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A.P. 20-364, México D.F. 01000, México
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In this work we explore the possibility of incorporating particle physics motivated scalar fields to the
dark matter cosmological model. In this landscape, we consider the classical complex scalar field in a
certain region in the parameter space of the model that increases the number of neutrino species Neff in
order to be consistent with the observed abundance of light elements produced at big bang nucleosynthesis.
We perform analyses using one and two scalar fields. We examine the difference between these models and
the priors considered at the edges of the cosmic ladder, this with the purpose of studying the impact of such
models on the Hubble cosmic flow. In the two scalar field models we explore the possibility of combining
an axion and a Higgs-like field as well as a Higgs-like field and the classical field, we show that in the first
case there is no set of parameters that allows us to be consistent with Neff , while in the second case a strong
restriction to the set of parameters is obtained. This last restriction is given in terms of a maximum bound of
the fraction of Higgs-like field that can be incorporated together with the classical field. Our results could
be relevant in the direct dark matter detection programs.
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I. INTRODUCTION

Over the years there has been a remarkable development
regarding the studies on the dark matter (DM) component
of the Universe. The cosmological observations have been
more precise and left no doubt that, within our present
understanding of the fundamental interactions, there is in
the Universe a component 6.5 larger than the amount of
observed baryonic matter [1] that, except for the gravita-
tional one, has a very small interaction with the observable
matter and very low electromagnetic emission [2]. Actually,
projects as DAMA, CRESST, IceCube, and PandaX [3–8],
aimed to the detection of a dark matter particle, have not
been able to obtain any detection. We must face the
possibility that the interaction of the baryonic or leptonic
matter and dark matter, besides the gravitational, might
be zero.
The proposal of modeling the dark matter as a scalar field

endowed with a scalar potential of the form

VðjϕjÞ ¼ μ2jϕj2 þ σ2jϕj4 ð1Þ

has grown since the early work discussed in [9] (see also
references therein), where it was shown that a real scalar field
with a very small parameter, μ, and no quartic term, σ ¼ 0,
could describe a galactic halo and avoid some problems of
the standard weakly interacting massive particle (WIMP)
model, like the super abundance of satellites predicted by
cosmological simulations. Nowadays the proposal has
received serious consideration by the community, see for
example Refs. [10–12], as several of the benchmarks for a
cosmological model have been successfully performed by
such a model, called an ultralight scalar field, as the
parameter μ can be related to the mass of the boson particle,
mϕ, with the expressionμ ¼ mϕc

ℏ ,wherec stands for the speed
of light in a vacuum and ℏ for the reduced Planck’s constant,
such a model has also been called fuzzy dark matter. Using
this model, it has been possible to reproduce the large scale
fiber structure observed in theUniverse [13,14], aswell as the
observed harmonic structure of the perturbations [15,16]; the
galactic halos and the observed rotational velocity profiles in
the galaxies has important developments within this model
[17]; the quartic parameter, σ, is interpreted as describing the
self-interaction of the field. It is interesting that if the units of
the scalar field are absorbed in a constant in the Lagrangian,*lgutierrez@estudiantes.fisica.unam.mx
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then one can consider a scalar field described by a unitless
function and both parameters μ and σ have units of inverse of
distance; and as long as the scalar field satisfies the Klein-
Gordon equation, which is a wavelike description, one can
then interpret the parameters as theDeBrogliewavelength of
the scalar field, λϕ, and the gravitational equilibrium scale
[18], allowing us to call suchmodels an ultralongwavelength
scalar field. In this paper, however, regarding the scalar field,
wewill use the usual unit conventions both tomake smoother
the passage from the quantum field theory (QFT) to the
classical one and to make the cosmological analysis in the
usual way.
Models considering a complex scalar field for describing

dark matter (and even dark energy, see Ref. [19]) have also
been considered and have proved to give a consistent
description of the Fridman homogeneous Universe [18] (we
are using the direct transliteration from the Russian name),
with a scalar potential as in Eq. (1), showing that the μ
parameter needs not to be very small, it is enough to
demand that mϕ > 10−21 eV=c2, due to the presence of the
quartic term σ [18,20], which is strongly constrained in
terms of the combination σ2=μ4, proportional to the
gravitational length scale that σ defines, which turns out
to be ultralong of the order of kiloparsecs [18,20]. These
scalar fields are considered completely noninteracting with
other types of matter, and we will call them classical scalar
fields. There is a growing conviction not only that scalar
fields are very plausible candidates to describe the dark
matter present in the Universe, but that objects described by
such scalar fields very plausibly exist in nature. Models
considering a real scalar field have also been considered in
large scale cosmology, see Ref. [21,22] for instance, but
they induce the wave oscillation to the spacetime structure,
as in the case of the compact objects they form, called
“oscillatons” [23], and such oscillations in the scale factor
could impose strong constraints on the value of the real
scalar field parameters. In this work, we will consider
complex scalar fields that do not present such oscillations in
the spacetime geometry.
The cosmological is a serious alternative to the standard

cold dark matter (CDM) model, where the dark matter is
treated as a pressureless fluid of WIMPs [2].
Such classical scalar fields, as long as they are considered

completely noninteracting with any other field or particle,
save via the gravitational interaction, of course, can be
incorporated to the StandardModel (SM) of particle physics,
along with the other dark matter scalar field models such as
the axion or the Higgs-like, which, in the classical limit, can
be also described as a complex scalar field with a scalar
potential as given above but with different values of the
parameters μ and σ. One can naturally ask how much of
the axion or Higgs-like fields can be present along with the
classical one, maintaining the general properties that make
the single classical field appealing.

The main goal of this paper is to shed light on this
question and, therefore, its consequences at cosmological
scales. As mentioned above, matter classically described by
a complex scalar field with very large values of the mass
parameter, of the order of eV, keV, or even hundreds of
GeV [24–36] (corresponds to a wavelength of 10−7, 10−10 ,
10−18m respectively) could exist in nature as constituents
of dark matter and be part of the general content of the
Universe, but how much of a Higgs-like or an axion field
could be considered as a component of the evaluated dark
matter? Indeed, there is no reason to consider that the dark
matter sector should be described by a single type of matter;
we could have the classical as well as other scalar fields
included in the computation of the dark matter density.
Such considerations could reduce some pressure to the
groups in the direct search of dark matter, mentioned above,
as long as heavier scalar fields, which are the ones usually
searched for, might not be the total of the dark matter
density, and thus the detection probability is reduced by a
significant amount. In the present work we will consider
that the dark matter sector of the Universe is described by
two complex scalar fields.
The passage from a particle physics model with foun-

dations in a quantum field theory to a semiclassical
description is often assumed obvious in the literature.
For the sake of clarity of the expositions in the following
sections we give a brief argument on this matter. In order to
study the cosmological implications of such quantum
models, a clean path to follow is to first take the classical
limit in order to be able to embed the corresponding
model’s classical fields into a gravitational action by
coupling them in a minimal way to the gravitational field.
Next we simply assume that these fields obey semiclassical
equations of motion: for the case of the scalar fields
considered in this work these would be the Klein-
Gordon equation. Finally, we study the cosmological
implications of the resulting setups. Of course, in practice
it is sufficient to identify the field content of the quantum
model and pass directly to the semiclassical equations, but
we feel it is important to give a slightly more formal
argumentation for this step (we also expand briefly on the
classical limit of a QFT in Sec. II C).
In Sec. II we part from the particle physics and discuss

how the axionlike or the Higgs-like particles can be
described by a complex scalar field with a scalar potential
of the type described above in the semiclassical limit,
discussing also the range of values of the parameters of the
potential. In Sec. III we describe the homogeneous Fridman
model with two such scalar fields and the integration
procedure of the field equations. This approach based on
[18] will be generalized to solve for the negative self-
interaction fully relativistic scalar field. Then, in Sec. IV,
we present the evolution of certain reference cases for the
classical, axion, and Higgs-like scalar field models.
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After representative single scalar field cases are pre-
sented, we will show some of the solutions for the
combinations classicalþ axion and axionþ Higgs, where
a new parameter η will enter since we need to fix the
relative fraction of energy density of each of the fields at
late times with respect to the total dark matter.
In Sec. V we present the results of this work, namely, the

cosmological effects of considering as part of the matter
content the scalar fields described in the previous sections
as well as specific cosmological constraints for the two
scalar field parameters. In Sec. VA we examine the
variability between the two scalar field models and the
priors considered at the edges of the cosmic ladder, namely
theH0 value at early and late times [37], obtaining that they
have a clearly different behavior depending on the combi-
nation of the two scalar fields taken into account. Next, in
Sec. V B we present a discussion on how the number of
neutrino species Neff together with the requirement of the
scalar field to behave as matter at the matter-radiation
equality sets a very restrictive condition on the parameters
of the model.
In the concluding Sec. VI we summarize the more

relevant results and a discussion on the implications on
direct dark matter detection programs as well as in the
cosmological and astrophysical dark matter research.

