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near-extreme Kerr-Newman-de Sitter spacetime governed
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Quasinormal modes of scalar, electromagnetic, and gravitational fields in the extreme Schwarzschild—de
Sitter background are known to be expressed in analytic form as eigenvalues of the Poschl-Teller wavelike
equation. We show that perturbations of fermionic fields (given by Dirac and Rarita-Schwinger equations)
do not lead to the Poschl-Teller effective potential. Nevertheless, using the Frobenius method we find
quasinormal modes analytically in this case as well. We write down the analytical formula for quasinormal
frequencies of the near-extreme Schwarzschild—de Sitter black holes, which is valid for both bosonic and
fermionic fields. We further extend the analysis to the case of charged rotating black holes and find
a general analytical formula for quasinormal modes of the fields of various spin for the near extreme

Kerr-Newman—de Sitter spacetime.
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I. INTRODUCTION

Quasinormal modes are proper oscillation frequencies
of gravitational or matter fields around black holes which
depend only upon the black hole parameters and not on
the way of perturbation of the system [1,2]. One of the
earliest and apparently the most elegant and simple
calculation of quasinormal modes for Schwarzschild
black holes was performed by Bahram Mashhoon [3]
via using the approximation of the exactly solvable
eigenvalue problem given by the Poschl-Teller wavelike
equation. Later this approach was extended to the case
of Reissner-Nordstrom and slowly rotating Kerr black
holes [4]. The accuracy of the method, however,
was insufficient, because it depends on how well the
effective potential of the black hole fits the Poschl-Teller
potential.

Even though the study of quasinormal modes was
concentrated around asymptotically flat solutions, the case
of asymptotically de Sitter black holes has also been
considered in a great number of papers [5-22], especially
recently, in the context of Strong Cosmic Censorship
[23-25]. Mostly, calculations of quasinormal modes for
four-dimensional black holes are done with the help of
numerical or semianalytical methods, because the exact
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solution of the wavelike equation cannot be found as a rule.
Nevertheless, there is one exception: the Schwarzschild—
de Sitter black hole, when the cosmological horizon
approaches the event horizon. In this regime of the near-
extreme Schwarzschild—de Sitter spacetime the wavelike
equation approaches the Poschl-Teller one and, therefore,
the analytical formula for quasinormal modes of scalar
electromagnetic and gravitational fields can be deduced
[26]. Later this formula for bosonic fields was extended
to the case of higher-dimensional Reissner-Nordstrom—de
Sitter black holes [27]. More general forms of the
Poschl-Teller-like potentials have been recently considered
in [28].

Although from the point of view of current astrophysi-
cal observations we are able to detect only quasinormal
modes of the gravitational field, there is considerable
interest in perturbations of fundamental fields of other
spin as well. A realistic black hole is not an isolated
object, but it exists in the astrophysical environment and is
accompanied by radiation phenomena of fields of all sorts.
The decay of fermionic fields have also been extensively
studied in the literature [29-43], because the Dirac field
can describe neutrinos, while the Rarita-Schwinger field
corresponds to gravitinos [44,45]. After all, complete
study of decay of all the fundamental fields allows one
to understand the role of the spin field parameter in the
processes of radiation.

In the present work we concentrate on the limit in which
analytical expressions for quasinormal modes can be
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obtained. We will show here that perturbation equations for
fermions do not reduce to the Poschl-Teller wavelike
equation, unlike the case of boson fields. Nevertheless,
using the continued fractions we will obtain the analytical
formula for quasinormal modes of the spin 1/2 (Dirac) and
3/2 (Rarita-Schwinger) fields in the regime of the near-
extreme Schwarzschild—de Sitter black hole. We will also
generalize this analytical treatment to the case of perturba-
tions of scalar, electromagnetic, gravitational, Dirac and
Rarita-Schwinger fields in the Kerr-Newman—de Sitter
spacetime, allowing, unlike [4], for the rotation and electric
charge.

