PHYSICAL REVIEW D 105, 083531 (2022)

Large-scale structure with superhorizon isocurvature dark energy
Koki Yamashita," Yue Nan®,>*" Yuuki Sugiyama,"" and Kazuhiro Yamamoto'**
lDepartment of Physics, Kyushu University, Motooka 744, Fukuoka 819-0395 Japan
2Physics Program, Graduate School of Advanced Science and Engineering, Hiroshima University,
1-3-1 Kagamiyama, Higashi-hiroshima 739-8526, Japan
3Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo Institutes
for Advanced Study, The University of Tokyo, Kashiwa, Chiba 277-8583, Japan
*Research Center for Advanced Particle Physics, Kyushu University,
744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan

® (Received 2 January 2022; accepted 8 April 2022; published 27 April 2022)

The standard cosmological model assumes a homogeneous and isotropic universe as the background
spacetime on large scales called the cosmological principle. However, some observations suggest the
possibility of an inhomogeneous and anisotropic universe at large scales. In this paper, we investigate a
model of the Universe with random inhomogeneities and anisotropies on very large scales, motivated by the
supercurvature dark energy model in Nan ef al. [Phys. Rev. D 99, 103512 (2019)]. In this model, the
authors introduced a scalar field with O(1) inhomogeneities on a scale sufficiently larger than the current
horizon scale (superhorizon scale), and the potential energy of the scalar field explains the accelerating
expansion, with slight deviations from the cosmological principle. We aim at clarifying the theoretical
prediction on the large-scale structure (LSS) of the matter component in this model. Based on the work on
the superhorizon scale fluctuations (superhorizon mode) presented in Y. Nan and K. Yamamoto [Phys. Rev.
D 105, 063518 (2022)], we derive the equations that the perturbative components to the LSS obey as a
generalization of the cosmological perturbations theory, which is solved to find the influence of the dark
energy inhomogeneities on the formation of the LSS. Finally, we show that the model can be consistent
with observations by comparing the og predicted by the numerical solution of the model with the oy

indicated by observations such as Planck and the Sloan Digital Sky Survey.
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I. INTRODUCTION

Currently, observations of Type Ia supernovae and the
cosmic microwave background (CMB) have confirmed that
we live in an acceleratively expanding universe. It is known
that the expansion rate of the Universe changes from
decelerating to accelerating at a particular redshift called
the transition redshift, but the actual cause of this phase
transition remains unknown. To explain the present
Universe, models assuming the existence of an energy
source that lives with general relativity (GR) or that
modifies GR are being considered. With GR, the current
accelerating expansion of the Universe is generally driven
by some exotic energy called dark energy. Since the late
1990s, this dark energy has become an essential topic in
cosmology, in addition to cold dark matter (CDM) [1,2],
and is known to account for about 70% of the total energy
density of the Universe today. The simplest and most well-
accepted model to explain the accelerated expansion, the
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cosmological constant A model as dark energy, is con-
sistent with extensive observations and is still considered
the leading one, which adds to CDM to build up the ACDM
standard cosmological model.

However, while the standard cosmological model
assumes isotropy and homogeneity on large scales, several
studies suggest that there may be deviations from the
cosmological principle generally assumed in the standard
cosmological model. Some examples are as follows.
(i) Hemispherical asymmetry of CMB power spectrum.
The observed CMB power spectrum suggests the existence
of a power asymmetry modulated as a dipole, analyzed
from data of the Wilkinson Microwave Anisotropy Probe
(WMAP) of different hemispheres over the sky in Ref. [3],
and the Planck results also confirm this dipole modulation
[4,5]. Recently, the authors of Ref. [6] reported that
the observed dipole of the sky of Quasi-stellar objects
(QSO) rejects simply following the canonical, kinematic
Doppler interpretation of the CMB dipole (cf. Ref. [7]).
(i1) Directional dependence of Hubble parameter H,. The
investigation on the Hubble constant over the entire sky
using the x-ray luminosity-temperature relation of galaxy

© 2022 American Physical Society


https://orcid.org/0000-0003-4720-2307
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.105.083531&domain=pdf&date_stamp=2022-04-27
https://doi.org/10.1103/PhysRevD.99.103512
https://doi.org/10.1103/PhysRevD.105.063518
https://doi.org/10.1103/PhysRevD.105.063518
https://doi.org/10.1103/PhysRevD.105.083531
https://doi.org/10.1103/PhysRevD.105.083531
https://doi.org/10.1103/PhysRevD.105.083531
https://doi.org/10.1103/PhysRevD.105.083531

YAMASHITA, NAN, SUGIYAMA, and YAMAMOTO

PHYS. REV. D 105, 083531 (2022)

clusters suggests a directional dependence of the expansion
rate, which indicates that the expansion rate of the local
Universe may be anisotropic [8]; this possibility of aniso-
tropic H, is reinforced by analyses from 10 different scaling
relations of galaxy clusters additional to the luminosity-
temperature relation [9]. Moreover, similar directional
dependence of H is suggested by observations on QSO
and gamma-ray burst sources [10]. Additionally, other
possible deviations have been observed (see, e.g.,
Ref. [11] for an extensive review on large-scale anomalies,
Ref. [12] for possible scale dependence of the dipole
modulation, Ref. [13] for low-multipole alignments, and
Ref. [14] for a comprehensive review on CMB anomalies).
Out of these anomalies in observations, the possibility of
probing the breakdown of cosmological principle is being
examined by some authors [15]. In addition, there is a recent
work testing the cosmological principle based on the ACDM
model with the CMASS galaxy sample of BOSS DR12 [16].

Since several previous observations and analyses suggest
possible deviations from the cosmological principle, it is
worthwhile enough to consider a cosmological model with
large-scale inhomogeneity that violates the cosmological
principle. Our motivation is to reveal whether a model
with large-scale inhomogeneity is consistent with observa-
tions and to figure out the theoretical predictions of the model.
In particular, this paper investigates the effect of inhomoge-
neity on the large-scale structure (LSS) of the Universe.

A commonly used statistical measurement for the
density perturbations in the Universe is the power spectrum
P(k). Recent observations on the power spectrum of the
LSS have been accurately performed by galaxy surveys
such as the Sloan Digital Sky Survey (SDSS) and the Dark
Energy Survey (DES). Therefore, the purposes of this
research are to determine the power spectrum P(k) to find
out how the large-scale nonuniformity affects it, to deter-
mine the order of magnitude of the effect, and to check the
consistency with observations.