II. SCALAR FIELD DARK MATTER IN PARTICLE
PHYSICS

The Standard Model of particle physics describes the
phenomena observed so far in elementary particle physics
with very good precision. However, this successful model
can only help us to understand about 5% of the total matter
in the Universe. It is assumed to be the low energy limit of a
more fundamental theory and must be extended to explain
other phenomena like neutrino masses, matter-antimatter
asymmetry, and even dark matter.
The remaining components in the Universe, called dark

matter and dark energy, which make up about 27% and
67% of the total matter in the Universe, respectively [1], do
not find an explanation in the framework of the SM, but
their existence is inferred from its gravitational effects in
the astrophysical observations [38,39]. Beyond the facts
relating to the temperature and longevity of the dark matter,
we have very little information about its nature and
properties. In addition, the lack of experimental evidence
in the search for the most popular candidates, such as
WIMPs, sterile neutrinos, or dark photons, makes evident
the need for new models and search techniques for possible
DM candidates. The dark matter may well consist of one or
more types of fundamental particles. The simplest funda-
mental particle is a scalar field (zero spin particle).
Among the most common candidates to scalar field dark

matter (SFDM) in particle physics are axions and axionlike
and Higgs-like particles. In particular, we are interested in a
model that includes two scalar fields. We will consider here

one of the candidates to come from an inert scalar SUð2Þ
doublet, i.e., Higgs-like, motivated by some extensions of
the SM, where this proposal has been successful [40–42]. A
second candidate may be an axion or axionlike particle
coming from particle physics or cosmology [36,43], and
both will be worked along with the classical complex scalar
field mentioned in the introduction.

A. Axion and axionlike particles

The word “axion” can take on a variety of meanings. The
first time was used to name the particle associated to the
Peccei-Quinn (PQ) mechanism for preserving charge-
parity (CP) symmetry in the strong interactions [44–46].
Legend says that F. Wilczek, who was looking for a name
to describe a new pseudo-Goldtone boson, while washing
clothes, looked at the name of the detergent he was using,
axion, and decided to use that name for the new particle,
since he expected it would clean up the problem of QCD
with CP symmetry.
Parity (P) is the space reflection operator, i.e., inverts the

spatial coordinates, P∶ x⃗ → −x⃗ and the charge conjugation
operator (C), changes particles into antiparticles without
affecting their momenta or spin [47]. In a decay, the
combined transformation CP changes particles to antipar-
ticles and the sense of longitudinal polarization is reversed.
If the rate for one decay and its conjugate are the same, then
the CP symmetry is conserved.
In quantum field theory, the term “axion” applies to any

pseudoscalar Goldstone boson of the spontaneous breaking
of one global chiral symmetry that is broken at some scale
fa. Such particles need not solve the strong CP problem or
couple to gluons [43]. This means their mass could take any
value and be very weakly coupled which makes them
difficult to detect experimentally. These Goldstone bosons
that do not acquire a mass from radiative corrections of
quantum chromodynamics (QCD) are also called axionlike
particles (ALPs).
In string theory the term “axion” can refer either to

matter fields, or to pseudoscalar fields associated to the
geometry of compact spatial dimensions [36]. From now
on, we will use the word “axion” to refer to a pseudoscalar
field in any of the theories mentioned above.
The axion acquires mass from QCD chiral symmetry

breaking and can be calculated in chiral perturbation theory
[36,45],

ma ≈ 6 μeV

�
1012 GeV

fa

�
: ð2Þ

This expression is a largely model-independent statement.
The axion decay constant fa is related to vacuum expect-
ation value va, that breaks the Peccei-Quinn symmetry
fa ¼ va=NDW. NDW is an integer that characterizes the
vacuum of axion models called a “color anomaly,” also
known as the domain wall number [48,49]. We can infer

SCALAR FIELD DARK MATTER WITH TWO COMPONENTS: … PHYS. REV. D 105, 083533 (2022)

083533-3



from Eq. (2), that if fa is large enough, then the axion can
be highly light and stable which, added to the very weak
interaction with the rest of matter, makes an excellent DM
candidate [36,43,49].
We will focus on the QCD axion models where there are

in general three types:
(1) The Peccei-Quinn-Weinberg-Wilczek axion, which

introduces one additional complex scalar field only.
(2) The Kim-Shifman-Vainshtein-Zakharov axion,

which introduces heavy quarks as well as the
Peccei-Quinn scalar.

(3) The Dine-Fischler-Srednicki-Zhitnitsky axion,
which introduces an additional Higgs field as well
as Peccei-Quinn scalar.

In these three types, the Lagrangian of each model is taken
to be invariant under a global Uð1Þ symmetry, which is
spontaneously broken at one scale fa by the potential
VðφÞ ¼ λQCDðjφj2 − f2a=2Þ2, where φ is the Peccei-Quinn
field and takes a vacuum expectation value (VEV)
hφi ¼ fa=

ffiffiffi
2

p
. In the Peccei-Quinn-Weinberg-Wilczek

model, fa ≈ 250 GeV; this scale is accessible to exper-
imental search and, given the absence of signals,
this axion is excluded by collider experiments. In
Kim-Shifman-Vainshtein-Zakharov and Dine-Fischler-
Srednicki-Zhitnitsky models the decay constant is a free
parameter and can be made large enough such that they
are not excluded.
After the global Uð1Þ symmetry breaking at some scale

fa, one angular degree of freedom appears as hφieiΦa=fa .
The field Φa is the axion and it is a pseudo-Nambu-
Goldstone boson of this broken symmetry.
At the classical level the Lagrangian is invariant under

chiral rotation, which leads to the shift symmetry of the
axion field, Φa → Φa þ const. But as quantum level non-
perturbative physics becomes relevant, then instantons
switch on at some particular energy scale Λa and break
the shift symmetry Φa → Φa þ const, inducing a potential
for the axion. However, the potential must respect the
residual discrete shift symmetry, Φa → Φa þ 2nπfa=NDW,
for some integer n, which remains because the axion is still
the angular degree of freedom of a complex field.
The axion potential generated by QCD instantons is

VaðΦaÞ ¼ Λ4
a

�
1 − cos

�
NDWΦa

fa

��
; ð3Þ

where Λa is the nonperturbative physics scale, NDW is the
domain wall number and fa the PQ symmetry breaking
scale. If NDW > 1, then there appear domain walls that can
quickly dominate the energy density of the early Universe,
which is incompatible with standard cosmology and can be
avoided if NDW is taken equal to unity [36,48].
On the other hand, if we consider only small displace-

ments from the potential minimum Φa < fa, we can
expand it as a Taylor series, whose approach to second

order is VðΦaÞ ≈ 1
2
Λ4
aΦ2

a=f2a. We identified the mass term
1
2
m2

aΦ2
a, with m2

a ¼ Λ4
a=f2a,

We will adopt as a potential for axion, in subsequent
analyses on axions as a dark matter candidate, only the first
and second terms of the Taylor series are around the
minimum potential, that is,

VaðΦaÞ ¼
1

2

�
m2

aΦ2
a −

1

12

m2
a

f2a
Φ4

a

�
: ð4Þ

The axion mass is protected from quantum corrections,
since these all break the underlying shift symmetry and
must come suppressed by powers of fa. For the same
reason, self-interactions and interactions with SM fields
are also suppressed by powers of fa. Regarding the self-
interactions, we can easily obtain an expression for them by
means of an expansion of the cosine potential to higher
orders. This renders an axion model with a light (less than
meV), weakly interacting, long-lived particle. These prop-
erties are protected by a underlying symmetry, so the axion
provides a natural candidate to DM model [43].
Some values for the decay constant could be lie around

the fundamental scales of particle physics such as the grand
unified theory (GUT) scale fa ∼ 1016 GeV. Given the lack
of knowledge at high-energies1 structure of particle physics
and the difficulties in obtaining well-defined measurements
of the initial conditions in inflationary cosmology, there are
no strong reasons to prefer any particular value for fa. But
usually fa ≲Mpl ∼ 1019 GeV, since it is not obvious how
to make a model of such an axion without a full under-
standing of quantum gravity [30,36,43].
A cosmological populations of axions can be produced

by various mechanisms, but the main ones are the decay of
parent particle, the decay product of topological defect, the
thermal population from the radiation bath, and the vacuum
realignment [36].
In the case of decay of parent particle, a massive particle

with mX is coupled to axion and decays. In all cases mX >
ma and their decay produces a population of relativistic
axions. If the decay occurs after the axions are decoupled
from the SM, then they remain relativistic throughout the
history of the Universe and become dark radiation [43].
In the case of decay product of topological defect, two

scenarios need to be considered: whether the Peccei-Quinn
phase transition occurs during or after inflation.
The breaking of global symmetries leads to the formation

of topological defects. A broken Uð1Þ creates axion strings
and if NDW > 1, domain walls appear too [48]. If PQ
symmetry is broken during inflation, then topological
defects and their decay products are diluted by the
expansion of the Universe and can be ignored.