The paper is organized as follows. Section II is devoted
to a description of the Schwarzschild—de Sitter geometry in
the near extreme limit. Section III deals with perturbation
equations in the near extreme regime. In Sec. IV we deduce
an analytical formula for quasinormal modes of half-integer
spin in the Schwarzschild—de Sitter spacetime, while in
Sec. V, the analytical formula for quasinormal modes of
spin 0, 1/2, 1, 3/2, 2 fields is deduced for the near extreme
Kerr-Newman—de Sitter black hole. Finally, in Sec. VI we
summarize the obtained results and discuss a number of
open questions.

II. SCHWARZSCHILD-DE SITTER GEOMETRY
IN THE NEAR EXTREME LIMIT

The line element of the Schwarzschild—de Sitter black
hole can be written in the following form:

ds> = —f(r)dr* +;l(—’f) + r2(d6? + sin® 9d¢?), (1)

where

fl=1-=2-2C, @

Here M > 0 is the black-hole mass and A > 0 is the
cosmological constant.

The function f(r) has two positive roots, the event
horizon r, and the cosmological horizon r., and can be
expressed in the following form:

A= lre=n)r=r)rtretr). ()

By comparing (3) and (2) one can express M and A in
terms of r, and r,. as follows:

rerc(re+rc) _ 3
2 2\’ -2 2"
2(re+rerc+rc) Fe +Tele +7¢

(4)

In this paper we consider the near-extreme
Schwarzschild—de Sitter black hole, i. e., the regime in
which

Fe—T, K1, (5)

In this case it is convenient to use the value of the surface
gravity x, as a small parameter,

K =f,(re>7A(rc_re)(2re+rc)
cT 2 6r,
(rc_re) 2
:2—’%4‘0(%—%) : (6)

We notice that

1

A =—+0O(k,). (7)

M = % + O(k,),

and the metric function (3) takes the following form:

f) =m0 Loy )

r

The tortoise coordinate takes the following simple
form:

r = ]% _ % <ln (:C‘_r;) + O(Ke)) )

Therefore, for the near-extreme Schwarzschild—de
Sitter black hole one can find a closed form for r in terms
of r,,

r, + r.exp(2k,r,)
= . 1
" 1 + exp(2«,r,) + Olxe) (10)

III. LINEAR PERTURBATIONS IN THE
NEAR-EXTREME LIMIT

For static and spherically symmetric spacetime we can use
the stationary ansatz and expansion into spherical harmonics
for massless scalar (s = 0), Dirac (s = £1/2), and electro-
magnetic (s = 1) fields, as well as for linear gravitational
perturbations (s = 2) of odd end even parities,

p, ©, A 8y e 1S(0,)¥(r).

"o
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Then, the master equation for the radial part can be reduced
to the wavelike form,

dZ
<d2+a)

with the effective potentials (see, e.g.,
references therein)

Vs(r)>‘P:0, (11)

[2,46-48] and

£(6+1)

Vo= s (30 F), (12)
V=2 (13)
)= (A -5, (14)

¢ Z(C+1) 6
e

r r

24M*(Ar* =3M/r)
(6M+(£—=1)(£+2)r)?

24M (r—3M) 3M
‘«mm+w>1xf+mn2(“‘le+2*%77>}

2 r \/
Vﬂ/z:%( +1/2)f d . (15)

where the multipole number takes (half-)integer values,

=|s|, s . While the deduction of the
effective potentials for perturbations of the boson fields is
well known in the literature (see for example [1,2,46] and
references therein), the case of fermion fields is less known.
Therefore, for completeness, we briefly review this deduc-
tion in the appendices.

Substituting (7) and (8) into (12), (13), and (14), and
taking into account (10), we find that the potentials for
s =0, 1,2 approach the Poschl-Teller one,

(£ +s)(+1-5)

3
cosh?(k,r,) +Ole)’,

Vs(r*) = KZ

(16)

for which the quasinormal spectrum is known [4]. In
this way it was shown that for the fields of the integer
spin we have [26]

()]

—:i¢w+gw+1-g-i

Ke

!
_ <n+§>i+(/)(xe), n=0,1,23.... (17

However, for the half-integer spin, the effective potential
is not the Poschl-Teller-like when x, — 0. In particular, by

substituting (7), (8), and (10) into (15), one can find that the
effective potential for the massless Dirac field takes the
following form':

£+1Fsinh(k,r,)
l
( Jr2) COShz(Ker*)

Vil/Z(r*): +O(Ke)3' (18)

Similarly, the effective potential for the Rarita-Schwinger
field is reduced to the non-Poschl-Teller one in the
near-extreme limit of the Schwarzschild—de Sitter black
hole (see Appendix A).

