: ð3:14Þ
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In the last step of the above derivation, we have
used the fact that an amplitude including one (or
more) external F n line plus any other external on-
shell physical fields must vanish according to the identity
(3.12).
Expanding the RHS of Eq. (3.13), we can derive

an identity that connects the longitudinal KK gra-
viton amplitude to the corresponding KK Goldstone
boson amplitude and will be called the GRET identity
hereafter:

M½hLn1ðk1Þ;…; hLnN ðkNÞ;Φ� ¼ M½ϕn1ðk1Þ;…;ϕnN ðkNÞ;Φ�
þMΔ; ð3:15aÞ

MΔ ≡ X
1≤j≤N

M½feΔnj ;ϕnj0 g;Φ�; ð3:15bÞ

where eΔn ¼ evn − ehn with the notations evn ¼ evμνhμνn andehn ¼ ημνehμνn . The last term MΔ on the RHS of
Eq. (3.15) denotes the residual term of GRET which is
the sum of individual amplitudes where each amplitude
M½feΔnj ;ϕnj0 g;Φ� contains j external states of eΔnj with

j ∈ f1; 2;…; Ng and j0ð¼ N − jÞ external states of ϕnj0 .

We note that an on-shell KK graviton has five physical
helicity states (λ ¼ �2;�1, 0) and their polarization
tensors, as given by Eq. (A6) of Appendix A, are all
traceless. Hence, the external KK graviton ehn is an
unphysical state. This means that the amplitudes containing
one or more external ehn state(s) are unphysical amplitudes.
This is why we arrange all the ehn-related amplitudes on the
RHS of the GRET identity (3.15) as part of the summed
residual term MΔ.
Besides, we can further extend the above proof of

the GRET identity (3.15) beyond tree-level and to be
valid for all Rξ gauges by using the gravitational BRST
identities. Then, each external Goldstone boson state ϕn
in the amplitudes on the RHS of Eq. (3.15) will receive a
multiplicative modification factor Cmod ¼ 1þOðloopÞ,
which is energy independent and similar to the case of
the KK GAET formulation in the compactified 5d YM
theories [7] and in the 4d SM [30–32].5 So, such energy-
independent factor Cmod does not affect the energy
power-counting of the (Goldstone-related) amplitudes
of Eq. (3.15) at loop levels. Since we focus on the
scattering amplitudes and the application of GRET at tree

level for the current study, we will present a generalized
loop-level formulation elsewhere [33].6

Next, inspecting both sides of the GRET identity (3.15a),
we can readily make naive power-counting on the energy
dependence of the individual Feynman diagrams for each
scattering amplitude. For the four-particle scattering at tree
level, the longitudinal KK graviton amplitude on the LHS
of the identity (3.15) contains the contributions by indi-
vidual diagrams via quartic contact interactions or via
exchanging KK (or zero-mode) gravitons. Since each
external longitudinal KK graviton has polarization tensor
(3.7) scales like εμνL ∝ kμkν=M2

n in the high-energy limit,
the contribution by each individual diagram behaves as
OðE10Þ, where the energy power 10 ¼ 8þ 2 contains the
energy power of 8 ¼ 2 × 4 arising from the four external
longitudinal KK gravitons and the energy power 2 con-
tributed by the internal couplings and propagators. On the
other hand, we can make naive power-counting on the
energy dependence of the individual diagrams in each
amplitude of the RHS of Eq. (3.15a). Because the external
states (either the KK Goldstone boson ϕn, or, the KK
gravitons such as evn ¼ evμνhμνn or ehn ¼ ημνehμνn ) in all such
amplitudes have no extra enhancement or suppression
factor, we can readily make naive power-counting on their
energy dependence and deduce that they all behave as
OðE2Þ under the high-energy expansion. Hence, the GRET
identity (3.15a) provides a general mechanism for the
energy power cancellation of E10 → E2 in the longitudinal
KK graviton scattering amplitudes at tree level.
We note that on the RHS of Eq. (3.15a) the residual term

MΔ contains individual amplitude M½feΔnj ;ϕnj0 g;Φ� with
external states of the type eΔn ¼ evn − ehn. The external stateevn ¼ evμνhμνn is not suppressed under high-energy expansion

due to evμν ¼ OðE0Þ, and the external state ehn ¼ ημνehμνn is
unsuppressed either by any factor of Mn=E. Thus, there is
no apparent “equivalence” between the (helicity-zero)
longitudinal KK graviton hnL amplitude and the KK
Goldstone ϕn amplitude in Eq. (3.15a) under the high-
energy expansion. This differs essentially from the conven-
tional equivalence theorem (ET) for the spin-1 massive
gauge bosons in the SM and in the compactified KK gauge
theory, where the residual term is suppressed in the high-
energy limit because of the corresponding residual factor
vμ ¼ ϵμL − ϵμS ¼ OðMn=EnÞ. In fact, we observe that the
GRET residual termMΔ in Eq. (3.15b) is given by the sum
of amplitudes like M½feΔn;ϕng;Φ� with eΔn ¼ evn − ehn
containing both the external fields evn and ehn, which do
not receive additional suppression under the high-energy5Our KK GRET formulation is based on the quantized BRST

symmetry and thus can be readily extended up to loop levels. This
means that our new mechanism of energy cancellation based on
the KK GRET or KK GAET (cf. Secs. IV and V) will generally
hold up to loop orders, which differs from the recent literatures
for the explicit verifications of energy cancellations in the tree-
level KK graviton amplitudes [12–14].

6The 4d ET in the presence of the Higgs-gravity interactions
was established in Refs. [34,35] which can be applied to studying
cosmological models (such as the Higgs inflation [35–37]) or to
testing self-interactions of weak gauge bosons and Higgs bosons
[34,35,38].
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expansion. As we will show in Secs. IV B and VD for the
four longitudinal KK graviton scattering, the residual term
MΔ as a sum of the eΔn-dependent individual amplitudes in
Eq. (3.15) has OðE2Þ by the naive power-counting and will
be further cancelled down toOðE0Þ in comparison with the
leading Goldstone ϕn amplitude of OðE2Þ under the high-
energy expansion.
With the above observations, we can express the GRET

as follows:

M½hLn1ðk1Þ;…; hLnN ðkNÞ;Φ�
¼ M½ϕn1ðk1Þ;…;ϕnN ðkNÞ;Φ� þOðeΔnÞ; ð3:16Þ

where the residual termMΔ is denoted byOðeΔnÞ summing
up all the remaining amplitudes with at least one external
state being eΔn. We will demonstrate later in Secs. IV B and
VD that the sum of residual terms OðeΔnÞ is indeed
suppressed by Mn=E factors relative to the leading
Goldstone amplitude on the RHS of the GRET (3.16)
for the high-energy scattering processes (with two or more
external longitudinal KK gravitons).
In principle, the GRET identity (3.15a) and the GRET

(3.16) hold for any number of external longitudinal KK
graviton states, although in the above we take the case of
four longitudinal KK graviton scattering (N ¼ 4) at tree
level as an important example for discussing the naive
energy power-counting and energy cancellations. In the
following, we will extend the above naive power-counting
analysis on energy dependence of the longitudinal KK
graviton amplitudes, the KK Goldstone amplitudes and the
residual term amplitudes in the GRET identity (3.15a) to
the general case of N ≥ 4 and up to loop levels.

B. Energy cancellation mechanism for
KK graviton scattering amplitudes

We recall that Weinberg originally derived a power-
counting rule of energy dependence for the ungauged
nonlinear σ model as a description of low-energy QCD
interactions [28]. This power-counting rule has two major
ingredients: (i) The total mass-dimensionDS of a scattering
S-matrix element S is determined by the number of
external states (E) and the spacetime dimension, namely,
DS ¼ 4 − E, for 4d field theories. (ii) Consider that
the typical scattering energy E is much larger than all
the relevant mass poles in the internal propagators of the
scattering amplitude S. Then the total mass-dimension DC
of the E-independent coupling constants contained in the
amplitude S can be directly counted according to the type
of vertices therein. With these, one can deduce the total
energy power dependence DE of the amplitude S as
DE ¼ DS −DC. We note that the point (i) is fully general,
and the point (ii) holds for any field theory in which the
particle masses are much smaller than the scattering energy
E and the nontrivial energy dependence of the polarization

tensors (vectors) for the possible longitudinally polarized
KK gravitons (gauge bosons) can be properly taken
into account. Hence, we can generalize Weinberg’s
power-counting rule to the compactified 5d theories7

including KK graviton (Goldstone) fields and/or KK gauge
(Goldstone) fields, and study the high-energy scattering
amplitudes of KK particles whose masses are much smaller
than the scattering energy E.
Consider a scattering S-matrix element S having E

external states and L loops (L ≥ 0). Thus, the amplitude
S has a mass dimension

DS ¼ 4 − E; ð3:17Þ

where the number of external states E ¼ EB þ EF, with
EBðEFÞ being the number of external bosonic (fermionic)
states. For the fermions, we only consider the SM fermions
whose masses are much smaller than the scattering energy
E. We denote the number of vertices of type-j as Vj. Each
vertex of type-j contains dj derivatives, bj bosonic lines
and fj fermionic lines. Then, the energy-independent
effective coupling constant in the amplitude S is given by

DC ¼
X
j

Vj

�
4 − dj − bj −

3

2
fj

�
: ð3:18Þ

For each Feynman diagram in the scattering amplitude S,
we denote the number of the internal lines as I ¼ IB þ IF
with IB (IF) being the number of the internal bosonic
(fermionic) lines. Thus, we have the following general
relations:

L ¼ 1þ I − V;
X
j

Vjbj ¼ 2IB þ EB;X
j

Vjfj ¼ 2IF þ EF; ð3:19Þ

where V ¼Pj Vj is the total number of vertices in a given
Feynman diagram. The amplitude S may include EhL
external longitudinal KK graviton states. Then, using
Eqs. (3.17)–(3.19), we deduce the leading energy power
dependence DE ¼ DS −DC of the high-energy scattering
amplitude S as follows:

DE ¼ 2EhL þ ð2Lþ 2Þ þ
X
j

Vj

�
dj − 2þ 1

2
fj

�
: ð3:20Þ

Then, we consider the pure 5d KK GR theory without
involving any matter fields. Thus, for the pure longitudinal
KK graviton scattering amplitude with N external states
S ¼ M½hLn1 ;…; hLnN �, we have EhL ¼ N and fj ¼ 0. Each

7Weinberg’s power-counting rule was extended previously
[32,39] to the 4d gauge theories including the SM, the SM
effective theory (SMEFT), and the electroweak chiral Lagran-
gian.
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pure KK graviton vertex always contains two partial
derivatives and thus dj ¼ 2. For the loop level (L ≥ 1),
the amplitude may contain a gravitational ghost loop which
involves graviton-ghost-antighost vertex, but the number of
partial derivatives dj should be no more than two. This
means that the leading energy dependence is always given
by the diagrams containing only the KK gravitons and/or
zero-mode gravitons. Hence, to count the leading energy
dependence of the pure longitudinal KK graviton scattering
amplitudes, we can further derive the power-counting
formula (3.20) as

DE½NhLn � ¼ 2ðN þ 1Þ þ 2L; ð3:21Þ
where the notation ½NhLn � just denotes the N external
longitudinal KK graviton states (hLn ) whose KK indices
can differ from each other in an inelastic scattering ampli-
tude. Similar notations, such as ½Nϕn� for N external KK
Goldstone states and so on, will be used for other amplitudes.
Next, we consider the corresponding gravitational KK

Goldstone boson scattering amplitude M½ϕn1 ;…;ϕnN �
with N external states. Its leading energy dependence is
given by the diagrams containing ϕn − ϕm − hμνl type of
cubic vertices and the pure (KK) graviton self-interaction
vertices, where each of these vertices includes two deriv-
atives (dj ¼ 2). Hence, to count the leading energy
dependence, we can further derive the power-counting
formula (3.20) as follows:

DE½Nϕn� ¼ 2þ 2L: ð3:22Þ
Here we also note that each external Goldstone boson state
ϕn in the amplitudes on the RHS of Eq. (3.15) will receive a
multiplicative modification factor Cmod ¼ 1þOðloopÞ at
loop level, which is energy independent as mentioned
earlier. Hence such loop factor Cmod will not affect the
energy power-counting of the Goldstone ϕn amplitudes.
Comparing the energy power-counting formulas (3.21) and
(3.22), we note that their difference arises from the leading
energy dependence of the polarization tensors εμνL ∼
kμkν=M2

n for the N external longitudinal KK gravitons in
the high-energy scattering:

DE½NhLn � −DE½Nϕn� ¼ 2N: ð3:23Þ
We further examine the leading E power dependence of
the individual amplitudes in the residual term MΔ of the
GRET (3.15). A typical leading amplitude can be
M½evn1 ;…;evnN �, in which all the external states are KK
gravitons contracted with the tensor evμν ¼ εμνL − εμνS ¼
OðE0Þ, such as evn ¼ evμνhμνn . Hence, we can count the
leading energy dependence of this amplitude in the same
way as Eq. (3.21) for the longitudinal KK graviton
amplitude M½hLn1 ;…; hLnN � except taking out the energy
enhancement factor E2 from each external longitudinal
polarization tensor εμνL . Then, we deduce the following

energy power dependence of the leading residual amplitude
M½evn1 ;…;evnN �,

DE½Nevn� ¼ 2þ 2L; ð3:24Þ
which gives the same energy power dependence as
Eq. (3.22) for the leading scattering amplitude of N KK
Goldstone bosons. We will establish a further energy
cancellation in the residual term MΔ in Sec. V D based
upon the double-copy construction.
Applying the leading energy power-counting results

(3.21)–(3.24) to both sides of the GRET identity (3.15a),
we thus establish an energy cancellation by E2N in a
scattering amplitude of N longitudinal KK gravitons
M½hLn1 ;…; hLnN �. For the case of four longitudinal KK
graviton scattering amplitudes (N ¼ 4) at tree level
(L ¼ 0), we can deduce the energy power cancellation
E10 → E2, which reduces the energy powers by
ð10 − 2Þ ¼ 8, as we mentioned earlier. For another case
of four KK graviton scattering amplitudes containing two
external longitudinal KK gravitons and two external trans-
verse KK gravitons (EhL ¼ 2), we have the E-power-
counting DE½2hnL þ 2hnT � ¼ 6þ 2L. For the corresponding
KK Goldstone amplitudes, we have energy-counting
DE½2ϕn þ 2hnT � ¼ 2þ 2L. The leading residual term con-
tains the amplitudes such as M½evn1 ;evn2 ; hTn3 ; hTn4 �, which
has the same energy power dependence as the residual term
amplitude with all external states being evn’s [cf. Eq. (3.24)].
Namely, we can deduce DE½2evn þ 2hnT � ¼ 2þ 2L. Hence,
from the GRET identity (3.15a), we deduce that the KK
graviton amplitude M½hLn1 ; hLn2 ; hTn3 ; hTn4 � has an energy
cancellation down by a factor of E4. This energy mecha-
nism holds not only for the tree level, but also for the loop
levels (L ≥ 1) since, as we noted earlier, the loop-induced
multiplicative modification factor Cmod ¼ 1þOðloopÞ
associated with each external KK Goldstone state is energy
independent and thus does not affect the naive energy
power-counting on the RHS of Eq. (3.15).
In the rest of this subsection, we consider the energy

power-counting in the compactified 5d KK YM theory
(YM5) under S1=Z2 [6]. For a scattering amplitude
containing EAn

L
external longitudinal KK gauge bosons

Aan
L and Ev external KK gauge bosons van ¼ vμAaμ (with

vμ ¼ ϵμL − ϵμS), we can derive the following leading energy
dependence DE ¼ DS −DC from Eqs. (3.17)–(3.19),

DE ¼ EAn
L
− Ev þ ð2Lþ 2Þ þ

X
j

Vj

�
dj − 2þ 1

2
fj

�
:

ð3:25Þ
Inspecting the interaction Lagrangian of the zero modes
and KK modes of gauge bosons, we note that it con-
tains only cubic and quartic vertices. Some of the cubic
vertices contain one partial derivative and others do not
(including all quartic gauge boson vertices). For notational
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convenience, we denote the gauge fields V0 ¼ Aaμ
0 ,

Vn ¼ Aaμ
n , and eVn ¼ Aa5

n . After the BRST quantization,
the ghost term contains the cubic interactions between KK
ghost-antighost ðcan; cbmÞ and KK gauge bosons with
one partial derivative in each vertex [7]. Thus, the cubic
vertices with one partial derivative have the types of
ðV0VnVn; VnVmVl; cncmVlÞ and ðV0

eVn
eVn; Vn

eVm
eVlÞ.

Hence, we haveX
j

Vjdj ¼ Vd; ð3:26aÞ

Vd ¼ V3ðV0VnVnÞ þ V3ðVnVmVlÞ þ V3ðcncmVlÞ
þ V3ðV0

eVn
eVnÞ þ V3ðVn

eVm
eVlÞ; ð3:26bÞ

where Vd denotes the number of all cubic vertices including
one partial derivative and V3ðXYZÞ denotes the number of
cubic vertices of type XYZ. For the YM5 theory, we further
have the following relations:

V ¼
X
j

Vj ¼ V3 þ V4; ð3:27aÞ

V3 ¼ Vd þ VF þ V3; ð3:27bÞ

VF ¼ V3ðV0fnfnÞ þ V3ðVnfmflÞ þ V3ðeVnfmflÞ;
ð3:27cÞ

V3 ¼ V3ðV0Vn
eVnÞ þ V3ðVnVm

eVlÞ þ V3ðcncmeVlÞ;
ð3:27dÞ

V4 ¼ V4ðV0V0VnVnÞ þ V4ðV0VnVmVlÞ
þ V4ðVnVmVkVlÞ þ V4ðV0V0

eVn
eVnÞ

þ V4ðV0Vn
eVm
eVlÞ þ V4ðVnVm

eVk
eVlÞ; ð3:27eÞ

where the possible fermions and their KK states are
included although they are not needed for analyzing
the pure KK gauge theory in the present work. Using
Eqs. (3.26)–(3.27), we further derive the leading energy
power dependence (3.25) as follows:

DE ¼ EAn
L
− Ev þ ð2Lþ 2Þ − ðVd þ VF þ 2V3 þ 2V4Þ:

ð3:28Þ

Then, using the general relation L ¼ I þ 1 − V given by
Eq. (3.19) and the following relation of the YM5 theory

2I þ E ¼ 3V3 þ 4V4; ð3:29Þ

we can express the leading energy dependence (3.28) as

DE ¼ ð4 − EÞ þ ðEAn
L
− EvÞ − V3; ð3:30Þ

where E stands for the total number of the external states
and V3 denotes the number of cubic vertices containing
no partial derivative. In Eq. (3.30), Ev denotes the
number of external KK gauge bosons contracted with
the vector vμ ¼ ϵμL − ϵμS ¼ OðMn=EÞ. So each external
state van ¼ vμA

aμ
n contributes an energy suppression factor

E−1. The naive power-counting formula (3.30) does not
depend on the loop number L and takes similar form to
that of the SM case [39], because the structure of each
individual vertex of the KK YM5 theory is similar to that
of the SM while the nonrenormalizability nature of the
KK YM5 theory is reflected by its infinite tower of KK
states.
Inspecting Eq. (3.30), we note that for the pure longi-

tudinal KK gauge boson scattering amplitude with E ¼
EAn

L
¼ Nð≥ 4Þ and Ev ¼ 0, the leading energy dependence

is given by

DE½NAn
L� ¼ 4; ð3:31Þ

which corresponds to V3 ¼ 0. This means that the leading
energy power dependence of the pure longitudinal KK
gauge boson scattering is always given by the diagrams
containing only cubic derivative gauge vertices and/or
quartic gauge vertices. We stress that the leading energy
dependence DE ¼ 4 does not depend on the number of
external longitudinal KK gauge bosons (EAn

L
¼ N). The

case of N ¼ 4 scattering amplitudes was studied before [6].
Then, we consider the scattering amplitudes of pure KK
Goldstone bosons (Aa5

n ) with E ¼ EAn
5
¼ N external Aa5

n

states. This also means EAn
L
¼ 0 and Ev ¼ 0. Thus, using

Eq. (3.30), we deduce the leading energy dependence of N
KK Goldstone boson scattering amplitude as

DE½NAn
5� ¼ 4 − N − Vmin

3 ; ð3:32Þ

where the number of the external KK Goldstone states
N ≥ 4 and the involved minimal number of nonderivative
cubic vertices Vmin

3 ¼ 0ð1Þ for N ¼ even (odd).
It was established [6,7] that the longitudinal KK gauge

boson scattering amplitude and the corresponding KK
Goldstone boson scattering amplitude are connected by
the KK equivalence theorem for gauge theory (KK GAET)
under the high-energy expansion:

T ½Aa1n1
L ;…; AaNnN

L ;Φ� ¼ CmodT ½Aa1n1
5 ;…; AaNnN

5 ;Φ� þ T v;

ð3:33aÞ

T v ¼
XN
l¼1

C0
modT ½va1n1 ;…; valnl ; Aalþ1nlþ1

5 ;…; AaNnN
5 ;Φ�

¼ OðMn=EÞ; ð3:33bÞ
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where Φ denotes any other external physical state(s).
The modification factors Cmod; C0

mod ¼ 1þOðloopÞ are
energy-independent constants and do not affect the energy
power-counting, which are generated at loop level [7,32]
and are not needed for the tree-level analysis in the
current study.
Then, we consider the scattering amplitudes of N

longitudinal KK gauge bosons and of the corresponding
N KK Goldstone bosons. Their leading energy powers are
given by Eqs. (3.31) and (3.32). Thus, we deduce the
following difference between their leading energy powers:

DE½NAL
n � −DE½NAn

5� ¼ N þ Vmin
3 ; ð3:34Þ

where Vmin
3 denotes the involved minimal number of

nonderivative cubic vertices in the KK Goldstone ampli-
tude and Vmin

3 ¼ 0ð1Þ for N ¼ even (odd). Next, we make
naive energy-counting on the residual term T v of the
KK GAET (3.33). To extract the leading energy depend-
ence, we start with the pure KK Goldstone amplitude
T ½Aa1n1

5 ;…; AaNnN
5 � and replace one external KK Goldstone

state (say, Aa1n1
5 ) by the KK gauge boson contracted with

the vμ factor (vμAa1n1
μ ¼ va1n1). For the case of N ¼ even,

this means to replace a derivative vertex by a nonderivative
vertex and add the factor vμ, so the leading energy
dependence DE will be reduced by E−2. For the case of
N ¼ odd, this means to replace a nonderivative cubic
vertex by a derivative cubic vertex and add a vμ factor.
So the leading energy dependence DE will not change.
Thus, we conclude that the leading energy dependence of
the residual term (3.33b) is given by

DE½T v� ¼ 2 − N ðfor N ¼ evenÞ; ð3:35aÞ

DE½T v� ¼ 3 − N ðfor N ¼ oddÞ: ð3:35bÞ

Comparing this with the leading energy power-counting
(3.32) of the N KK Goldstone boson amplitudes in the
high-energy scattering, we deduce that for the case of N ¼
even the residual term (3.33b) is suppressed by M2

n=E2

factor relative to the leading KK Goldstone amplitude on
the RHS of the KK GAET (3.33) and thus can be ignored,
while for the case of N ¼ odd the residual term (3.33b) has
the same leading energy dependence as that of the leading
KK Goldstone amplitude. In either case, the KK GAET
(3.33) guarantees that the leading energy dependence E4 of
the pure longitudinal KK gauge boson amplitudes in
Eq. (3.31) has to be cancelled down to the leading energy
dependence of the corresponding KK Goldstone ampli-
tudes in Eq. (3.32). This energy cancellation shows that
even though the N-particle longitudinal KK gauge boson
scattering amplitudes have superficial leading energy
dependence E4 as contributed by individual Feynman
diagrams, these must be cancelled down by an energy
factor EδDE to match the leading energy dependence of the

corresponding KK Goldstone boson amplitudes, where the
energy power factor changes by

δDE ¼ N þ 1 − ð−1ÞN
2

: ð3:36Þ

This energy cancellation of δDE coincides with the above
formula (3.34). For the case of four longitudinal KK gauge
boson scattering amplitudes (N ¼ 4), it was proven [6]
that the leading energy cancellation E4 → E0 is guaranteed
by the KK GAET to match the leading energy dependence
of the corresponding KKGoldstone boson amplitudes. This
fully agrees with the above general analysis for the N-
particle scattering amplitudes. In the following, we will
focus on the four-particle KK amplitudes (N ¼ 4) for the
explicit analysis of the GRET in Sec. IVand for the double-
copy construction in Sec. V. We will pursue the analysis of
the N > 4 case in future works [33].