1By “high energies” we mean any symmetry breaking scale
≳1 TeV.
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In the second stage, after inflation, the PQ symmetry is
broken when the radiation temperature drops below fa. The
breaking of the global symmetry gives rise to topological
defects and the string decay produced axions. The axion
field begins oscillating when ma ∼H, these axions are
dominated by the low-frequency modes, making them
nonrelativistic and contributing as CDM to the cosmic
energy budget [36].
If axions are in thermal contact with the standard model

radiation, then these are created and annihilated during
interactions among particles in the primordial soup. The
axions established in this way are called thermal axions.
Initially, axions are in equilibrium with the thermal bath of
particles, but later they become decoupled at temperature
TD. Thermal axions are relativistic if TD > ma. Once
decoupled the axion population is merely diluted and
redshifted by the expansion of the Universe [49], then
the axions become nonrelativistic when its temperature is
less thanma. For fa > 109 GeV, the thermal axion lifetime
exceeds (by many orders of magnitude) the age of the
Universe [49], but it behaves cosmologically in a manner
similar to massive neutrinos, and contributes, as hot DM
[36], to suppressing cosmological structure formation.
In the case of misalignment production, we need to

consider the equation of motion for the axion after non-
perturbative effects, Φ̈a þ 3HðtÞ _Φa þm2

aΦa ¼ 0. It is the
equation of a simple harmonic oscillator, with 3HðtÞ being
time dependent friction. HðtÞ is the Hubble parameter.
When H > ma, the axion field is overdamped and it is
frozen by Hubble friction, this means that the expansion of
the Universe slows the axion field down ( _Φa ¼ 0) and we
get a coherent state of axions at rest [36].
The misalignment production of axions is nonthermal

and, through this mechanism, even very light WIMPs can
be cold dark matter [49].
Axion and ALPs could be located through axion-photon

conversion in external electric (E⃗) or magnetic (B⃗) fields
[50], described by the Lagrangian

LAγγ ¼ gAγγΦaE⃗ · B⃗; ð5Þ

where gAγγ is the diphoton coupling constant. Pseudoscalar
ALPs and scalar ALPs could be created when a beam of
linearly polarized photons propagates in a transverse
magnetic field B⃗. If an optical barrier is placed downstream
to the beam, then all unconverted photons will be absorbed
while ALPs would traverse the optical barrier. By applying
a second magnetic field in the regeneration domain beyond
the wall, the inverse process can convert the ALPs back into
photons, which can be subsequently detected [26]. This
type of arrangement is called a light-shining-through-walls
experiment and the best current limit has been achieved by
the optical search for QED vacuum birefringence, axions
and photon regeneration experiment, with the exclusion
limits jgAγγj < 3.5 × 10−8 GeV−1 at 95% confidence limits,

obtained in vacuum for ma ≲ 0.3 meV [26]. Other exclu-
sion limits for pseudoscalar and scalar axionlike particles
can be found in [24,27,31–35,51,52].
In addition to the possible connection to DM, two hints

from astroparticle physics strengthen the axionlike particles
existence: the anomalous excessive cooling of stars and
the anomalous transparency of the Universe to very high
energy gamma rays. The cooling excess can be attributed
to ALPs, produced in the hot cores that abandon the
star unimpeded, contributing directly to the energy loss
[53–55]. The anomalous transparency can be explained if
a part of the photons are converted into light spin zero
bosons in astrophysical magnetic fields. The ALPs can
travel through cosmological distances unhindered, due to
their weak coupling to normal matter. A part of such light
bosons are in turn reconverted into high-energy photons
and could be detected [56,57].

B. Higgs-like model

The Lagrangian density of the Standard Model can be
explicitly divided into gauge, fermion, Higgs, and Yukawa
sectors. The Higgs part is Lφ ¼ ðDμφÞ†Dμφ − VðφÞ,
where φ ¼ ðφþ

φ0 Þ is a Higgs scalar, transforming as a doublet

of SUð2Þ, φ† is its adjoint. φþ and φ0 are charge and neutral
complex fields and Dμ is the gauge covariant derivative.
VðφÞ is the Higgs potential, the combination of SUð2Þ ×
Uð1Þ invariance and renormalizability restricts V to the
form

VðφÞ ¼ μ2φ†φþ λðφ†φÞ2: ð6Þ

For μ2 < 0 there will be spontaneous symmetry breaking
and the nonzero VEV of neutral component φ0 will
generate the W and Z masses. The λ term describes a
quartic self-interaction λðφ†φÞ2 of the Higgs field. Vacuum
stability requires λ > 0 [47].
A very useful proposal to explain some particle physics

open questions, such as the small mass of the neutrinos
[58], the fermionic mixing [59,60] and dark matter [40–42]
is the extension of the Higgs sector of the SM, which
consists of the introduction of new symmetries, plus the
addition of scalar singlets and/or doublets in Lφ. After the
break of the electroweak symmetry, the extra scalar fields
acquire mass and are known as Higgs-like particles.
Particularly, darkmatter can be explained with inert Higgs

scalars, i.e., which do not acquire a VEV, are stable and
cannot decay to SM particles. The stability is usually
achieved by introducing an extra Z2 discrete symmetry [25].
We will adopt for our study a model with an inert Higgs

doublet (an equivalent analysis can be done considering a
singlet complex scalar field), besides the usual SM one,

Φh ¼
�
Φþ

Φ0

�
¼ 1ffiffiffi

2
p
�Φ1 þ iΦ2

Φ3 þ iΦ4

�
; ð7Þ
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where Φþ and Φ0 are the charged and neutral complex
components of the field Φh, respectively, which can also be
expressed in terms of their real parts, Φi, i ¼ 1, 2, 3, 4, and
whose potential is of the form

VhðΦhÞ ¼ m2
hðΦ†

hΦhÞ þ
λh
2
ðΦ†

hΦhÞ2; ð8Þ

where we will choose m2
h > 0 [40,60] and none of the

components acquire a vacuum expectation value. We are
assuming that the coupling between the inert doublet and
the SM Higgs is very small. The DM candidate must come
from the neutral complex component, Φ0. It is known from
DM experimental searches that this type of matter must be
electromagnetically neutral, since the mediator of electro-
magnetic interaction is the photon and the dark matter is
considered to be transparent to light.
In general, the mass of the Higgs-like DM candidates

depend largely on the model, for example if they have
couplings to the SM fields. But the mass constraints in the
experimental search for extra Higgs fields usually lies
around the order of GeV. The most recent mass limits for a
variety of models with extra neutral Higgs bosons can be
found in [24,28,29].
The DM candidate, among the massive states coming

from the doublet Φh, will be the neutral lightest and stable
particle (whose decay is protected by some symmetry).
The consistency of a Higgs-like dark matter model can

be checked with the dark matter relic abundance [29].
According to the WIMP paradigm, the dark matter candi-
date has weak interactions with the SM particles and was in
thermal equilibrium in the early stages of the history of the
Universe. Subsequently, the interaction rate of the DM fell
below the Hubble expansion rate causing the freeze-out of
the DM [61].
To avoid any confusion, we want to make it clear that, in

the following, when referring to Higgs particles, we refer to
Higgs-like particles (Φh), and they are different from the
SM Higgs doublet (φ).
Axions, axionlike, and Higgs-like particles are excita-

tions of quantum fields, however, the interest in this work is
to analyze the behavior of these particles on a cosmological
scale, where the DM candidates are treated in a classical
way. Thus, we need to make a transition from quantum to
classical theory. This transition can be studied within the
framework of an effective action. This topic is described in
the next subsection.