IV. QUASINORMAL SPECTRUM OF THE
HALF-INTEGER SPIN FIELDS

Using the Newman-Penrose formalism it is possible to
separate perturbation equations for massless fields of any
spin in the background of the Kerr-Newman—de Sitter
geometry [49]. After some algebra, the perturbation equa-
tions can be reduced to the master equation for the radial
part of the conformally coupled scalar (s = 0), massless
Dirac (s = +1/2), Maxwell (s = £1), Rarita-Schwinger
field (s = £3/2), and linear gravitational perturbations
(s = £2) of the Schwarzschild—de Sitter black holes

can be written in the following form [6] (see
Appendix B):

fr)\'= d (f(r)\*' d
{() ()

i DO 20+ 10T DA

r
C—s5)(+1
() S)rg i +s)}R(r):o. (19)

Here ¢ = |s|, |s| + 1, |s| + 2, ... is the (half-)integer multi-
pole number and w is the frequency.

Following [7], we represent solutions to (19) using the
Frobenius expansion,

r, —s—io/k, Qior. — e/r
R(r) = <1—r) —rzmk;b ( — e/r> . (20)

The coefficients b, satisfy the three-term recurrence relation,
co.1(@)by + cp1(w)by =0, (21)
CO,n(a))bn + Cl,n (a))bn—l + Con (a))bn—z = 0’ (22)

with

'"We note that when the cosmological horizon approaches the
event horizon, one cannot consider sinh(k,r,) = O(k,) since r,
is not a constant: Whatever small «, is, the value of the hyperbolic
sine goes from —oo to oo between the horizons. For the same
reason one cannot take cosh(x,r,) = O(1).
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CO.n(w) = nrc(rc - re)(rc + 2re)2{2iwre(r3 + Iele + r%) - (rc - re)(rc + 2re)(n - S)} = O(Ke)27
cl.n(w) = Z’ﬂ(f + 1)(rc - re)(rc =+ 2re>2(rg - 72) + (1 - sz)rc<rc - re)(rc =+ 2re)2(r% - 7‘%)
—(2r2 + 2r.r, = ) {40*r2(r2 4 rore + 12)? + 2iwr,(2n = 1)(rd = 1) (r. + 2r,)

- n(” - 1)(rc - re)z(rc + 2re)2}

= 108r§{x§ <£(£ +1) +n(n—1)+ % (1- SZ)) = 2iwk,(2n — 1) = wz} +O0(k.)’,

(@) = =22 = 2) (2 + rore + 1) (2@ -

(n+s—1)(rc_re)(rc+2re)

re(rk 4 rore +12) )

« (2t - O Dozt 20} g

re(re +rere +17)

where we took into account that w = O(k,).
One can express b; using either (21) or (22) via the
following relation:

by _ _Cl,l(w) __ c22(@) cop(@)crs(w) e (23)

by co,1(@) cia(w)=  c3(0)=

Equation (23) with the infinite continued fraction is
satisfied if and only if the Frobenius series (20) converges.
By inverting the continued fraction n times, we obtain the
following equivalent equation [50,51]:

Cz,n(w)co,n—l(w) cr2(w)cq (@)

Crat(@) = Cip-t(@)— cri(o)
_ Cont1 (@0)c2.n12(@) conia(@)crni3(@)
=T @) et Y

which must be solved with respect to the quasinormal
frequency .

For the near-extreme Schwarzschild—de Sitter black hole
equation (24) takes the simpler form,

Cl,n—&-l(w) = O(KE)B’ (25)

and can be solved analytically,

Kﬂzi\/(fﬂ)(fﬂ—s”%fs*)
B <”+%>i+o(’<e)v n=0,1,2.3,... (26)

Notice that formula (26) coincides with (17) for s = 1 and
s = 2. For s =0 the spectrum (26) corresponds to the
quasinormal modes of the conformally coupled scalar field,
while (17) was derived for the minimally coupled sca-
lar field.