IV. STRUCTURE OF KK GRAVITON
SCATTERING AMPLITUDES FROM

GRAVITATIONAL EQUIVALENCE THEOREM

The compactified five-dimensional Yang-Mills theory
under orbifold S1=Z2 generates a tower of massive gauge
bosons via KK construction. The KK gauge boson mass
generation can be formulated by the geometric Higgs
mechanism in a generic Rξ gauge [6], where each massive
longitudinal KK gauge boson Aaμ

n acquires its mass by
absorbing the corresponding KK-state Goldstone Aa5

n from
the fifth component of the 5d gauge field. Reference [6]
has established the KK GAET which states that each on-
shell scattering amplitude of the longitudinal KK gauge
bosons (AaL

n ) equals the amplitude of the corresponding
Goldstone bosons (Aa5

n ) down to OðE0Þ under the high-
energy expansion,

T ½AaL
n1 A

bL
n2 →AcL

n3 A
dL
n4 �¼T ½Aa5

n1A
b5
n2 →Ac5

n3A
d5
n4 �þOðM2

ni=E
2Þ:

ð4:1Þ
This formulation was extended to gauge theories in decon-
structed extra dimension [8] and to the realistic compactified
5d standard model [9].
In this section, we will systematically compute the 2 → 2

scattering amplitudes of gravitational KK Goldstone
bosons for the first time. Then, we will explicitly demon-
strate the validity of the GRET by comparing our gravi-
tational KK Goldstone amplitudes with the corresponding
helicity-zero KK graviton amplitudes obtained in [13]. For
the case of 2 → 2 scattering, we first deduce the GRET
identity from Eq. (3.15):

M½hLn1hLn2 → hLn3h
L
n4 � ¼ M½Ωn1Ωn2 → Ωn3Ωn4 �; ð4:2Þ

where Ωn ¼ ϕn þ eΔn and eΔn ¼ evn − ehn. Furthermore,
according to Eq. (3.16), we reexpress our four-point
GRET identity (4.2) as
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M½hLn1hLn2 → hLn3h
L
n4 � ¼ M½ϕn1ϕn2 → ϕn3ϕn4 � þOðeΔnÞ:

ð4:3Þ

As we will show in the following Sec. IV B, the leading
gravitational KK Goldstone amplitude on the RHS of the
GRET (4.3) is of OðE2Þ and equals the corresponding
leading longitudinal KK graviton amplitude on the LHS of
Eq. (4.3). However, it is highly nontrivial to demonstrate
that the full residual term OðeΔnÞ ¼ OðE0Þ actually holds
and thus can be neglected relative to the leading gravita-
tional KK Goldstone amplitude on the RHS of the GRET
(4.3). This is because the naive power-counting shows each
individual amplitude in the residual term OðeΔnÞ is of
OðE2Þ. This can be understood by noting that the tensorevμν ¼ OðE0Þ and thus the external state evn ¼ evμνhμνn is
unsuppressed under high-energy expansion. The same is
true for the external state ehn ¼ ημνehμνn which has no extra
suppression factor. Thus, by naive power-counting of
energy, each individual residual term OðeΔnÞ ¼ OðE2Þ
which has the same energy dependence as the leading
Goldstone amplitude and is not superficially suppressed.
This is an essential difference from the KKGAET [6] of the
compactified 5d KK gauge theories [6], where the residual
term is suppressed by the vector vμ ¼ ϵμL − ϵμS ¼ OðMn=EÞ
and thus is of OðM2

n=E2Þ for the case of four-particle
scattering process as shown in Eq. (4.1).8 We will dem-
onstrate this additional energy canellation of E2 → E0 in
the residual term OðeΔnÞ in Sec. IV B by the explicit
calculations and in Sec. V D by the double-copy con-
struction from the KK GAET of 5d YM theory.

A. GRET for the 5d gravitational scalar QED

In this subsection, we first consider the 5d gravitational
scalar QED (GSQED5) compactified under S1=Z2, as an
example to explicitly test the GRET. This will provide
important insights for our general formulation of the GRET
and double-copy reconstruction analysis in Sec. V.
In this GSQED5, both graviton and scalar fields live in

the 5d bulk. Therefore, we can write down the 5d action
for the matter part, including a general gauge-fixing term
for the gauge field,

Sm ¼
Z

d5x
ffiffiffiffiffiffi
−ĝ

p �
−
1

4
ĝMPĝNQF̂MNF̂PQ

−
1

2ζ
ð∂MÂ

MÞ2 þ jDMŜj2 þm2
0jŜj2

�
; ð4:4Þ

where F̂MN ¼ ∂MÂN − ∂NÂM and DM ¼ ∂M þ iêÂM.
9

From this, we derive the action of the graviton-matter
interactions:

Sint ¼ −
κ̂

2

Z
d5xðĥMNT̂MNÞ

¼ −
κ̂

4

Z
d5x½2ĥμνT̂μν þ 4ĥμ5T̂μ5 − ĥ55ðT̂μ

μ − 2T̂55Þ�;

ð4:5Þ

where the 5d energy-momentum tensor is defined as

T̂MN ¼ 2ffiffiffiffiffiffi
−ĝ

p δSm
δĝMN

				
ĝ→η̂

: ð4:6Þ

Therefore, we can derive the energy-momentum tensors for
both the photon field and scalar field as follows:

T̂A
MN ¼ η̂MN

4
F̂2
PQ þ F̂P

MF̂PN þ η̂MN

2ζ
ð∂PÂPÞ2; ð4:7aÞ

T̂S
MN ¼ ðDMŜÞ�DNŜ þ ðDNŜÞ�DMŜ

− η̂MNðjDPŜj2 þm2
0jŜj2Þ: ð4:7bÞ

Then, we make KK expansions for the 5d photon field and
scalar field, under the boundary conditions of the orbifold
S1=Z2

Âμðxν; x5Þ ¼ 1ffiffiffiffi
L

p
�
Aμ
0ðxνÞ þ

ffiffiffi
2

p X∞
n¼1

Aμ
nðxνÞ cos nπx

5

L

�
;

ð4:8aÞ

Â5ðxν; x5Þ ¼
ffiffiffiffi
2

L

r X∞
n¼1

A5
nðxνÞ sin

nπx5

L
; ð4:8bÞ

Ŝðxν; x5Þ ¼ 1ffiffiffiffi
L

p
�
S0ðxνÞ þ

ffiffiffi
2

p X∞
n¼1

SnðxνÞ cos
nπx5

L

�
:

ð4:8cÞ

With these, we can derive the effective KK Lagrangian in
4d and obtain the corresponding Feynman rules, which are
presented in Appendix C.

8The residual term of OðvnÞ is defined as the difference
between the longitudinal gauge boson amplitude and the corre-
sponding Goldstone amplitude. In the 5d KK GAET for spin-1
KK gauge bosons [6], the residual term has the size of
OðM2

n=E2Þ, which is similar to that of the conventional ET of
4d gauge theories [40].

9In Eq. (4.4), we have imposed a minimal gauge-fixing term
for photon field with gauge-fixing function ð∂MÂ

MÞ. One could
optionally choose the usual covariant gauge-fixing function for
photon ð∇MÂ

MÞ [41], which contains additional interaction
vertices proportional to 1=ζ and will not affect physics. We have
explicitly verified that for the scattering amplitudes of relevant
physical processes, the sum of all ζ-dependent contributions
vanishes at tree level, as expected.
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To test the GRET explicitly, we consider the scattering
of zero-mode photon and KK graviton into a pair
of scalar bosons, hLn ðp1ÞAT

0 ðp2Þ → S−
0 ðp3ÞSþ

n ðp4Þ andehSnðp1ÞAT
0 ðp2Þ → S−

0 ðp3ÞSþ
n ðp4Þ, where the initial state

KK graviton is either longitudinally polarized hLn or
scalar-polarized ehSn, and the zero-mode photon AT

0 ¼
ϵTμA

μ
0 is massless. The final state includes the zero-mode

scalar boson S−
0 and the KK scalar boson Sþ

n . We present
the relevant Feynman diagrams in Fig. 1.
We first compute the diagrams in Fig. 1 for the initial

state with scalar-polarized KK graviton ehSn. Thus, the
scattering amplitude is derived as

M½ehSn� ¼ −
ffiffiffi
3

2

r
eκðp3 · ϵ�2 Þ: ð4:9Þ

Then, we consider the corresponding scattering amplitudes
ϕnAT

0 → S−
0S

þ
n and ehnAT

0 → S−
0S

þ
n , as shown in Fig. 2.

From Fig. 2, we compute the scattering amplitudes with
initial state KK Goldstone boson ϕn and the unphysical
trace part of the KK graviton field ehn, respectively. We
further derive their summed scattering amplitude. Now,
these scattering amplitudes are presented as follows:

M½ϕn� ¼
1

2

ffiffiffi
2

3

r
eκðp3 · ϵ�2 Þ; M½ehn� ¼ 2

ffiffiffi
2

3

r
eκðp3 · ϵ�2 Þ;

ð4:10aÞ

M½Ωn� ¼ M½ϕn� −M½ehn� ¼ −
ffiffiffi
3

2

r
eκðp3 · ϵ�2 Þ; ð4:10bÞ

where the notation Ωn ¼ ϕn − ehn was introduced in
Eq. (3.8). Inspecting the scalar-polarized KK graviton
amplitude (4.9) and the summed amplitude (4.10b), we
deduce an equality,

M½ehSn� ¼ M½Ωn�; ð4:11Þ

which explicitly verifies the GRET identity (3.10). We also
note that for the current scattering process, the Ωn ampli-
tude contains contributions by both the gravitational KK
Goldstone boson ϕn and the trace part of the KK gravitonehn, which are of the same order of magnitude. This shows
an essential difference from the case of the pure KK gauge
theories (without gravity), where for each longitudinal KK
gauge boson AL

n , its corresponding KK Goldstone boson is
just given by the scalar component A5

n [6].
Then, in order to compute the scattering amplitudes

explicitly, we choose the momenta in the center-of-mass
frame and make the initial state particles move along the z
axis. Then, the momenta for the initial state particles and
final state particles are given by

pμ
1 ¼ −Eð1;0;0;βÞ; pμ

2 ¼ −Eβð1;0;0;−1Þ;
pμ
3 ¼ Eβð1; sθ;0; cθÞ; pμ

4 ¼ Eð1;−βsθ;0;−βcθÞ; ð4:12Þ

FIG. 1. Scattering processes of zero-mode photon and longitudinally (scalar-)polarized KK graviton, hLnAT
0 → S−

0S
þ
n andehSnAT

0 → S−
0S

þ
n , via the ðs; t; uÞ-channels and contact interactions. Here the blue double-waved line denotes the KK graviton hμνn ,

the black-waved line denotes zero-mode photon Aμ
0, and the black dashed line denotes the zero-mode scalar S0 or KK scalar Sn.

FIG. 2. Scattering processes of the zero-mode photon and the KK gravitational Goldstone boson or the trace part of the KK graviton,
ϕnAT

0 → S−
0S

þ
n and ehnAT

0 → S−
0S

þ
n , via the ðs; t; uÞ-channels, where the red solid line denotes the KK gravitational scalar Goldstone ϕn

and the blue double line denotes the trace part of the KK graviton ehn.
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where β ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −M2

n=E2
p

and ðsθ; cθÞ ¼ ðsin θ; cos θÞ with
θ being the scattering angle. For simplicity of illustration,
we consider the zero-mode mass m0 ≪ Mn and thus m0 is
negligible for this analysis. The polarization vectors of the
KK graviton hLn ðp1Þ and zero-mode photon AT

0 ðp2Þ in the
initial state take the following forms:

εμν1L ¼
1ffiffiffi
6

p ðϵμ1þϵν1−þ ϵμ1−ϵ
ν
1þ þ 2ϵμ1Lϵ

ν
1LÞ;

ϵμ1� ¼ 1ffiffiffi
2

p ð0;�1;−i;0Þ;

ϵμ1L ¼−
E
Mn

ðβ;0;0;1Þ; ϵμ2� ¼−
1ffiffiffi
2

p ð0;�1; i;0Þ: ð4:13Þ

With the above, we compute explicitly the scattering
amplitudes of hLnAT

0 → S−
0S

þ
n and ehSnAT

0 → S−
0S

þ
n under the

high-energy expansion:

M½hLn � ¼ −
5
ffiffiffi
3

p
eκ

6
ðEsθÞ þ

ffiffiffi
3

p
eκ
6

M2
nð4 − cθÞ

E tanðθ=2Þ þOðE−3Þ;

ð4:14aÞ

M½ϕn� ¼ −
ffiffiffi
3

p
eκ
6

ðEsθÞ þ
ffiffiffi
3

p
eκ

12

M2
nsθ
E

þOðE−3Þ;
ð4:14bÞ

where we have chosen the transverse polarization ϵμ2þ for
the initial state photon AT

0 . For the other transverse
polarization ϵμ2− of AT

0 , all of the corresponding amplitudes
will flip an overall sign.
According to the GRET identities (3.10) and (3.11b), we

can compute the residual term:

M½eΔn� ¼ M½evn� −M½ehn� ¼ M½hLn � −M½ϕn�; ð4:15Þ

where we have used the abbreviations M½eΔn�≡
M½eΔnAT

0 → S−
0S

þ
n �, M½evn�≡M½evnAT

0 → S−
0S

þ
n �, and

M½ehn�≡M½ehnAT
0 → S−

0S
þ
n �. Using the longitudinal KK

graviton amplitude (4.14a) and KK Goldstone amplitude
(4.14b), we derive the residual term (4.15) as follows:

M½eΔn� ¼ −
2
ffiffiffi
3

p
eκ

3
ðEsθÞ þO

�
M2

n

E

�
; ð4:16Þ

which has the same energy order as the longitudinal KK
graviton amplitude M½hLn �. This demonstrates that for the

case of one external KK graviton line, although the GRET
identity (4.11) holds as expected,

M½hLn � ¼ M½Ωn� þM½evn� ¼ M½ϕn� þM½eΔn�; ð4:17Þ
the GRET itself no longer holds. This is because the
residual term M½eΔn� in Eq. (4.16) has the same order of
magnitude as the longitudinal KK graviton amplitude
M½hLn � or the KK Goldstone amplitude M½ϕn� in
Eq. (4.14) under the high-energy expansion.

B. Gravitational KK Goldstone boson
scattering amplitudes

In this subsection, we explicitly compute the elastic and
inelastic scattering amplitudes of four gravitational KK
Goldstone bosons in the compactified 5d GR, which will be
compared quantitatively with the corresponding longi-
tudinal (helicity-zero) KK graviton scattering amplitudes.

1. Elastic gravitational KK Goldstone boson
scattering amplitudes

To compute the scattering amplitudes of the gravitational
KKGoldstone bosons, we first derive the relevant interaction
vertices. We will show that the leading contributions arise
from the Feynman diagrams with zero-mode graviton and
KK graviton exchanges. For the cubic interaction vertices
containing one graviton and two KK scalar-Goldstone
bosons, we expand the EH Lagrangian up toOðκ̂3Þ, denoted
as L̂1½ĥϕ̂2�.We inspect the structure of L̂1½ĥϕ̂2� and classify it
into 12 Lorentz-invariant terms, as presented in Table I.
We note that in Table I all six operators in the second

row contain partial derivatives acting on the graviton fields,
but we can always shift the partial derivatives on to the
scalar fields via integration by parts, and thus they can be
converted into combinations of the six operators in the first
row. In this way, we can organize the cubic vertices in the
Lagrangian L̂1½ĥϕ̂2� as follows:

L̂1½ĥϕ̂2� ¼ a1ĥ
μν∂μϕ̂∂νϕ̂þa2ĥ

μνϕ̂∂μ∂νϕ̂þa3ĥð∂μϕ̂Þ2
þa4ĥ ϕ̂∂2

μϕ̂þa5ĥð∂5ϕ̂Þ2þa6ĥ ϕ̂∂2
5ϕ̂; ð4:18Þ

where the coefficients are given by

fa1; a2; a3; a4; a5; a6g ¼
�
−
1

2
;−1;

3

4
; 1;−

1

2
;−

1

2

�
:

ð4:19Þ

TABLE I. Classification of the 12 Lorentz-invariant interaction vertices in L̂1½ĥϕ̂2�, where the six operators in the
second row can be converted into the combinations of the operators in the first row via integration by parts.

L̂1½ĥϕ̂2� ĥμν∂μϕ̂∂νϕ̂ ĥμνϕ̂∂μ∂νϕ̂ ĥ∂μϕ̂∂μϕ̂ ĥ ϕ̂ ∂2
μϕ̂ ĥ∂5ϕ̂∂5ϕ̂ ĥ ϕ̂ ∂2

5ϕ̂

∂μĥ
μνϕ̂∂νϕ̂ ð∂μ∂νĥ

μνÞϕ̂2 ∂μĥ ϕ̂ ∂μϕ̂ ð∂2
μĥÞϕ̂2 ∂5ĥ ϕ̂ ∂5ϕ̂ ð∂2

5ĥÞϕ̂2
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Next, by substituting Eqs. (2.12a)–(2.12c) into the Lagrangian (4.18) and integrating over x5, we derive the
corresponding effective Lagrangian in 4d,

L1½hϕ2� ¼ κffiffiffi
2

p
X∞

n;m;l¼1

fa1½
ffiffiffi
2

p
ðhμν0 ∂μϕ0∂νϕ0 þ hμν0 ∂μϕm∂νϕlδml þ hμνn ∂μϕm∂νϕ0δnm þ hμνn ∂μϕ0∂νϕlδnlÞ

þ hμνn ∂μϕm∂νϕlΔ3ðn;m;lÞ� þ a2½
ffiffiffi
2

p
ðhμν0 ϕ0∂μ∂νϕ0 þ hμν0 ϕm∂μ∂νϕlδml þ hμνn ϕm∂μ∂νϕ0δnm

þ hμνn ϕ0∂μ∂νϕlδnlÞ þ hμνn ϕm∂μ∂νϕlΔ3ðn;m;lÞ� þ a3½
ffiffiffi
2

p
ðh0∂μϕ0∂μϕ0 þ h0∂μϕm∂μϕlδml

þ hn∂μϕm∂μϕ0δnm þ hn∂μϕ0∂μϕlδnlÞ þ hn∂μϕm∂μϕlΔ3ðn;m;lÞ� þ a4½
ffiffiffi
2

p
ðh0ϕ0∂2

μϕ0

þ h0ϕm∂2
μϕlδml þ hnϕm∂2

μϕ0δnm þ hnϕ0∂2
μϕlδnlÞ þ hnϕm∂2

μϕlΔ3ðn;m;lÞ�
þ a5MmMl½

ffiffiffi
2

p
h0ϕmϕlδml þ hnϕmϕl

eΔ3ðn;m;lÞ� − a6M2
l½
ffiffiffi
2

p
ðh0ϕmϕlδml þ hnϕ0ϕlδnlÞ

þ hnϕmϕlΔ3ðn;m;lÞ�g; ð4:20Þ

where Δ3ðn;m;lÞ and eΔ3ðn;m;lÞ are given by

Δ3ðn;m;lÞ ¼ δðnþm − lÞ þ δðn −m − lÞ þ δðn −mþ lÞ; ð4:21aÞ

eΔ3ðn;m;lÞ ¼ δðnþm − lÞ − δðn −m − lÞ þ δðn −mþ lÞ: ð4:21bÞ

Hence, using Eq. (4.20), we can derive the Feynman rules
for graviton-scalar-scalar interactions as shown in Fig. 3.
With the above, we are ready to analyze the elastic

scattering of the gravitational KK Goldstone bosons,
ϕnϕn → ϕnϕn. Figure 4 shows the Feynman diagrams at
tree level, which include the scattering via the zero-mode
graviton exchange and the KK graviton exchange at level-
2n. By straightforward power-counting, we find that each
diagram in Fig. 4 has the leading contribution of OðE2Þ in
the high-energy limit. We stress that our gravitational KK
Goldstone boson scattering amplitudes in our study do not
invoke any energy cancellation among the individual
diagrams and the leading energy dependence of OðE2Þ
is manifest in each diagram. This feature is an essential
difference from the longitudinal KK graviton amplitudes
which involve complicated large energy cancellations from
OðE10Þ to OðE2Þ as in [12,13]. In fact, as we will
demonstrate, our formulation of the GRET (Sec. III)
together with the double-copy construction (Sec. V) can

provide a general mechanism for these large energy
cancellations.
By using the trilinear interaction vertices Fig. 3 and the

KK graviton propagator (2.22a) as well as the kinematics
defined in Appendix A, we can compute all the Feynman
diagrams of Fig. 4 in a straightforward way. Summing up
the individual diagrams, we derive the elastic scattering
amplitude of ϕnϕn → ϕnϕn to the leading order of OðE2Þ
under the high-energy expansion:

M½ϕnϕn → ϕnϕn� ¼
3κ2

32

�ð3þ cos2θÞ2
sin2θ

�
s0; ð4:22aÞ

¼ 3κ2

128

�ð7þ cos 2θÞ2
sin2θ

�
s0: ð4:22bÞ

Then, the expansion to the next-to-leading order gives the
subleading amplitude:

FIG. 3. Feynman rule for the cubic interaction vertex between KK graviton and gravitational KK Goldstone bosons, where we defineea4 ¼ a4 þ ð−1Þδ2n;ma5 − a6, with m ¼ 0; 2n.
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δM½ϕnϕn → ϕnϕn�

¼ −
κ2M2

n

128
ð−1318þ 2865c2θ − 522c4θ − c6θÞcsc4θ;

ð4:23Þ

which is a mass-dependent contribution of OðE0M2
nÞ. We

see that this NLO amplitude (4.23) is much smaller than the
LO amplitude (4.22) of OðE2M0

nÞ in the high-energy
scattering.
In order to explicitly demonstrate our GRET, wewill first

compare our gravitational KK Goldstone boson amplitude
(4.22b) with the corresponding longitudinal KK graviton
amplitude M½hnLhnL → hnLh

n
L� as given in Ref. [13] [cf. its

Eq. (70)]. For this comparison, we note a notational
difference: our 4d gravitational coupling constant κ is
defined in Eq. (2.7) as κ ¼ κ̂=

ffiffiffiffi
L

p
and differs from that

of Ref. [13] by a factor 1ffiffi
2

p since their definition leads to

κ ¼ κ̂=
ffiffiffiffiffiffi
2L

p
. Hence, our KK Goldstone amplitude (4.22b)

should be rescaled by a factor 1
2
for the comparison:

M → M ×
1

2
¼ 3κ2

256

�ð7þ cos 2θÞ2
sin2θ

�
s0; ð4:24Þ

which equals the KK graviton amplitude in its Eq. (70) of
Ref. [13]. This is truly impressive because our independent
computation of the KK Goldstone amplitude (4.22b) fully
differs from that of the KK graviton amplitude which
contains much more complicated energy cancellations from
OðE10Þ to OðE2Þ. Naively and intuitively, this equivalence
seems quite expected for us because the scalar component
of the KK graviton field ϕnð≡h55n Þ should be converted to
the degree of freedom of the helicity-zero longitudinal
component of the KK graviton, and thus we would have

M½hnLhnL → hnLh
n
L� ¼ M½ϕnϕn → ϕnϕn� þOðM2

nE0Þ:
ð4:25Þ

However, in the actual situation it is far more nontrivial to
quantitatively demonstrate the equivalence between the two
amplitudes in the high-energy limit. This is because our

quantative formulation of the GRET (4.3) (as systemati-
cally presented in Sec. III) shows that the second term on
the RHS of the GRET contains a combination of both the
KK Goldstone bosons ϕn and trace part of graviton ehn due
to the structure of our Rξ gauge-fixing functions in
Eqs. (3.1b) and (3.1c) and (3.6a). To fully demonstrate
such an equivalence as in Eq. (4.25), we have to further
show that all the ehn-related Goldstone amplitudes on the
RHS of the GRET (4.3) together with theOðevnÞ amplitudes
could be of OðM2

nE0Þ at most. We will present this
nontrivial demonstration in Sec. V based on our double-
copy construction.
Next, we compute the subleading contributions to the

elastic KK Goldstone amplitude ϕnϕn → ϕnϕn as shown in
Fig. 5, where the relevant Feynman rules are presented in
Appendix D. These include the subleading contributions
via ðs; t; uÞ-channels mediated by a vector Aμ

2n (the first
row), a scalar ϕ0 or ϕ2n (the second row), and a contact
interaction (the second row). Thus, we derive the following
three kinds of subleading contributions accordingly under
the high-energy expansion:

MA½ϕnϕn → ϕnϕn� ¼
3

4
κ2M2

n; ð4:26aÞ

Mϕ½ϕnϕn → ϕnϕn� ¼ −18κ2M2
n; ð4:26bÞ

Mc½ϕnϕn → ϕnϕn� ¼
9

2
κ2M2

n: ð4:26cÞ

Their sum is given by

MA þMϕ þMc ¼ −
51

4
κ2M2

n: ð4:27Þ

We see that the above subleading contributions are all of
OðE0M2

nÞ. The same feature also holds for the subleading
contributions to the inelastic channels.
Finally, we sum up the contributions of both Figs. 4 and

5, and derive the complete elastic scattering amplitude of
KK scalar-Goldstone bosons without energy expansion:

FIG. 4. Elastic scattering of gravitational KK Goldstone bosons, ϕnϕn → ϕnϕn, via ðs; t; uÞ-channels mediated by the zero-mode
graviton and by the KK graviton of level-2n.
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M½ϕnϕn → ϕnϕn� ¼
κ2M2

nðeX0
0 þ eX0

2c2θ þ eX0
4c4θ þ eX0

6c6θÞ
512s0ðs0 þ 4Þ½2s2θs20 þ 32s0 þ 128�s2θ

; ð4:28Þ

where s0 ¼ s0=M2
n, s ¼ s=M2

n ¼ s0 þ 4, and

eX0
0 ¼ 2ð255s50 þ 13348s40 þ 168624s30 þ 984384s20 þ 3514368s0 þ 6012928Þ; ð4:29aÞ

eX0
2 ¼ −429s50 − 12732s40 − 156288s30 − 777728s20 − 2572288s0 − 5210112; ð4:29bÞ

eX0
4 ¼ −2ð39s50 − 1212s40 − 7824s30 − 10688s20Þ; ð4:29cÞ

eX0
6 ¼ −ð3s50 þ 4s40Þ: ð4:29dÞ

From the above, we expand the full amplitude (4.28)
ðM½ϕnϕn → ϕnϕn�≡M½4ϕn�Þ down to the subleading
order under the high-energy expansion s0 ≫ M2

n (or
s0 ≫ 1),10

M½4ϕn� ¼ M0½4ϕn� þ δM½4ϕn�; ð4:30aÞ

M0½4ϕn� ¼
3κ2

128

�ð7þ cos 2θÞ2
sin2θ

�
s0; ð4:30bÞ

δM½4ϕn� ¼ −
κ2M2

n

128
ð−706þ 2049c2θ

− 318c4θ − c6θÞcsc4θ: ð4:30cÞ

We see that the above leading amplitude M0½4ϕn� ¼
OðE2M0

nÞ is mass independent and agrees with
Eq. (4.22), while the subleading amplitude δM½4ϕn� ¼
OðM2

nE0Þ is mass dependent. As a consistency check, we
also note that the above subleading amplitude δM½4ϕn�
just equals the sum of the two NLO amplitudes (4.23) and
(4.27) which are computed earlier.