In recent years, cosmological models breaking the
cosmological principle have been constructed to study
various aspects of the accelerating Universe [17-22]. In
this paper, we consider a simplified version of the super-
curvature mode dark energy model [23], which is a
stochastic model of dark energy with large-scale inhomo-
geneity assuming an open universe associated with a
specific inflationary scenario. The model introduces the
potential energy of a scalar field with fluctuations of O(1)
on a supercurvature scale sufficiently larger than the current
horizon scale, which is responsible for the accelerated
expansion. Motivated by the model, in the present paper,
we consider the dark energy model of a scalar field with
inhomogeneities on scales larger than the current horizon
scale assuming the spatial curvature K is set to K = 0. In
the following, we first review the previous study [24] to
introduce this model and then find the equations governing
the terms of perturbations relevant to the LSS, the solutions

for the evolution of the perturbations, and the formulation
for the power spectrum based on these solutions.

The remaining parts of the paper are organized as
follows. In Sec. II, we explain the definitions for the
perturbations introduced by the large-scale inhomogeneity
of the dark energy and introduce the basic setups for the
formulation. In Sec. III, specific derivations leading to
the power spectrum of the LSS of matter following the
formulation are performed. Section IV is devoted to the
details of numerical calculation aimed at quantitative
evaluation of the modifications in matter distribution
introduced by the inhomogeneous model. In Sec. V, we
conclude the results and discuss their implications on the
cosmological model. The Appendix is attached as addi-
tional explanations for parts of the formulations and is
organized as follows. In Appendix A, we review the
derivation of the Einstein equations following the metric
perturbations from the superhorizon inhomogeneities of
dark energy introduced by this model. Appendix B presents
a generalized expression for a higher order of a source term
concerning the solution of the equation that governs the
isocurvature mode, which is introduced in Sec. IIIC.
Appendix C follows as additional details of the analytic
approximations for the modification to the LSS power
spectrum, which arises from different modes of perturba-
tions induced by large-scale inhomogeneity of dark energy
introduced in this paper; the approximations are useful in
the numerical evaluation and helpful for comprehending
the behaviors of the modifications induced by our model.
Throughout the present paper, we use the unit that
the velocity of light equals unity ¢ = 1, and M ,; denotes

the Planck mass defined by ijl = (87G)~!, where G is the

gravitational constant.

I1. BASIS OF THE FORMULATION

We formulate for the evolution of matter density fluc-
tuation with dark energy inhomogeneities on superhorizon
scales based on the standard perturbation theory.
Subsequently, we evaluate the model predictions on the
matter power spectrum with the solution of the system. We
are mainly interested in the LSS formation in the late time,
where the modification on observables such as the matter
power spectrum are expected to occur. For the late-time
evolution of cosmological perturbations, in addition to the
cold dark matter, we consider that the inhomogeneous dark
energy on superhorizon scales is sourced by some light
scalar field ¢, which is also treated as perturbations to a
homogeneous and isotropic universe. We start with the
basic equations governing the evolution of the dark matter,
the scalar field ¢, and the metric perturbations.

This section shows how to describe different modes of
perturbations and how to derive the equations that the
components of perturbations follow. The formation of LSS
of galaxies in a uniformly isotropic universe has already
been well known within the cosmological perturbation
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theory. We start with generalizing the framework of
cosmological perturbation theory in the homogeneous
universe to that in an inhomogeneous universe.

A. Basic equations

In the following, the basic equations in the framework
of cosmological perturbation theory are introduced.
Following linear perturbation theory, we adopt the con-
formal Newtonian gauge,

ds® = —(1 +2¥(1,x))dr* + a*(1)(1 + 20(1, x))dx'dx/§;;.
(1)

As for the metric perturbations, we consider the equations
up to the first order of W and ®. The Einstein equation
associated with the energy-momentum tensor is

G, = 82G(T" + 7). 2)

Here, 7#") and T#{”) are the energy-momentum tensor
of the matter and the scalar field, respectively, which

follow the conservation equation V”T”,(,C> =0 with
¢ = m(matter component), ¢(scalar field component). The
equation of continuity for the matter component in an
expanding universe reads

10) 1 ‘ .

P 3Hp + = 8,(pv') + 3dp = 0, (3)
ot a

and the Euler equation reads,

a, . o1 R Xox 4 .
L o)+ 4Hpv +—0(pviv)) + 225 4 adpri = 0. (4
at(pv)—i— pv +a8](pvv)+a8xl+ pv' =0. (4)

The Klein-Gordon equation for the scalar field denoted
by ¢ is

1
N

As assumed in the previous works [23,24], we consider the
model that the ultralight scalar field is varying at a very
large spatial scale, much longer than the Hubble length in
the present Universe. Thus, they create large-scale inho-
mogeneities of the dark energy on superhorizon scales and
break the cosmological principle, but the violation is small
within the horizon of our Universe at present. To describe
the LSS in our model, we introduce two parameters. One is
the parameter e to describe the inhomogeneities on the
superhorizon scales coming from the ultralight scalar field
¢. The other is the parameter « for the standard cosmo-
logical perturbations. Our approach is based on the scheme
with two-parameter expansion.

aﬂ(\/——ggﬂyau‘p) - ngb =0. (5)

B. Perturbations in an inhomogeneous universe

This subsection describes the notations for the perturba-
tions to clarify the LSS with the inhomogeneities on the
superhorizon scales. First, as for the metric perturbations,
we consider the first-order perturbation of W and @ in
Eq. (1). Furthermore, we introduce the two expansion
parameters ¢ and k. Within them, e describes the perturba-
tions of superhorizon scales, whereas x describes the
conventional cosmological perturbations of the LSS of
galaxies on scales well inside the horizon scale. We denote
the superhorizon perturbations (superhorizon modes, for
short, sh-mode) by quantities labeled with “sh” and the
perturbations to the LSS by quantities labeled with “Iss”.
Then, the metric perturbations can be written as

D = KD + D, (6)
W — s ehy, (7)

Similarly, as for the density perturbations and the velocity
field, we write

p = po(1)(1 + &6 + €5), (8)
l}i — Klssvi + EShvi. (9)

The scalar field has only the superhorizon scale perturba-
tions; then, we write

$ = o+, (10)

where ¢ is the dark energy background. The evolution of
the superhorizon perturbations of ¢ was investigated in
Ref. [24], which is briefly reviewed in Sec. IID. In the
present paper, we focus on investigating the effect of the
superhorizon inhomogeneities on the LSS perturbations,
which is described by the perturbations of the order
of O(ke).