C. Transition from quantum field
theory to classical theory

Consider aQFTwith a Lagrangian densityL ¼ L0 þ Lint.
For the purpose of this section it is sufficient to consider the
example of one scalar field ϕðxÞ. In the context of a
microscopic theory, it is very important to determine the
scattering matrix or Smatrix, since its knowledge allows one

to compute observable quantities like annihilation/scattering
amplitudes for particles including, e.g., DM candidates, that
can be compared to observations of indirect/direct DM
detection experiments.
We can compute the S matrix in terms of the n-point

Green’s functions of the theory:

Gðx1; x2;…xnÞ ¼ hΩjTðϕðx1Þ � � �ϕðxnÞÞjΩi; ð9Þ

with jΩi the vacuum of the interacting theory and T denotes
the time-ordering operator. In the path integral formalism
these functions are encoded in the generating functional
Z½J� through the expression:

Gðx1; x2;…xnÞ ¼ ð−iÞn δ

δJðx1Þ
δ

δJðx2Þ
…

δ

δJðxnÞ
Z½J�

����
J¼0

;

ð10Þ

where JðxÞ is an external source and the derivation is
functional. The path integral representation of Z½J� is
given by

Z½J� ¼ N−1 ×
Z

Dϕexp

�
i
Z

d4xðLðϕðxÞÞ−ϕðxÞJðxÞÞ
	
;

ð11Þ

with N ¼ R Dϕ expfiI½ϕ�g and I½ϕ� ¼ R d4xLðϕðxÞÞ. In
cases where there are no interactions, the path integral can
be evaluated in closed form taking the free generating
functional as

Z0½J� ¼ exp

�
−
i
2

Z
JðxÞΔFðx − yÞJðyÞd4xd4y

	
; ð12Þ

where ΔFðx − yÞ is the free Feynman propagator.
If interactions are present, then no closed form of the

generating functional is known. However, in this case Z½J�
satisfies the differential Schwinger-Dyson equation:

−ið□þm2Þ δZ½J�
δJðxÞ−L0

int

�
−i

δ

δJðxÞ
�
Z½J� ¼ JðxÞZ½J�; ð13Þ

where m is the scalar field mass. The term L0 denotes the
differentiation of Lint with respect to ϕ and evaluated on
ϕ → −i δ

δJðxÞ; the functional differentiation with respect to

JðxÞ acts on Z½J�. The solution to the above equation (up to
a normalization factor) can be expressed formally in terms
of the free generating functional as

Z½J� ¼ exp

��
i
Z

d4xLint

�
−i

δ

δJðxÞ
��	

Z0½J�: ð14Þ

The exponential in this equation is expressed as a power
series in the coupling constant. This procedure is equivalent
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to the Feynman diagram perturbation theory, thus Z½J�
generates all diagrams including disconnected ones.
There is a generating functional W½J�, which generates

only connected Feynman diagrams (or connected Green’s
functions). The connected generating functional W½J�
relation to Z is through exponentiation (switching to
normal units to make explicit Planck’s constant):

Z½J� ¼ e
i
ℏW½J�: ð15Þ

The effective action Γ½ϕ̄� from W using the Legendre
transformation is

Γ½ϕ̄� ¼ W½J� −
Z

d4x
δW½J�
δJðxÞ JðxÞ; ð16Þ

here the following notation has been introduced:

δW½J�
δJðxÞ ≡ ϕ̄; ð17Þ

where ϕ̄ is called the average (or classical) field. Γ½ϕ̄�
generates single particle irreducible connected diagrams.
This is a simple example of a working analogy where the
effective action is the analog of the Gibbs potential in
equilibrium statistical mechanics in the presence of cou-
pling to an external source or J reservoir.
The usefulness of the effective action has been shown

extensively in the literature [62], and wewill concentrate on
its loop expansion for this work. As shown in Ref. [63], the
effective action can be expressed as a series expansion in
loops where the n-loop term is proportional to ℏn:

Γ½ϕ̄� ¼ I½ϕ̄� þ 1

2
iℏ ln detðiD−1Þ þOðℏ2Þ; ð18Þ

where D is the propagator for a “modified” action, i.e., the
action for the original theory expanded around the average
field but keeping only terms of second and higher order. For
our present purposes, it suffices to notice that in the limit
ℏ → 0 the effective action reduces to the tree level action
I½ϕ̄�, as expected. Thus, the classical limit of a given theory
corresponds to the 0-loop term in the quantum effective
expansion. It is thus natural to take, for example, the
expression for the tree level potential of a given particle
physics quantum model and couple the corresponding
classical fields to gravity as a starting point for an analysis
in the context of a cosmological model.
Regarding the quartic parameters, the ones in the

classical action will match the zeroth order quantum
parameters in the effective expansion. Furthermore, if we
assume that quantum corrections are small, the quartic
couplings have to lie within the interval −4π < λ < 4π to
ensure perturbative unitarity at the quantum level. Then, the
following question arises: can the physical values of the

quartic couplings in the scalar potential, constrained from
particle physics, have consequences on the cosmological
parameters? We will show that, in the Higgs-like case,
the interval for λ implies that this field belongs to the
cosmological non-self-interacting regime.
The dark matter candidates we have reviewed here,

axion, axionlike, and Higgs-like, are considered as real
scalar fields in the classical limit. However, a more general
and appropriate approach in the cosmological framework is
to take them as complex scalar fields. Since the halos
formed by complex scalar field are stationary gravitational
solitons known as boson stars, which are stable [64]
compact objets. On the other hand, the halos in the case
of a real scalar field, known as oscillatons [65], are
metastable oscillating solutions.
In the case of a Higgs-like particle, it is not entirely

correct to say that the classical limit is a real scalar field; as
it happens, in this particular case this limit is a complex
scalar field. The transition from a real quantum field to a
complex classical field can be understood as follows.
Consider a generic doublet of SUð2Þ, denoted by

H ¼
�
Hþ

H0

�
¼ 1ffiffiffi

2
p
�
H1 þ iH2

H3 þ iH4

�
; ð19Þ

where Hþ and H0 are charged and neutral complex
components of the Higgs field, respectively. The DM
candidate must come from H0, as described in the
Sec. II B. In the quantum scenario, in a first stage, some
mechanism at a high energy scale (for instance, the
breaking of a symmetry) will give mass to the components
Hi, i ¼ 1, 2, 3, 4 and, in principle, the masses of the
components ofH0 will be equalm3 ¼ m4, because all these
fields form part of the same SUð2Þ doublet [see Eq. (8)].
In a second stage, the electroweak symmetry is sponta-

neously broken and the SM particles acquire mass. In
addition m3 and m4 can acquire radiative corrections,
generating an inequality in masses leading to a decay of
the heavy particle to the light particle, obtaining only one
particle (a real scalar field) as a DM candidate.
However, in the classical limit, radiative corrections

cannot be detected due to their quantum nature, so the
equality m3 ¼ m4 is preserved, giving us two DM candi-
dates, which can be included as components of a complex
scalar field.