2. Inelastic gravitational KK Goldstone boson
scattering amplitudes

In this subsection, we further analyze the inelastic
scattering processes for the gravitational KK Goldstone
bosons. Based on the analysis of the previous section, we

FIG. 5. Gravitational KK Goldstone boson scattering ϕnϕn → ϕnϕn from Feynman diagrams of subleading contributions. The
diagrams in the first row arise from exchanging the KK vectorAμ

2n via ðs; t; uÞ-channels, while the diagrams in the second row arise from
exchanging both the zero-mode and KK scalar (ϕ0;ϕ2n) via ðs; t; uÞ-channels and a KK scalar-Goldstone contact interaction.

10As a clarification of the notations, in Secs. III and IV we do
not put an extra “tilde” symbol above the ϕn-amplitude M and
δM such as those in Eqs. (4.28) and (4.30), but we will add a
“tilde” on top of the same ϕn-amplitude symbols such as fM and
δfM in Sec. V as well as in Appendix F for the convenience of
notations.
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have demonstrated that the longitudinal-Goldstone equiv-
alence (4.25) holds down to OðE2Þ under the high-energy
expansion, which is equivalent to taking the high-energy
limit Mn=E → 0.
From the trilinear interaction vertex Fig. 3, we can

deduce a relation between the hμν0 − ϕn − ϕn coupling
(Vμν

0 ) and hμν2n − ϕn − ϕn coupling (Vμν
2n):

Vμν
0 ¼

ffiffiffi
2

p
Vμν
2n: ð4:31Þ

Thus, for each channel of the elastic scattering process, the
corresponding amplitudes with the exchanges of zero-mode
graviton hμν0 and KK graviton hμν2n are connected by the
relation: M2n

j ¼ 1
2
M0

j . Hence, for a given channel-j, we
have Mj ¼ M0

j þM2n
j ¼ 3

2
M0

j in the high-energy limit
Mn=E → 0. With these, we can reproduce the elastic KK
Goldstone scattering amplitude (4.22) by

M½ϕnϕn → ϕnϕn� ¼
3

2

X
j

M0
j ; ð4:32Þ

where j ∈ ðs; t; uÞ. The above amplitude M0
j arises from

the exchange of zero-mode graviton and is given by

M0
j ¼ −iV0

μνD
μναβ
00 V0

αβ: ð4:33Þ

With the above, we can extend our analysis of the elastic
scattering amplitude to a general case as shown in Fig. 6,
including all the inelastic scattering channels. In Fig. 6, the
external KK Goldstone bosons have KK levels of
ðn1; n2; n3; n4Þ, and we denote the intermediate graviton
with levels ðNs;Nt; NuÞ ≥ 0, respectively.
In the following, we consider two types of the inelasic

scattering processes:
(i) For the inelastic scattering ϕnϕn → ϕmϕm (with

n ≠ m), we have

n1 ¼ n2 ¼ n; n3 ¼ n4 ¼ m;

Ns ¼ 0; Nt ¼ Nu ¼ jn�mj; ð4:34Þ
where only the s-channel diagram includes the
exchange of zero-mode graviton because of KK

number conservation. With these, we compute the
inelastic KK graviton scattering amplitude in the
high-energy limit as follows:

M½ϕnϕn → ϕmϕm� ¼ M0
s þ 2 ×

1

2
ðM0

t þM0
uÞ

¼ 2

3
M½ϕnϕn → ϕnϕn�; ð4:35Þ

where M0
j is defined in Eq. (4.33) and equals the

elastic amplitude of hμν0 exchange in the channel-j.
(ii) For the inelastic scattering ϕnϕk → ϕmϕl (with

n ≠ k ≠ m ≠ l), we have

n1 ¼ n; n2 ¼ k; n3 ¼m; n4 ¼ l;

Ns ¼ jn� kj ¼ jm�lj; Nt ¼ jn�lj ¼ jk�mj;
Nu ¼ jn�mj ¼ jk�lj: ð4:36Þ

In this case, the process of exchanging zero-mode
graviton is prohibited because of the KK number
conservation, while the process by exchanging
the relevant KK gravitons is allowed via ðs; t; uÞ-
channels. Thus, we have

M½ϕnϕk → ϕmϕl� ¼
1

2
ðM0

s þM0
t þM0

uÞ

¼ 1

3
M½ϕnϕn → ϕnϕn�: ð4:37Þ

As we checked, our above inelastic KK Goldstone
boson amplitudes (4.35) and (4.37) also equal the inelastic
longitudinal KK graviton amplitudes [13] [cf. its Eq. (76)]
after taking into account the notation difference.

V. CONSTRUCTION OF GRAVITATIONAL KK
AMPLITUDES FROM GAUGE KK AMPLITUDES

WITH DOUBLE COPY

In this section, we study the double-copy construction of
the massive gravitational KK scattering amplitudes from
the corresponding massive gauge KK scattering amplitudes
under the high-energy expansion. The conventional
double-copy approaches (such as [22,23]) are realized

FIG. 6. General four-point scattering process of the gravitational KK Goldstone bosons, ϕn1ϕn2 → ϕn3ϕn4 , via ðs; t; uÞ-channels
mediated by a KK graviton of level Nsj , where Nsj ≥ 0 and sj ∈ ðs; t; uÞ.

YAN-FENG HANG and HONG-JIAN HE PHYS. REV. D 105, 084005 (2022)

084005-22



for massless gauge theories and massless GR. The exten-
sion to the massive YM theory and massive Fierz-Pauli
gravity is difficult without modification [42]. We stress that
the KK YM gauge theory and KK GR are truly distinctive
because they can consistently generate masses for KK
gauge bosons and KK gravitons via geometric Higgs
mechanism (under compactification) as shown in our
Secs. II and III and in Refs. [6,7,10,11]. Hence, we expect
that extending the conventional double-copy method to
the KK theories should be truly promising even though
highly challenging due to the KK mass poles in the
scattering amplitudes. Unlike the conventional double-
copy approaches in the literature, we propose to realize
the double-copy construction by using the high-energy
expansion order by order, and we will demonstrate
explicitly how such a double-copy construction can work
up to the leading order and the next-to-leading order. We
are well motivated to use this high-energy expansion
approach for realizing the double-copy construction also
because it perfectly matches our KK GAET and GRET
formulations. So it should appropriately reconstruct the
GRET based upon the KK GAET. Under the high-energy
expansion, we find that the LO KK gauge boson
(Goldstone) amplitudes and KK graviton (Goldstone)
amplitudes are mass independent, so we can directly
realize the double-copy construction of the LO KK
amplitudes. Then, we show that the gauge and gravita-
tional KK scattering amplitudes at the NLO are mass
dependent. We find that the double-copy construction for
the mass-dependent NLO KK amplitudes is highly non-
trivial, where the conventional double-copy methods (such
as BCJ [22,23]) could not fully work. We will present an
improved BCJ-type double-copy construction for the KK
gauge and gravitational amplitudes at the NLO.
In Sec. VA, we will first analyze the structure of KK

scattering amplitudes for the compactified 5d KK YM
gauge theories without gravity. We present the exact tree-
level four-particle scattering amplitudes of the KK longi-
tudinal gauge bosons (Aan

L ) and of the corresponding KK
Goldstone bosons (Aan

5 ). With these, we analyze the
structure of the KK Aan

L amplitudes and KK Aan
5 amplitudes

at both the LO and NLO under the high-energy expansion.
We show explicitly that the BCJ-type numerators hold the
kinematic Jacobi identity for the LO KK amplitudes, but
the numerators of the NLO KK amplitudes do not. Then,
we show that the NLO numerators can be properly
improved to obey the kinematic Jacobi identities. We also
show explicitly how the KK equivalence theorem for gauge
theory (KK GAET) [6] is realized in such KK YM gauge
theories. Then, in Sec. V B, we demonstrate that the
scattering amplitudes of massive longitudinal KK gravitons
(hnL) and the amplitudes of their KK Goldstone bosons (ϕn)
in the 5d KK GR can be reconstructed from the corre-
sponding scattering amplitudes of the massive longitudinal
KK gauge bosons and KK Goldstone bosons in the 5d KK

YM gauge theory by using the double-copy method at the
LO of the high-energy expansion, where the reconstructed
LO KK amplitudes of hnL and of ϕn have OðE2M0

nÞ and are
mass independent. The reconstructed NLO gravitational
KK amplitudes have OðE0M2

nÞ and are mass dependent.
We find that their double-copy construction is highly
nontrivial. In Sec. V C, we show that by direct extension
of the double-copy method to the NLO KK amplitudes, we
can reconstruct the correct kinematic structure of the KK hnL
amplitude and ϕn amplitude, but not their exact coeffi-
cients. For the difference between the hnL amplitude and ϕn
amplitude, such a naive extension fails to reproduce even
the correct structure in the original gravitational amplitude
difference at the NLO.Wewill present an improved method
to realize the correct structure of the NLO gravitational
amplitude difference, and then further demonstrate how to
fully reconstruct the exact KK hnL amplitude and ϕn
amplitude separately. In Sec. V D, we apply the double-
copy approach of Secs. V B and V C to reconstruct the
residual term of the KK GRET and show it has OðE0M2

nÞ
and is indeed suppressed relatively to the leading KK
Goldstone ϕn amplitude. In this way, we can build the KK
GRET in the 5d KK GR theory from the KK GAET in the
5d KK YM gauge theory.

A. Structure of amplitudes for KK gauge bosons
and KK Goldstone bosons

Consider a non-Abelian gauge group G, such as
G ¼ SUðNÞ, with group structure constant Cabc. For
convenience, we denote the products of two structure
constants as

ðCs; Ct; CuÞ≡ ðCabeCcde; CadeCbce; CaceCdbeÞ: ð5:1Þ

Thus, the Jacobi identity for the group structure constants
takes the following form:

Cs þ Ct þ Cu ¼ 0: ð5:2Þ

This maybe called the “color” Jacobi identity since it
contains the gauge group’s structure constants only.
We compactify a 5d YM gauge theory on S1=Z2. This 5d

compactification leads to a geometric Higgs mechanism [6]
for the KK gauge boson mass generation, where the
longitudinal KK gauge boson Aan

L arises from absorbing
the fifth component of the KK state Aan

5 . We start with the
elastic scattering of longitudinal KK gauge bosons
Aan
L Abn

L → Acn
L Adn

L and the elastic scattering of the corre-
sponding KK Goldstone bosons Aan

5 Abn
5 → Acn

5 Adn
5 . For the

KK Goldstone amplitude, we choose the Feynman-’t Hooft
gauge under which each KK Goldstone boson Aan

5 has the
same massMn as the KK gauge boson Aan

μ . In the center-of-
mass frame of the four-particle elastic scattering, we recall
the kinematic variables defined in Eq. A3:

STRUCTURE OF KALUZA-KLEIN GRAVITON SCATTERING … PHYS. REV. D 105, 084005 (2022)

084005-23



s0 ¼ 4k2; ð5:3aÞ

t0 ¼ −
s0
2
ð1þ cθÞ; ð5:3bÞ

u0 ¼ −
s0
2
ð1 − cθÞ; ð5:3cÞ

where the on-shell condition k2 ¼ E2 −M2
n and k ¼ jp⃗j.

The notations ðs0; t0; u0Þ correspond to the massless
limit whose sum obeys s0 þ t0 þ u0 ¼ 0. They are con-
nected to the Mandelstam variables of the massive case via
ðs0; t0; u0Þ ¼ ðs − 4M2

n; t; uÞ, where sþ tþ u ¼ 4M2
n. We

choose the convention that the momenta of all external
particles are outgoing and the external particle numbers
(1, 2, 3, 4) are arranged clockwise in the scattering plane.

For the longitudinal KK gauge boson scattering and the
corresponding KK Goldstone boson scattering in 5d YM
under S1=Z2, the leading tree-level scattering amplitudes
were given before [6] under high-energy expansion. For the
current study, we have further computed the exact tree-level
KK longitudinal gauge boson amplitude T ½Aan

L Abn
L →

Acn
L Adn

L �≡ T ½4An
L� and KK Goldstone boson amplitudeeT ½Aan

5 Abn
5 → Acn

5 Adn
5 �≡ eT ½4An

5� as follows:

T ½4An
L� ¼ g2ðCsKs þ CtKt þ CuKuÞ; ð5:4aÞ

eT ½4An
5� ¼ g2ðCseKs þ CteKt þ CueKuÞ; ð5:4bÞ

where

Ks ¼ −
ð4s20 þ 27s0 þ 36Þcθ

2ðs0 þ 4Þ ; eKs ¼ −
ð3s0 þ 4Þcθ
2ðs0 þ 4Þ ; ð5:5aÞ

Kt ¼ −
Q0 þQ1cθ þQ2c2θ þQ3c3θ
4s0½8þ s0ð1þ cθÞ�ð1þ cθÞ

; eKt ¼
eQ0 þ eQ1cθ þ eQ2c2θ

4s0½8þ s0ð1þ cθÞ�ð1þ cθÞ
; ð5:5bÞ

Ku ¼
Q0 −Q1cθ þQ2c2θ −Q3c3θ
4s0½8þ s0ð1 − cθÞ�ð1 − cθÞ

; eKu ¼ −
eQ0 − eQ1cθ þ eQ2c2θ

4s0½8þ s0ð1 − cθÞ�ð1 − cθÞ
; ð5:5cÞ

with

s0 ¼ s0=M2
n; s ¼ s=M2

n ¼ s0 þ 4; c2θ ¼ cos 2θ; c3θ ¼ cos 3θ; ð5:6aÞ
Q0 ¼ 8s30 þ 33s20 − 48s0 − 128; Q1 ¼ 2ð7s30 þ 40s20 þ 64s0Þ; ð5:6bÞ

Q2 ¼ 8s30 þ 51s20 þ 32s0 − 128; Q3 ¼ 2ðs30 þ 2s20 − 8s0Þ; ð5:6cÞ

eQ0 ¼ 15s20 þ 144s0 þ 256; eQ1 ¼ 4ð3s20 þ 4s0Þ; eQ2 ¼ −3s20: ð5:6dÞ

We note that the scattering amplitudes (5.4a) and (5.4b) have the leading high-energy behavior of OðE0Þ. We make the
high-energy expansion for the amplitudes (5.4)–(5.6) down to the subleading order:

T ½4An
L� ¼ T 0L þ δT L; eT ½4An

5� ¼ eT 05 þ δeT 5; ð5:7aÞ

T 0L ¼ g2ðCsK0
s þ CtK0

t þ CuK0
uÞ; eT 05 ¼ g2ðCseK0

s þ CteK0
t þ CueK0

uÞ; ð5:7bÞ

δT L ¼ g2ðCsδKs þ CtδKt þ CuδKuÞ; δeT 5 ¼ g2ðCsδeKs þ CtδeKt þ CuδeKuÞ; ð5:7cÞ

where ðKj; eKjÞ ¼ ðK0
j þ δKj; eK0

j þ δeKjÞ are given by

K0
s ¼ −

11

2
cθ; eK0

s ¼ −
3

2
cθ; ð5:8aÞ

K0
t ¼

5 − 11cθ − 4c2θ
2ð1þ cθÞ

; eK0
t ¼

3ð3 − cθÞ
2ð1þ cθÞ

; ð5:8bÞ

K0
u ¼ −

5þ 11cθ − 4c2θ
2ð1 − cθÞ

; eK0
u ¼ −

3ð3þ cθÞ
2ð1 − cθÞ

; ð5:8cÞ
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and

δKs ¼
4cθ
s0

; δeKs ¼
4cθ
s0

; ð5:9aÞ

δKt ¼
2ð2 − 3cθ − 2c2θ − c3θÞ

ð1þ cθÞt0
; δeKt ¼ −

8cθ
ð1þ cθÞt0

; ð5:9bÞ

δKu ¼ −
2ð2þ 3cθ − 2c2θ þ c3θÞ

ð1 − cθÞu0
; δeKu ¼ −

8cθ
ð1 − cθÞu0

: ð5:9cÞ

We note that the leading-order amplitudes K0
j ; eK0

j ¼
OðE0M0

nÞ are both energy independent and mass indepen-
dent, while the subleading amplitudes δKj; δeKj ¼
OðM2

n=E2Þ which will vanish in the high-energy limit
M2

n=E2 → 0.
Inspecting the leading amplitudes of OðE0M0

nÞ as in
Eq. (5.7b) and Eqs. (5.9a)–(5.9c), we find that longitudinal
KK gauge boson amplitude and KK Goldstone boson
amplitude differ by the same amount in each channel:

K0
s − eK0

s ¼ K0
t − eK0

t ¼ K0
u − eK0

u ¼ −4cθ; ð5:10Þ

which has zero contribution to the scattering amplitude
due to the color Jacobi identity (5.2). Hence, we have
explicitly demonstrated the longitudinal-Goldstone equiv-
alence between the longitudinal KK gauge boson scattering
amplitude and KK Goldstone boson scattering amplitude at
the leading order:

T 0L ¼ eT 05: ð5:11Þ

We note that since our above leading amplitudes are
obtained by the high-energy expansion of M2

n=s0, instead
of M2

n=s, our present longitudinal KK amplitude T 0L
differs from that of Ref. [6] [in its Eq. (17)] by a common
term of −8g2cθ in each of the ðs; t; uÞ-channels, whose
contribution to the amplitude vanishes due to the Jacobi
identity (5.2). On the other hand, the leading KK Goldstone
boson amplitude eT 05 coincides with that of Ref. [6] [in its
Eq. (21)]. This is because there is no extra energy
cancellation in the KK Goldstone boson amplitude and
the leading Goldstone amplitude does not depend on the
choice of the expansion parameter as M2

n=s0 or M2
n=s.

We note that the subleading amplitudes (5.7c) and
(5.9a)–(5.9c) are of OðM2

n=E2Þ. Thus, we deduce the
KK longitudinal-Goldstone equivalence at the LO under
the high-energy expansion:

T ½Aan
L Abn

L →Acn
L Adn

L � ¼ eT ½Aan
5 Abn

5 →Acn
5 Adn

5 �þOðM2
n=E2Þ;
ð5:12Þ

which coincides with the KK equivalence theorem (KK-
ET) [6].
For the convenience of double-copy construction, we

define the notations:

ðN s;N t;N uÞ ¼ ðs0Ks; t0Kt; u0KuÞ; ð5:13aÞ

ð eN s; eN t; eN uÞ ¼ ðs0eKs; t0eKt; u0eKuÞ; ð5:13bÞ

N j ¼ N 0
j þ δN j ¼ s0jðK0

j þ δKjÞ; ð5:13cÞ

eN j ¼ eN 0
j þ δ eN j ¼ s0jðeK0

j þ δeKjÞ; ð5:13dÞ

where s0j ∈ ðs0; t0; u0Þ and j ∈ ðs; t; uÞ. With these, we can
reexpress the elastic KK longitudinal and Goldstone
scattering amplitudes as follows:

T ½4An
L� ¼ g2

�
CsN s

s0
þ CtN t

t0
þ CuN u

u0

�
; ð5:14aÞ

eT ½4An
5� ¼ g2

�
Cs eN s

s0
þ Ct eN t

t0
þ Cu eN u

u0

�
: ð5:14bÞ

Inspecting the leading-order kinematic quantities

ðN 0
s ;N 0

t ;N 0
uÞ and ð eN 0

s ; eN 0
t ; eN 0

uÞ as given Eqs. (5.13a),
(5.13b), and (5.8), we find that they are mass independent
and satisfy the following kinematic Jacobi identities:

N 0
s þN 0

t þN 0
u ¼ 0; ð5:15aÞ

eN 0
s þ eN 0

t þ eN 0
u ¼ 0: ð5:15bÞ

We can compare the two types of Jacobi identities (5.2) and
(5.15): the former depends on the color factor (group
structure constants) and the latter depends on kinematics.
Since our above kinematic Jacobi identities (5.15a) and
(5.15b) are mass independent, they bear a similarity with
the conventional color-kinematics duality [22,23] which
was constructed for the 4d massless YM gauge theory and
massless GR.
Furthermore, we note that, because of the Jacobi identity

(5.2), the above amplitudes (5.14a) and (5.14b) are invari-
ant under the shifts:
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N j → N 0
j ¼ N j þ Δ × s0j; ð5:16aÞ

eN j → eN 0
j ¼ eN j þ eΔ × s0j; ð5:16bÞ

where (Δ; Δ̃) can be arbitrary local functions of kine-
matic variables. These shifts may be called the gen-
eralized gauge transformations since its form bears
some similarity to the gauge transformation. From
Eq. (5.16), we deduce the sum relation for numerators,

P
j N

0
j ¼

P
j N j, due to the fact of s0 þ t0 þ u0 ¼ 0.