The simplification of Eq. (24) occurs because the
coefficients ¢, ,(w) in the near-extreme limit are negligible

|
compared to ¢y ,(w) and ¢ ,(w). As a result, Eq. (22)
becomes the two-terms recurrence relation and Eq. (25)
implies that the infinite series in (20) is reduced to a finite
sum, when @ is a quasinormal frequency. The Frobenius
series for the Kerr—de Sitter black-hole perturbations,
proposed in [8], leads to the same simplification.
Therefore, one can easily obtain a generalization of (26)
for rotating black holes (see Sec. V). It is interesting to note
that the expansion in terms of the hypergeometric functions
[9] is not simplified in this case, leading to a three-terms
relation when the event horizon approaches the de
Sitter one.

Our analytical formula can be checked with the higher-
order WKB (Wentzel-Kramers—Brillouin) formula of Will
and Schutz [52], which was extended to higher orders in
[53-55] and made even more accurate by the usage of the
Padé approximants in [55,56]. The higher-order WKB
formula reads [57]

@? =Vy+A,(K?) +A4(K?) +Ag(K?) + ...
—iK\/=2V,(1+A3(K?) +As(K?) +A;(K?) +...),
(27)

where K takes half-integer values, K = n + % The correc-
tions Ax(K?) of order k to the eikonal formula are
polynomials of K? with rational coefficients and depend
on the values of higher derivatives of the potential V(r) in
its maximum. In order to increase accuracy of the WKB
formula, we follow Matyjasek and Opala [55] and use Padé
approximants. The Padé approximants Py ; are defined in
Eq. (21) of [57]. In Table I we show that the fundamental
(n = 0) quasinormal mode of the Dirac field (s = 1/2) for
¢ = 3/2, obtained by the WKB method with Padé approx-
imants, approaches the limit

w/x, = 2 —0.5i,

which coincides with the analytical result (26).

084003-4



ANALYTIC FORMULA FOR QUASINORMAL MODES IN THE ...

PHYS. REV. D 105, 084003 (2022)

TABLE 1. The fundamental quasinormal mode of the Dirac
field, s = 1/2, ¢ = 3/2, obtained by the WKB method with Padé
approximants, Ps;;. The corresponding value, given by our
analytical formula, is 2 — 0.5i.

(rc_re)/re w/Ke

0.000900 1.999401 — 0.499853i
0.000265 1.999823 — 0.499958i
0.000171 1.999886 — 0.499974i
0.000152 1.999899 — 0.499977i
0.000142 1.999906 — 0.499979i

As a by-product, let us consider a more general equation

d? W
[ w —
dx?

where a and A are real nonzero parameters. Since (26) for
s = 1/2 gives us the quasinormal spectrum of the wavelike
equation (11) with the effective potential (18), we conclude
that

A? + Aasinh(ax
cosh?(ax)

)>Wﬂ—0,(%)

1
a)—j:A—|a|<n—|—§>i, n=0,1,2,3,... (29)

are quasinormal modes for the general wave equation (28).

It is clear that the effective potential in (28) always has a
negative gap for sufficiently large values of x, either
positive (for A <0) or negative (for A > 0).
Nevertheless, as can be seen from the above analytic
formulas for quasinormal modes, there are no unstable
(growing) modes in the spectrum.

V. QUASINORMAL MODES OF THE
NEAR-EXTREME KERR-NEWMAN-DE SITTER
BLACK HOLES

Here we extend our analysis to the case of the Kerr-
Newman—de Sitter spacetime, describing a charged and
rotating black hole. The line element for this case has the
form:

A, (dt — asin? 0d¢)?
(1 + Ad?/3)%(r* + a* cos? 6)
Agsin? O(adt — (r* + a?)de)?
(14 Aa?/3)*(r* + a* cos? 0)
dr? d92)

ds? = —

+ (r* + a* cos® 0) ( (30)

where

2
= (P )(1—%)—2Mr+Q2
A
:§(r —r)(r=r)(r=r))(r+r.+r,+r), (31)
2
Ay =1 +A3 cos? 6. (32)

Here a is the rotation parameter and Q is the electric charge.
The latter can be expressed in terms of the inner horizon r;,
for whichO <r; <r, <r..