The superhorizon perturbations of the scalar field behave
as an isocurvature inhomogeneous dark energy model,
which give rise to the perturbations of the order of O(ke)
through the coupling with the standard perturbations on the
LSS. Consequently, to characterize the effect of the order of
O(ke), we may write

K156 = k(295 + €1%°5). (11)

In the following, we ignore the terms higher order than
O(x“€”) with @ > 1 and b > 1 and keep the coupling terms
of O(k'e") which describes the imprints that the sh-mode
induces on the LSS matter distribution. Correspondingly,
we assume the following form for the perturbation expan-
sion in addition to Eq. (10),
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p = po(l + &6 + e16) = po(1 4 k%6) + e(*p + Kkpy™*%),

(12)
vh = Kkl + e(hof + kS0, (13)
® = KD + (D + kD), (14)
Y = Y (MY iSOP), (15)

where % = p,™5. We note that the quantities labeled with
“ad” describe the conventional adiabatic perturbations of
the LSS, while the quantities labeled with “iso” describe the
perturbations on the LSS generated by the coupling with
the superhorizon inhomogeneities of dark energy, whose
effect is negligible in the early time hence obeying the
isocurvature initial condition.

To summarize this subsection, the evolution of the
superhorizon mode was expanded and represented by e,
which was investigated in Ref. [23]. In the following, after
briefly reviewing the background equations and the super-
horizon perturbations of the order , we find the expression
for the perturbation to the LSS of the order ke as an original
work of the present paper.

C. The homogeneous background [O(x%")]

We first consider the homogeneous background evolu-
tion of the model of the order O(k%"), which is well
known, without the inhomogeneities induced by the
Iss-mode and the sh-mode perturbations introduced in
Sec. II B. From the fluid equation in an expanding universe,
the equation of motion of the scalar field (Klein-Gordon
equation), and the Einstein equation, the background
equations follow:

po+3Hpy =0, (16)
bo(t) + 3H(t)ho () + m>epy (1) = 0, (17)
3H? = 8;:G<%<}5%+%m2¢5+p0>, (18)

) | L
<2§+H2> - snc(zm%pg —§¢3>. (19)

Here, p, is the background density, and m is the scalar
field mass.

D. Superhorizon modes [O(k%1)]

We here review the evolutions of the superhorizon mode
(sh-mode) perturbations of the order O(x%¢"). First, the sh-
mode can be spatially expanded and rewritten as the
following multipolar form; for instance, for ¢, we have

3
erp(rx)=e> V(T2 + O(Ex),  (20)
n=1

where T\ is defined by

i

3 ! 3 0
(n=1) (n=2)
T =4/—1| 0], T =4/—| 11,
! 4r ! 4n
0
3 0
T§n=3): ' O ) (21)
4

and the subscript “1” in d)&")(t) denotes the dipole compo-
nent. Throughout the present paper, we implicitly assume
the Einstein summation convention with respect to the
index of x'. Similarly, for the sh-mode up to the order of
O(x%"), we can expand

3
i = 9 & V(T (22)
n=1
3
e 8 (Tx, (23)
n=1
3
> N o (T, (24)
n=1

where we introduced the velocity potential 'V =

33, VE")(t)Tj-")xj , which is associated with the sh-mode
velocity. From Eq. (22), it is worth mentioning that " is
spatially uniform and plays a role similar to the dipole
modulation of the background density.

Next, we introduce the equations of the sh-mode, which
were given in Ref. [24], and a review with more details of
this part given in Appendix A. The sh-mode of O(x%¢")
follows the equations

8" 430" =0, (25)
Vi — gl — g, (26)
3 L 3HP &g
+ (30" — " — 6H¥" )by — 2% hy = 0. (27)
3H(d)§n> - H‘Pgn)) = 4”G(P055n) + m* oy
— 0+ o). (28)

") — H¥Y" = ~4xG(poV" + dog”).  (29)
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v+ ol =0, (30)

where all subscripts “1” stand for the dipole of the

perturbations, and we introduced V'l(") = —aVY”.1 We also
note that the initial condition for the sh-mode perturbation

is the isocurvature type; hence, excepting g{)&"), we assume
that 8" =W =@\ = v/ =0 at the initial time.

The initial value of gbg") determines the amplitude of the
superhorizon mode perturbations (see Appendix C). The
evolution of the superhorizon modes was investigated in
Ref. [24] using both an analytic method and a numerical
method based on the above equations. We remark on some
of the results. The superhorizon modes come from the
scalar field perturbations on the superhorizon scales, which
is understood as an inhomogeneous dark energy model
effectively. The matter density perturbations in the region
of the higher amplitude of the scalar field decrease in
comparison with other regions because the larger amplitude
of the dark energy makes the Universe expand faster and
suppresses the growth of the density perturbations. Then,
the sign of the density perturbation of the sh-modes
becomes opposite to that of the scalar field perturbation.
We can put a constraint on the sh-mode using the dipole
observation in the CMB, as is discussed in Sec. IVA and in
Ref. [24]. Our model predicts dipole anisotropies in
the CMB due to the sh-modes. The dipole observations
in the CMB put a constraint on the predictions of
our model. We roughly find a constraint on the order of
magnitude of the sh-mode as ¢ < O(1072). Usually, the
CMB dipole is explained by the Doppler effect due to
|

the Galaxy motion, but it can also be explained by the
inhomogeneity of the sh-modes in our model. A combi-
nation of these two effects may explain the CMB dipole.
The constraint on the sh-mode ¢ < O(1072) comes from
the assumption that the CMB dipole cannot exceed the
prediction caused by the sh-modes. A more accurate value
of the constraint is given later using the Planck data.

III. SPECIFIC FORMULATION OF
THE LSS [O(x'e!)]

In our following formulation, for clarity, we temporarily
write the terms related to x denoting the ad-mode/Iss-mode
and e denoting the iso-mode/sh-mode explained earlier in
Sec. II B and keep them to the order of O(k'e') that we are
interested in. Thereafter, we concretely seek the evolution
of the density fluctuations in a nonuniform universe,
described by Egs. (3) and (4). We perform the calculation
based on the argument of Sec. II in the following steps:
(i) Step 1, we substitute Egs. (12)—(15) into Egs. (3) and (4).
(i1) Step 2, we introduce Fourier transformation with the
first-order perturbation expansion and obtain the two
equations. (iii) Step 3, we obtain formulations to describe
the matter density perturbations and the matter power
spectrum under the influence of inhomogeneous dark
energy.