III. A TWO SCALAR FIELD MODEL

We consider two cosmological scalar fields that con-
tribute to the energy and matter density of the Universe.
From this point forward we will assume that both are
complex and obey the classical field equations, according
to the discussion in the previous section. These fields
gravitate via minimal coupling given by the action,

SCALAR FIELD DARK MATTER WITH TWO COMPONENTS: … PHYS. REV. D 105, 083533 (2022)

083533-7



S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
c4

16πG
Rþ LΦ1;Φ2

�
; ð20Þ

where

2LΦ1;Φ2
¼ −∇μΦ�

1∇μΦ1 −∇μΦ�
2∇μΦ2 − VðΦ1;Φ2Þ: ð21Þ

Varying Eq. (20) with respect to the metric gμν gives

Rμ
ν −

1

2
Rδμν ¼ 8πG

c4
Tμ
ν ; ð22Þ

with

Tμ
ν ¼ gμη∂ðηΦ�

1∂νÞΦ1 þ gμη∂ðηΦ�
2∂νÞΦ2

−
δμν
2
½gαβ∂αΦ�

1∂βΦ1 þ gαβ∂αΦ�
2∂βΦ2 þ VðΦ1;Φ2Þ�:

ð23Þ

The variation with respect to the fields Φ1 and Φ2 gives
the following equations of motion:

□Φ1 −
dV

djΦ1j2
Φ1 ¼ 0; ð24Þ

□Φ2 −
dV

djΦ2j2
Φ2 ¼ 0: ð25Þ

We assume that in addition to the scalar field, we have
radiation r, baryons b, and dark energy Λ, but these
components do not interact with the scalar field. In the
homogeneous case, the solution to the Einstein equa-
tions (22) is the Friedman-Lemaître metric:

ds2 ¼ −c2dt2 þ aðtÞ2ðdr2 þ r2dΩ2Þ; ð26Þ

where we have taken the t ¼ constant hypersurfaces
(k ¼ 0) case, where we consider a flat Universe. The tt
component of Eq. (22) becomes

H2 ¼ 8πG
3c2

½ρrðtÞ þ ρbðtÞ þ ρΛðtÞ þ ρΦ1;Φ2
�; ð27Þ

here, H ≔ _a=a is the Hubble parameter, ρx corresponds to
the energy density associated to the energy momentum
tensor of x ¼ r; b;Λ components, and

ρΦ1;Φ2
¼ 1

2c2
j∂tΦ1j2 þ

1

2c2
j∂tΦ2j2 þ

1

2
VðΦ1;Φ2Þ: ð28Þ

In addition to the density of the scalar field, a “pressure”
term can be defined as

pΦ1;Φ2
¼ 1

2c2
j∂tΦ1j2 þ

1

2c2
j∂tΦ2j2 −

1

2
VðΦ1;Φ2Þ; ð29Þ

and a corresponding equation of state w can be defined as
the ratio of density to pressure.
Now, if we concentrate on the case where the potentials

are separated for each field VðΦ1;Φ2Þ ¼ V1ðΦ1Þþ
V2ðΦ2Þ, the equations of motion also separate. In this
case we have ρΦ1;Φ2

¼ ρ1 þ ρ2 and pΦ1;Φ2
¼ p1 þ p2, with

ρ1 ¼ 1
2c2 j∂tΦ1j2 þ 1

2c2 V1ðΦ1Þ and similarly for the other
density and pressures. In terms of these quantities, the
equations of motion for the scalar fields imply the follow-
ing relations:

∂tρ1 þ 3Hðρ1 þ p1Þ ¼ 0; ð30Þ

∂tρ2 þ 3Hðρ2 þ p2Þ ¼ 0: ð31Þ

Before starting with the technical details on the integration
of the coupled complex system of differential equa-
tions (24), (25), and (27), we need to specify the particular
form of the scalar potentials. From now on we will return to
natural units.
As discussed in the previous sections, we will consider

three scalar potentials, two of them are taken from
hypothetically fundamental dark matter scalar fields mod-
els, and the third is associated to a scalar field model purely
motivated by cosmology.
As described in the Sec. II A, QCD nonperturbative

effects after the Peccei-Quinn symmetry breaking, at some
scale fa, provide a potential for the axion Φa. A simple
choice for this is the instanton potential in Eq. (3), which
turns out to be a very commonly used potential if a specific
form of self-interaction for the axion is required [36,66,67].
We will assume that this potential is valid during all the

evolution of the Universe. Although axions are described
by a real scalar field in the quantum relativistic field theory,
at low energy, axions can be described more simply by a
classical nonrelativistic effective field theory with a com-
plex scalar field [66]. So we exchange Φa → jΦaj in (3).
In this analysis we are interested in studying slight

deviations from the noninteracting scalar field dark matter
model. So, let us consider small displacements of the
complex field around the minimum of the potential,
jΦaj ≪ fa. Then, we can make the expansion of (3) as in
(4), VaðΦaÞ¼2ðmafaÞ2ðjΦaj2=ð2!f2aÞ−jΦaj4=ð4!f4aÞþ���Þ.
Notice that, in this expression, we have included an extra 2
factor to be consistent with the Lagrangian of a complex
scalar field (21) and, for simplicity, we will take just the first
and second terms of the expansion,

VaðΦaÞ ¼ m2
ajΦaj2 −

m2
a

12f2a
jΦaj4: ð32Þ

We identify the positive self-interaction parameter λa=2 ¼
m2

a=ð12f2aÞ, which we will use later. Equation (32) corre-
sponds to the first potential considered in the subsequent
analyses. Recall that in the low density regime, jΦaj is small
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compared tofa and, thus, the dynamical behavior is captured
by the first terms in the potential [68].
The second scalar potential we will be considering,

corresponds to a very massive scalar field that appears in
the Higgs-like model. As stated in Sec. II C, classically the
relevant part of the model could manifest itself as a single
complex scalar field.
We assume that this component will be one of the

components of dark matter and that it could be modeled in
the classical regime by a complex scalar field with the
potential2 (8).
Typically the mass termmh is in the GeV region and, due

to perturbative analysis the self-interaction, lies within
−4π < λ < 4π as mentioned in Sec. II C.
The third single scalar field model introduced to the

analysis is one with unrestricted a priori values on mass
and self-interaction, in this sense we refer to it as classical.
We consider this as a (mainly) classical model in which the
connection to fundamental physics is somewhat “free.”
The parameters of mass and self-interaction are allowed to
vary throughout the spectrum of values as long as they are
consistent with cosmological and astrophysical observa-
tions. We are interested in the (positive) self-interacting
case, which has been shown to be necessary according to
[18]. The potential for this field is (1), where ϕ ¼ Φc,
μ ¼ mc, and σ2 ¼ 1

2
λc.

All three scalar potentials of the single scalar field
models have the same structure, however, we distinguish
them by cases given the allowed values of their parameters.
The properties of each case are listed in Table I.
Starting from these cases, the analysis is carried out on

combinations of these. However, for simplicity we will
explore only two of the three possible combinations, the
classicalþ Higgs and the axionþ Higgs. It will be shown
that both models have the capability to modify the
expansion of the Universe throughout big bang nucleo-
synthesis (BBN); however it will turn out that the presence
of the classical λ > 0 scalar field is required. Therefore
the third possible case (classicalþ axion) together with
the first contain a set of values in their parameters
consistent with this analysis; however this model has four
free parameters and we will leave the full analysis for a
future work.
The first model considers a Higgs-like scalar field in

combination with an classical field. The equations of
motion for this case have only three free parameters: the
mass and self-interaction of the classical and the fraction of
it with respect to the Higgs at a ¼ 1, namely η (defined
below). The Higgs field is in the weakly self-interacting
regime [20], which implies that the field at a homogeneous
level behaves similar to the cold dark matter fluid because it
always oscillates rapidly. The second model will be the
axionþ Higgs combination which has one scalar field
related free parameter, fa. In Table I we summarize these
models. And as mentioned, the combination axionþ
classical will not be explored in this work. We will show
that the axion field, at most, passes through matterlike and
stiff matter eras and not through the radiationlike era as the
λ > 0 case, even so its stiff era may affect expansion
sufficiently to influence BBN.

TABLE I. Single and double scalar field models described in Sec. III. Top: three single scalar field models with their free parameters
and the validity intervals ofm and λ parameters. The representative cases are the specific values of the parameters explored in this work.
Bottom: three possible double scalar field models with the corresponding combinations at the description. The η constraint is referred to
the minimum fraction of the energy density of the lightest field at the present (a ¼ 1) with respect to the total dark matter density. The
viability of the models is reported in the last column with two different meanings in the viability term for the single models: the
(i) column refers to the BBNþ zeq analysis described on Sec. V B, while the column (ii) denotes the viability from a relic density point
of view for the scalar field models reported at the cited works.

Viability

SINGLE MODEL Free parameters m λ Representative cases (m, λ) (i) (ii)

Axion (Φa) fa 5.69ð109 GeV
fa

Þ meV −m2
a=ð6f2aÞ (5.7 × 10−13 eV;−5.4 × 10−82) ✗ ✓ [36]

Higgs (Φh) mh, λh ∼100 GeV ð−4π; 4πÞ (100 GeV, 1) ✗ ✓ [29]
Classical (Φc) mc, λc ≲1 eV > 0 ð3 × 10−21 eV; 4.2 × 10−86Þ ✓ NA

DOUBLE MODEL Description η constraint Viability

I Classicalþ Higgs ≳0.423 ✓
II Axion þ Higgs ✗ ✗
III Classical þ Axion NAa

✓

aThe analysis of the Model III is an ongoing project and will be reported elsewhere.