For the charged black hole the background electromag-
netic field is given by the components of the one-form

or di — asin® 0dg
r?+a*cos?@ (1 + Aa?/3)?

Aydxt = — (33)

The surface gravity is given by the following relation:

. = (re =ro)(re —r)(re +2r, +r;)
2P+ 1) (207 H i i rer; - rere +rer;)
:O(rc_re)' (34)

For the uncharged black hole (Q = 0) the inner horizon
can be expressed in terms of the rotation parameter,

r,+r 4a? 4a?
L= d 1 - -1
i 2 (\/ +rcre—a2 (re+rc)2 )

2 2
e T
:l;f;_m+omy (35)

Omitting the deduction of the perturbation equation,
which can be found in Appendix B, we proceed to the
analysis of the wavelike equation. The corresponding
recurrence-relation coefficients have been derived in [8].
Taking the limit x, — 0, we obtain

pr= O(’(e)’ (36)

where f, is given by (54) in [8]. Equation (36) can be
solved analytically as follows:

(2s —1)(2s — C3)
Cy

o =mQ, + Ke\/Cli + Cm2Q2r? +
. 1 )
- ComQ,r,x, —i| n+ 5 ke + O(k,)?, (37)

where Q, =% is the angular velocity at the event
horizon, m = -¢,-¢+1,...,¢ —1,¢ is the azimuthal
(half-)integer number, n =0,1,2,3,... is the overtone
number, and C, C,, C3, and C, are positive constants,
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_ a? + 3r2 + 2r,r; + ri2

C — b
: (re —r))(3re +17)
C2:22a2+3r§+2r6ri+r%’
(re_ri)(3re+ri)
5r§ +2r,r; + "12
C3 :—2,
(re"'ri)
(re =1i)(Bre + 1)
C,=4 38
! (re+ri)2 ( )

When the charge Q and rotation parameter a go to zero, the
general formula (37) is reduced to (26). Notice that the
expression for v, in [8] has misprints and uses such
dimensional units that A = 3. The accurate three-terms
recurrence relation as well as derivation of the formula (37)
are available in the Wolfram Mathematica ancillary
file [58].

The separation constant A can be calculated for any @
(see Appendix B). In the near-extreme limit of the slowly
rotating Kerr—de Sitter black hole (Q = 0), substituting
(37) into (B11), we find

x_(f+s)(f+1—s)<1—3a—;>

24> <<<f+1)2—m2><<f+1>2—s2>2_z_mz

r’ (2¢+1)(¢+1)(2¢+3) 3

2m?2s?
3¢(¢+1)

(2 —m?)(£? —5%)? )
T2-1)Z2e+1) > +0(a*x,).  (39)

Notice that the general expression (37) is valid for highly
rotating black holes as well, although the separation
constant A = A(s,Z,m,a, r;, r, = r.) has not been found
in analytic form in the that case.

VI. CONCLUSIONS

Quasinormal modes of the four-dimensional asymptoti-
cally flat or de Sitter black holes are found numerically as a
rule. The exception is bosonic perturbations of the near
extreme Schwarzschild—de Sitter black hole for which the
wavelike equation takes the Poschl-Teller form. In this case
the quasinormal spectrum of the Schwarzschild—de Sitter
black hole can be found analytically. Here we have shown
that perturbations of fermionic (Dirac and Rarita-
Schwinger) fields are not reduced to the Poschl-Teller-like
form. Nevertheless, using the Frobenius series, we have
found the analytical formula for quasinormal modes of
half-integer spin fields and, consequently, the general
formula for spin 0, 1/2, 1, 3/2, 2 fields. We have also
generalized this analytical formula to the case of Kerr-
Newman—de Sitter black hole. Our analysis can be
extended to the case of a higher dimensional gravity, as
well as to black holes in four and higher-dimensional
modified gravities.
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APPENDIX A: EFFECTIVE POTENTIALS FOR
THE FERMIONIC FIELDS IN THE
SCHWARZSCHILD-DE SITTER BACKGROUND

1. Dirac field

The massless Dirac equation
iYy =0, W et (A1)

in the Schwarzschild—de Sitter background simplifies to the
coupled system of partial differential equations [59-61]