A. Substitution of different modes into the
fluid equations

First, we substitute Eqs. (12)—(15) into the continuity
Eq. (3); then, we have

Po(1 + x48) + Kpg™5 + €( + K58 + kpy°8) + 3H (po (1 + K*5) + €(*p + Kpy™*°5))

1 . ) o . )
+ —85{,00(1 + Kadé)l(‘adv’ + 6[,00(1 + Kad(S) (Sh,ul + K.ISO,Ul) + (shp + K‘polso5)l<'ad1jl}}
a

+ 3{x™Dpy (1 4 k*6) + e[po(1 + K96) ("D 4 K°D) + kD (M + kpys°5)]} = 0. (31)

The continuity equation for the background density p, in a
homogeneous expanding universe of the order (x¢”) reads

p'() = _3Hp05 (32)

which can be used to eliminate p, in the following. Next,
we consider the equations of perturbations. By inserting

'To clarify the difference of the notations between this paper
and the previous work Ref. [24], we note that in this paper, V’l(") is
equivalent with the V() defined in Sec. Il A of Ref. [24] instead
of V. The behaviors of the background ¢, and dipole perturba-
tions ¢, ®;, and V; predicted by the model under different
parameters can be found in Ref. [24].

[
Eq. (32) into Eq. (31), the zeroth-order part of ¢, i.e., the
O(€°) piece, is

o1 . .
K6+ =0, { (1 +xk*5)2d’} 4 3MD(1 4+ x298) =0,  (33)
a

while the first-order part of e, i.e., the O(e!) piece,
reads
sh: isog sh 1 ads\ (sh,,i iso,,,i
D+ kpy*°S + 3H p—i—;@iLoo(l + k%98) (M + Kvt)
+ (shp + Kpoiso(s)Kadvi)] 4 3,00(1 —I—Kad5)(Sh(i) + Kiso(i))
+ 36D (N + kpy%°6) = 0. (34)
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Equation (33) is the familiar equation for the matter
adiabatic perturbations. The sh-mode follows the equation
of the order of O(e') in Eq. (34),

S+ 3HY 4 3p,d = 0. (35)
Here, we note that the 9;"' term vanishes due to the spatial

uniformity of "’ in Eq. (22). On the other hand, the
remaining part of Eq. (34) is

. . 1 Lo
K',D()lsoé + 3Kp0ad(§shq) + _ai [/)O(K + K2ad5)1sovl
a
+ K.2p0is<)5ad1ji +P0<1 + K.adé)shvi + Shpl('advi)] =0. (36)
Here, since we consider the matter density perturbations
relevant to the LSS after the matter dominant epoch, we
assumed
K5 = k(YD + D) ~ 0. (37)
Next, we substitute Egs. (12)—(15) into the Euler

equation Eq. (4), which gives the zeroth order piece
[O(e°)] to determine the adiabatic mode as

(Po(1 4 K*95) + por™B)cv’ + po(1 + k*5) ki
o1 ) )
+4Hpo (1 + k6)k* " +—8;[(po (1 + x*8) k™0 k]
a
1 . .
+—(po (1 4 k298)0;[K*NW] + 4x™Dpy (1 + k*96)k*dp! = 0.
a
(38)

Using Eqgs. (32) and (38) can be simplified as

A o1 . 1 . A
Kadbl+HKad1)l+—Kad7}]aj [Kadvz]+_ai [Kad\m —|—Kad(DKadUl =0.
a a

(39)
The first order of ¢ in the Euler equation yields
shiji 4 xi50p - H (i 4 x50y
+ é (Mo + k5ou) 0, [k ] + ékadv"' 0, + v’
+ 28,» [ 4 isop) 4 g2 (shyi
+ k597) 4 (D 4 k50D = 0, (40)

which leads to the Euler equation for the sh-mode at the
order of O(k%!"),

, o1
shiji 4 Fshyi 4 — 0, [hp] = 0, (41)
a

and the remaining part reads

KS0p1 + HiSop! + % (ol + k5007) 0, [k 0']
+ ékadv i), Syl 4 xdsopi] 4 é 0, K]
+ kD (Sl ko) 4 (B 4 KDYkt = 0. (42)
Using Egs. (35), (37), and (41), we finally obtain the

following equations from the continuity equation and the
Euler equation:

.1 . 1 .
K{ad5 + P 0; [adv’]} + K2 P 9,45’ =0,  (43)

. o1 1. .. .
K{aw + HYyi 4 =9, [adlp}} + K2 [yi] = 0, (44)
a a
at the order of O(e%), and
K_{1506 + 3ad5Shq) 4 — ai [1501}1 + ad&shvz + shéadvz]}
a

1 L )
+ K.2{_8i [adélsoyt + 1so5advt]} — 0’ (45)

a
K{lsoi}l—|—HISOUI—|—ShCDad1)l—|——(Sh1}]aj[ad1)l]
a
+ advjaj [shvi] + 81‘ [iso\PD}
21 iso,,j A Jad,,i ad,,j i80,,i
+ k7 = {5070, [*'] + *W/ 9, [*v']} = 0, (46)
a

at the order of O(e'), respectively. Equations (43) and (44)
are the familiar equations for the standard cosmological
perturbations theory of the matter density, while Eqgs. (45)
and (46) are the basic equations to describe the matter
density perturbations under the influence of the sh-mode
dark energy.

B. Fourier modes of the order O(x'e!) perturbations

We perform Fourier transformation for the perturbations
derived in the previous section. In the following, we focus
on the equations of the order e first. The Fourier trans-
formations of the perturbations are written as

I |
“B(1.5) = 1315 / & p(1, e, (47)
lssvi fx) = /d3p _ipl aHlsse Lp eip.x’ 48

(15) = s [ @~ atotper. (39)
y I y -
“(rx) = s [ Epp)er ()
with
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vilssvi(t’ x)

lssg t, =
(t.x) ",

(50)
Here, p is the wave number vector, and we define
p = |p|. Since the ad-mode and sh-mode of ¥ do not
contribute to density fluctuations, we write the iso-mode
only for V.

The perturbations 6, 6, ¥ can be expanded according to
standard perturbation theory with respect to x as

K156 = k16, + O(k?), (51)
K550 = K59, + O(k2), (52)
|
1 /d3k 895 (.ky e :
(27)° e (27)°
1 1 :
+=3" 8" (1" o /d3k1—aHad9 (ke +iH > 6" (1)
a n=1 g n=1

3
. . w1
/d3k2‘S°¢9K(t,k2)e’k2'x +> v -
n=1

0
i W/d%kl akl [ (t k])]lelklx =0.

KO = k9 + O(k?), (53)
and we ignore terms higher than the order of O(x?).