This will no longer hold for our double-copy construc-
tion under the 1=s expansion in Sec. V C 2 because
of sþ tþ u ¼ 4M2

n.
Then, we compare the formulas of the leading KK

longitudinal and Goldstone boson amplitudes in
Eqs. (5.8), (5.13c), and (5.13d). With these we derive
the following relations between the two sets of kinematic

quantities ðN 0
s ;N 0

t ;N 0
uÞ and ð eN 0

s ; eN 0
t ; eN 0

uÞ:

N 0
s ¼ eN 0

s − 4cθs0; N 0
t ¼ eN 0

t − 4cθt0; N 0
s ¼ eN 0

u − 4cθu0: ð5:17Þ

The above relations (5.17) show that the leading longitudinal KK gauge boson scattering amplitude in Eq. (5.14a) and
the leading KK Goldstone boson scattering amplitude in Eq. (5.14b) differ by an amount −4g2cθðCs þ Ct þ CuÞ,
which vanishes identically due to the Jacobi identity (5.2). As we noted earlier, this realizes the KK GAET as in Eq. (5.11)
or (5.12).
We can further extend the above analysis to general processes including the inelastic KK scattering channels Aan

L Abk
L →

Acm
L Adl

L and Aan
5 Abk

5 → Acm
5 Adl

5 , where the KK numbers of the initial and final states obey the condition jn� kj ¼ jm� lj.
For this, we derive the following relations under the high-energy expansion:

T ½Aan
L Abk

L → Acm
L Adl

L � ¼ ζnkmlT ½Aan
L Abn

L → Acn
L Adn

L � þOðM2
j=E

2Þ; ð5:18aÞ

eT ½Aan
5 Abk

5 → Acm
5 Adl

5 � ¼ ζnkml
eT ½Aan

5 Abn
5 → Acn

5 Adn
5 � þOðM2

j=E
2Þ; ð5:18bÞ

where ζnnnn ¼ 1, ζnnmm ¼ 2
3
for n ≠ m, and ζnkml ¼ 1

3
for the cases where the KK numbers ðn; k;m;lÞ have no more than

one equality. From the above, we derive the KK GAET for general scattering processes including inelastic channels:

T ½Aan
L Abk

L → Acm
L Adl

L � ¼ eT ½Aan
5 Abk

5 → Acm
5 Adl

5 � þOðM2
j=E

2Þ; ð5:19Þ

where the KK GAET for the elastic channel (n ¼ k ¼ m ¼ l) and the inelastic channel (n ¼ k ≠ m ¼ l) were
demonstrated in Ref. [6].
Next, we examine the subleading amplitudes in Eqs. (5.9a)–(5.9c) and (5.13c) and (5.13d). From these, we deriveX

j

δN j ¼
X
j

δ eN j ¼ χ; ð5:20aÞ

χ ¼ −2ð7þ c2θÞcθcsc2θM2
n; ð5:20bÞ

where j ∈ ðs; t; uÞ. We note that the next-to-leading-order sums of δN j and δ eN j are equal and do not vanish. Then, we

compute the differences of the NLO numerators ðδN j − δ eN jÞ as follows:

δN s − δ eN s ¼ 0; δN t − δ eN t ¼ 8s2θM
2
n; δN u − δ eN u ¼ −8s2θM2

n: ð5:21Þ

From the above results, we find that the sum of the dif-
ferences of these NLO numerators obeys a Jacobi identity:X

j

ðδN j − δ eN jÞ ¼ 0: ð5:22Þ

This property is important for us to understand the structure
of the residual term in the GRET (3.15) or (3.16), as will be

shown in Sec. V B. Using (5.21) and from Eqs. (5.7a) and
(5.14), we also derive the NLO amplitude difference:

δT L − δeT 5 ¼ 8g2s2θM
2
n

�
Ct
t0
−
Cu
u0

�
: ð5:23Þ

As an extension, we may make two possible redecom-
positions of the sum χ into the ðs; t; uÞ channels:

YAN-FENG HANG and HONG-JIAN HE PHYS. REV. D 105, 084005 (2022)

084005-26



χ ≡X
j

χj ≡
X
j

eχj; ð5:24Þ

where the kinematics hold the relations χuðθÞ ¼ −χtðπ − θÞ
and eχuðθÞ ¼ −eχtðπ − θÞ. Then, we define the following
modified subleading numerator factors:

δN 0
j ¼ δN j − χj; δ eN 0

j ¼ δ eN j − eχj; ð5:25Þ
which keep Eq. (5.22) invariant and satisfy the kinematic
Jacobi identities separately:X

j

ðδN 0
j − δ eN 0

jÞ ¼ 0; ð5:26aÞ

X
j

δN 0
j ¼ 0;

X
j

δ eN 0
j ¼ 0: ð5:26bÞ

Thus, from Eq. (5.14), we define the improved scattering
amplitudes for the KK longitudinal gauge bosons and KK
Goldstone bosons:

T 0½4An
L� ¼ g2

�
CsN 0

s

s0
þ CtN 0

t

t0
þ CuN 0

u

u0

�
; ð5:27aÞ

eT 0½4An
5� ¼ g2

�
Cs eN 0

s

s0
þ Ct eN 0

t

t0
þ Cu eN 0

u

u0

�
: ð5:27bÞ

We note that according to the Jacobi identities (5.15) and
(5.26b), the improved numerators N 0

j ¼ N 0
j þ δN 0

j andeN 0
j ¼ eN 0

j þ δ eN 0
j obey the kinematic Jacobi identities

separately:

N 0
s þN 0

t þN 0
u ¼ 0; ð5:28aÞ

eN 0
s þ eN 0

t þ eN 0
u ¼ 0: ð5:28bÞ

Thus, the improved KK scattering amplitudes (5.28a) and
(5.28b) exhibit all the nice features required by the conven-
tional double-copy construction of BCJ type [22,23]. We
will present such a double-copy construction for the KK
graviton scattering amplitudes and the GRET in the next
subsection. For the subleading KK YM amplitudes and KK
graviton amplitudes, our focus will be on the residual term
T v in the KK GAET identity and the residual term MΔ in
the GRET identity, which can be expressed respectively as
the difference between the NLO longitudinal KK amplitude
and the corresponding NLO KK Goldstone amplitude:

T v ¼ δT L − δeT 5; ð5:29aÞ

MΔ ¼ δM − δfM; ð5:29bÞ

where we have used the notations δM≡ δM½4hnL� and
δfM≡ δfM½4ϕn�. For deriving the above NLO KK GAET

identity (5.29a) and the NLO GRET identity (5.29b), we
have input the LO KK GAET identity (5.11) and the LO
GRET identity (F7a). The modified NLO numerators in
Eq. (5.25) give the modified NLO amplitudes as follows:

δT 0
L ¼ δT L −

X
j

Cjχj
s0j

; ð5:30aÞ

δeT 0
5 ¼ δeT 5 −

X
j

Cjeχj
s0j

: ð5:30bÞ

With the above, we can reexpress the NLO KK GAET
identity (5.29a) in the following form:

T 0
v ¼ δT 0

L − δeT 0
5; ð5:31Þ

where T 0
v denotes the modified residual term defined by

T 0
v ¼ T v −

P
j Cjðχj − eχjÞ=s0j. We note that even though

in Eq. (5.31) the NLO KK longitudinal and Goldstone
amplitudes ðδT 0

L; δeT 0
5Þ are both modified as in Eq. (5.30),

the residual term is also modified as T 0
v accordingly.

Hence, the NLO KK GAET identity (5.31) is equivalent
to its original form (5.29a), which means that the gauge
symmetry of the KK YM theory is still retained by the
identity (5.31).
With the double-copy construction, we can justify the

size of the GRET residual term MΔ ¼ OðM2
nE0Þ from the

KK GAET residual term T v ¼ OðM2
n=E2Þ, where T v is

well understood. We will demonstrate that the connection
between sizes of the two residual terms T v ¼ OðM2

n=E2Þ
andMΔ ¼ OðM2

nE0Þ is a general prediction of the double-
copy construction and does not depend on details of the
construction.

B. Constructing KK scattering amplitudes
and GRET by double copy

For the compactified 5d YM gauge theory and compac-
tified 5d GR theory, we expect the double-copy correspon-
dence:

Aaμ
n ⊗ Aaν

n → hμνn ; ð5:32aÞ

Aa5
n ⊗ Aa5

n → h55n ; ð5:32bÞ

Aaμ
n ⊗ Aa5

n → hμ5n : ð5:32cÞ

It is instructive to note that the physical spin-2 KK graviton
field hμνn arises from the double-copy of spin-1 KK gauge
fields Aaμ

n ⊗ Aaν
n . On the other hand, the Aa5

n is the would-
be KK Goldstone boson in the compactified 5d YM gauge
theory, and the double-copy counterparts h55n ð¼ ϕnÞ and
hμ5n just correspond to the scalar KK Goldstone boson and
vector KK Goldstone boson in the compactified 5d GR.
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From Eq. (5.32a), we further expect the double-copy
correspondence between the (helicity-zero) longitudinal
KK graviton and KK gauge boson: Aan

L ⊗ Aan
L → hnL.

We observe that in the high-energy limit the longitudinal
KK gauge boson Aan

L ¼ ϵμLA
an
μ has its polarization vector

ϵμL ∼ kμ=Mn, and the longitudinal KK graviton hnL ¼ εμνL hnμν
has its polarization tensor εμνL ∼ kμkν=M2

n. Thus, we have
εμνL ∼ ϵμLϵ

ν
L in the high-energy limit, which also makes

the longitudinal correspondence (Aan
L ⊗ Aan

L → hnL) well
expected. The demonstration of the double-copy corre-
spondence between the longitudinal KK gauge boson
amplitudes and the longitudinal KK graviton amplitudes
is much more nontrivial than the above relation between the
on-shell longitudinal polarization vector/tensor, as we will
analyze further in this subsection.
In this subsection, wewill first demonstrate a double-copy

construction from theKKgauge theory amplitudes to theKK
graviton amplitudes at the leading order of the high-energy
expansion, which corresponds to the limit Mn=E → 0. We
find that such leading-order amplitudes aremass independent
and their kinematic Jacobi identities (5.15) hold, in addition
to themasslessMandelstam relation s0 þ t0 þ u0 ¼ 0. Thus,
we will first extend the conventional double-copy method
[22,23] to the LO amplitudes in our 5d KK theory and
demonstrate how it works quantitatively.
We note that the (helicity-zero) longitudinal KK gauge

bosons Aan
L and longitudinal KK gravitons hnL are truly

distinctive in the KK theory because they do not exist in the
commonly studied massless YM gauge theory or massless
GR. Also, in the limit Mn → 0, the KK Goldstone bosons
Aan
5 and ϕnð¼ hn55Þ both become massless and correspond

to the physical degrees of freedom. But, it is important to
observe that according to the KK GAET (cf. Sec. VA) [6,7]
and GRET (Secs. III and IV), the leading scattering
amplitudes of the longitudinal KK gauge bosons (KK
gravitons) equal the corresponding amplitudes of the KK
Goldstone bosons and are mass independent (which cor-
responds to the limit M2

n=E2 → 0 under high-energy
expansion). Hence, we can construct a double copy from
the leading longitudinal KK gauge boson amplitudes of
OðE0Þ to the corresponding longitudinal KK graviton
amplitudes of OðE2Þ, in parallel to the double-copy
construction between the KK Goldstone amplitudes in
the KK YM theory and KK GR. The KK Goldstone
amplitudes are much simpler due to the absence of any
nontrivial energy cancellations in the KK Goldstone
amplitudes. Furthermore, since the compactified KK the-
ories have very different Feynman rules from the 4d
massless gauge theory or massless GR as commonly
studied, the double-copy realization in the KK theory is
far from obvious even for the leading-order amplitudes
before explicit demonstration. For instance, there are highly
nontrivial and intricate energy cancellations in the longi-
tudinal KK gauge boson scattering amplitudes [from
OðE4Þ down to OðE0Þ] [6] and in the (helicity-zero)

longitudinal KK graviton scattering amplitudes [from
OðE10Þ down to OðE2Þ] [13]; all of these do not exist in
the 4d massless gauge theory and massless GR.
We inspect the structures of the KK longitudinal gauge

boson scattering amplitude (5.14a) and the KK correspond-
ing Goldstone boson scattering amplitude (5.14b) in the
compactified 5d YM gauge theory under the high-energy
expansion. We see from Eqs. (5.7)–(5.9) that under high-
energy expansions, the leading amplitudes ðT 0L; eT 05Þ are of
OðE0Þ and mass independent, while the subleading ampli-
tudes ðδT L; δeT 5Þ are of OðM2

n=E2Þ and vanish in the
massless limit Mn → 0. We have formally expressed these
leading amplitudes in the form the massless gauge theories
with pole factors ðs0; t0; u0Þ in the denominator of each
channel, even though these poles are no longer real poles
under the current high-energy expansion. For the current
study of the 5d KK YM gauge theories and 5d KK GR, we
present an extended formulation of the conventional BCJ
double-copy method of the massless gauge theories [22,23],
by making the high-energy expansion with M2

n=E2 ≪ 1
under which all the nonzero KK mass poles are removed,
and the mass-dependent contributions can be treated order
by order.
From the numerators of the amplitudes (5.14a) and

(5.14b), we see that the kinematic factors ðN s;N t;N uÞ
and ð eN s; eN t; eN uÞmay beviewed as dual to the color factors
ðCs; Ct; CuÞ according to the conventional double-copy
method in the massless gauge theories [22,23]. Thus,
we attempt to construct the elastic scattering amplitude
M½hnLhnL → hnLh

n
L� of the longitudinal KK gravitons

and the gravitational KK Goldstone boson amplitudefM½ϕnϕn → ϕnϕn� from the corresponding longitudinal
KK gauge boson amplitude T ½Aan

L Abn
L → Acn

L Adn
L � and the

KK Goldstone boson amplitude eT ½Aan
5 Abn

5 → Acn
5 Adn

5 �,
respectively. We realize an extended double-copy construc-
tion for the 5d KK YM gauge theory and 5d KK GR by the
following replacement:

ðCs; Ct; CuÞ → ðN s;N t;N uÞ; ð5:33aÞ

ðCs; Ct; CuÞ → ð eN s; eN t; eN uÞ: ð5:33bÞ

Applying this duality replacement to the scattering ampli-
tudes of the longitudinal KK gauge bosons and KK
Goldstone bosons in Eqs. (5.14a), (5.14b), (5.8), (5.13c),
and (5.13d), we first construct the corresponding scattering
amplitudes of the longitudinal KK gravitons and gravita-
tional KK Goldstone bosons to the nonzero leading con-
tributions of OðE2Þ in the high-energy expansion:

M0½hnLhnL → hnLh
n
L� ¼ c0g2

�ðN 0
sÞ2

s0
þ ðN 0

t Þ2
t0

þ ðN 0
uÞ2

u0

�
;

ð5:34aÞ
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fM0½ϕnϕn → ϕnϕn� ¼ c0g2
�ð eN 0

sÞ2
s0

þ ð eN 0
t Þ2
t0

þ ð eN 0
uÞ2

u0

�
;

ð5:34bÞ

where the overall coefficient c0 is a conversion constant due
to replacing the gauge coupling g by gravitational coupling κ.
The constant c0 is not known a priori before a unified UV
theory of gauge and gravitational forces becomes available.
Then, substituting Eqs. (5.8a)–(5.8c) into Eqs. (5.34a)

and (5.34b), we explicitly reconstruct the longitudinal KK
graviton scattering amplitude and the gravitational KK
Goldstone scattering amplitude as follows:

M0½hnLhnL → hnLh
n
L� ¼ fM0½ϕnϕn → ϕnϕn�

¼
�
−
9c0g2

4

��ð3þ cos2θÞ2
sin2θ

�
s0

ð5:35aÞ

¼
�
−
9c0g2

16

�
½ð7þ cos 2θÞ2 csc2 θ�s0

ð5:35bÞ

¼
�
−
9c0g2

4

��ðs20 þ t20 þ u20Þ2
s0t0u0

�
;

ð5:35cÞ

where we have dropped the mass-dependent subleading
term of OðM2

nÞ which is much smaller than the above
leading OðE2Þ amplitude in the high-energy scattering.
Strikingly, we find that our above leading amplitudes of

the longitudinal KK graviton and the gravitational KK
Goldstone boson in Eq. (5.35), as constructed by the
double-copy method, perfectly agree to the gravitational
KK Goldstone amplitude (4.22) at OðE2Þ which we
computed directly from the KK theory of compactified
5d GR.
Equation (5.35) also explicitly establishes the equiva-

lence between the longitudinal KK graviton amplitude
and the corresponding gravitational KK Goldstone boson
amplitude. In fact, we can demonstrate this equivalence in a
more elegant and transparent way, by making use of
the relation (5.17). With this, we can express the KK
graviton amplitude (5.34a) in terms of the gravitational KK
Goldstone boson amplitude:

M0½hnLhnL → hnLh
n
L� ¼ c0g2

��ð eN 0
sÞ2

s0
þ ð eN 0

t Þ2
t0

þ ð eN 0
uÞ2

u0

�
− 8cθð eN 0

s þ eN 0
t þ eN 0

uÞ þ 16c2θðs0 þ t0 þ u0Þ
�

¼ fM0½ϕnϕn → ϕnϕn�; ð5:36Þ

where in the last step we have made use of the kinematic
Jacobi identity (5.15b) and the Mandelstam relation
s0 þ t0 þ u0 ¼ 0. We see that the longitudinal KK gra-
viton scattering amplitude equals the gravitational KK
Goldstone scattering amplitude at the leading OðE2

nÞ and
they differ only by subleading terms of OðE0M2

nÞ. The
above Eq. (5.36) just demonstrates that the GRET holds for
the longitudinal KK graviton scattering amplitude and the
corresponding KK Goldstone scattering amplitude down to
OðE2M0

nÞ under the high-energy expansion,

M½hnLhnL → hnLh
n
L� ¼ fM½ϕnϕn → ϕnϕn� þOðE0M2

nÞ:
ð5:37Þ

It is truly impressive to see that by building upon the
longitudinal-Goldstone equivalence of the KK GAET
(5.12) [or (5.19)], we have established the corresponding
longitudinal-Goldstone equivalence of the GRET for the
amplitudes of the longitudinal KK graviton scattering and
of the gravitational KK Goldstone scattering as in the above
Eq. (5.37) by using the double-copy construction. Hence,
this demonstrates a double-copy correspondence between

the KK GAET in the compactified 5d YM gauge theory and
the KK GRET in the compactified 5d GR.
We have the following comments in order:
(i) Impressively, we find that our reconstructed

gravitational KK Goldstone ϕnð¼h55n Þ amplitudefM0½ϕnϕn→ϕnϕn� in Eqs. (5.34b) and (5.35) from

the KK Goldstone Aan
5 amplitude eT 0½Aan

5 Abn
5 →

Acn
5 Adn

5 � in Eqs. (5.14b), (5.8a)–(5.8c) in the com-
pactified 5d YM gauge theory via the double-copy
approach has exactly the same energy and angular
dependence as what we obtained by directly com-
puting the ϕn amplitude (4.22) in the compactified
5d KK GR theory. This double-copy reconstruction
is naturally expected via the correspondence Aan

5 ⊗
Aan
5 → hn55 where both the KK Goldstone bosons

Aan
5 and hn55ð¼ ϕnÞ become effectively massless in

the high-energy limitM2
n=E2 → 0. We note that both

the leading gravitational KK Goldstone amplitude
(5.34b) and (5.35) of OðE2Þ and the leading gauge-
theory KK Goldstone amplitude (5.14b), (5.8a)–
(5.8c) of OðE0Þ are mass independent. Hence, their
structures reflect the 5d gauge symmetry of the KK
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YM theory and the 5d diffeomorphism invariance of
the KK GR theory.

(ii) Note that the (helicity-zero) longitudinal KK gauge
bosons Aan

L and longitudinal KK gravitons hnL do not
exist in the massless YM gauge theory or massless
GR. Hence they are truly distinctive in the KK
theories.Asweobserve, the key point is that according
to the KK GAET (Sec. VA) [6,7] and GRET
(Secs. III–IV), the leading longitudinal scattering
amplitudes of Aan

L and hnL equal the corresponding
amplitudes of theKKGoldstone bosons (Aan

5 and hn55)
and are mass independent (corresponding to the limit
M2

n=E2 → 0 under high-energy expansion), despite
the fact that the longitudinal polarization vector ϵμL
(tensor εμνL ) ofAan

L (hnL) has explicit mass dependence.
This is why we can construct a similar double copy
from the leading longitudinal KK gauge boson
amplitudes of OðE0M0

nÞ to the corresponding longi-
tudinal KK graviton amplitudes of OðE2M0

nÞ. The
above also explains that even though the original
double-copy formulation [22,23] was shown to hold
in the massless theory, we can still extend it to our
current double-copy construction for the compactified
massiveKK theories to the leading-order amplitude of
OðE2M0

nÞ, which is mass independent. All the mass-
dependent terms belong to the subleading order of
OðE0M2

nÞ and are of the same order as the residual
term in the GRET, as we will analyze further in
Secs. V C and VD.
We stress that our double-copy construction guar-

antees that the leading longitudinal KK graviton
(Goldstone) amplitude (5.34)–(5.35) must scale as
OðE2M0

nÞ under thehigh-energy expansion.According
to our double-copy construction, this OðE2M0

nÞ high-
energy behavior just corresponds to the OðE0M0

nÞ
leading energy behavior of the KK gauge (Goldstone)
boson amplitude (5.14), which are both mass inde-
pendent. In fact, our double-copy construction (based
on the scattering amplitudes of 5d YM gauge theory
and the KK GAET [6,7]) gives an independent
proof that the longitudinal KK graviton scattering
amplitudes must have large energy cancellations of
OðE10Þ → OðE2Þ. We achieve this by establishing a
new correspondence between the two energy cancella-
tions of the four-particle longitudinal KK scattering
amplitudes: E4 → E0 in the 5d KKYM theory (YM5)
and E10 → E2 in the 5d KKGR (GR5). Here, with the
double-copy construction, we use the first energy
cancellation of E4 → E0 (YM5) to deduce the second
energy cancellation ofE10 → E2 (GR5). Thus, wemay
present schematically this newcorrespondencebetween
the two energy cancellations as follows:

E4 → E0ðYM5Þ ⟹ E10 → E2ðGR5Þ: ð5:38Þ

In passing, some recent literature on the double-copy
construction for certain specific KK models appeared
[43,44], in which [43] briefly discussed a scalar model
compactified on R4 × S1 with an extra spectral con-
dition imposed on the KK mass spectrum, and [44]
discussed a KK inspired action with extra global U(1)
symmetry to have certain special mass condition for
double copy. But these special KK models differ from
the standardKK theorywith obifoldS1=Z2 in our study
and their methods do not apply to our case, so they do
not overlap with our current study.

(iii) Our reconstructed gravitational KK Goldstone bo-
son scattering amplitude (5.34b), (5.35) by the
double-copy method is confirmed by our direct
computation of the gravitational KK Goldstone
amplitude in Eq. (4.22), which also equals our
reconstructed (helicity-zero) longitudinal KK grav-
iton amplitude (5.35). In addition, we find that our
longitudinal KK graviton amplitude in Eq. (5.35) as
reconstructed from our longitudinal KK gauge
boson amplitude (5.14a) has exactly the same energy
and angular dependence as those obtained by direct
Feynman-diagram calculations of the longitudinal
KK graviton amplitudes in Refs. [12,13].11,12

(iv) The amplitudes (5.34a) and (5.34b) have no double
poles, so its denominator should be proportional to
the product s0t0u0, which is permutation invariant
among ðs0; t0; u0Þ. We note that for the elastic
scattering ðn; nÞ → ðn; nÞ, the above amplitude
should be invariant under all possible permutations,
so the structure of this amplitude should take the
form of ðs0t0u0Þaðs20 þ t20 þ u20Þb with ða; bÞ being
certain integers. Since the denominator of the
scattering amplitude should scale like s0t0u0 ∝ s30,
so we have a ¼ 1. Note that the whole amplitude is
expected to scale likeOðs1Þ, so the numerator has to
scale as Oðs4Þ. This means that the only possibility
for the numerator is to scale as ðs20 þ t20 þ u20Þ2 with
b ¼ 2. With these, we can generally deduce that the
kinematic structure of the amplitude (5.34) behaves
as ðs20 þ t20 þ u20Þ2=ðs0t0u0Þ, which explains why

11Incidentally, we notice that Eq. (4) of Ref. [12] (both arXiv
and PRD versions) has an angular dependence ð7þ c2θÞ with a
power-factor 2 missed, which we initially found by comparing
with our double-copy construction (5.34b). We worried about
this, but then realized it was a pure typo of Eq. (4) since the
Eq. (70) of a later paper [13] did show the correct angular
dependence of ð7þ c2θÞ2, in full agreement with our double-
copy construction (5.34a) and (5.34b) based on the longitudinal
KK gauge (Goldstone) boson amplitudes alone.

12After submitting this paper to arXiv:2106.04568, we learnt
from colleagues Sekhar Chivukula and Elizabeth Simmons via
private communication that their postdoc Xing Wang also
checked that the double copy gave the correct expression for
massive KK graviton scattering in the case of orbifolded torus.
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our explicit construction should lead to the formula
of (5.35c) indeed.

(v) The overall conversion constant c0 in Eqs. (5.34)
and (5.35) is undetermined by the double-copy
construction itself, but is expected to be universal
at least for each given spacetime dimension. To
match our double-copy result (5.35) with the gravi-
tational KK Goldstone amplitude (4.22), we choose
the following conversion constant:

c0 ¼ −
κ2

24g2
: ð5:39Þ

We also notice that in the traditional massless 4d
theory, the graviton amplitude reconstructed from
the BCJ double copy can fully match the graviton
amplitude in 4d massless GR with the conversion
constant

ec0 ¼ κ2

16g2
: ð5:40Þ

Our definition of the group structure constant Cabc

differs from the group structure constant fabc of
Refs. [22,23] by a simple normalization factor:

Cabc ¼ 1ffiffiffi
2

p fabc ¼ −
iffiffiffi
2

p Trð½Ta; Tb�TcÞ; ð5:41Þ

where Ta is the generator of the SU(N) group.
Next, we further extend the above analysis to general

processes Aan
L Abk

L → Acm
L Adl

L and Aan
5 Abk

5 → Acm
5 Adl

5 includ-
ing the inelastic KK scattering channels. According to
Eqs. (5.14a), (5.14b), and (5.18), we write the LO inelastic
scattering amplitudes as follows:

T 0½Aan
L Abk

L →Acm
L Adl

L � ¼ g2ζnkml

�
CsN 0

s

s0
þCtN 0

t

t0
þCuN 0

u

u0

�
;

ð5:42aÞ

eT 0½Aan
5 Abk

5 →Acm
5 Adl

5 � ¼ g2ζnkml

�
Cs eN 0

s

s0
þCt eN 0

t

t0
þCu eN 0

u

u0

�
;

ð5:42bÞ

where ζnnnn ¼ 1, ζnnmm ¼ 2
3
for n ≠ m, and ζnkml ¼ 1

3
for

ðn; k;m;lÞ having no more than one equality. Thus, using
the color-kinematics duality relations (5.33a) and (5.33b)
and up to an overall conversion constant c0, we can further
reconstruct the general scattering amplitude of longitudinal
KK gravitons and the scattering amplitude of the corre-
sponding gravitational KK Goldstone bosons by using the
following relations:

M½hnLhkL → hmLh
l
L� ¼ ζnkmlM½hnLhnL → hnLh

n
L� þOðE0M2

jÞ;
ð5:43aÞ

fM½ϕnϕk → ϕmϕl� ¼ ζnkml
fM½ϕnϕn → ϕnϕn� þOðE0M2

jÞ:
ð5:43bÞ

Then, using Eq. (5.37), we can deduce the GRET
by double-copy reconstruction for the general scattering
process:

M½hnLhkL → hmLh
l
L� ¼ fM½ϕnϕk → ϕmϕl� þOðE0M2

jÞ;
ð5:44Þ

where the KK numbers of the initial and final states
obey jn� kj ¼ jm� lj.
We observe that our double-copy constructions in

Eqs. (5.37) and (5.44) have explicitly established the
KK GRET from the KK GAET (5.12) and (5.19): the
leading amplitude of the longitudinal KK graviton scatter-
ing equals that of the gravitational KK Goldstone scattering
at OðE2Þ (which is mass independent) under the high-
energy expansion, and their difference is only ofOðE0M2

nÞ.
This means that in our general formulation of the KK
GRET (3.16) the sum of all the OðeΔnÞ residual terms must
be of OðE0M2

nÞ, even though the naive power-counting on
their individual amplitudes containing one or more external
states of evnð¼ evμνhμνn Þ or ehnð¼ ημνehμνn Þ gives OðE2Þ.
Hence, we deduce that the double-copy construction of
the KK GRET identity (3.15) from the KK GAET identity
[7] in the KK YM gauge theory provides a new mechanism
of energy cancellation from OðE2Þ down to OðE0Þ in the
sum of all the OðeΔnÞ residual terms on the RHS of the KK
GRET (3.16). Wewill further demonstrate the realization of
this new energy cancellation mechanism of E2 → E0 for the
residual terms of GRET in the next subsections.