. dy
—ioy + dr' = Wy,
dy,
—i — =-Wy, A2
Ly, dr, "8} (A2)

where | and y, are the components of a two-dimensional
spinor,

W= e+ 1/, (A3)
r
where £ is a positive half-integer number, # =1,3.3, ...
One can rewrite Eq. (A2) as follows:
s iz —wz
—+iwZ_ = ,
dr, *
dr*_ +iwZ, =-WZ_, (A4)
where
Zy=yy Ly (AS)

From Eq. (A4) one can obtain the wavelike equations for
the functions Z

d*z
drii + 0?Z, = ViipZs, (A6)
where the effective potentials V., are given by,
dw
Viip=W+—. A7
i o (A7)

The latter relation leads immediately to Eq. (15).
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2. Rarita-Schwinger field

It was shown in [62] that equations for the components
of the Rarita-Schwinger field in the Schwarzschild—de
Sitter background can be reduced to the form (A2) as
well. However, in this case both the function W and the
tortoise coordinate r, depend on @,

_dr f (dD B
e [l "2 (M) (Bz - 92)]’
B f (dD B B
W = DZ—BZ{lﬁ-%(E%)(m)] ,(AS)

with

g i +1/2) /7 (1 N M/ )
r fr)+3Ar2 = (2 +1/2)??)°
_ Af(r) 2M/r
P= 3 f(r)+3AP = (£+1/2)% (49)
where the multipole number ¢ =3,3.7, ...

Thus, the effective potential for the Rarita-Schwinger
field does not depend on w only in the Schwarzschild
limit [63].

It is interesting to note that in the limit of the near-
extreme Schwarzschild—de Sitter black hole Eq. (A8) takes
the form,

dr

r) \/f2+f —+c9( D2 (A10)
and the effective potential approaches

\/£* + ¢ — 13 £ sinh(k,r,)

13
v L) =KW+ ——
w32(r.) = ke LT cosh?(k,r,)

+ O(k,)? (A11)

The potential (A11) has the same form as the effective
potential for the Dirac field (28). Therefore, from Eq. (29)
one can obtain the correct spectrum given by (26)
for s = j:%.

APPENDIX B: MASTER EQUATIONS FOR THE
KERR-NEWMAN-DE SITTER BLACK-HOLE
PERTURBATIONS

We use the Newman-Penrose formalism [49] in order to
separate the perturbation equations in the background of
the Kerr-Newman—de Sitter black hole (30).

Following [6], we introduce the following vectors as the
null tetrad:

14+ a A
| ———— Sy—
A (r +a

A2
,0,a ), a=— ,
, l+a 3

l+a A

S R —

" 2(r? 4 a*cos?0) (r an l+a’ ,a>,

I+a L. 0 i

M= 9’07—,.— 5
. (r + iacos0)\/2A, <za o l+a s1n0>

_ 1 +a .. Ay 1

f = - 0.0,——,———.
. (r—iacosé)\/2A9< v l+a st)

(B1)

and assume the following ansatz for all the scalar quan-
tities:
O, (t,7,0,¢p) x e @HmdS (O)R(r). (B2)

It is convenient to use the tetrad components of the
derivative and the electromagnetic field as follows:

l”aﬂ - Do,
A y
Hy —___=r = pi
" 2(r? + a’cos0)
VA
mﬂaﬂ = 0 £(§7
V2(r + iacos )
VA
m'o, = — Y= 7.
V2(r —iacos )
ay -2
ntA, = Qor

2( + a*cos?6)

m'A, = m'A, =0, (B3)
where we introduced
D _9 _i(l+a)K n@,A,
n— ¥r Ar Ar ’
i(1+a)Kk  0,A
Dj = —
0, + A +n A
K = o(r* + a*) — am; (B4)
1 H 0 0
L= 0,4+ (1+a) n o(v/Ag sin 0)
Ag VAgysinf
9 _(1+a)H+nae(,/ g sin0)
nee Ay VA, sind
m
H=—-awsinf + —. B5
awsing + - (BS)
The gravitational-led perturbations of the Kerr-