We consider the Fourier transform of the continuity
equation Eq. (45). By using the multipole expansion
Eq. (23), we have

3
oo po > 8T (1),
n=1

with which, from Eq. (45), we obtain the continuity
equation of O(ke) as

(54)

a 2n)3/d3k1(iki1)ad(sx(f’kl)eik"x

m 1
A
J (27[)3 /

0 ,
Pl —— adeK t.k ezk1~x
o L)

Hereafter, we omit k and e in the expressions whose order of perturbation are understood as O(ke).
By applying the Fourier transformations in each term of Eq. (55), we rewrite it as

1o ) 3 . A B " W —ip
i Otp) 0 0p) + X VIO ip e + 38 (0T =
n=1

3

n) 0 a 1 n
+zZ5 (T} a/[de tp)] +3i— Y & ()T

H

n=1

Similarly, we obtain the Euler equation of O(ke) after the Fourier expansions to Eq. (46),

(27)*
11
a(2r)’
11
a(2r)?

ki

k2

1 —iki . or )
/ Pk 5 (@01 d) + D1,y ) e
P11\ iso ik, -x 15 ] (kl)(k])
/d3k1(lk1) \PK<t,k1)€ ki +Z hvjm/d3k1 1 1

ik} ‘ .
/d3k1 By e (1K) ™0, [] +

(55)
3 i
“O,(t,p)
n=1
[ad@ (t.p)] = 0. (56)
1 lkl
2 aH¥ 0, (t,k,)e™1*
1
¥ 1 3 k ik, -x
(27[)3 d°k, k2 (t,k)e™™* =0. (57)
1

Note that 0; [p/] = 0 if we recall that " is a spatially uniform field independent of the coordinate x [see Eq. (22)]. Hence,
substituting the multipole expansions Eqgs. (22) and (24), we obtain the following Euler equation of O(ke):

2

1, H p
_isop (4, 2 )isog (1
L K<p>+(2+) (n)- L

3
i ngn

1S~ o [p'
) picdg (1,p) D & (1)ip'T!" )8])] Lﬂ "‘dHK(t,p)} =0.

n=

1§0lI] ( )

(58)
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C. The power spectrum of structure formation

From the cosmological Poisson equation (for scales with
wave number k > aH), we have

2
lssllj — _ 4”GC21 Po lss&

p

(59)

which is also applicable for both the ad-mode /5 and the
iso-mode *°5 as they sum up to be the Iss-mode by
definition, that ¢ =24 § +1%° §. Furthermore, for the famil-
iar ad-mode %5, we may apply standard cosmological
perturbation theory up to the linear order O(k); hence,
the equation reads

w5 (1,p) + 2HY5.(1,p) — 4nGpy*¥0, = 0,  (60)

whose standard solutions are written as

5, = Dy (1) p), (61)
9, = =/(1)Dy (15 p). (62)
70 = = (63)

Here, D, (1) o™ §(¢) is the growth factor of the growing
mode, &; (p) a constant depending on the Gaussian dis-
tribution of the initial density fluctuations, and f(¢) the
linear growth rate.

We can use Eq. (56) to obtain the %9, expressed with
iso5. and the ad-mode 295, 2%... Subsequently, inserting the
obtained *°9, into Eq. (58) and applying Egs. (59)—(63), we
reach the equation that isog,. follows, which can be written as
893, (£.p) + 2H™5,(1.p) — 42Gpy*8, = S5(t.p).  (64)
Here, the source term Sy(z,p) can be written explicitly to
the order O(ke) that we are interested in, as

$5(t.p) == S VI (OTV - (ip D (16, () (2£(1) + 1)

n=1

STVIT (ip))Dy (1)8,(p) + O((Ho/ p)°).

n=1

Q| =

(65)

whose generalized form in higher order of perturbations for
the inhomogeneities is noted in Appendix B as Eq. (B2).
|

iso ~ ! /Dl(t/)D (t)_D D t)
5K(t,P) —A dt W[gl(l‘/),D 2
3
S WO s m |

Specially, we note here that the usage of subscripts “1”” and
“2” of the growth mode D; and decay mode D, follows the
convention, which should not be confused with all other
cases where subscript “1” combined with a superscript
“(n)” denote the dipole of the perturbations in the following
parts, for example, most importantly in VE"). We also note
that O((Hy/p)°) denotes the higher order terms of the
expansion (Hy/p)" with n > 0.

The source term Sg(z, p) for the solution of the iso-mode
arises from the existence of the sh-mode; physically, it
represents the inhomogeneity in matter distribution induced
by the existence of the dark energy inhomogeneity. The
solution of Eq. (64) is

iso(SK(t’p) — C1(P)D ( ) + Cz(p)Dz(l)
DDA - DDA
R e S
(66)

where W[D(1'), D,(7')] is the Wronskian defined as

W[D\ (1), Dy(1)] = Dy(1)Dy(1) = Di(1)Ds(1),  (67)
and D, is the decay mode of 29§ that vanishes in late times.
The first term and second term of Eq. (66) are the
homogeneous solutions which correspond to the well-
known normal ad-mode; the third term is a particular
solution related to the source term arising from the
existence of the spatial inhomogeneities of the sh-mode
mentioned previously. If the sh-mode of dark energy does
not exist, then by definition of the perturbations in Sec. II B,
no iso-mode additional to the ad-mode will arise; hence,
595 (¢,p) = 0. Therefore, only the particular solution part
related to the source term is nontrivial for the isocurvature
perturbations (iso-mode) to matter distribution to be con-
sidered in the followings. Hence, we write

D\(¢)D,(1) =Dy (1) Dy (')
WID, (1), D, ()]

) t
ws(tp)= [ ar S5(1.p). (68)

Since %5, are perturbations that can be comprehended as
the modifications to the adiabatic mode, it is important on
relatively short wavelengths with large wave numbers p.
Therefore, if we keep terms to order O(p) and neglect the
assumed small quadrupole contribution, the analytical
solution can be approximated as

{ VT L i) D ()5 0) 21 () + 1)

(69)
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Furthermore, from Eq. (69), transforming the variable from 7 to a(t), we have

%,(a.p)

where we rewrote the velocity fields of the sh-mode as
Vi'(a) = "V, (a). (71)
where e = (e(!),e(?,e()) is the unit vector. With the
solutions for the density fluctuations, we calculate the
power spectrum.
To go further, we calculate the Wronskian, whose time

derivative is

WD, (1), Dy(1)] = Dy (t)Ds(t) = D1 (1)Dy (1) (72)

by definition. D; and D, follow the equation of motion of
the ad-mode Eq. (60), for example,

D, +2HD, — 42GpyD, = 0. (73)
Following these relation, the Wronskian can be rewritten as

D, (1)Ds(1) 1(8), Da(0)]. - (74)

1505 ( ) [ = 3 lz p e
e\ 4ﬂ' HO\/ m
/3 iys,pre™

Az HO\/

Egm n/i %j_ 5.(p)(Z(a) = T (a).