2The Lagrangian of a complex scalar field in QFT usually does
not have the overall 2 factor as in the gravitation references cited
here, which coincides with the convention used in this sections
[see Eq. (21)]. The 1=2 term in the λh term is considered in order
to compare directly with the quantum theory, since under the
change Φh →

ffiffiffi
2

p
Φh the Lagrangian of the Higgs-like field

becomes L ¼ −∇μΦ�
h∇μΦh −m2

hjΦhj2 − λhjΦhj4.
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IV. COSMOLOGICAL EVOLUTION

Now, with the specific form of the scalar potentials, we
are able to continue with the integration of the evolution
equations. We take the procedure done by Li et al. in [18]
for one complex scalar field. In order to do this, we are
going to force both fields to be matterlike at the present
time, this means that both of them must be in the fast-
oscillation regime; i.e., their complex phase time derivative
(ω) must be greater than the Hubble rate: ω=H ≫ 1. The
integration will be made backwards in terms of the variable
a (and not t), starting at a ¼ 1, therefore going back in time
the fields will come out of the fast oscillating regime but at
different times.
In the standard one-field case, the solution is obtained in

two parts given that in the fast oscillation an approximation
is needed due to the difficulties of numerical integration. In

the two-field case, we must split the domain of a in three,
introducing an intermediate section in which one of the
fields still oscillates rapidly, but the other one is already in
transition to the slow oscillation regime. Three sets of
differential equations must be taken into account, with
adequate initial (or matching) conditions.
Introducing the variables A1 ¼ ρ1 − p1, A2 ¼ ρ2 − p2

and B1 ¼ m2
1∂tjΦ1j2, B2 ¼ m2

2∂tjΦ2j2 the full system
composed of the two (complex) Klein-Gordon equations
and the Fridman equation becomes

_a ¼ aH0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωr

a4
þΩb

a3
þ ΩΛ þ ρ1

ρcrit
þ ρ2
ρcrit

s
: ð33Þ

dρ1
da

¼ −3
2ρ1 − A1

a
; ð34Þ

dA1

da
¼ �B1

_a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2λ1

m4
1

A1

s
; ðIf λ1 > 0; then take the upper signs: If λ1 < 0; then both signs are possible:Þ ð35Þ

dB1

da
¼ −3

B1

a
þ 2m2

1

1

_a

"
2ðρ1 − A1Þ −

m4
1

2λ1

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2λ1

m4
1

A1

s
∓ 1

!
2
#
: ð36Þ

And similarly for the second field. This was showed in
the one-field, positive self-interaction case by [18]. The
negative self-interaction � possibility is explained below.
Since Eqs. (33)–(36) are solved in terms of a, the

Friedman equation is purely algebraic.
Clearly, the initial condition (at a ¼ 1 since we are

integrating backwards) for the density of this components
are the values Ωi, which are well-known numbers con-
strained by observations. In the same way, the density
parameter for dark matter ΩDM fixes the total energy
density ρ1 þ ρ2 at a ¼ 1, therefore we write

ρ1ða ¼ 1Þ ¼ ηΩDMρcrit; ð37Þ

ρ2ða ¼ 1Þ ¼ ð1 − ηÞΩDMρcrit ð38Þ

for 0 ≤ η ≤ 1. This is the only initial condition needed for
the fields, since the full system (34)–(36) reduces to a set of
equations in the fast oscillation regime, given below, which,
as said before, are feasible to solve and ensure that the
scalar fields behave like cold dark matter at late times:

p1 ¼
m4

1

9λ1

�
1 ∓

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3λ1

m4
1

ρ1

s �2

; ð39Þ

dρ1
da

¼ −3
ρ1 þ p1

a
: ð40Þ

The same equations (39) and (40) will be applied to the
field Φ2 exchanging 1 → 2. The same rule showed near
Eq. (35) for the � signs applies.
This regime was also derived in [20] where the solutions

where studied in more depth for both the positive and
negative self-interaction cases. However, in the case of
negative self-interaction, special care must be taken, since
there exist two solutions, both with negative pressure. We
have chosen the one with increasing pressure, and therefore
a candidate for dark matter. This correspond to the so-called
normal branch in [20], where in Eqs. (35), (36), and (40) the
upper sign is taken in the � expressions.
This division into two branches for the case of negative

self-interaction can be extended to the limit of slow
oscillations also by means of a simple �, as indicated in
the previous equations. This extension will allow us to
obtain the full solution for the negative λ case, at least in the
normal branch.
Going back in cosmic time, there must be a value for the

scale factor at which the fast oscillation regime stops to be
valid in one of the fields. At this point, defined by ae, we
have to solve the complete system of equations (34)–(36)
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given the following matching initial conditions (see
Ref. [18]): the density and pressure variables are evaluated
at ae, thus determining initial values for the density and the
variables A in the complete set of equations, while the new
variable B must take the value

B1ðaeÞ ¼ −HðaeÞ
ρ1ðaeÞ þ p1ðaeÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 2 λ1
m4

1

ðρ1ðaeÞ − p1ðaeÞÞ
q

×

 
2þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 3 λ1
m4

1

ρ1ðaeÞ
q

!
; ð41Þ

and similarly for B2.
We solve the equations using a fourth-order Runge-Kutta

method. The problem is solved in three parts, as we
discussed earlier. We monitor the end of fast oscillation
of the fields using the equation for the pulsation in terms of
the energy density in the fast oscillation regime [18], which
for the field Φ1 is

ω1 ≔
d
dt

argðΦ1Þ ¼ m1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

3
−
2

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

3λ1
m1

1

ρ1

svuut ; ð42Þ

making the switch to the full system when ω1=H ∼ 103

because according to numerical experimentation, at this
point the fast oscillation limit is still valid and at the same
time the full system can be solved with computationally
reasonable resolution on a. A similar value is used in [18]
as the threshold.
Before proceeding with the cosmological constraints, we

show typical solutions for the negative and positive self-
interaction single scalar field models in Table I. Then we
report representative solutions of the two scalar field
models of Table I.
In Fig. 1 we present the plots for the equation of state and

the fraction of energy for the following single scalar fields.
We have chosen to show some representative cases in each
model. For example, for the axion field we take two values
of the fa, first the Planck scale fa ¼ 1019 GeVwhose mass
and self-interaction, according to the formulas in Table I,
are ðm1;λ1Þ¼ ð5.7×10−13 eV;−5.40×10−82Þ, second the
GUT scale, with fa ¼ 1016 corresponding to ðm1; λ1Þ ¼
ð5.7 × 10−10 eV;−5.40 × 10−70Þ.
Then, for the Higgs model, we choose a representative

case with parameters ðm1; λ1Þ ¼ ð100 GeV; 1Þ. Actually
for the allowed range of λh the field will always be in the
fast oscillation regime. In the extensive study made in [20]
it was shown that below a certain threshold in the
parameters, the scalar field will be in the so-called non-
self-interacting regime. This is always the case for the
Higgs model, given the big value for the mass and the
restriction on λh. In other words, taking different (allowed)
values for λh and even lowering nine orders (or raising any

order) of mh gives indistinguishable solutions between
them that are also indistinguishable from ΛCDM. In Fig. 1
we use the same red line in the top panel to describe the
equation of state of the Higgs as well as the one of the fluid
standard CDM.
We note that, for the axion fields, the transition from stiff

w ¼ 1 to matterlike w ¼ 0, occurs later as the scale fa
increases. However, for the Planck scale axion this is still
not enough to noticeably change the density fractions of the
components of the Universe in this particular range for a
between 10−14 and 1, this is the reason that, in the plot for
Ωx, the bottom panel in Fig. 1, we use the same dashed
black line to describe standard CDM as well as the axion