C. Constructing mass-dependent KK amplitudes
from double copy

In this subsection, we study the extended double-copy
construction of the mass-dependent KK scattering ampli-
tudes at the NLO. We will make two types of high-energy
expansions by using the expansion parameter 1=s0 or 1=s,
where the Mandelstam variable s ¼ s0 þ 4M2

n for the four-
point elastic KK amplitudes. As we will show, the
advantage of the 1=s0 expansion is that it can automatically
ensure that the LO numerators of the KK amplitudes are
mass independent, but then the mass-dependent NLO
numerators cannot obey the kinematic Jacobi identity even
after the generalized gauge-transformation due to s0 þ t0 þ
u0 ¼ 0 [cf. Eq. (A3)]. So additional modifications are
needed. In contrast, under the 1=s expansion the LO
numerators of KK amplitudes depend only on the s and
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θ (where the mass dependence is contained only in s via
s ¼ s0 þ 4M2

n), and we can make the gauge-transformed
numerators obey the kinematic Jacobi identity order by
order in the 1=s expansion due to sþ tþ u ¼ 4M2

n
[cf. Eq. (A2)]. Hence, the 1=s expansion is expected to
realize the double-copy construction more successfully. In
the following, we will present the extended double-copy
constructions for the NLOmassive KK amplitudes by using
the high-energy expansion of 1=s0 in Sec. V C 1 and the
high-energy expansion of 1=s in Sec. V C 2.

1. Double copy of NLO KK amplitudes
under 1=s0 expansion

In Sec. V B, we focused on the double-copy construction
of the KK gravitational amplitudes (5.34a) and (5.34b) at
the leading order of the high-energy expansion. For this
subsection, we study the double-copy KK amplitudes
(5.14a) and (5.14b) of the 5d KK YM gauge theory up
to the next-to-leading order of the 1=s0 expansion. For this,
we extend the reconstructed KK gravitational amplitudes
(5.34a) and (5.34b) as follows:

M½4hnL� ¼ c0g2
�ðN sÞ2

s0
þ ðN tÞ2

t0
þ ðN uÞ2

u0

�
¼ M0 þ δM;

ð5:45aÞ

fM½4ϕn� ¼ c0g2
�ð eN sÞ2

s0
þ ð eN tÞ2

t0
þ ð eN uÞ2

u0

�
¼ fM0 þ δfM;

ð5:45bÞ

where the conversion constant c0 ¼ −κ2=ð24g2Þ is given by
Eq. (5.39), as determined by matching the corresponding
leading-order gravitational KK amplitude (4.22). According
to Eqs. (5.13c) and (5.13d), we expand the numerator factors

ðN j; eN jÞ to the NLO and naively derive the following
reconstructed subleading-order gravitationalKKamplitudes:

δM ¼ 2c0g2
�
N 0

sδN s

s0
þN 0

t δN t

t0
þN 0

uδN u

u0

�
; ð5:46aÞ

δfM ¼ 2c0g2
� eN 0

sδ
eN s

s0
þ
eN 0

t δ
eN t

t0
þ
eN 0

uδ
eN u

u0

�
: ð5:46bÞ

We first note that the above double-copy construction should
give the correct powers of the (energy, mass) dependence of
the corresponding NLO gravitational KK amplitudes under
the high-energy expansion. The structure of the KK ampli-
tudes in the 5d KK YM gauge theory has been well
understood as we showed in Eqs. (5.4)–(5.9), (5.13),
and (5.14) of Sec. VA. We see that in the 5d KK YM gauge
theory, the LO and NLO amplitudes in each channel
are ðK0

j ; eK0
jÞ ¼ OðE0M0

nÞ and ðδKj; δeKjÞ ¼ OðM2
n=E2Þ.

Thus, the LO and NLO numerators are ðN 0
j ;
eN 0

jÞ ¼
OðE2M0

nÞ and ðδN j; δ eN jÞ ¼ OðE0M2
nÞ. Hence, we gen-

erally deduce that the reconstructed double copy of the
LO and NLOKK amplitudes for gravitational KK scattering
should have the following power dependence on the
(energy, mass):

ðM0;fM0Þ ¼ O
�
κ2

ðN 0
jÞ2; ð eN 0

jÞ2
s0j

�
¼ Oðκ2E2M0

nÞ;

ð5:47aÞ

ðδM; δfMÞ ¼ O
�
κ2

N 0
jδN j; eN 0

jδ
eN j

s0j

�
¼ Oðκ2E0M2

nÞ;

ð5:47bÞ

where s0j ∈ ðs0; t0; u0Þ ¼ OðE2Þ and we have used c0g2 ∼
Oðκ2Þ according to Eq. (5.39). The above power-counting
fully agrees with the explicit calculations of the KK graviton
(Goldstone) amplitudes of the compactified 5d GR (GR5) in
Eqs. (4.30) and (F7b) and (F7c). The above general power-
counting results (5.47a) and (5.47b) are predicted by the
double-copy method based upon the amplitude structure of
the well-understood 5d KK YM gauge theory (Sec. VA).
These are important for our GRET formulation as we will
discuss further in Sec. V D.
As we noted in Eq. (5.20), the NLO numerators

ðδN j; δ eN jÞ do not satisfy the kinematic Jacobi identity.
Thus, we expect that the reconstructed NLO amplitudes by
double copy may not exactly reproduce the corresponding
gravitational amplitudes. Using Eqs. (5.8), (5.9), (5.13c),
and (5.13d), we can directly compute the reconstructed
NLO amplitudes (5.46a) and (5.46b) as follows:

δM ¼ −
κ2M2

n

192
ð2050þ 959c2θ þ 62c4θ þ c6θÞ csc4 θ;

ð5:48aÞ

δfM ¼ −
κ2M2

n

64
ð494þ 513c2θ þ 18c4θ − c6θÞcsc4θ;

ð5:48bÞ

where the conversion constant c0 is given by Eq. (5.39) as
determined by matching the double-copy amplitudes with
the gravitational amplitudes at the leading order. It is
instructive to compare the above NLO double-copy ampli-
tudes (5.48a) and (5.48b) with the corresponding gravita-
tional amplitudes (F7b) and (F7c) as directly computed
from the 5d KK GR theory. It is good to see that the
reconstructed NLO double-copy amplitudes (5.48a) and
(5.48b) indeed have the same kinematic structures as that of
the corresponding gravitational amplitudes (F7b) and (F7c)
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because they all contain the angular terms of the type
ð1; c2θ; c4θ; c6θÞ × csc4 θ though their coefficients differ.
Their differences in the coefficients are quite expected
because our Eq. (5.20) shows that the NLO numerators

ðδN j; δ eN jÞ do not satisfy the kinematic Jacobi identity
even though in each channel of the NLO amplitudes (5.46a)

and (5.46b) the numerator N 0
jδN j or eN 0

jδ
eN j contains

product of both LO and NLO factors where the LO factors

ðN 0
j ;
eN 0

jÞ still obey the kinematic Jacobi identities. Thus,
we do not expect the current BCJ-type double-copy method
would exactly hold.
Next, we further compute the differences between the

NLO amplitudes of the longitudinal KK graviton scattering
and of the KK gravitational Goldstone bosons for the
original gravitational amplitudes (F7b) and (F7c) of the
GR5 and for the above reconstructed amplitudes (5.48a)
and (5.48b) by double copy (DC) at the NLO:

ΔMðGR5Þ¼δM−δfM¼−3κ2M2
n

2
ð19.5þc2θÞ; ð5:49aÞ

ΔMðDCÞ¼δM−δfM¼ κ2M2
n

12
ð−69þ4c2θþc4θÞcsc2θ;

ð5:49bÞ

which exhibit different angular structures.
We see that the GR5 result (5.49a) contains only the

terms of ð1; c2θÞ types due to rather precise cancellations
of the ðc4θ; c6θÞ × csc4 θ terms between the amplitudes
(F7b) and (F7c), while the double-copy result (5.49b)
contains an extra noncancelled angular term c4θ and an
extra overall angular factor csc2 θ. This shows the failure
of the double-copy result (5.49b) to correctly reconstruct
even the structure of ð1; c2θÞ in the original GR5 result
(5.49a). In fact, this precise cancellation is highly non-
trivial because after careful examination we observe that
this precise cancellation depends on all the coefficients in
the angular structure ð1; c2θ; c4θ; c6θÞ × csc4 θ of both the
original gravitational amplitudes (F7b) and (F7c). We find
that if one changes by hand any one of these coefficients
[even for the constant term inside the parentheses of
ð� � �Þ × csc4 θ] by any small number (such as þ1 or −1)
in either the KK graviton amplitude (F7b) or the KK
Goldstone amplitude (F7c), then it has to destroy
this precise cancellation in the amplitude-difference

ΔMðGR5Þ of Eq. (5.49a) and thus all the terms of
ð1; c2θ; c4θ; c6θÞ × csc4 θ in the original amplitudes have
to reappear in the difference ΔMðGR5Þ.
We can understand the failure of the correct cancellation

in the reconstructed result ΔMðDCÞ of Eq. (5.49b) by
noting the violation of the kinematic Jacobi identity for the

NLO numerators ðδN j; δ eN jÞ as shown in Eq. (5.20). In
fact, by inspecting Eqs. (5.46a) and (5.46b), we note
that for each given channel the amplitude-difference

ΔMðDCÞ ¼ δM − δfM has the numerator N 0
jδN j −eN 0

jδ
eN j which could not even be factorized into any

BCJ-type product XjYj with each factor (Xj or Yj) obeying
the kinematic Jacobi identity separately. Hence, it is no
surprise that the reconstructed amplitude-difference
ΔMðDCÞ could not even reproduce the correct structure
of the original GR5 result (5.49a).
In the following, we will try to construct an improved

amplitude-difference ΔMðDCÞ in which the numerator of
each channel can take the BCJ-type product form XjYj

with each factor (Xj or Yj) obeying the kinematic Jacobi
identity separately. For the above purpose, we first rewrite
the reconstructed NLO KK scattering amplitudes (5.46a)
and (5.46b) by using the relation (5.17):

δM ¼ δM0 − 8c0g2cθ
X
j

δN j ¼ δM0 − 8c0g2cθχ;

ð5:50aÞ

δfM¼ δfM0 þ 8c0g2cθ
X
j

δ eN j ¼ δfM0 þ 8c0g2cθχ;

ð5:50bÞ

δM0 ≡ 2c0g2
X
j

eN 0
jδN j

s0j
; δfM0 ≡ 2c0g2

X
j

N 0
jδ
eN j

s0j
;

ð5:50cÞ

where s0j ∈ ðs0; t0; u0Þ, and we have used Eq. (5.20) in the
last step of Eqs. (5.50a) and (5.50b). It is clear that the last
terms on the RHS of Eqs. (5.50a) and (5.50b) are propor-

tional to
P

j δN j ¼
P

j δ
eN j ¼ χ ≠ 0, which violate the

kinematic Jacobi identity.
Then, we can compute the difference between the NLO

KK longitudinal and Goldstone amplitudes:

ΔM1 ≡ δM0 − δfM ¼ 2c0g2
X
j

eN 0
jðδN j − δ eN jÞ

s0j
¼ −κ2M2

nð7þ c2θÞ; ð5:51aÞ

ΔM2 ≡ δM − δfM0 ¼ 2c0g2
X
j

N 0
jðδN j − δ eN jÞ

s0j
¼ −κ2M2

nð7þ c2θÞ; ð5:51bÞ
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where in the last steps of Eqs. (5.51a) and (5.51b), we have computed each sum directly by using the LO and
NLO numerators of the KK gauge (Goldstone) amplitudes (Sec. VA) as well as Eq. (5.39) for the conversion constant c0.
This explicit calculation shows an equality ΔM1 ¼ ΔM2. We can prove this equality in a more general way. Using
Eqs. (5.51a), (5.51b), and (5.50a), (5.50b), we reexpress the difference (5.49b) of the NLO double-copy amplitudes
as follows:

ΔMðDCÞ ¼ δM − δfM ¼ ΔM1 − 8c0g2cθ
X
j

δN j ¼ ΔM2 − 8c0g2cθ
X
j

δ eN j; ð5:52Þ

where
P

j δN j ¼
P

j δ
eN j ¼ χ because of the equality

(5.20a). This leads to ΔM1 ¼ ΔM2, which agrees with
the explicit calculations of Eq. (5.51). Hence, we deduce

ΔMðDCÞ ¼ ΔMðDCÞ −X; ð5:53aÞ

X≡ 8c0g2cθχ ¼ 2

3
κ2M2

nð7þ c2θÞ cot2 θ; ð5:53bÞ

and

ΔMðDCÞ≡ ΔM1 ¼ ΔM2 ¼ −κ2M2
nð7þ c2θÞ: ð5:54Þ

It is important to note that in Eq. (5.53a) we have identified
and separated a special term X from the amplitude-
difference ΔMðDCÞ, where X ∝ χ violates the kinematic
Jacobi identity at the NLO as shown in Eq. (5.20a). By
doing so, we observe that the improved amplitude-
difference ΔMðDCÞ, as defined in Eq. (5.51), does have
a good feature, namely, each numerator of Eq. (5.51a)

[Eq. (5.51b)] just equals the product of the LO factor eN 0
j

(N 0
j ) and the NLO factor δN j − δ eN j, which satisfy

separately the kinematic Jacobi identities (5.15) and (5.22).
This is just the desired feature as required by the

conventional BCJ-type double-copy construction [22,23].
On the other hand, the situation of ΔMðDCÞ [Eq. (5.49a)]
is different because in each channel the numerator of
ΔMðDCÞ cannot be factorized into a simple product of
two factors which could hold the kinematic Jacobi identity
separately.
Then, it is instructive to compare our improved ampli-

tude-difference ΔMðDCÞ [Eq. (5.54)] by double-copy
construction with the original gravitational amplitude-
difference ΔMðGR5Þ [Eq. (5.49a)] as computed in the
compactified 5d GR. It is impressive that our improved
amplitude-difference ΔMðDCÞ in Eq. (5.54) does have a
much simpler structure than the naive double-copy con-
struction ΔMðDCÞ in Eq. (5.49b), because the undesired
extra c4θ term and extra overall factor csc2 θ of ΔMðDCÞ
fully disappear in our improved amplitude-difference
ΔMðDCÞ. This comparison shows that our improved
amplitude-difference ΔMðDCÞ does share the same kin-
ematic structure of ð1; c2θÞ as that of ΔMðGR5Þ in the
GR5, although their coefficients are still different. Given

the fact that the conventional BCJ approach was formulated
only for the massless gauge and gravity theories, it is
expected that for constructing the mass-dependent scat-
tering amplitudes such as the NLO amplitudes of our 5d
KK theories, the conventional BCJ approach would not
exactly work. Nevertheless, we have shown that our
reconstructed KK longitudinal graviton and Goldstone
scattering amplitudes (5.48a) and (5.48b) indeed exhibit
the same kinematic structure ð1; c2θ; c4θ; c6θÞ × csc4 θ as
that of the corresponding gravitational KK amplitudes
(F7b) and (F7c).
Furthermore, the double-copy reconstruction of the KK

amplitude difference at the NLO is much more nontrivial
because the original gravitational amplitude-difference
ΔMðGR5Þ [Eq. (5.49a)] contains very precise cancella-
tions of the terms ðc4θ; c6θÞ × csc4 θ between the ampli-
tudes (F7b) and (F7c). The naive double-copy construction
of the NLO amplitude-difference ΔMðDCÞ [Eq. (5.49b)]
fails to reproduce the correct kinematic structure of the
ΔMðGR5Þ. But, it is impressive that after we properly
define the improved amplitude-difference ΔMðDCÞ as in
Eqs. (5.54), (5.51a), and (5.51b) by removing the Jacobi-
violating term and ensuring its numerator in each channel
factorized into product factors (obeying the kinematic
Jacobi identities respectively), we find that the improved
double-copy result ΔMðDCÞ [Eq. (5.54)] does exhibit the
same kinematic structure as that of the original gravita-
tional amplitude-difference ΔMðGR5Þ [Eq. (5.49a)]. This
is encouraging evidence showing that as long as the BCJ-
type numerators can be properly improved to satisfy the
kinematic Jacobi identities, such a double-copy approach is
still quite meaningful to a certain extent, predicting the
correct structure of the corresponding gravitational ampli-
tudes and the (energy, mass) dependence up to NLO, even
for the mass-dependent amplitudes.
In the rest of this subsection, we will attempt to make an

improved double-copy construction of the NLO KK
amplitudes and reproduce the original NLO KK graviton
(Goldstone) amplitudes (5.48a) and (5.48b) by following

our proposal of the improved NLO numerators ðδN 0
j; δ
eN 0

jÞ
in Eq. (5.25) which have the desired property of satisfying
the kinematic Jacobi identities (5.28a) and (5.28b).
Moreover, the corresponding improved NLO KK longi-
tudinal and Goldstone amplitudes ðδT 0

L; δeT 0
5Þ still obey the
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KK GAET identity (5.31) which reflects the KK YM gauge
symmetry.
Using the improved KK gauge (Goldstone) boson

amplitudes (5.27a) and (5.27b), we construct the fol-
lowing new NLO gravitational KK amplitudes by double
copy:

δM00 ¼2c0g2
�
N 0

sδN 0
s

s0
þN 0

t δN 0
t

t0
þN 0

uδN 0
u

u0

�
; ð5:55aÞ

δfM00 ¼ 2c0g2
� eN 0

sδ
eN 0

s

s0
þ
eN 0

t δ
eN 0

t

t0
þ
eN 0

uδ
eN 0

u

u0

�
; ð5:55bÞ

where the improved NLO numerators δN 0
j ¼ δN j − χj and

δ eN 0
j ¼ δ eN j − eχj as defined in Eq. (5.25). Since the NLO

gravitational KK amplitudes (5.48a) and (5.48b) only
contain angular factors cosmθ (with m ¼ 2, 4, 6) and
csc4 θ ¼ 1= sin4 θ which are invariant under θ → π − θ, we
may choose the decomposition terms in Eq. (5.24) as
ðχs; χt; χuÞ ¼ ðχ; z;−zÞ and ðeχs;eχt;eχuÞ ¼ ðχ;ez;−ezÞ, where
χ is given by Eq. (5.20). Thus, using Eq. (5.25) we express
the improved NLO numerators as follows:

ðδN 0
s; δN 0

t; δN 0
uÞ ¼ ðδN s − χ; δN t − z; δN u þ zÞ;

ð5:56aÞ

ðδ eN 0
s; δ eN 0

t; δ eN 0
uÞ ¼ ðδ eN s − χ; δ eN t −ez; δ eN u þezÞ:

ð5:56bÞ

The new parameters ðz;ezÞ are functions of θ and
will be determined by matching the reconstructed NLO

KK amplitudes ðδM00; δfM00Þ in Eqs. (5.55a) and (5.55b)
with the original NLO KK graviton (Goldstone) amplitudes

ðδM; δfMÞ in Eqs. (F7b) and (F7c) of the 5d KK GR:

δM00 ¼ δM; δfM00 ¼ δfM: ð5:57Þ

Thus, we can solve the parameters ðz;ezÞ from Eq. (5.57) as
follows:

z ¼ M2
nð614þ 371c2θ þ 42c4θ − 3c6θÞ

16ð7þ c2θÞ sin2 θ
; ð5:58aÞ

ez ¼ M2
nð1666 − 1025c2θ þ 382c4θ þ c6θÞ

16ð7þ c2θÞsin2θ
: ð5:58bÞ

Finally, by substituting the improved NLO numerators
(5.56) with Eqs. (5.81a) and (5.81b) into Eqs. (5.55a) and
(5.55b), we obtain the reconstructed NLO KK amplitudes:

δM00ðDCÞ

¼ −
κ2M2

n

128
ð650þ 261c2θ þ 102c4θ þ 11c6θÞcsc4θ;

ð5:59aÞ

δfM00ðDCÞ

¼ −
κ2M2

n

128
ð−706þ 2049c2θ − 318c4θ − c6θÞcsc4θ;

ð5:59bÞ

which reproduce precisely the original NLO gravitational

KK amplitudes ðδM; δfMÞ in Eqs. (F7b) and (F7c) of the
5d KK GR theory, as expected. This gives a consistency
check of the above analysis.
In passing, it would be useful to extend our present LO

and NLO analyses to the scattering processes with five or
more external particles in our future work. We also note that
the original BCJ conjecture was inspired by the KLT
relation that connects the amplitudes of the massless
gravity theory to that of the massless YM gauge theory.
The KLT kernel may be further reinterpreted as the inverse
amplitude of a biadjoint scalar field theory [45]. In Appedix
G, we will extend the KLT double-copy approach for
constructing the four-particle KK graviton amplitudes and
demonstrate the consistency with the above improved BCJ
construction.