— D, (t)Dy(t) = —2HW[D
|

Here, we have defined

e / da'D,(a)G(d), (79)

0

T(a) = / " da'Dy(a)G(d). (80)
0
with the growth kernel G(a) defined by

(@{vi@er@+ 1+ 1 @

Gla)=D

6. (p)Ds(a) /)a da’ <2D%(a’)f(a’)vl (') + D}(d)V,(d)+ D3(d)d

Dy(a)6L(p) A da'Dy(a') { Vi(d)(2f(a')Di(a') + Di(a')) + Dy (d')d

“arre”) [ e ™ S o

x {—3V1(a’);HDl(a’)5L(P)(2f(a’) +1)-—a

1, dv,

. Dl<a'>5L<p>}, (710)

|
Using Eqgs. (72) and (74), we can obtain

W a

—==-2—, 75

w a (75)
whose solution is

W = Ca™?, (76)

where C is a constant to be determined in the following. In
the limit of a - 0 in a matter-dominant epoch, the
Wronskian yields

W[D,(a'), Ds(a ——*Hov md "
where we have found the constant C = —%HO\/QM by

using the initial condition similar to the ACDM model.
Using the previous expressions of the Wronskian W to

compute 5, (a,p), we obtain
v,
da’

av,
da’

(77)

(78)

which arises from the coupling of the sh-mode V(a) and
ad-mode D (a). Therefore, the density fluctuations of the
Iss-mode up to O(k) can be written as

lss(s — adgk + 61505K
= Dy (@5ulp) + 2 e
x 6. (p)(Z(a) - TJ(a)).

By using the above results, we evaluate the matter power
spectrum P(a,k) defined by

(82)
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(6(a,k)5(a, ky)) = P(a.k,)sy) (ki +ky),  (83)

where 6 (k1 + k) is the Dirac delta function. Because we
obtain the following expectation value,

(6(a, k,)"6(a, ky)) = D}(a) (8, (k)6 (k2))

L3 ke e
“%Brz HN, (Z(a)

- j(a))zD%(a)<5L(kl)5L (k2)).
(84)

we finally obtain the power spectrum under the influence of
the dark energy inhomogeneity as

P(a,k)=P(a,k,0)=Py(a,k)(1+e*k*cos’OR(a)), (85)

where we used the relation

(6L(k1)5L(Kky)) = Pou(k))Sy (ky +Ky),  (86)

with the matter power spectrum in a homogeneous universe
Pm (k) >
Py(a. k) = Di(a)P, (k). (87)

Here, we defined time evolution of the relative correction as

R(0) = 52 T = T@F  (88)
and
3
Zk"e(”) = kcos 9, (89)

n=1

where 6 is the angle between the wave number vector k and
the direction of the superhorizon velocity.

Now we have completed the basic formulation of the
LSS under the influence of the superhorizon inhomogene-
ities of dark energy, which is used for the theoretical
predictions in the next section.

IV. NUMERICAL EVALUATION AND RESULTS

Since we have obtained the formulation of the calcu-
lation, the next step is to evaluate the power spectrum
P(a, k) numerically. For this purpose, we need to consider
the limits on the amplitudes of the perturbations in the
formulations.

A. Amplitude of the perturbations arising from
the sh-mode

We may obtain the maximum allowed value of ¢ from the
integrated Sachs-Wolfe (ISW) effect of the CMB temper-
ature anisotropies [23,24]. The ISW effect on the CMB
temperature anisotropies coming from the superhorizon
dark energy can be estimated by

AT 1o O (n, v,
() e / dn(g” "))
fa n x=no—n

3 (n)
g .
= 2¢ / ! dn( o ) Tf»"%‘)
Na n=1 ar]

where y is the unit vector of the line of sight direction,
and we used that the comoving coordinate x' is written as
x' = yy' using the radial coordinate y and the component of y.
It can also be confirmed that the matrices Tl(."> introduced in
Sec. II D are related to the real basis spherical harmonics as

. (90)

X=MNo—"

Y (0, 0) =T, (91)

where we used y = (sin @ cos ¢, sin @ sin ¢, cos ). Then,
we can rewrite Eq. (90) as

—(y = 2621 (92)

where we defined

. . 8‘11(;1)
7= / dn(ng —1n) (57(10) (93)
Na n

where 7, and 77, are the conformal time at the present epoch
and the decoupling time, respectively. Using the previous

work in Ref. [24], the solution of J (l") can be obtained, as
demonstrated in Table I, with which we can put a constraint on
the sh-mode from the observation of the CMB as

2

(25) i(ﬂ{ﬂ)Z < C(l)bs’ (94)

n=1

where C$™ is the dipole component of the multipole expansion
of the angular correlation function of the CMB temperature
anisotropies, C(9) = >, C®™P,(cos 9)(2¢ + 1)/4x.

Using the Planck Legacy Archive,” we have
C$™ < 6.3 x 107, and obtain the maximum allowed value
of € as

“Based on observations obtained with Planck (http:/www.esa
.nt/Planck), an ESA science mission with instruments and
contributions directly funded by ESA Member States, NASA,
and Canada.
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3 1/2
Cma [Z(JY’))Z] <22x 1073 (95)

n=1

We use this maximum allowed value for the numerical
calculation of the power spectrum in the next subsection.

B. Power spectrum and oy

We here focus on the power spectrum described by
Eq. (85). The relative difference of the power spectrum is
given by

Pla,k,0
Emodit (K, 0, a) = ( )

_ @R Y) 2 j2c0s2
Poa. k) €maxk” cos” OR(a), (96)

where R(a) is defined by Eq. (88). Figure 1 plots the time
evolution of R (a). We note that  means the angle between
the dipole direction and the wave number vector as defined
by Eq. (89). Each curve in this figure adopts the four sets of
the parameters in Table I, which can be consistent with
cosmological observations [24]. Here, we assumed the
amplitude of the superhorizon mode as the maximum value
of € given by Eq. (95). This is equivalent to the assumption
that the entire contribution to the dipole anisotropies in the
observed CMB arises from the influence of the super-
horizon mode dark energy inhomogeneities.

By applying the transfer function in radiation-matter
domination transition and the linear matter power spectrum
from the Cosmic Linear Anisotropy Solving System [25]
for Py(a, k) in Eq. (85), Fig. 2 demonstrates the modified
power spectrum predicted. The dashed curve (0 = 0) and
the solid curve (6 = 7/2) correspond to P(a = 1,k,6 = 0)

012t — No. 1

0.02

0.00

0.0 0.2 0.4 0.6 0.8 1.0
a

FIG. 1. This figure plots the time-evolution behavior of the
modification term R (a) to the matter power spectrum defined in
Eq. (88). The modification to the matter power spectrum grows
rapidly after @ = 0.5 when the dark energy becomes important;
hence, the sh-mode perturbation associated with the inhomoge-
neity of the dark energy assumed in this model begins to show its
impact on structure formation. Notice that the curve and the ticks
of the vertical axis are multiplied by a factor of 100. We here
adopt the model No. 1 in Table I as an example.