FIG. 1. Single scalar field representative cases of Table I. Top
panel: all solid lines correspond to the classical positive self-
interaction fiducial cosmology [18]. The dashed lines are the
reference CDM universe, which happens to coincide in this plot
to the Higgs and axion (GUT, Planck) cases. Bottom panel:
equations of state. While the positive self-interaction classical
field undergoes three phases, the negative self-interaction case
undergoes two and the Higgs field remains indistinguishable
from standard cold dark matter.
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and the Higgs models. Important differences in the density
parameters (including at BBN), are obtained for fa above
the Planck scale, e.g., for a mass term of the order ma ∼
10−20 eV whose scale of symmetry breaking is fa ∼ 1026.
Other reference case of interest is the fiducial model in

[18], obtained as a classical positive self-interaction scalar
field that satisfy some cosmological constraints involving
BBN value of the effective number of neutrinos and the
behavior of the field at zeq. This is a model with param-
eters ðm1; λ1Þ ¼ ð3 × 10−21 eV; 4.2 × 10−86Þ.
In the top panel of Fig. 2 we present the fraction of

energy for the two scalar field model constituted by the

classical and the Higgs fields, that we name model I, with
two different contributions of each scalar field. The scalar
field parameters for the representative case plotted in the
top panels of Fig. 2 are given in Table I. We can see the
evolution of the dark matter density of the model case I with
a solid line and the contribution of the individual scalar
fields with translucent lines. All the other contributions are
plotted in dashed lines. Finally, in the bottom panels of
Fig. 2 is plotted the fraction of energy of model II,
assembled with an axion field and a Higgs field with the
values of m and λ provided on Table I for the represen-
tative cases.

(a) (b)

(c) (d)

FIG. 2. Evolution of the density parameters of the Universe. All solid lines correspond to the scalar field dark matter model with two
components and the dashed lines represent the rest of the density contributions. Top panel: two scalar field model I (classicalþ Higgs).
(a) Two scalar field model I. Density fractions for η ¼ 0.25. (b) Two scalar field model I. Density fractions for η ¼ 0.75. Bottom panel:
two scalar field model II (axionþ Higgs). (c) Two scalar field model II. Density fractions for η ¼ 0.25. (d) Two scalar field model II.
Density fractions for η ¼ 0.75.
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V. OBSERVATIONAL CONSTRAINTS

A. Variability on the cosmic ladder

In this section we compute the variation of our
model using

(I) Classicalþ Higgs,
(II) Axionþ Higgs,

see Table I. In order to perform such analysis we considered
the following:
(1) An early H0 prior: using the cosmological model

ΛCDM and the Planck Collaboration [1] data with
the correspondingH0 ¼ 67.04� 0.5 km s−1Mpc−1.
We denote this prior as PL18.

(2) A lateH0 prior: from themeasurement of the Cepheid
amplitudes at late times with the corresponding

H0 ¼ 74.03� 1.42 km s−1 Mpc−1 [69]. We denote
this prior as R19.

Following this recipe would give us a percentage rate of the
differences between the models described above and the
scale factor at which these deviations take place.
We solved the system of equations (33)–(36) as

explained before and compute the corresponding cosmo-
logical evolution for the Classical, axionlike and Higgs-like
scalar fields at different contributions of each one, charac-
terized by the η parameter, for each case analyzed and with
the two different H0 priors mentioned above. Then we
compare this evolution of the dark matter fractional densities
ΩDM with that of our model, noticing that the main differ-
ence, characterized by the slope in the upper plots in Fig. 3,
has a dependence on the η parameter. That is, the larger the

(a) (b)

(c) (d)

FIG. 3. Variability of our model, labeled as 2SFDM, with respect to Planck 2018 (PL18) and Riess et al. (R19)H0 priors in (a) the case
I (classicalþ Higgs) for η ¼ 0.25 and (b) for η ¼ 0.75. (c) The variability in the case II (axion þ Higgs) for η ¼ 0.25 and (d) for
η ¼ 0.75. The values for the free model parameters are in Table I.
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parameter, the more the slope shifts to the right. This
movement can be quantified if we compute

Δ ¼ ΩDMðη ¼ 0.25Þ −ΩDMðη ¼ 0.75Þ
Ω2SFDM

; ð43Þ

where Ω2SFDM is the density fraction of the two scalar fields
and ΩDM is the density fraction computed with PL18 and
R19; i.e.,ΔI refers to case I andΔII corresponds to case II. As
we can see in Fig. 4, the quantification on the shift due to the
difference of the η parameter is bigger in model I compared
with model II, showing that the model constituted by
classical and Higgs fields is more sensitive to the current
energy density fraction of a lighter scalar field than themodel
made of axion and Higgs scalar fields. Furthermore, we can
notice that, without taking into account the variation on the η
parameter, the differences between the values of the dark
matter density fraction with PL18 and R19 priors and the
density fraction Ω2SFDM of our model occur in an earlier
Universe on model II than in model I. See, e.g., Figs. 3(a)
and 3(c).

B. Constraints from Neff and zeq
Among the parameters that determine the production of

light elements at BBN we have the expansion rate H. This
is a period where every component other than radiation is
subdominant, therefore the presence of extra relativistic

degrees of freedom beyond the Standard Model implies a
modification to H with respect to its ΛCDM profile. This
can be quantified inside the effective number of neutrino
species Neff as a contribution to the ΛCDM value N0

eff
through a parameter known as the number of equivalent
neutrinos ΔNν, although its source does not necessarily
come from a neutrino. It is defined by

ΔNν ¼
ρξ
ρν

; ð44Þ

where ρν is the energy density of the standard model
neutrino (per neutrino specie) and ρξ is the energy density
of the additional relativistic fields in consideration, this
contribution could correspond to the positive self-interaction
(classical) scalar field or to the negative self-interaction axion
field for those cases when the energy contribution is
important in order to modify H, that is, when they behave
as radiation and/or stiff matter during BBN. With the
previous definition, the total radiation energy density divided
by the photon energy density, ργ , is

ρr
ργ

¼ 1þ ρν
ργ

ð3þ ΔNνÞ: ð45Þ

If it is assumed that neutrinos are completely decoupled from
the electromagnetic plasma at the electron-positron annihi-
lation, then the temperature of the photons increases with
respect to that of the neutrinos by ðTν=TγÞ3 ¼ 4=11. Now,
the density ratio ρν=ργ ¼ 7=8ðTν=TγÞ4 implies that

ρr
ργ

¼ 1þ 7

8

�
4

11

�
4=3

Neff ; ð46Þ

with

Neff ¼ N0
eff

�
1þ ΔNν

3

�
; N0

eff ¼ 3

�
11

4

�
Tν

Tγ

�
3
�
4=3

:

ð47Þ

Where in this caseN0
eff ¼ 3. However if it is not assumed

that the neutrinos are completely decoupled when the
electron-positron pairs annihilate, then N0

eff ¼ 3.046 [70].
The total Neff enters through H to the equations that

determine the primordial light element abundances (solved
by BBN codes) and if for example the lepton asymmetry is
neglected, then the BBN primordial abundances can be
confronted with astronomical observations of the abundan-
ces of (mainly) deuterium D [71] and the isotope 4He [72].
These constraints on the observed elements can be traduced
in constraints over Neff as well as Ωb [73,74].

FIG. 4. Quantification [Eq. (43)] of the shift on the slope of the
variability (see Fig. 3) of the models I and II. The maximum
relative difference in the density fraction between η ¼ 0.25 and
η ¼ 0.75 for the classicalþ Higgs model computed with R19
relative to the density fraction of the two scalar field model occurs
at a ∼ 10−6 (red solid line); while for the axionþ Higgs model
this occurs earlier at a ∼ 10−12 (blue dashed line). This behavior
is the same for the density fraction when PL18 is used and shows
that model I is more sensitive to the current energy density
fraction than model II.
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In 2015, Ref. [74] obtained Neff ¼ 3.56� 0.23 or

ΔNν ¼ 0.5� 0.23: ð48Þ

This value certainly excludes the possibility of a new
neutrino as well as the standard N0

eff case. Nevertheless the
parameters of a complex scalar field with positive λ can be
constrained to be consistent with this measurement as
showed by Li et al. [18,75] if a time dependent ΔNνðaÞ
is assumed rather than a relatively late time fixed value. The
constraint (48) is applied through BBN between the
neutron to proton freeze-out and the first nuclei production,
at an=p and anuc, respectively.
In our numerical analysis, if Φ1 is not subdominant at