2. Improved double copy of NLO KK amplitudes
under 1=s expansion

In this subsection, we present an improved double-copy
construction of the KK graviton (Goldstone) amplitudes
from the KK gauge boson (Goldstone) amplitudes under
the high-energy expansion of 1=s. With this we can
construct improved numerators for the KK gauge boson
(Goldstone) amplitudes which can fully satisfy the kin-
ematic Jacobi identity. We will show that this improved
massive double-copy approach is better than the double-
copy method by using the 1=s0 expansion as we gave in the
previous Sec. V C 1.
In the following, we make the high-energy expansion of

1=s, where s is the conventional Mandelstam variable and
s ¼ s0 þ 4M2

n holds for the four-particle elastic scattering.
We use the notations ðs; s0Þ ¼ ðs; s0Þ=M2

n and thus
s ¼ s0 þ 4. For the exact tree-level KK longitudinal gauge
boson amplitude T ½4An

L� and the KK Goldstone boson
amplitude eT ½4An

5� in Eq. (5.4), we can reexpress their
kinematic factors (5.5) in terms of the conventional
Mandelstam variable s as follows:

Ks ¼ −
ð4s2 − 5s − 8Þcθ

2s
; eKs ¼ −

ð3s − 8Þcθ
2s

;

ð5:60aÞ
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Kt ¼ −
Q0 þQ1cθ þQ2c2θ þQ3c3θ

2ðs − 4Þ½ð3sþ 4Þ þ 4scθ þ ðs − 4Þc2θ�
; eKt ¼

eQ0 þ eQ1cθ þ eQ2c2θ
2ðs − 4Þ½ð3sþ 4Þ þ 4scθ þ ðs − 4Þc2θ�

; ð5:60bÞ

Ku ¼
Q0 −Q1cθ þQ2c2θ −Q3c3θ

2ðs − 4Þ½ð3sþ 4Þ − 4scθ þ ðs − 4Þc2θ�
; eKu ¼ −

eQ0 − eQ1cθ þ eQ2c2θ
2ðs − 4Þ½ð3sþ 4Þ − 4scθ þ ðs − 4Þc2θ�

; ð5:60cÞ

where the functions fQj; eQjg are given by

Q0 ¼ 8s3 − 63s2 þ 72sþ 80; eQ0 ¼ 15s2 þ 24s − 80;

Q1 ¼ 2ð7s3 − 44s2 þ 80s − 64Þ; eQ1 ¼ 4ð3s2 − 20sþ 32Þ;
Q2 ¼ 8s3 − 45s2 þ 8sþ 48; eQ2 ¼ −3ðs − 4Þ2;
Q3 ¼ 2sðs2 − 10sþ 24Þ: ð5:61Þ

Then, we make the 1=s expansion for Eq. (5.60) and derive
the LO expressions,

K0
s ¼

5cθ
2

; eK0
s ¼ −

3cθ
2

; ð5:62aÞ

K0
t ¼

13þ 5cθ þ 4c2θ
2ð1þ cθÞ

; eK0
t ¼

3ð3 − cθÞ
2ð1þ cθÞ

; ð5:62bÞ

K0
u ¼ −

13 − 5cθ þ 4c2θ
2ð1 − cθÞ

; eK0
u ¼ −

3ð3þ cθÞ
2ð1 − cθÞ

;

ð5:62cÞ

and the NLO expressions,

δKs ¼
4cθ
s

; δeKs ¼
4cθ
s

;

ð5:63aÞ

δKt ¼ −
4ð2 − 3cθ − 2c2θ − c3θÞ

ð1þ cθÞ2s
; δeKt ¼

16cθ
ð1þ cθÞ2s

;

ð5:63bÞ

δKu ¼
4ð2þ 3cθ − 2c2θ þ c3θÞ

ð1 − cθÞ2s
; δeKu ¼

16cθ
ð1 − cθÞ2s

:

ð5:63cÞ
We further define the BCJ-type numerators:

N j ¼ sjKj; N j ¼ N 0
j þ δN j ¼ sjðK0

j þ δKjÞ;
ð5:64aÞ

eN j ¼ sjeKj; eN j ¼ eN 0
j þ δ eN j ¼ sjðeK0

j þ δeKjÞ;
ð5:64bÞ

where the subscripts j ∈ ðs; t; uÞ and sj ∈ ðs; t; uÞ. With
these, we reformulate the amplitudes (5.4) in the following
forms:

T ½Aan
L Abn

L → Acn
L Adn

L � ¼ g2
�
CsN s

s
þ CtN t

t
þ CuN u

u

�
;

ð5:65aÞ

eT ½Aan
5 Abn

5 → Acn
5 Adn

5 � ¼ g2
�
Cs eN s

s
þ Ct eN t

t
þ Cu eN u

u

�
:

ð5:65bÞ

We note that the newly formed LO numerators fN 0
j ;
eN 0

jg
and NLO numerators fδN j; δ eN jg are mass dependent
(through s), and their sums violate the kinematic Jacobi
identity:X

j

N 0
j ¼ 10cθM2

n;
X
j

eN 0
j ¼ −6cθM2

n; ð5:66aÞ

X
j

δN j¼−
M2

n

2s
½13s−496−12sc2θ−ðsþ16Þc4θ�cθ csc4θ;

ð5:66bÞX
j

δ eN j¼−
M2

n

2s
½13s−448−4ð3sþ16Þc2θ−sc4θ�cθcsc4θ:

ð5:66cÞ
The violation of the kinematic Jacobi identity at both the

LO and NLO shows that the conventional BCJ double-copy
method of the massless gauge theories cannot be naively
applied to the case of the elastic scattering amplitudes of
KK gauge (Goldstone) bosons. But, we observe that the
amplitudes (5.65) are invariant under the generalized gauge
transformations of the kinematic numerators:

N 0
j ¼ N j þ sjΔ; eN 0

j ¼ eN j þ sjeΔ: ð5:67Þ

Thus, we can realize the kinematic Jacobi identities for the
gauge-transformed numerators
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X
j

N 0
j ¼ 0;

X
j

eN 0
j ¼ 0; ð5:68Þ

by generally solving the gauge parameters ðΔ; eΔÞ for the
elastic amplitudes as follows:

Δ ¼ −
1

4M2
n

X
j

N j; eΔ ¼ −
1

4M2
n

X
j

eN j: ð5:69Þ

Expanding both sides of Eq. (5.69), we derive the gauge
parameters ðΔ; eΔÞ ¼ ðΔ0 þ Δ1; eΔ0 þ eΔ1Þ at the LO and
NLO:

Δ0 ¼
1

4
ð9þ 7c2θÞcθcsc2θ;

eΔ0 ¼
1

4
ð17 − c2θÞcθcsc2θ; ð5:70aÞ

Δ1 ¼ −
ð62cθ þ 5c3θ þ c5θÞcsc4θ

s
;

eΔ1 ¼ −
ð15cθ þ c3θÞcsc4θ

s
: ð5:70bÞ

Using Eqs. (5.67) and (5.70a), we derive the gauge-

transformed LO numerators ðN 00
j ;
eN 00

j Þ, which are equal to
each other:

N 00
s ¼ eN 00

s ¼ 1

2
sð7þ c2θÞcθcsc2θ; ð5:71aÞ

N 00
t ¼ N 00

t ¼ −
sð42 − 15cθ þ 6c2θ − c3θÞ

16ð1 − cθÞ
; ð5:71bÞ

N 00
u ¼ eN 00

u ¼ sð42þ 15cθ þ 6c2θ þ c3θÞ
16ð1þ cθÞ

: ð5:71cÞ

We see that the LO numerators ðN 00
j ;
eN 00

j Þ are of

OðE2M0
nÞ and the LO equality holds: N 00

j ¼ eN 00
j .

Hence, we deduce the equivalence between the two LO
amplitudes T 0½4An

L� ¼ eT 0½4An
5� at the OðE0M0

nÞ, which is
an explicit realization of the KK GAET [6].
Then, substituting Eq. (5.70b) into Eq. (5.67), we further

derive the gauge-transformed NLO numerators δN 0
j for the

elastic KK gauge boson amplitude:

δN 0
s ¼ −

1

4
M2

nð246cθ þ 7c3θ þ 3c5θÞ csc4 θ; ð5:72aÞ

δN 0
t ¼

M2
nð131 − 8cθ − 4c2θ þ 8c3θ þ c4θÞ

8ð1 − cθÞ2
; ð5:72bÞ

δN 0
u ¼ −

M2
nð131þ 8cθ − 4c2θ − 8c3θ þ c4θÞ

8ð1þ cθÞ2
; ð5:72cÞ

and the gauge-transformed NLO numerators δ eN 0
j for the

corresponding KK Goldstone boson amplitude:

δ eN 0
s ¼ −

1

4
M2

nð238cθ þ 19c3θ − c5θÞcsc4θ; ð5:73aÞ

δ eN 0
t ¼

M2
nð99þ 8cθ þ 28c2θ − 8c3θ þ c4θÞ

8ð1 − cθÞ2
; ð5:73bÞ

δ eN 0
u ¼ −

M2
nð99 − 8cθ þ 28c2θ þ 8c3θ þ c4θÞ

8ð1þ cθÞ2
: ð5:73cÞ

We see that these NLO numerators are of OðE0M2
nÞ, which

are mass dependent. It is straightforward to verify explicitly
that the gauge-transformed numerators (5.71) and (5.72)
and (5.73) obey the kinematic Jacobi identities (5.68) at the
LO and NLO, respectively.
Since the above gauge-transformed numerators hold the

kinematic Jacobi identities (5.68), they are expected to
realize the color-kinematics duality order by order. Thus,
we construct the following extended BCJ-type massive
double-copy formulas for the elastic scattering amplitudes
of KK gravitons and KK Goldstone bosons:

M0½4hnL� ¼ c0g2
�ðN 0

sÞ2
s

þðN 0
tÞ2
t

þðN 0
uÞ2
u

�
¼M0

0þ δM0;

ð5:74aÞ

fM0½4ϕn� ¼ c0g2
�ð eN 0

sÞ2
s

þð eN 0
tÞ2
t

þð eN 0
uÞ2
u

�
¼fM0

0þ δfM0;

ð5:74bÞ

where the LO and NLO KK gravitational amplitudes are
given by

M0
0 ¼ c0g2

�ðN 00
s Þ2
s

þ ðN 00
t Þ2
t

þ ðN 00
u Þ2
u

�
; ð5:75aÞ

fM0
0 ¼ c0g2

�ð eN 00
s Þ2
s

þ ð eN 00
t Þ2
t

þ ð eN 00
u Þ2
u

�
; ð5:75bÞ

and

δM0 ¼ 2c0g2
�
N 00

s δN 0
s

s
þN 00

t δN 0
t

t
þN 00

u δN 0
u

u

�
; ð5:76aÞ

δfM0 ¼ 2c0g2
� eN 00

s δ
eN 0

s

s
þ
eN 00

t δ
eN 0

t

t
þ
eN 00

u δ
eN 0

u

u

�
: ð5:76bÞ

In the above the conversion constant c0 ¼ −κ2=ð24g2Þ is
given by Eq. (5.39).
Using the double-copy formulas in Eqs. (5.75) and

(5.76) and the gauge-transformed numerators ðN 0
j;
eN 0

jÞ
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in Eqs. (5.71) and (5.73), we construct the following LO
elastic KK graviton and KK Goldstone amplitudes:

M0
0ðDCÞ ¼ fM0

0ðDCÞ ¼
3κ2

128

ð7þ cos 2θÞ2
sin2θ

s; ð5:77Þ

and NLO elastic KK graviton and KK Goldstone ampli-
tudes:

δM0ðDCÞ ¼ −
5κ2M2

n

768
ð1642þ 297c2θ þ 102c4θ

þ 7c6θÞ csc4 θ; ð5:78aÞ

δfM0ðDCÞ ¼ −
κ2M2

n

768
ð6386þ 3837c2θ þ 30c4θ

− 13c6θÞcsc4θ; ð5:78bÞ

The above Eq. (5.77) shows that the reconstructed LO

KK amplitude M0
0ðfM0

0Þ equals the LO KK Goldstone
amplitude (4.22b) and the corresponding LO longitudinal
KK graviton amplitude [12,13]. It is impressive that
with Eq. (5.77) we have proven explicitly the KK GRET

relationM0
0ðDCÞ ¼ fM0

0ðDCÞ from the KK GAET realtion

T 0½4An
L� ¼ eT 0½4An

5� by using the double-copy construc-

tion. Note that we deduced the GRET relation M0
0 ¼ fM0

0

earlier in Eq. (4.25) based on the direct Feynman-diagram
calculations. Because our KK GAET relation T 0 ¼ eT 0

generally holds for N-point longitudinal KK gauge
(Goldstone) amplitudes [6,7], we can make double copy
on both sides of T 0 ¼ eT 0 and establish the GRET,

M0
0½DC� ¼ fM0

0½DC�, for N-point longitudinal KK grav-
iton (Goldstone) amplitudes.
We can further compute the gravitational residual term of

the GRET from the difference between the two NLO
amplitudes (5.78a) and (5.78b):

ΔM0ðDCÞ ¼ δM0ðDCÞ − δfM0ðDCÞ ¼ −κ2M2
nð7þ c2θÞ:

ð5:79Þ

We see that the above reconstructed residual term (5.79) by
the extended double-copy approach does give the same size
of OðE0M2

nÞ and takes the same angular structure of
ð1; c2θÞ as the original residual term (F8) although their
numerical coefficients still differ. It is impressive to note
that Eq. (5.79) also demonstrates a very precise cancella-
tion between the angular structures ð1; c2θ; c4θ; c6θÞ ×
csc4 θ of the NLO double-copied KK amplitudes (5.78a)
and (5.78b) down to the much simpler angular structure
ð1; c2θÞ. This is the same kind of angular cancellations as
what we found for the original NLO KK graviton-
Goldstone amplitudes (F6b) and (F6c) and their difference
(F8). This shows that the above double-copied NLO KK

amplitudes have captured the essential features of the
original KK graviton-Goldstone amplitudes at both the
LO and NLO.
Finally, as a comparison, we also note that the above NLO

amplitude difference (5.79) does agree to our earlier inde-
pendent derivation of Eq. (5.54) which was deduced under
the high-energy expansion of 1=s0 and by additionally
removing the Jacobi-violating terms in the NLO amplitude
difference (5.51) with the improved NLO amplitudes (5.50)
by double copy. We stress that the key advantage of the
current double-copy approach under 1=s expansion is that

our gauge-transformed numerators ðN 0
j;
eN 0

jÞ in Eqs. (5.67)
and (5.69) are generally guaranteed to obey the kinematic
Jacobi identities (5.68) under the high-energy expansion of
1=s. So they are expected to naturally realize the color-
kinematics duality order by order.
The above extended NLO double-copy results of the

NLO KK amplitudes (5.78a) and (5.78b) and their differ-
ence (5.79) are encouraging, because they already give the
correct structure of the NLO KK amplitudes including
the precise cancellations of the angular dependence from
Eqs. (5.78a) and (5.78b) to Eq. (5.79). We have made the

gauge-transformed numerators ðN 0
j;
eN 0

jÞ obey the kin-
ematic Jacobi identities, which is a necessary condition
for realizing color-kinematics duality, although not yet
sufficient. To further construct the exact KK graviton
(Goldstone) amplitudes by the extended double-copy
approach, we propose the following improved BCJ-respect-
ing numerators at the NLO:

ðδN s
00;δN t

00;δN u
00Þ ¼ ðδN 0

s;δN 0
t− z;δN 0

uþ zÞ; ð5:80aÞ

ðδ eN s
00
;δ eN t

00
;δ eN u

00Þ ¼ ðδ eN 0
s;δ eN 0

t−ez;δ eN 0
uþezÞ; ð5:80bÞ

where the new parameters ðz;ezÞ are functions of θ and can
be determined by matching our improved NLO KK
amplitudes of double copy with the original NLO KK
graviton (Goldstone) amplitudes of the GR5. Thus, we can
solve ðz;ezÞ as follows:
z ¼ M2

nð1390þ 603c2θ þ 66c4θ − 11c6θÞ
12ð13 − 12c2θ − c4θÞ

; ð5:81aÞ

ez ¼ M2
nð4546− 3585c2θ þ 1086c4θ þ c6θÞ

12ð13 − 12c2θ − c4θÞ
: ð5:81bÞ

Using Eqs. (5.80) and (5.81), we can reproduce the exact
NLO gravitational KK amplitudes (F6b) and (F6c) at
tree level.

D. GRET residual terms: Energy cancellation
from double copy

The main purpose of this subsection is to understand the
structure of the GRET (3.15) or (3.16) including its mass-
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dependent residual term in the 5d KK GR theory from the
structure of the KK GAET in the 5d KK YM gauge theory
by using the double-copy construction of Secs. V B and
V C. This will bring us important insights on the gravi-
tational KK scattering amplitudes and how the GRET
actually works.
We start by considering the compactified 5d YM gauge

theory and the KK GAET identity as derived in Ref. [7]
(cf. its Sec. III). For the application to the current study, we
consider the four-particle scattering of longitudinal KK
gauge bosons Aan

L Abk
L → Acm

L Adl
L and the corresponding

KK Goldstone boson scattering Aan
5 Abk

5 → Acm
5 Adl

5 .
According to Refs. [6,7], we can write the KK GAET
identity for the above four-particle scattering process:

T ½4An
L� ¼ eT ½4An

5� þ
X

T ½An
5; vn�; ð5:82Þ

where the residual term T ½An
5; vn� contains at least one

external field vn ¼ vμA
aμ
n with vμ ¼ ϵμL − ϵμS ¼ OðMn=EnÞ

for the high-energy scattering. In this subsection, the
amplitudes such as T ½4An

L� or eT ½4An
5� will denote either

elastic or inelastic scattering process. In Sec. VA, we
showed that the leading longitudinal KK gauge boson
amplitude T ½4An

L� and the leading KKGoldstone amplitudeeT ½4An
5� are of OðE0M0

nÞ under the high-energy expansion.
In the following, we expand them symbolically to the next-
to-leading order of E−2:

T ½4An
L� ¼ T 0L þ δT L; ð5:83aÞ

eT ½4An
5� ¼ eT 05 þ δeT 5; ð5:83bÞ

where the leading-order amplitudes T 0L; eT 05 ¼ OðE0M0
nÞ

and the NLO amplitudes δT L; δeT 5 ¼ OðM2
n=E2Þ. In

Eqs. (5.11) and (5.19) of Sec. VA, we showed explicitly
that under high-energy expansion, the LO KK amplitudes
obey the longitudinal-Goldstone equivalence:

T 0L ¼ eT 05 ¼ OðE0M0
nÞ; ð5:84Þ

which is the prediction of KK GAET [6]. Thus, from the
KK GAET identity (5.82), we can derive the residual term
as follows:

T v ≡
X

T ½An
5; vn� ¼ δT L − δeT 5 ¼ OðM2

n=E2Þ: ð5:85Þ
In the above, each residual term T ½An

5; vn� is no larger than
OðE−1Þ by the naive power-counting. In fact, we can
explicitly compute the above four-particle amplitudes of the
longitudinal and Goldstone boson scattering, and our
Eq. (5.23) proves their difference is of OðM2

n=E2Þ. This
also agrees with the general estimate of Ref. [40], with
which we have the following power-counting formula for
the residual term:

T v ¼ O
�
M2

n

E2
n

�eT ½4An
5� þO

�
Mn

En

�
T ½An

T; 3A
n
5�; ð5:86Þ

where En denotes the energy of the relevant external KK
gauge boson and An

T denotes a transverse KK gauge boson.
The naive power-counting shows eT ½4An

5� ¼ OðE0
nÞ and

T ½An
T; 3A

n
5� ¼ OðMn=EnÞ. Thus, using Eq. (5.86), we also

deduce T v ¼ OðM2
n=E2

nÞ, which agrees with the (mass,
energy) dependence given in Eq. (5.85).
Next, we consider the four-particle scattering of the

longitudinal KK gravitons hnLh
k
L → hmLh

l
L and the corre-

sponding KK Goldstone boson scattering ϕnϕk → ϕmϕl.
Thus, we can express the GRET identity (3.15) as follows:

M½4hnL� ¼ fM½4ϕn� þ
X

M½eΔn;ϕn�; ð5:87Þ

where eΔn ¼ evn − ehn with evn ¼ evμνhμνn and ehn ¼ ημνehμνn .
We denote the residual term on the RHS of Eq. (5.87)
as MΔ ≡PM½eΔn;ϕn�. We note that each amplitude
inside the residual term contains at least one external state
of eΔn, which will further split into two amplitudes with
external fields evn and ehn, respectively. Since the naive
power-counting shows the residual term MΔ ¼ OðE2M0

nÞ
under the high-energy expansion, we expect that MΔ
should contain further nontrivial energy cancellations of
OðE2M0

nÞ → OðE0M2
nÞ, which we will justify shortly.

For high-energy scattering, we can expand the ampli-
tudes of the longitudinal KK gravitons and of their KK
Goldstone bosons into the LO and NLO contributions:

M½4hnL� ¼ M0 þ δM; ð5:88aÞ

fM½4ϕn� ¼ fM0 þ δfM: ð5:88bÞ

As shown explicitly in Sec. IV B and Appendix F for the
gravitational KK scattering, the LO KK amplitudes M0 ¼
OðE2M0

nÞ and fM0 ¼ OðE2M0
nÞ, while the NLO KK

amplitudes δM ¼ OðE0M2
nÞ and δfM ¼ OðE0M2

nÞ.
Furthermore, using the double-copy construction from

the 5d KKYM gauge theory in Secs. V B and V C, we have
deduced independently the magnitudes of the LO and NLO
gravitational KK amplitudes in Eqs. (5.47a) and (5.47b)
which agree with the direct calculations in the 5d KK GR
theory. According to Eqs. (5.35) and (5.44) of Sec. V B, our
double-copy constructions of the LO longitudinal KK
graviton (Goldstone) amplitudes give

M0ðDCÞ ¼ fM0ðDCÞ ¼ OðE2M0
nÞ: ð5:89Þ

In fact, our double-copy construction has explicitly dem-
onstrated in Secs. VA and V B that the gravitational
equivalence (5.89) between the two LO gravitational
amplitudes is generally built upon the KK GAET (5.84).
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The KK GAET identity (5.82) can be expressed as
T v ¼ T ½4An

L� − eT ½4An
5�, and the double copy of its left-

hand side T v → MΔðDCÞ corresponds to the double copy
of its right-hand side:

T ½4An
L� − eT ½4An

5� ⟶ MðDCÞ − fMðDCÞ
¼ δMðDCÞ − δfMðDCÞ; ð5:90Þ

where in the last step we have used the LO double-copy
result (5.89). Using this double-copy construction from the
5d KK gauge theory amplitudes, we further demonstrated
in Eq. (5.47) of Sec. V C that under the high-energy
expansion (5.83), the NLO gravitational KK scattering
amplitudes depend on the KK mass, but not on the energy:

δMðDCÞ ¼ OðE0M2
nÞ; δfMðDCÞ ¼ OðE0M2

nÞ: ð5:91Þ

Given this result (5.91) and using Eq. (5.90), we deduce
that the double-copy construction of the residual term
T v → MΔðDCÞ is given by

T v → MΔðDCÞ ¼ δMðDCÞ − δfMðDCÞ ¼ OðE0M2
nÞ:
ð5:92Þ

We can extend the above estimate (5.92) of the residual
term to the general case of GRET (3.16) for any KK
graviton amplitude containing two or more longitudinal
KK gravitons.13

Because in the residual term MΔ ≡PM½eΔn;ϕn� each
individual amplitudeM½eΔn;ϕn� ¼ OðE2Þ by naive power-
counting, the conclusion of Eq. (5.92) proves that there is in
fact a nontrivial energy cancellation of OðE2Þ → OðE0Þ in
the residual term of the GRET. Hence, Eq. (5.92) ensures
our GRET to realize the equivalence between the longi-
tudinal KK graviton amplitude and its corresponding KK
gravitational Goldstone boson amplitude at OðE2Þ.
In summary, based on the KK GAET identity (5.82) for

the 5d KK YM gauge theory (YM5) and the double-copy
construction in Secs. V B and V C, we have established a
new correspondence from the KK GAET of the YM5
theory to the KK GRET of the 5d KK GR theory (GR5):

KKGAET ðYM5Þ ⟹ KKGRET ðGR5Þ: ð5:93Þ
We have demonstrated that the residual term in the GRET
(5.87) or (3.16) is indeed suppressed relative to the leading
KK Goldstone ϕn amplitude; and in the case of four-
particle longitudinal KK graviton scattering, the leading
(helicity-zero) longitudinal KK graviton amplitude and KK

Goldstone amplitude scale as OðE2M0
nÞ and are equal to

each other; while the residual term of the GRET is only of
OðE0M2

nÞ, as in Eq. (5.92), due to a nontrivial energy
cancellation of OðE2Þ → OðE0Þ. This conclusion can be
readily extended to other longitudinal KK graviton scatter-
ing processes with two or more external longitudinal KK
graviton states. As a final remark, we build the above
correspondence (5.93) based on our current analyses of the
tree-level scattering amplitudes, and it will be worthwhile
to further extend it to loop orders by invoking the BRST
transformations in both the 5d KK YM gauge theory and
the 5d KK GR theory [33]. We also note that our power-
counting method presented in Sec. III B holds for the
general N-point amplitudes with L loops (L ≥ 0), so our
present power-counting analysis can be extended up to loop
orders in a straightforward way.