10°
rrrrrrrrr 6=0, SH-DE
0=n/2, standard

104

P(k,0)
[uy
<

102

Lo L TN T N N N |

1071 10°
k [h/Mpc]

101 L -
1072

FIG. 2. This figure shows the modified matter power spectrum
P(a = 1,k) in Eq. (85) for & = 0 compared with 6 = z/2, which
is evaluated at the present epoch a = 1. Here, the curve with
0 = /2(cos @ = 0) can also be understood as the linear power
spectrum of the standard model without modification. Typically,
the theoretical prediction of the modification scales as o k> and
becomes powerful on small scales with large k, although we
confine our discussion on the possible observational imprints of
the model modification to the LSS power spectrum up to k ~
0.2 hMpc™! due to the usage of linear perturbation theory in the
formulation (see also Fig. 3), where the estimated modification is
supposed small and consistent with existent observational results.
In this figure, we adopted the model No. 1 in Table L.

and P(a=1,k,0 =n/2) = Py(a=1,k), respectively.
The quasi-nonlinear effect of the density perturba-
tions on the power spectrum becomes influential for
k> 0.2 hMpc™!, which is ignored in our computation.
Because our theoretical model relies on the linear theory of
the density perturbation, then our theoretical predictions for
the quasi-nonlinear regions k> 0.2 hMpc~' should be
carefully understood. From the aspect of the cosmological
perturbation theory, we keep in mind that the scope of
validity of O(k) linear expansion used for the O(ke)
modification to power spectrum in Fig. 3 is roughly up
to k~0.2 hMpc~!.

Figure 3 plots the relative correction to the power
spectrum, Eq. (96), for § = 0 at the present epoch a = 1
with adopting the maximum allowed value, Eq. (95). This
figure shows that the matter power spectrum at the present
epoch may be modified by ~0.4% (1%) at the wave number
k~0.1 hMpc™' (0.15 hMpc™') due to the existence of
dipole anisotropies in dark energy at a = 1. Each curve in
Fig. 3 adopts the same sets of the parameters as those of
Fig. 1, denoted in Table I, where 7, /i1 are the parameters
characterizing the superhorizon dark energy model defined
as¥=1(do/M )% i = m/H, with by = by, and F is a
constant used in the numerical computation (see also
Appendix C).
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FIG. 3. Relative modification term to the power spectrum,

Emodit (k, 0, a) in Eq. (96) as a function of k, which arises from the
iso-mode. In this figure, we fixed § = 0 and a = 1 and adopted
the maximum allowed value for the initial amplitude of the
sh-mode inferred from the ISW effect, Eq. (95). Here, we use the
parameter sets shown in Table I. As expressed in Eq. (96) and
addressed in the caption of Fig. 2, & (k, 0, a) o k2, but the
validity of the prediction may be restricted by the usage of linear
perturbation theory up to k ~ 0.2 hMpc~!. However, a possible
indication of the modification to the power spectrum predicted by
the model together with consideration of the quasi-linear and
nonlinear regime would be interesting as a future exploration.

From Figs. 1 and 3, we find that power spectrum
P(a,k,6) depends on Q,,; however, it does not much
depend on the parameters 7 and 7. This is because we fixed
the amplitude of the inhomogeneities of the superhorizon
mode dark energy €,,,,, from Eq. (95). The parameters 7 and
7 change the dynamics of the dark energy, as demonstrated
in Ref. [24], but the predictions on the observational
quantities only depend on the amplitude of the inhomo-
geneities of the superhorizon mode dark energy ep,,.
Therefore, the modification to the matter power spectrum
depends on Q,, but not on 7 and 7.

Next, we consider the effect of the superhorizon mode
dark energy on og, which is often used as a quantity to
characterize the amplitude of the matter power spectrum
weighing the clustering of matter within radius R denoted
by oy at the scale of R =8 h™! Mpc. As a forecast of
order estimation, this can be evaluated roughly as
og ~ P(k)k*[;_0.1 hupe-t- From this naive estimation, the
correction on P (k) due to the existence of the iso-mode of

TABLE 1. The parameters of the models applied for calculation
in this work.

Model 7 m F Q. €max J(ln)
No. 1 70 1/10 1.00 030  0.0117 0.107
No. 2 6.3 1/3 1.01 030  0.0117 0.107
No. 3 72 1/10 1.00 028  0.0108 0.116
No. 4 68 1/10 1.00 032 0.0127 0.0985

0.834

0.832F --_ \\%
.\ i
<\
N \\\
50830 |
§
0828+ No.1 O\
No. 2 W\
0.826 + ~~~ No.3
No. 4
0.0 0.2 0.4 0.6 0.8 1.0

o/n

FIG. 4. The direction-dependent g (@) predicted by our model
in Eq. (97). The 6 angle is related to the dipole direction of the
dark energy inhomogeneities noted as the sh-mode. This figure
demonstrates that, in an anisotropic way, the clumpiness of the
LSS matter power spectrum on scale of 8 h™! Mpc may be
enhanced by the iso-mode perturbation to the matter introduced
in this work, which is sourced by the sh-mode perturbation.

LSS is about 0.4%, and the modification to oy is forecasted
to be about 0.16%. However, we have obtained the
numerical solutions for the sh-mode and iso-mode and
calculate og with numerical evaluations more carefully in
the following. We define 65 in our mode including the
inhomogeneities of the superhorizon mode dark energy by

1 0
Sho%(a,ﬁ):ﬁ /0 dkk*P(a, k,0)W?(kR), (97)

with the window function W (kR)

3(sinkR — kR cos kR)

W(KR) = R ,

(98)

and Eq. (85). Figure 4 plots "og(a = 1, ) as a function of
0, indicating the possible anisotropic imprints of the model
modification.

The maximum result for 'og(0) at cos@ = 1 with the
model No. 1 or No. 2 will be *hog(§ = 0) = 0.833, while
the standard part neglecting the effects from growth
induced by the coupling of the iso-mode and ad-mode is
shee (0 = 7/2) = 0.825. We conclude that the maximum
correction from the iso-mode induced by superhorizon dark
energy is roughly 1.0%.

C. Discussion

In Sec. IV, we presented the numerical results for the
matter power spectrum and the cosmological parameter oy,
following the theoretical model with the superhorizon dark
energy inhomogeneities. In this section, we compare these
results with the observations and discuss possible impli-
cations for further verification and application.
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For the matter power spectrum P(k), there have been
measurements from various observations by, e.g., SDSS
and DES. From the numerical results in Sec. IV, the matter
power spectrum might be modified in a manner depending
on the direction of the iso-mode by the order of 1% at
k ~0.15 hMpc~!, as shown in Figure 3, which results in
the directional dependence of the og parameter due to the
superhorizon dark energy inhomogeneities. The numerical
results in Sec. IV show that g may change depending on
the direction by 1% at the present epoch.