Newman—de Sitter black-hole can be expressed in terms
of the Weyl tensor C,,;,,
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D ,(t,r,0,0) = Cm,,h,l"m"l’lm",

D_,(1,1,0,¢) = %—ﬁ;::;ﬁ;z, (B6)
and the quantities
Oy (t,7,0,0) =F, I'm",
@i (1.r.0.9) = 5 2 (87)

r? + a*cos?0’

correspond to the perturbations due to the electromagnetic
field, F,, =0,A, - 0,A,.
The conformally coupled test scalar field obeys

1 R
—— 0 /—99"0,®y = gq)m (B8)

V=9 "
where R = 4A is the scalar curvature.
In [6] it was shown that the perturbation equations for:
(i) the test scalar field @, obeying the Klein-Gordon
equation (BS8);
(ii) the independent components of the massless Dirac
ﬁeld, q)ﬂ:l /2,
(iii) Maxwell field wave function ®_; defined in (B7);
(iv) the independent components of the Rarita-
Schwinger field, @3 ,;

l:(f—i—l—s)(f—l—s)—l—a[—(f—f—l—s)(f+s)+2m2+

2m?

e+

1)

(v) gravitational perturbations @, defined in (B6);
allow for separation of the angular variables and, in the end,
satisfy the Teukolsky equations [64]

[VAgLT_ /DLy —2(1 + a)(25s — 1)awcos 0

—2a(s —1)(2s — 1)cos?0 + 1]S,(0) = 0, (B9)
A,D, D} +2(1 + a)(2s — 1)icwr
2A 5
—?(s+1)(2s+1)r —A|Ry(r) =0, (B10)
where 1 is the separation constant.  Here

s=0,%£1/2,£1,43/2, 42, which corresponds to the
scalar, Dirac, Maxwell, Rarita-Schwinger, and gravitational
perturbations, respectively.

After introducing the new variable, x = cos @, the coef-
ficients of the angular Teukolsky equation (B9) become
rational functions of x with five regular singularities, one of
which, corresponding to x = oo, can be factored out. In this
way, Eq. (B9) is reduced to the Heun’s equation, and the
separation constant A can be computed for any given value
of w. In particular, for the slowly rotating black hole, one
can obtain Eq. (4.18) of [6], which has the following
cumbersome form:

—?H(E)+ (¢ +1)°H(¢ + 1)]

2

e e

)(erl))H(f)—k (l+f(;iz)>H(f+1)] }aa)

+ {H(i+ 1) —H(f)+a[H(f+ )—H(&)+2((¢+1)*H(¢+1)=¢?H(?))

H(£)H(E+1)
£(f+1)
H(Z)

—CH*(¢)+ (£+1)H*(£+1)—

H(Z+1)

+4’"234<f2(f+1)2(f+2)2_(f—1)2f2(f+1)2)]}“2“’2+0(“Z’“3“’3)’ H(L)

H(£+1)

+6m’s? <f(f+ 12(£+2)

H(?)
-1+ 1))
2(L2 —m2)(L2 —S2)2
QL-1)L*Q2L+1)

(B11)

Here £ = ¢,,¢;+ 1,£; + 2, ... is the multipole number, and we have £; =1|m —s| + 1 |m + s| = min(|m|, |s|).

The radial Teukolsky equation (B10),

d d 1 dA 2A
{A,‘S—A§+1—+— [(l +a)’K? —is(1 +a)Kd—r] +4is(1 —i—a)a)r—?(s—i— DHR2s+ 1) +2s(1—-a) —A}R =0,
r

dr dr A,

has five regular singularities: r =r., r=r,, r =

(B12)

ri, r=rog=—(r.+r,+r;), and r = co. In order to introduce the

Frobenius expansion with the coefficients, satisfying the three-terms recurrence relation, we need to take into account
behaviour of the solution in all the singular points. The appropriate expansion is obtained in [8]:
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B B
r—r, Lfr—r; 2fr.—r
Ry(r) =
r—ry r—ry r—ry

B r—r,r.—rp\*
—1-2, elc 0

(r—rg) Sg by — .
r—ror,—r,

[Se]

k=0

The exponents B, B,, B3 and the corresponding recurrence relation coefficients can be found in the ancillary Mathematica

notebook [58].
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