VI. CONCLUSIONS

Studying the structure of scattering amplitudes of Kaluza-
Klein (KK) gravitons and that of the KK gauge bosons is
important for understanding the dynamics of KK theories
and the deep gauge-gravity connection. The KK gravitons
andKKgauge bosons serve as the key ingredients in all extra
dimensional models [3,4] and string theories [2] which
attempt to resolve the naturalness problem, the quantum
gravity, and the gauge-gravity unification.
In this work, we studied the structure of the scattering

amplitudes of the KK gravitons and their KK Goldstone
bosons (radions)with compactified fifth dimension. InSec. II,
using a generalRξ gauge-fixing (2.16) for the quantization of
5d KK general relativity (GR), we derived the massive KK
graviton propagator and the corresponding Goldstone boson
propagators in Eq. (2.21). These propagators take particularly
simple forms of Eq. (2.22) under the Feynman-’t Hooft gauge
(ξn ¼ 1). We proved that the KK graviton propagator is
naturally free from thevDVZdiscontinuity [21], in contrast to
that of the Fierz-Pauli gravity [16].
With these, we presented in Sec. III A the formulation of

the gravitational equivalence theorem (GRET) to connect
the scattering amplitudes of longitudinally polarized (hel-
icity-zero) KK gravitons hnL to that of the corresponding
gravitational KK scalar Goldstone bosons ϕnð≡h55n Þ. The
GRET is a manifestation of the geometric Higgs mecha-
nism at the S-matrix level. Starting from the general
Slavnov-Taylor-type identity (3.3) for the gravitational
gauge-fixing functions, we derived its LSZ amputated
form (3.12) under the Feynman-’t Hooft gauge at tree
level, which suffices for the present study. From this we
derived the key GRET identity (3.15) and gave the GRET
formulation in Eqs. (3.15) and (3.16). Then, extending
Weinberg’s power-counting rule [28] for the low-energy
QCD, we presented a generalized power counting rule
(3.20) for the 5d KK GR theory. With this we derived the
leading energy dependence of the N-particle longitudinal

13We note that the special case including a single external
longitudinal KK graviton state is an exception, where the residual
term can be of the same order as the leading KK longitudinal
(Goldstone) amplitudes. We gave an explicit example of this kind
by our GRET analysis of the SQED5 model in Sec. IVA.
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KK graviton scattering amplitudes and of N-particle KK
Goldstone scattering amplitudes in Eqs. (3.21) and (3.22),
namely, DEðNhLn Þ ¼ 2ðN þ 1Þ þ 2L and DEðNϕnÞ ¼
2þ 2L. We further counted the superficial leading energy
dependence of the residual term MΔ as in Eq. (3.24),
which gives DEðNevnÞ ¼ 2þ 2L. Using the GRET identity
(3.15), we established a nontrivial energy cancellation in
the N-particle longitudinal KK graviton scattering ampli-
tudes by E2N as in Eq. (3.23), where the number of
external KK states N ≥ 4. For the scattering amplitudes of
N longitudinal KK gravitons at tree level, this proves an
energy cancellation of E2Nþ2 → E2. In the case of the four
longitudinal KK graviton scattering amplitudes (N ¼ 4), this
establishes the energy cancellation of E10 → E2, which
we further demonstrated by explicit analyses in Secs. IV B
and VB. Hence, the GRET identity (3.15) provides a general
mechanism for guaranteeing the nontrivial large energy-
cancellations in the N-particle longitudinal KK graviton
amplitudes by E2N, where N ≥ 4. This conclusion holds
up to loop levels because the radiative multiplicative modi-
fication factor Cmod associated with each external Goldstone
state is energy independent. Our presentGRET formulation is
highly nontrivial because its residual term does not appear
superficially suppressed relative to the leadingKKGoldstone
amplitude in high-energy limit by the naive power-counting.
The suppression of the residual term was further justified in
the following Secs. IV–V.
In Sec. IV, we performed systematically a direct com-

putation of the gravitational KK Goldstone boson scatter-
ing amplitudes at tree level. In Sec. IVA, we took a simple
model of 5d gravitational scalar QED (GSQED5) as an
example and explicitly verified the GRET identity (4.11) or
(4.17) for the case of including a single external KK
graviton field. Our analysis showed that the GRET identity
in this case holds exactly. Then, in Sec. IV B, we derived
the exact four-particle KK Goldstone boson scattering
amplitude, and expanded it to the leading order and the
next-to-leading order under the high-energy expansion,
which are given in Eqs. (4.22), (4.28), and (4.30). The
leading energy dependence in these KK Goldstone ampli-
tudes is manifestly of OðE2Þ without any extra energy
cancellations among the individual diagrams. So they are
substantially simpler than those of the longitudinal KK
graviton amplitudes in the literatures [12,13] since the latter
involve various intricate energy cancellations among indi-
vidual diagrams from OðE10Þ down to OðE2Þ. With these
we proved explicitly the equivalence between the leading
hnL amplitudes and ϕn amplitudes atOðE2Þ, which supports
the GRET (3.16). Hence, the longitudinal-Goldstone
equivalence of the GRET guarantees the nontrivial large
energy power cancellations in the longitudinal KK graviton
amplitudes. We further computed the difference between
the exact hnL amplitude and ϕn amplitude as in Eq. (F8),
which hasOðM2

nE0Þ and determines the size of the residual
term of the GRET.

In Sec. V, we studied systematically the double-copy
construction of the gravitational KK scattering amplitudes
by using the corresponding KK gauge (Goldstone) boson
scattering amplitudes in the 5d KK YM gauge theory,
under the high-energy expansion. The conventional BCJ-
type double-copy approach [22,23]) is given for massless
gauge theories and massless GR. Because the KK gauge
theories and KK GR can consistently generate masses for
KK gauge bosons and KK gravitons by geometric Higgs
mechanism under compactification, we expect that extend-
ing the conventional double-copy method to the KK
theories should be truly promising even though highly
challenging due to the nontrivial KK mass poles in the
scattering amplitudes. Unlike the conventional double-
copy approaches, we proposed to realize the double-copy
construction by using the high-energy expansion order by
order. With this, we demonstrated explicitly how such a
double-copy construction can work at the LO and the NLO,
as in Secs. V B and V C. This high-energy expansion
approach for realizing our double-copy construction also
perfectly matches our KK GAET and GRET formulations.
In Sec. V B, under the high-energy expansion, we found

that the LO KK gauge boson (Goldstone) amplitudes have
OðE0M0

nÞ and the LO KK graviton (Goldstone) amplitudes
haveOðE2M0

nÞ, which are bothmass independent. Thus, we
made an extended BCJ double-copy construction from our
LO KK gauge boson (Goldstone) amplitudes and fully
reconstructed the correct KK graviton (Goldstone) ampli-
tudes at the LO, as shown in Eqs. (5.35) and (5.43). Then, in
Sec.V C,we studied the extendeddouble-copy constructions
of the NLO KK gauge/gravity amplitudes by making two
types of high-energy expansions, under 1=s0 expansion
(Sec. V C 1) and under 1=s expansion (Sec. V C 2), respec-
tively. We showed that the NLO KK gauge (Goldstone)
boson amplitudes have OðM2

n=E2Þ and the NLO KK
graviton (Goldstone) amplitudes have OðE0M2

nÞ, which
are both mass dependent. We demonstrated that the dou-
ble-copy construction for the mass-dependent NLO KK
amplitudes is highly nontrivial, where the conventional
double-copy method could not fully work. We found that
the reason for this problem is due to violations of the
kinematic Jacobi identities (5.20) at the NLO of the 1=s0
expansion, where the generalized gauge transformations
(5.16) cannot recover the kinematic Jacobi identities as we
explained below Eq. (5.20). But, for our extended double-
copy construction under the 1=s expansion in Sec. V C 2, we
successfully recovered the kinematic Jacobi identities as in
Eq. (5.68) by using the generalized gauge transformations
(5.67) and the solutions (5.69) and (5.70). With these, we
derived the NLO double-copied KK graviton/Goldstone
amplitudes (5.78) and their difference (5.79), which predict
the correct angular structure as in the original exact KK
graviton (Goldstone) amplitudes (F6b)-(F6c) and (F8).
Then, we further constructed a set of improved BCJ-
respecting NLO numerators (5.80) and (5.81), which can
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fully reconstruct the NLO KK graviton (Goldstone) ampli-
tudes and agree with the exact NLO gravitational KK
amplitudes (F6b) and (F6c). The above analyses and findings
are very encouraging and wewill pursue along this direction
in future works.
In passing, motivated by the present study, we proposed

recently a first principle approach of KK string theory to
realize the exact massive double-copy construction for the
general N-point tree-level KK open/closed string ampli-
tudes and the corresponding KK gauge boson/graviton
amplitudes [46]. In addition, the double-copy construction
of the scattering amplitudes of massive gauge bosons/
grvitons in the 3d topologically massive Yang-Mills theory
(TMYM) and 3d topologically massive gravity (TMG) [47]
was recently studied [48]. There we newly proposed [48] a
topological equivalence theorem (TET) to formulate the
topological mass-generation and to uncover the nontrivial
energy cancellations in the massive Chern-Simons gauge
boson scattering amplitudes of the TMYM. Using the TET
and the double-copy construction, we further proved [48]
the striking large energy cancellations in the massive
Chern-Simons graviton scattering amplitudes of the TMG.
Finally, in Sec. VD, based upon the KK GAET identity

(5.82) in the 5d KK YM theory, we used double-copy
approach to reconstruct the KK GRET identity (5.87), and
demonstrated a new correspondence of KKGAET ⇒
KKGRET inEq. (5.93). Especially,we analyzed the (energy,
mass) dependence of the residual termMΔ in the GRETand
deduced MΔ ¼ OðE0M2

nÞ in Eq. (5.92). This justifies that
even though the amplitudes in the GRET residual term MΔ
contain individual contributions having superficial energy
dependence of OðE2Þ by naive power-counting, they are
ensured to cancel down to OðE0M2

nÞ, in agreement with our
explicit computation of MΔ ¼ δM − δfM in Eq. (F8).
In summary, it is impressive that using the double-

copy approach, we established a new correspondence
between the two energy cancellations in the four-particle
longitudinal KK scattering amplitudes: E4 → E0 in the 5d
KKYMgauge theory andE10 → E2 in the 5dKKGR theory.
Thiswas presented schematically inEq. (5.38). Furthermore,
using the double-copy approach,we analyzed the structure of
the residual termMΔ in the GRET and further uncovered a
new energy-cancellation mechanism of E2 → E0 therein.

ACKNOWLEDGMENTS

We would like to thank Song He, Henry Tye, and
Yang Zhang for discussing the double-copy approaches
and KLT relations, and thank Huan-Hang Chi for dis-
cussing the conventional BCJ method and joining this
study at an early stage. We are also grateful to Tony
Zee for discussing the geometric mass generation of
Kaluza-Klein compactification. This research was sup-
ported in part by National NSF of China (under Grants
No. 11835005, No. 12175136, and No. 11675086), by
National Key R&D Program of China (under Grant

No. 2017YFA0402204), and by the CAS Center for
Excellence in Particle Physics (CCEPP).

APPENDIX A: KINEMATICS OF
KK PARTICLE SCATTERING

We consider the 2 → 2 KK scattering process, with the
four-momentum of each external state obeying the on-shell
condition p2

j ¼ −M2
j , (j ¼ 1, 2, 3, 4). We number the

external states clockwise, with their momenta being
outgoing. Thus, the energy-momentum conservation givesP

pj ¼ 0, and the physical momenta of the two incident
particles equal −p1 and −p2, respectively. For illustration,
we take the elastic scattering XnXn → XnXn (n ≥ 0) as an
example, where Xn denotes any given KK state of level-n
and has Mj ¼ Mn. For the KK theory, the external
particle has mass Mn for a given KK state of level-n.
In the center-of-mass frame (Fig. 7), we define the

momenta as follows:

pμ
1 ¼ −ðE; 0; 0; kÞ; pμ

2 ¼ −ðE; 0; 0;−kÞ;
pμ
3 ¼ ðE; ksθ; 0; kcθÞ; pμ

4 ¼ ðE;−ksθ; 0;−kcθÞ; ðA1Þ
where k ¼ jp⃗j. Then, the Mandelstam variables ðs; t; uÞ
take the following form:

s ¼ −ðp1 þ p2Þ2 ¼ 4E2; ðA2aÞ

t ¼ −ðp1 þ p4Þ2 ¼ −
s − 4M2

n

2
ð1þ cθÞ; ðA2bÞ

u ¼ −ðp1 þ p3Þ2 ¼ −
s − 4M2

n

2
ð1 − cθÞ: ðA2cÞ

Optionally, with Eq. (A2), we can also use the relation
E2 ¼ k2 þM2

n to define another set of Mandelstam vari-
ables ðs0; t0; u0Þ:

s0 ¼ 4k2; ðA3aÞ
t0 ¼ −

s0
2
ð1þ cθÞ; ðA3bÞ

u0 ¼ −
s0
2
ð1 − cθÞ: ðA3cÞ

FIG. 7. Kinematics of the 2 → 2 scattering process in the
center-of-mass frame.
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The summations of the Mandelstam variables (A2)
and (A3) obey the identities sþ tþ u ¼ 4M2

n and
s0 þ t0 þ u0 ¼ 0, respectively.
Moreover, the above formulas can be extended to

the general scattering process XnXk → XmXl, where
n; k;m;l ≥ 0. Thus, the sum of these Mandelstam varia-
bles ðs; t; uÞ satisfies sþ tþ u ¼ M2

n þM2
k þM2

m þM2
l.

The incident and outgoing states have the following
momenta in the center-of-mass frame,

pμ
1 ¼ −ðE1; 0; 0; kÞ; pμ

2 ¼ −ðE2; 0; 0;−kÞ;
pμ
3 ¼ ðE3; k0sθ; 0; k0cθÞ; pμ

4 ¼ ðE4;−k0sθ; 0;−k0cθÞ;
ðA4Þ

where the energy conservation condition,
ffiffiffi
s

p ¼ E1 þ E2 ¼
E3 þ E4, determines the momenta k and k0 as follows:

k ¼ 1

2
ffiffiffi
s

p ð½s − ðM1 þM2Þ2�½s − ðM1 −M2Þ2�Þ1=2;

k0 ¼ 1

2
ffiffiffi
s

p ð½s − ðM3 þM4Þ2�½s − ðM3 −M4Þ2�Þ1=2: ðA5Þ

Finally, as mentioned in Sec. II, a massive KK graviton
has five helicity states (λ ¼ �2;�1, 0). Their polarization
tensors take the following forms:

εμν�2 ¼ ϵμ�ϵ
ν
�; εμν�1 ¼

1ffiffiffi
2

p ðϵμ�ϵνL þ ϵμLϵ
ν
�Þ;

εμνL ¼ 1ffiffiffi
6

p ðϵμþϵν− þ ϵμ−ϵ
νþ þ 2ϵμLϵ

ν
LÞ; ðA6Þ

where ðϵμ�; ϵμLÞ denote the (transverse, longitudinal)
polarization vectors of a vector boson with the same
four-momentum pμ. These polarization tensors satisfy the
traceless and orthonormal conditions. They are also orthogo-
nal to the four-momentum pμ of the KK graviton. Thus, the
following conditions hold:

ημνε
μν ¼ 0; εμνλ ε�λ0;μν ¼ δλλ0 ; pμε

μν ¼ 0; ðA7Þ

where λ; λ0ð¼ �2;�1; 0Þ are the helicity indices of the KK
graviton.

APPENDIX B: FROM Rξ GAUGE TO
UNITARY GAUGE

We note that the KK graviton propagator (2.21a) in
the general Rξ gauge can be decomposed into the unitary
gauge propagator (2.23) plus the ξn-dependent part. In
momentum space, we present this decomposition in the
following form:

Dμναβ
nm ðpÞ ¼ Dμναβ

nm;UGðpÞ þDμναβ
nm;ξðpÞ; ðB1aÞ

Dμναβ
nm;UGðpÞ ¼ −

iδnm
2

ημαηνβ þ ημβηνα − 2
3
ημνηαβ

p2 þM2
n

; ðB1bÞ

Dμναβ
nm;ξðpÞ ¼

iδnm=2
p2 þ ξnM2

n

��
ημα þ pμpα

ξnM2
n

�
pνpβ

ξnM2
n
þ
�
ημβ þ pμpβ

ξnM2
n

�
pνpα

ξnM2
n

þ
�
ηνα þ pνpα

ξnM2
n

�
pμpβ

ξnM2
n
þ
�
ηνβ þ pνpβ

ξnM2
n

�
pμpα

ξnM2
n

�
−

iδnm2pμpνpαpβ

ðp2 þ ξ2nM2
nÞξnM4

n

þ iδnm=6
p2 þ ð3ξn − 2ÞM2

n

�
ημν −

2pμpν

M2
n

��
ηαβ −

2pαpβ

M2
n

�
; ðB1cÞ

where ημν ¼ ημν þ pμpν=M2. We see that the ξn-dependent part D
μναβ
nm;ξðpÞ vanishes under ξn → ∞. So, the propagator

Dμναβ
nm ðpÞ will reduce to the unitary gauge form Dμναβ

nm;UGðpÞ in this limit. Also, the gravitational KK Goldstone propagators
Dμν

nmðpÞ andDnmðpÞ in Eqs. (2.21b) and (2.21c) vanish in this limit ξn → ∞, which removes the unphysical KK Goldstone
bosons in the unitary gauge as expected. For the Feynman-’t Hooft gauge (ξn ¼ 1), we find that the ξn-dependent part of the
KK graviton propagator takes a much simpler form:

Dμναβ
nm;ξðpÞjξ¼1 ¼

iδnm=6
p2 þM2

n

�
ημν −

2pμpν

M2
n

��
ηαβ −

2pαpβ

M2
n

�
þ iδnm=2
ðp2 þM2

nÞM2
n
ðpμpαηνβ þ pνpαημβ þ pμpβηνα þ pνpβημαÞ: ðB2Þ
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In passing, a Rξ gauge-fixing was considered [49] in the
Randall-Sundrum model with warped 5d which contains
additional terms related to warp parameter; we note that
their KK graviton propagator was written in a rather
different form, but can be converted into the form con-
sistent with our (B1).
We note that the Lagrangian (2.15) is invariant

under the general coordinate transformation (gauge
transformation),

ĥAB → ĥ0AB ¼ ĥAB − 2∂ðAχ̂BÞ; ðB3Þ

where χ̂AðxÞ is an infinitesimal translation which refers to a
vector field generating a one-parameter diffeomorphism
group in the background spacetime.
Taking Eq. (2.8) under the KK expansion (2.12), we

derive the following gauge transformations for the KK
fields:

hμνn → h0μνn ¼ hμνn − 2∂ðμχνÞn −Mnη
μνχ5n; ðB4aÞ

Aμ
n → A0μ

n ¼ Aμ
n − ∂μχ5n þMnχ

μ
n; ðB4bÞ

ϕn → ϕ0
n ¼ ϕn − 2Mnχ

5
n: ðB4cÞ

In the above the group parameters ðχμn; χ5nÞ arise from the
following KK expansions of the corresponding 5d param-
eters ðχ̂μ; χ̂5Þ:

χ̂μðxν; x5Þ ¼ 1ffiffiffiffi
L

p
�
χμ0ðxνÞ þ

ffiffiffi
2

p X∞
n¼1

χμnðxνÞ cos nπx
5

L

�
;

ðB5aÞ

χ̂5ðxν; x5Þ ¼
ffiffiffiffi
2

L

r X∞
n¼1

χ5nðxνÞ sin
nπx5

L
; ðB5bÞ

where we set ðχ̂μ; χ̂5Þ as (even, odd) under the Z2 reflection
of a 5d orbifold.
To transform into unitary gauge, we choose the gauge

parameters as follows:

χμn ¼ −
1

Mn

�
Aμ

n −
∂μϕn

2Mn

�
; χ5n ¼

ϕn

2Mn
: ðB6Þ

Then, we derive the field transformations to the unitary
gauge:

hμνn → h0μνn ¼ hμνn þ 2

Mn
∂ðμAνÞ

n −
1

2

�
ημν þ 2∂μ∂ν

M2
n

�
ϕn;

ðB7aÞ

Aμ
n → A0μ

n ¼ 0; ðB7bÞ

ϕn → ϕ0
n ¼ 0: ðB7cÞ

Thus, under the unitary gauge, both the KK Goldstone
states Aμ

n and ϕn (n > 0) are gauged away, so the 4d action
of the Lagrangian (2.15) becomes

Seff ¼
Z

d4x
X∞
n¼0

�
−
1

2
ð∂μhnÞ2 þ

1

2
ð∂ρhμνn Þ2

þ ∂μh
μν
n ∂νhn − ∂μh

μρ
n ∂νhνρ;n

−
1

2
M2

n½h2n − ðhμνn Þ2�
�
þ 3

4
ð∂μϕ0Þ2: ðB8Þ

APPENDIX C: FEYNMAN RULES FOR KK
GRAVITON INTERACTION WITH MATTER

In this Appendix, we present the relevant Feynman rules
of the 5d gravitational scalar QED (GSQED5) as studied in
Sec. IVA, including the propagators of the matter fields and
the vertices for the KK graviton (Goldstone) interaction
with the matter fields. All the Feynman Rules are derived in
the Feynman-’t Hooft gauge (ζn ¼ 1).
We first present the photon propagator and scalar

propagator as follows:

Dμν
nmðpÞ ¼ −iημνδnm

p2 þM2
n
; DnmðpÞ ¼

iδnm
p2 þm2

n
; ðC1Þ

where the KK number n ≥ 0 and the KKmass for the scalar
field is mn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

0 þM2
n

p
.

Then, with the relations between the 4d coupling
constants and 5d couplings e ¼ ê=

ffiffiffiffi
L

p
and κ ¼ κ̂=

ffiffiffiffi
L

p
,

we derive the cubic and quartic interaction vertices for the
KK graviton (Goldstone) interactions with matter, which
are presented in Fig. 8.
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APPENDIX D: GRAVITATIONAL KK
GOLDSTONE AMPLITUDES FROM GOLDSTONE
EXCHANGES AND CONTACT INTERACTIONS

In this Appendix, we derive the Feynman rules of the KK
Goldstone self-interactions which we will use to compute
the subleading diagrams in Fig. 5, for the analysis of
Sec. IV B.
Under the basis defined in Table II, we can expand

the Lorentz-invariant structure of 5d Lagrangian terms
L̂1½Âϕ̂2�, L̂1½ϕ̂3�, and L̂2½ϕ̂4� as follows:

L̂1½Âϕ̂2� ¼ b1Â
μ∂μϕ̂∂5ϕ̂þ b2Â

μϕ̂∂μ∂5ϕ̂; ðD1aÞ

L̂1½ϕ̂3� ¼ c1ϕ̂ð∂μϕ̂Þ2 þ c2ϕ̂ð∂5ϕ̂Þ2; ðD1bÞ

L̂2½ϕ̂4� ¼ d1ϕ̂
2ð∂μϕ̂Þ2 þ d2ϕ̂

2ð∂5ϕ̂Þ2; ðD1cÞ

where we have computed systematically the coefficients
ðb1; b2; c1; c2; d1; d2Þ as follows:

FIG. 8. Feynman rules for the cubic and quartic interaction vertices between the KK graviton (KK Goldstone boson) and matter fields.

TABLE II. Lorentz-invariant vertices in the 5d Lagrangian terms L̂1½Âϕ̂2�, L̂1½ϕ̂3�, and L̂2½ϕ̂4�.

L̂1½Âϕ̂2� Âμ∂μϕ̂∂5ϕ̂ Âμð∂μ∂5ϕ̂Þϕ̂ ∂μÂ
μ∂5ϕ̂ ϕ̂ ∂5Â

μ∂μϕ̂ ϕ̂ ∂μ∂5Â
μϕ̂2

L̂1½ϕ̂3� ϕ̂ð∂μϕ̂Þ2 ϕ̂ð∂5ϕ̂Þ2 ϕ̂2∂2
μϕ̂ ϕ̂2∂2

5ϕ̂

L̂2½ϕ̂4� ϕ̂2ð∂μϕ̂Þ2 ϕ̂2ð∂5ϕ̂Þ2 ϕ̂3∂2
μϕ̂ ϕ̂3∂2

5ϕ̂
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ðb1; b2; c1; c2; d1; d2Þ ¼
�
0;

1ffiffiffi
2

p ;

ffiffiffi
2

3

r
;−

1ffiffiffi
6

p ;−
1

8
;
1

4

�
: ðD2Þ

Then, by integrating over x5 on the 5d interval ½0; L�, we derive the 4d effective KK Lagrangian terms as follows:

L1½Aϕ2� ¼ −
κffiffiffi
2

p
X∞

n;m;l¼1

fb1 Ml½
ffiffiffi
2

p
Aμ

n∂μϕ0ϕlδnl þAμ
n∂μϕmϕl

eΔ3ðm; n;lÞ�

þ b2 Ml½
ffiffiffi
2

p
Aμ

nϕ0∂μϕlδnl þAμ
nϕm∂μϕl

eΔ3ðm; n;lÞ�g; ðD3aÞ

L1½ϕ3� ¼ κffiffiffi
2

p
X∞

n;m;l¼1

fc1½
ffiffiffi
2

p
ðϕ0ð∂μϕ0Þ2 þ ϕ0∂μϕm∂μϕlδml þ ϕn∂μϕ0∂μϕmδnm

þ ϕn∂μϕ0∂μϕlδnlÞ þ ϕn∂μϕm∂μϕlΔ3ðn;m;lÞ� þ c2MmMl½
ffiffiffi
2

p
ϕ0ϕmϕlδml

þ ϕnϕmϕl
eΔ3ðn;m;lÞ�g; ðD3bÞ

L2½ϕ4� ¼ κ2

2

X∞
n;m;l;k¼1

fd1f2ðϕ0∂μϕ0Þ2 þ 2½ð∂μϕ0Þ2ϕnϕmδnm þ ϕ0∂μϕ0ϕn∂μϕlδnl

þ ϕ0∂μϕ0ϕn∂μϕkδnk þ ϕ0∂μϕ0ϕm∂μϕkδmk þ ϕ0∂μϕ0ϕm∂μϕlδml þ ϕ2
0∂μϕl∂μϕkδlk�

þ
ffiffiffi
2

p
½∂μϕ0ϕnϕm∂μϕlΔ3ðn;m;lÞ þ ∂μϕ0ϕnϕm∂μϕkΔ3ðn;m; kÞ þ ∂μϕ0ϕnϕl∂μϕkΔ3ðn;l; kÞ

þ ϕ0ϕm∂μϕl∂μϕkΔ3ðm;l; kÞ� þ ϕnϕm∂μϕl∂μϕkΔ4ðn;m;l; kÞg þ d2 MlMk½2ðϕ0Þ2ϕlϕkδlk

þ
ffiffiffi
2

p
ϕ0ϕmϕlϕk

eΔ3ðm;l; kÞ þ
ffiffiffi
2

p
ϕ0ϕnϕlϕk

eΔ3ðn;l; kÞ þ ϕnϕmϕlϕk
eΔ4ðn;m;l; kÞ�g; ðD3cÞ

where

FIG. 9. Feynman rules for the cubic and quartic interaction vertices among the KK gravitational Goldstone bosons ϕn and Aμ
n.
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Δ4ðn;m;l; kÞ ¼ δðnþmþ l − kÞ þ δðnþm − l − kÞ þ δðn −mþ l − kÞ þ δðn −m − l − kÞ
þ δðn −m − lþ kÞ þ δðnþm − lþ kÞ þ δðn −mþ lþ kÞ; ðD4aÞ

eΔ4ðn;m;l; kÞ ¼ δðnþmþ l − kÞ − δðnþm − l − kÞ þ δðn −mþ l − kÞ − δðn −m − l − kÞ
þ δðn −m − lþ kÞ − δðnþm − lþ kÞ þ δðn −mþ lþ kÞ: ðD4bÞ

With these, we derive the cubic and quartic interaction
vertices of Aϕ2, ϕ3, and ϕ4, which are presented in Fig. 9.
By explicit calculations, we find that the scattering

amplitudes of ϕnϕn → ϕnϕn from the ϕ0 (ϕ2n) exchanges
and from the contact interaction are all ofOðM2

nÞ under the
high-energy expansion, which do not contribute to the LO
Goldstone boson amplitude of OðE2Þ. This conclusion still
holds for the inelastic scattering process ϕnϕk → ϕmϕl.