BBN, then the constraint (48) is implemented with the
formula

Neff ¼
N0

eff

2

×

 
1þΩ1

Ωr
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1þΩ1

Ωr

�
2

þΩ1

Ωr

32

7

�
11

4

�
4=3 1

N0
eff

s !
;

ð49Þ

which is a result of inserting ργ from (46) into (47) along
with the definition (44) and ρν ¼ Ωr −Ωγ , notice that, in
this expression, Ωr contains the γ and ν contributions only,
which are evolved separately from Φ in the code.
Additional to the BBN constraints discussed so far, there

is a need to make the relativistic and stiff matter scalar field
solutions reach a matterlike behavior in w at the latest in
the matter-radiation equality zeq ≈ 3365. This condition is
imposed in the code by setting wðzeqÞ < 0.001.
The results of this BBNþ zeq analysis for the single λ1 >

0 scalar field, was reported first by Li et al. in [18] and later
an update was made within their work [75]. We recover
their result:

m≳ 5 × 10−21 eV; ðsingle λ > 0Þ ð50Þ

8 × 10−4 eV−4 ≲ λ1
m4

1

≲ 10−2 eV−4: ð51Þ

If we repeat this analysis now including the single scalar
axion case, we should be able to obtain a constraint on
the single parameter fa particularly for the cases with big
values of this parameter, which as shown in the previous
section, are the models that affect expansion the most. It
should be mentioned that the general λ < 0 case cannot be
solved in all the cases, particularly in those where the slow
oscillation regime appears closer to a ¼ 1 and the square
root arguments in (35) and (36) become negative at certain
point ai, which corresponds to a place where the scalar field
“turns on” [20]. Luckily, numerical experimentation on

solutions for the axion field (where the mass and self-
interaction have a specific dependence on fa) shows that
this is never the case and no discontinuities in the Einstein
equations appear.
However, the situation occurs when the stiff matter stage

of the axion affects NeffðaÞ very drastically, and not in the
“stepped” way in which it happens for the λ > 0 case. If the
limits are kept to 1σ in Eq. (48), then there is no value of fa
for which NeffðaÞ is kept inside these limits, not even at 2σ.
It happens that if the NeffðaÞ enters into the limits (48) in
an=p at the beginning of nucleosynthesis, then it no longer
enters at the end of it, at anuc, and vice versa.
Therefore, the single axion model is discarded in relation

to this cosmological constraint.
It is possible to repeat this analysis for the two scalar

field cases. We are interested in exploring models I and II
(Table I). Both of them include the Higgs-like field, which
as has been said is similar to CDM fluid regardless of the
specific values that mh and λh assume. Therefore, in model
I we have a three parameter model and in model II we have
just two parameters.

(i) Model I. We fix the value of η, [i.e., the fraction of
the energy density of Φc at a ¼ 1 with respect to
total dark matter density (37)], and explore the
existence of possible values of m1 and λ1 consistent
with the 1σ BBNþ zeq analysis. The case η ¼ 1

coincides with the single case constraints in (50),
(51). If we begin to decrease the value of η, then the
range of the parameters consistent with the con-
straint also decrease in size, as shown in Fig. 5, until
a critical value is reached, after which no value is
allowed. This constraint on η gives

η≳ 0.423: ð52Þ

That is, an upper bound of ∼58% for the Higgs (or
w ¼ 0 fluid) component can be considered in order
to be consistent with these constraints. In the critical
case, where η takes values near 0.423, we have that
the ðm; λ=m4Þ parameter space narrows to the values
m≳ 2 × 10−21 eV and λ=m4 ∼ 3 × 10−2 eV−1.

(ii) Model II. In this simpler case, a joint analysis over η
and fa can be made. We find that no 1 − η ratio of
the Higgs field is capable of smoothing the NeffðaÞ
evolution dictated by the axion during BBN. And
since the Higgs field has a contribution to Neff of 0
with respect to N0

eff , this two fields case (like the
single axion case) is discarded in the sense that there
is no set of parameters such that (48) is satisfied.
Relaxing the constraint to 2σ in (48) no allowed
values are found either.

(iii) Model III. The classical ðλ > 0Þ þ axion case has four
relevant free parameters and a higher complexity. It is
found that for all axions with fa < 1019 GeV, for
which the equation of state is 0 before the start of
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BBN, as showed in Sec. IV, the axion scalar field
behaves effectively as a w ¼ 0 fluid for the purposes
of this restriction, and therefore the same restriction as
for case I would apply here. A complete analysis of
this case will be reported elsewhere.

VI. CONCLUSIONS

In this work we presented a straightforward analysis to
incorporate scalar fields derived from models coming from
physics beyond the Standard Model of particle physics
(BSM) in the cosmological evolution. The usual cosmo-
logical models that incorporate scalar fields to describe the
dark matter component of the Universe have been suc-
cessful in building a serious alternative to the well-known
CDMmodel. These type of proposals consider a scalar field
that does not interact in any way, except via the gravita-
tional interaction, with the rest of the matter in the
Universe; we have denoted these fields as “classical.”

The combination of some scalar fields coming from
BSM with the classical scalar field proposal demands a
clear description and discussion of the interpretation of the
transition from a quantum field theory to a wave function
satisfying the Einstein-Klein-Gordon system of equations.
In order to do this transition we used the effective action
perturbative expansion, where we identified the zeroth
order term with the classical field, which we then repar-
ametrized as a complex scalar field.
The BSM fields that we analyzed were the Higgs-like

and axionlike fields (clearly the SM Higgs boson itself,
being the mass mediator, cannot be used to describe the
dark matter), and included them along with the classical
one considering that the dark matter is composed of two
such fields. Then, both of these fields would contribute
to the dark matter relic density observed today, i.e., 0.26,
and we explore which proportions of each field today are
consistent with BBN at the early Universe.

FIG. 5. Constraints from zeq and Neff within 1σ for the two scalar field model I. η is the fraction of the classical field with respect to the
total dark matter components. The crosshatched region that appears on the right side of all figures, represents the values of the scalar
field parameters not allowed by the zeq constraint. The green and yellow bands are the allowed regions from the Neff constraint, (48), at
an=p and anuc, respectively. The red band is the region of the parameter space that is consistent with both the zeq and Neff , throughout
BBN, constraints.
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To start, we considered the case of only one BSM field,
taken as a complex classical field as explained in Sec. II C.
We found that in the case of a single Higgs-like DM, it is
not possible to increase Neff in a significant way during
BBN, notice that this is the same case as in ΛCDM. On the
other hand, the axion and axionlike fields increase Neff
abruptly without the possibility of satisfying the constraint
during all the period of BBN.
Neither is it possible to find allowed values consistent

with this constraint for the BSM parameters in the case
where both fields are combined in any proportion. On the
other hand, to produce a cosmological model that remains
consistent with constraints satisfied by the single classical
scalar field, we can consider up to 58% of ΩDM to be a
Higgs-like field if the remaining 42% is the classical one.
The combination of a classical with an axionlike field turns
out to have four free parameters that prevent us from
performing a brief survey of the parameters and make a full
analysis in the lines of the present work. However, we can
say in advance that a combination of a classical field
together with an axion or axionlike field will have a set of
parameters for the scalar field where this restriction is
satisfied, specifically for fa < 1019 GeV.
We want to stress the results regarding the Higgs-like

scalar field. The searches on direct [3–6] and indirect [7,8]
detection of dark matter usually take into account one DM
candidate, which comprises 100% of the relic density. Our
result opens the possibility to take into account in the direct
and indirect searches more than one candidate to DM,
which contribute to the relic density in different propor-
tions, and thus modify the expected fluxes in the exper-
imental analysis. This fact has to be taken into account in
the design of the experiments and in the interpretation of
their results.

In any case, according to BBN and zeq analysis, a large
part of ΩDM in our two field models, is required to be the
classical complex scalar field, which has zero interaction
with the rest of the matter beyond the gravitational one. In
order to understand more of its properties, different types
of experiments have to be developed. For instance, the
distribution of the complex scalar field in the vicinity of a
black hole, so-called black hole wigs [76], has a very
particular density distribution that, in turn, affects the
dynamics of light and observable matter the vicinity in a
characteristic way. It is important to look, as discussed and
done in [77] for instance, for possible observable (gravi-
tational) consequences of one type or another of dark
matter model, in order to be able to discard or make more
robust a given proposition for describing that quarter of the
total density of the Universe that we call dark matter.
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