APPENDIX E: MASSLESS GRAVITON
SCATTERING AND DOUBLE COPY IN 4D

For the sake of comparison, in this Appendix we
compute the scattering amplitudes of four gluons and of
four gravitons at tree level in 4d, by using the conventional
Feynman techniques and the reduced superstring ampli-
tudes, respectively. We also verify the double-copy

construction of massless graviton amplitudes from the
massless gluon amplitudes by using the color-kinematics
(CK) duality. We find that the conversion constant between
the gauge boson coupling and the graviton coupling in 4d
differs from what we have obtained in the 5d KK theory
analysis (Sec. V B).

1. Massless graviton scattering from
double-copy construction in 4d

For an SU(N) non-Abelian gauge theory, we can express
the four-gluon scattering amplitudes at tree level as follows:

T ½gg → gg� ¼ −g2ðT c þ T s þ T t þ T uÞ; ðE1Þ
where the amplitude contains the contributions from a
contact interaction diagram and the ðs; t; uÞ-channel pole
diagrams whose amplitudes are given by

T c ¼ Cs½ðϵ1 · ϵ3Þðϵ2 · ϵ4Þ − ðϵ1 · ϵ4Þðϵ2 · ϵ3Þ� þ Ct½ðϵ1 · ϵ2Þðϵ3 · ϵ4Þ − ðϵ1 · ϵ3Þðϵ2 · ϵ4Þ�
þ Cu½ðϵ1 · ϵ4Þðϵ2 · ϵ3Þ − ðϵ1 · ϵ2Þðϵ3 · ϵ4Þ�; ðE2aÞ

T s ¼
Cs
s
½ðp1 − p2Þðϵ1 · ϵ2Þ þ 2ðp2 · ϵ1Þϵ2 − 2ðp1 · ϵ2Þϵ1�

· ½ðp4 − p3Þðϵ3 · ϵ4Þ þ 2ðp3 · ϵ4Þϵ3 − 2ðp4 · ϵ3Þϵ4�; ðE2bÞ

T t ¼ −
Ct
t
½ð−p1 þ p4Þðϵ1 · ϵ4Þ − 2ðp4 · ϵ1Þϵ4 þ 2ðp1 · ϵ4Þϵ1�

· ½ð−p2 þ p3Þðϵ2 · ϵ3Þ − 2ðp3 · ϵ2Þϵ3 þ 2ðp2 · ϵ3Þϵ2�; ðE2cÞ

T u ¼
Cu
u
½ð−p1 þ p3Þðϵ1 · ϵ3Þ − 2ðp3 · ϵ1Þϵ3 þ 2ðp1 · ϵ3Þϵ1�

· ½ð−p2 þ p4Þðϵ2 · ϵ4Þ − 2ðp4 · ϵ2Þϵ4 þ 2ðp2 · ϵ4Þϵ2�: ðE2dÞ

Here each external massless gauge boson (gluon) has two helicity states, as described by its two transverse polarization
vectors ϵμj� (j ¼ 1, 2, 3, 4):

ϵμ1þ ¼ ϵμ2− ¼ 1ffiffiffi
2

p ð0; 1; i; 0Þ; ϵμ1− ¼ ϵμ2þ ¼ 1ffiffiffi
2

p ð0;−1; i; 0Þ;

ϵμ3þ ¼ ϵμ4− ¼ 1ffiffiffi
2

p ð0; icθ; 1;−isθÞ; ϵμ3− ¼ ϵμ4þ ¼ 1ffiffiffi
2

p ð0; icθ;−1;−isθÞ: ðE3Þ

Then, we compute the helicity amplitudes of the gauge boson scattering:

T ½þ þ þþ� ¼ T ½− − −−� ¼ g2
�
Csð−2cθÞ þ Ct

�
3 − 2cθ − c2θ

1 − cθ

�
þ Cu

�
−3 − 2cθ þ c2θ

1þ cθ

��
; ðE4aÞ
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T ½þ −þ−� ¼ T ½−þ −þ� ¼ g2
�
Ctð−1 − cθÞ þ Cu

�
3þ 4cθ þ c2θ
2ð1 − cθÞ

��
; ðE4bÞ

T ½þ − −þ� ¼ T ½−þþ−� ¼ g2
�
Ct

�
−3þ 4cθ − c2θ

2ð1þ cθÞ
�
þ Cuð1 − cθÞ

�
; ðE4cÞ

where c2θ ¼ cos 2θ, and all the helicity-flipped amplitudes vanish, which include the amplitudes like T ½þ þ þ−�,
T ½þ þ −−�, and so on. For convenience, we rewrite the above amplitudes (E4a) and (E4c) as follows:

T ½þ þ þþ� ¼ T ½− − −−� ¼ g2
�
CsN s

s
þ CtN t

t
þ CuN u

u

�
; ðE5aÞ

T ½þ −þ−� ¼ T ½−þ −þ� ¼ g2
�
CsN 0

s

s
þ CtN 0

t

t
þ CuN 0

u

u

�
; ðE5bÞ

T ½þ − −þ� ¼ T ½−þþ−� ¼ g2
�
CsN 00

s

s
þ CtN 00

t

t
þ CuN 00

u

u

�
; ðE5cÞ

where the numerator parameters ðN j;N 0
j;N

00
j Þ are given by

N s ¼ −2scθ; N t ¼
s
2
ð−3þ 2cθ þ c2θÞ; N u ¼

s
2
ð3þ 2cθ − c2θÞ; ðE6aÞ

N 0
s ¼ 0; N 0

t ¼
sð2þ cθ − 2c2θ − c3θÞ

8ð1 − cθÞ
; N 0

u ¼
sð−2 − cθ þ 2c2θ þ c3θÞ

8ð1 − cθÞ
; ðE6bÞ

N 00
s ¼ 0; N 00

t ¼
sð2 − cθ − 2c2θ þ c3θÞ

8ð1þ cθÞ
; N 00

u ¼
sð−2þ cθ þ 2c2θ − c3θÞ

8ð1þ cθÞ
: ðE6cÞ

Hence, we can readily verify that the numerators in Eq. (E6) obey the kinematic Jacobi identity:

N s þN t þN u ¼ 0; ðE7aÞ

N 0
s þN 0

t þN 0
u ¼ 0; ðE7bÞ

N 00
s þN 00

t þN 00
u ¼ 0: ðE7cÞ

Next, by using the double-copy approach with CK duality, we reconstruct the massless graviton scattering amplitudes as
follows:

T DC½þ þ þþ� ¼ T DC½− − −−� ¼ −16ec0g2s csc2 θ ¼ −
κ2

4

s3

tu
; ðE8aÞ

T DC½þ −þ−� ¼ T DC½−þ −þ� ¼ −ec0g2 ss6θ
ð1 − cθÞ4

¼ −
κ2

4

t3

su
; ðE8bÞ

T DC½þ − −þ� ¼ T DC½−þþ−� ¼ −ec0g2 sð1 − cθÞ4
s2θ

¼ −
κ2

4

u3

st
; ðE8cÞ

where we have applied the conversion constant (5.40) for the amplitudes in the last equality of Eqs. (E8a) and (E8c) and
ðþ;−Þ≡ ðþ2;−2Þ. The above reconstructed massless graviton scattering amplitudes agree with the results of Refs. [50,51]
which computed directly the graviton amplitudes by the conventional Feynman techniques.
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2. Massless graviton scattering from
type-II superstring theory

The massless graviton scattering amplitudes can be
computed by the conventional Feynman technique in
quantum field theory. The three-point and four-point
graviton interaction vertices were derived by DeWitt
[52]. It is clear that by using the conventional Feynman
diagram approach, the calculations of graviton scattering
amplitudes are extremely complicated and tedious. Hence,
we will use the amplitudes as computed within the type-II
superstring theory (SST-II) [2,53,54]. The massless grav-
itons are described by closed strings and their four-point
scattering amplitude at tree level in the SST-II is given by

M½λ1λ2λ3λ4� ¼ κ̂2Cðŝ; t̂; ûÞεμ̂ α̂λ1 ε
ν̂ β̂
λ2
ερ̂ γ̂λ3 ε

σ̂ λ̂
λ4
K̂μ̂ ν̂ ρ̂ σ̂K̂α̂ β̂ γ̂ λ̂;

ðE9Þ

where κ̂ is the 10-dimensional gravitational coupling
constant, and the Mandelstam variables ðŝ; t̂; ûÞ and the
Lorentz indices ðμ̂; ν̂; � � �Þ are defined in 10d. In Eq. (E9),
the C function takes the following form:

Cðŝ; t̂; ûÞ ¼ 1

128

Γð−α0ŝ=2ÞΓð−α0 t̂=2ÞΓð−α0û=2Þ
Γð1þ α0ŝ=2ÞΓð1þ α0t̂=2ÞΓð1þ α0û=2Þ ;

ðE10Þ

where we have set the Regge slope for the closed string to
be α0 ¼ 1

4
.

Using the relation of gamma functions Γð1þ zÞ ¼
zΓðzÞ, we can rewrite the function Cðŝ; t̂; ûÞ as follows:

Cðŝ; t̂; ûÞ ¼ −
4

ŝ t̂ û
Γð1− α0ŝ=2ÞΓð1− α0 t̂=2ÞΓð1− α0û=2Þ
Γð1þ α0ŝ=2ÞΓð1þ α0 t̂=2ÞΓð1þ α0û=2Þ :

ðE11Þ

With Ref. [53], we note that by imposing compactification
of (10 − d) spatial dimensions, the amplitude defined in
d-dimension has the same structure as that of the original
10-dimension case at tree level. In order to reduce the SST-
II amplitude (E9) to the amplitude in 4d, we take the limit
for Regge slope α0 → 0 and derive the reduced 4d graviton
scattering amplitude:

M½λ1λ2λ3λ4� ¼ −
4κ2

stu
K2

λ0
1
λ0
2
λ0
3
λ0
4
; ðE12Þ

where the Kλ0
1
λ0
2
λ0
3
λ0
4
factor is given as follows [2,53,54]:

Kλ0
1
λ0
2
λ0
3
λ0
4
¼ −

1

4
f½stðϵ1 · ϵ3Þðϵ2 · ϵ4Þ þ suðϵ1 · ϵ4Þðϵ2 · ϵ3Þ þ tuðϵ1 · ϵ2Þðϵ3 · ϵ4Þ�

− 2s½ðp1 · ϵ4Þðp3 · ϵ2Þðϵ1 · ϵ3Þ þ ðp1 · ϵ3Þðp4 · ϵ2Þðϵ1 · ϵ4Þ þ ðp2 · ϵ3Þðp4 · ϵ1Þðϵ2 · ϵ4Þ
þ ðp2 · ϵ4Þðp3 · ϵ1Þðϵ2 · ϵ3Þ� − 2t½ðp1 · ϵ2Þðp3 · ϵ4Þðϵ1 · ϵ3Þ þ ðp1 · ϵ3Þðp2 · ϵ4Þðϵ1 · ϵ2Þ
þ ðp2 · ϵ1Þðp4 · ϵ3Þðϵ2 · ϵ4Þ þ ðp3 · ϵ1Þðp4 · ϵ2Þðϵ3 · ϵ4Þ� − 2u½ðp1 · ϵ2Þðp4 · ϵ3Þðϵ1 · ϵ4Þ
þ ðp1 · ϵ4Þðp2 · ϵ3Þðϵ1 · ϵ2Þ þ ðp3 · ϵ2Þðp4 · ϵ1Þðϵ3 · ϵ4Þ þ ðp3 · ϵ4Þðp2 · ϵ1Þðϵ2 · ϵ3Þ�g; ðE13Þ

where we denote the polarization vectors as ϵμj ≡ ϵμλ0j
. We

substitute the polarizations (E3) into the above kinematic
factor (E13). Thus, we can readily deduce the 4d graviton
scattering amplitudes at tree level:

M½þ þ þþ� ¼ M½− − −−� ¼ −
κ2

4

s3

tu
; ðE14aÞ

M½þ −þ−� ¼ M½−þ −þ� ¼ −
κ2

4

t3

su
; ðE14bÞ

M½þ − −þ� ¼ M½−þþ−� ¼ −
κ2

4

u3

st
: ðE14cÞ

These fully agree with the amplitudes (E8) by the double-
copy construction from the corresponding gauge boson
amplitudes.

APPENDIX F: FULL AMPLITUDES OF KK
GRAVITONS AND GOLDSTONES IN 5D GR

For completeness, we summarize the full elastic ampli-
tudes of the four longitudinal KK graviton scattering [13]
and the four gravitational KK Goldstone boson scattering
(Sec. IV B) as follows:

M½4hnL� ¼ −
κ2M2

nðX0 þ X2c2θ þ X4c4θ þ X6c6θÞcsc2θ
512sðs − 4Þ½s2 − ðs − 4Þ2c2θ þ 24sþ 16� ;

ðF1aÞ

fM½4ϕn� ¼ −
κ2M2

nðeX0 þ eX2c2θ þ eX4c4θ þ eX6c6θÞcsc2θ
512sðs − 4Þ½s2 − ðs − 4Þ2c2θ þ 24sþ 16� ;

ðF1bÞ
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where parameters Xj and eXj are defined as

X0 ¼ −2ð255s5 þ 2824s4 − 19936s3 þ 39936s2 − 256sþ 14336Þ; ðF2aÞ

X2 ¼ 429s5 − 10152s4 þ 30816s3 − 27136s2 − 49920sþ 34816; ðF2bÞ

X4 ¼ 2ð39s5 − 312s4 − 2784s3 − 11264s2 þ 26368s − 2048Þ; ðF2cÞ
X6 ¼ 3s5 þ 40s4 þ 416s3 − 1536s2 − 3328s − 2048; ðF2dÞ
eX0 ¼ −2ð255s5 þ 8248s4 − 4144s3 þ 79104s2 þ 642560sþ 69632Þ; ðF2eÞ
eX2 ¼ 429s5 þ 4152s4 þ 21216s3 − 150016s2 þ 1142016sþ 182272; ðF2fÞ
eX4 ¼ 2ð39s5 − 1992s4 þ 17808s3 − 58112s2 þ 70144s − 20480Þ; ðF2gÞ

eX6 ¼ 3s5 − 56s4 þ 416s3 − 1536s2 þ 2816s − 2048: ðF2hÞ

For our analyses in Secs. IV and V, it is also useful to express the above amplitudes in terms of the variable s0:

M½4hnL� ¼
κ2M2

nðX0
0 þ X0

2c2θ þ X0
4c4θ þ X0

6c6θÞ csc2 θ
512s0ðs0 þ 4Þ½2s20s2θ þ 32s0 þ 128� ; ðF3aÞ

fM½4ϕn� ¼
κ2M2

nðeX0
0 þ eX0

2c2θ þ eX0
4c4θ þ eX0

6c6θÞcsc2θ
512s0ðs0 þ 4Þ½2s20s2θ þ 32s0 þ 128� ; ðF3bÞ

where we have the following coefficients:

X0
0 ¼ 2ð255s50 þ 7924s40 þ 66048s30 þ 235008s20 þ 411648s0 þ 360448Þ; ðF4aÞ

X0
2 ¼ −429s50 þ 1572s40 þ 62976s30 þ 357376s20 þ 837632s0 þ 786432; ðF4bÞ

X0
4 ¼ 2ð−39s50 − 468s40 þ 1536s30 þ 49664s20 þ 227328s0 þ 294912Þ; ðF4cÞ

X0
6 ¼ −ð3s50 þ 100s40 þ 1536s30 þ 9216s20 þ 18432s0Þ; ðF4dÞ

eX0
0 ¼ 2ð255s50 þ 13348s40 þ 168624s30 þ 984384s20 þ 3514368s0 þ 6012928Þ; ðF4eÞ

eX0
2 ¼ −429s50 − 12732s40 − 156288s30 − 77728s20 − 2572288s0 − 5210112; ðF4fÞ

eX0
4 ¼ −2ð39s50 − 1212s40 − 7824s30 − 10688s20Þ; ðF4gÞ

eX0
6 ¼ −ð3s50 þ 4s40Þ: ðF4hÞ

Then, we make high-energy expansion for the KK graviton (Goldstone) scattering amplitudes (F1a) and (F1b) or (F3a) and
(F3b) as follows:

M½4hnL� ¼ M0½4hnL� þ δM½4hnL�; ðF5aÞ

fM½4ϕn� ¼ fM0½4ϕn� þ δfM½4ϕn�; ðF5bÞ

where the LO and NLO amplitudes are given by ðM0;fM0Þ and ðδM; δfMÞ, respectively. For the high-energy expansion in
terms 1=s, we derive from expanding Eqs. (F1a) and (F1b) the following KK graviton (Goldstone) scattering amplitudes at
the LO and NLO:

YAN-FENG HANG and HONG-JIAN HE PHYS. REV. D 105, 084005 (2022)

084005-50



M0½4hnL� ¼ fM0½4ϕn� ¼
3κ2

128
sð7þ c2θÞ2csc2θ; ðF6aÞ

δM½4hnL� ¼ −
κ2M2

n

256
ð1810þ 93c2θ þ 126c4θ þ 19c6θÞ csc4 θ; ðF6bÞ

δfM½4ϕn� ¼ −
κ2M2

n

256
ð−902þ 3669c2θ − 714c4θ − 5c6θÞcsc4θ: ðF6cÞ

For the high-energy expansion in terms 1=s0, we can expand Eqs. (F3a) and (F3b) and derive the following KK graviton
(Goldstone) scattering amplitudes at the LO and NLO:

M0½4hnL� ¼ fM0½4ϕn� ¼
3κ2

128
s0ð7þ c2θÞ2csc2θ; ðF7aÞ

δM½4hnL� ¼ −
κ2M2

n

128
ð650þ 261c2θ þ 102c4θ þ 11c6θÞ csc4 θ; ðF7bÞ

δfM½4ϕn� ¼ −
κ2M2

n

128
ð−706þ 2049c2θ − 318c4θ − c6θÞcsc4θ: ðF7cÞ

Hence, we can derive the contribution of the residual
terms by computing the amplitude difference between
Eqs. (F6b) and (F6c) [or Eqs. (F7b) and (F7c)] as follows:

δM½4hnL� − δfM½4ϕn� ¼ −
3κ2M2

n

2

�
39

2
þ c2θ

�
: ðF8Þ

APPENDIX G: EXTENDING KLT
CONSTRUCTION TO KK AMPLITUDES

In this Appendix, we extend the KLT [24] relation to
studying the double-copy construction of the KK ampli-
tudes, in comparison with the extended BCJ approach used
in Secs. V B and V C. The KLT relation was derived to
connect the product of the scattering amplitudes of two
open strings to that of the closed string at tree level. The
KLT kernel may be further reinterpreted as the inverse
amplitude of a biadjoint scalar theory in QFT (à la
CHY) [45].
We summarize the LO and NLO amplitudes for An

L and
An
5 as well as their difference:

T 0L ¼ g2
X
j

CjN 0
j

s0j
; δT L ¼ g2

X
j

CjδN j

s0j
; ðG1aÞ

eT 05 ¼ g2
X
j

Cj eN 0
j

s0j
; δeT 5 ¼ g2

X
j

Cjδ eN j

s0j
; ðG1bÞ

ΔT ≡ δT L − δeT 5 ¼ g2
X
j

CjðδN j − δ eN jÞ
s0j

; ðG1cÞ

where j ∈ ðs; t; uÞ and their numerators satisfy the kin-
ematic Jacobi identities:X
j

N 0
j ¼

X
j

eN 0
j ¼ 0;

X
j

ðδN j − δ eN jÞ ¼ 0: ðG2Þ

Then, we expand the color factors (Cj) in terms of traces
of group generators:

Cs ¼
1

2
ð−Tr½1234� þ Tr½1243� þ Tr½2134� − Tr½2143�Þ;

ðG3aÞ

Ct ¼
1

2
ð−Tr½1423� þ Tr½1432� þ Tr½4123� − Tr½4132�Þ;

ðG3bÞ

Cu ¼
1

2
ð−Tr½1342� þ Tr½1324� þ Tr½3142� − Tr½3124�Þ;

ðG3cÞ

where the abbreviation f1; 2; 3; 4g ¼ fTa; Tb; Tc; Tdg is
used. Thus, each full four-particle scattering amplitude T 4

can be decomposed into the sum of color-ordered partial
amplitudes in terms of the trace of group factors:

T 4 ¼ g2
X
Pð234Þ

A4½1234�Tr½TaTbTcTd�: ðG4Þ

We may further write the n-point color-ordered partial
amplitudes in the following general form [26,55]:
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Ai ¼ g2
Xðn−2Þ!
j¼1

Θijn̂j; ðG5Þ

where the quantities fΘijg form a ðn − 2Þ! × ðn − 2Þ!
matrix containing massless scalar propagators, and the
numerators n̂j include the kinematic information.
For the case of four-particle scattering (n ¼ 4), we

choose the partial amplitudes with ordering A½1234�
and A½1243� in the Kleiss-Kuijf basis [56,57].14

Thus, the amplitudes in Eq. (G1) can be reexpressed as
follows:

�
A½1234�
A½1243�

�
¼ g2Θ ×

�
n̂s
n̂t

�
; ðG6Þ

where A ¼ T 0L; eT 05;ΔT and n̂j ¼ N 0
j ;
eN 0

j ; δN j − δ eN j.
The above propagator matrix Θ takes the form

Θ ¼
 

− 1
s0

1
t0

1
s0
þ 1

u0
1
u0

!
; ðG7Þ

where we can readily check detΘ ¼ 0. Then, we can derive
the color-ordered LO amplitudes:

T 0L½1234� ¼ g2
�
−
N 0

s

s0
þN 0

t

t0

�
; T 0L½1243� ¼ g2

�
N 0

s

s0
−
N 0

u

u0

�
; ðG8aÞ

eT 05½1234� ¼ g2
�
−
eN 0

s

s0
þ
eN 0

t

t0

�
; eT 05½1243� ¼ g2

� eN 0
s

s0
−
eN 0

u

u0

�
; ðG8bÞ

and the color-ordered NLO amplitudes:

ΔT ½1234� ¼ g2
�
−
δN s − δ eN s

s0
þ δN t − δ eN t

t0

�
; ðG9aÞ

ΔT ½1243� ¼ g2
�
δN s − δ eN s

s0
−
δN u − δ eN u

u0

�
: ðG9bÞ

With the above, we extend the KLT double-copy construction and compute the KK graviton scattering amplitudes at
the LO:

M0½1234� ¼
κ2

24
s0T 0L½1234�T 0L½1243� ¼

3κ2

128
s0ð7þ c2θÞ2 csc2 θ; ðG10aÞ

fM0½1234� ¼
κ2

24
s0 eT 05½1234�eT 05½1243� ¼

3κ2

128
s0ð7þ c2θÞ2csc2θ: ðG10bÞ

Then, with the definitions of ðΔM1;ΔM2Þ in Eqs. (5.51a) and (5.51b), we construct the KK graviton amplitudes at
the NLO:

ΔM1½1234� ¼
κ2

12
s0 eT 05½1234�ΔT ½1243� ¼ κ2

12
s0ΔT ½1234�eT 05½1243�

¼ −κ2M2
nð7þ c2θÞ; ðG11aÞ

ΔM2½1234� ¼
κ2

12
s0T 0L½1234�ΔT ½1243� ¼ κ2

12
s0ΔT ½1234�T 0L½1243�

¼ −κ2M2
nð7þ c2θÞ: ðG11bÞ

From the above, we see that the amplitudes (G10a) and (G10b) and (G11a) and (G11b) agree with the amplitudes (5.35b)
and (5.51a) and (5.51b) which we derived by using the improved BCJ construction in the case of four-point amplitudes. We
will consider generalizing the present analysis to the KK graviton (Goldstone) amplitudes with five or more external lines in
future work.

14Alternatively, one may choose A½1324� instead of A½1243� in the basis, because the U(1) decoupling identity gives
A½1234� þA½1243� þA½1324� ¼ 0.
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