On the other hand, as for recent analyses with observa-
tional measurements, og is analyzed as og = 0.829 £ 0.015
with Planck [26], o3 = 0.821 4+ 0.023 with WMAP [27],
and o3 = 0.785 4 0.044 with SDSS [28]. As a comparison,
the Ss=03(Q,,/0.3)!/2 parameter was constrained as
Sg = 0.78070959 for flat ACDM with cosmic shear data
analysis from the Subaru Hyper Suprime-Cam [29], where
an Sg tension arises when compared with the Planck results,
which is followed by the Kilo-Degree Survey (KiDS-1000)
results [30]. However, the authors in Ref. [31] argued that it
may still be premature to claim a firm tension in the Sg
parameter by use of the combination of fog from mea-
surements of the redshift-space distortions. Taking the
current status of debates and systematic errors of these
relevant results into account, we conclude that our model
prediction is not contradictory to current observations. This
modification to og due to the iso-mode is also considered to
be consistent with a previous constraint on the o3 modi-
fication [32]. The correction indicated by the large-scale
inhomogeneities from our model are within the range of
allowed error, and the model may be worth future tests/
analyses with observational data.

As for the oy tension, the additional effect given by the
coupling of the iso-mode with the ad-mode introduced by
the superhorizon dark energy works in a way to boost the
value of oy inferred from LSS. On the other hand, Ref. [33]
showed that dynamical dark energy (DDE) could ease the
og tension indicated by the CMB and LSS observations
compared with ACDM model. The superhorizon dark
energy model adopted in the present paper is a kind of
thawing quintessential DDE consistent with the Chevallier-
Polarski-Linder parametrization for its equation of state
[34,35]. The directional-dependent increase in og, which is
induced by the additional matter fluctuations (iso-mode)
from DE inhomogeneities (sh-mode) modeled, could also
possibly work to ease the og tension between the CMB and
LSS slightly. For the H,, tension potentially relevant to the
og, it could be interesting to examine the prediction of
fog(a) evolution with the iso-mode of our model against the
observational measurements (e.g., Ref. [36]) as a future
investigation. A recent work based on DDE from a rolling
scalar field showed the potential of easing H, and og in the
same time by special coupling with dark matter [37],
motivated by the de Sitter swampland conjecture [38—42],
which is also relevant to the ultralight scalar field ¢ for

superhorizon dark energy adopted in this paper. As a
comparison with the model in this work, the authors of
Ref. [43] show the possibility of easing the H tension by
introducing local inhomogeneities from the coupling of a
chameleon dark energy model with dark matter.

Let us refocus on the hemispherical power asymmetry of
the CMB. The origin of the CMB dipole is usually
explained by the Galactic motions; however, it can be an
open question as discussed in Refs. [44,45]. The super-
horizon dark energy model adopted in this work is a
possible scenario to account for the CMB dipole by
introducing an intrinsic dipole [24]. We have formulated
for the prediction of the LSS matter power spectrum in this
model and checked for its consistency with observations in
this work, and the model remains to be tested by future
analyses of the LSS observations. The generalization of the
formulation with the source term in Appendix B could be
potentially interesting to investigate if an intrinsic dipole
from superhorizon perturbations is confirmed/detected.

As mentioned in Sec. I, several studies are suggesting
large-scale anomalies. In addition, it has been suggested that
there might be a directional dependence of the fine structure
constant @, where a nonzero-dipole-component model fits
better than a uniform universe model at 4.2¢ level [46].
Moreover, an isotropic nonvanishing cosmic birefringence,
or in other terms CMB polarization rotation, which is of
order O(0.1) degree, is reported by a recent analysis on
the Planck 2018 polarization data at 99.2% C.L. [47].
Concerning this effect, some previous researches have
studied its possible implications on dynamical dark energy
models possibly related to axionlike particles (e.g.,
Ref. [48]), which is similar to the ultralight field ¢ of
superhorizon dark energy model adopted in this work.
Hence, it would be interesting to explore whether our model
could make theoretical predictions on these observations or
be tested from these observations in the future, in hope of
possible clues of constraints from these aspects to improve
the model prediction on the LSS matter power spectrum in
turn. Another interesting direction is to extend the formu-
lation of superhorizon dark energy on the matter power
spectrum of the LSS beyond the linear regime to examine its
prediction on smaller scales, although this is beyond the
scope of the present work. Potentially related to the dis-
crimination of dark energy models with ours using LSS as
the probe, Ref. [49] investigated the effect of nonlinear
clustering of matter with quintessence dark energy, follow-
ing which Refs. [50,51] showed the comparison of matter
clustering with quintessence dark energy against tachyonic
dark energy in the linear and nonlinear regime.

V. SUMMARY AND CONCLUSIONS

In this study, motivated by observational anomalies
indicating potential anisotropies beyond the cosmological
principle with ACDM model, we formulated for the
theoretical framework to investigate LSS under the super-
horizon scale dark energy inhomogeneities. Based on this
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formulation, we determined the LSS matter power spec-
trum of matter in the inhomogeneous dark energy model
[24]. This model assumes an ultralight scalar field ¢ with
O(1) inhomogeneities of the field configuration and the
potential energy on superhorizon scales, called the sh-mode
dark energy, whose inhomogeneities are small within the
present horizon. The sh-mode dark energy causes iso-mode
perturbations in addition to the usual adiabatic perturba-
tions for the LSS matter distribution, leading to a modi-
fication to the matter power spectrum in a way that the
amplitude of the perturbations depends on the dipole
direction of the dark energy inhomogeneities.

Assuming the maximum allowed value of the sh-mode to
the CMB dipole, we put a constraint on the amplitude of the
sh-mode. This is used to evaluate the modification to the
matter power spectrum of the LSS. With the parameters in
Table I, we found that the modification to the matter power
spectrum caused by the sh-mode scales as k*> and gives
modification to the matter power spectrum as ~0.5% at
k=~0.1 hMpc~! and ~1% at k ~ 0.15 hMpc~'. The modi-
fication could be large on the smaller scales, but linear
perturbation theory used for the formulation may break
down at scales smaller than this scale. Also, we evaluated
the possible correction to og, which predicted 1% enhance-
ment in the direction = 0, compared with the value in the
direction 6 = 7/2. Our analysis contains the effects arising
from superhorizon perturbations beyond the horizon. The
model may also be interesting when it is investigated with
the separate universe simulation method [52—54] associated
with the viewpoint of the “super-sample” mode [55-59],
where the effects of the fluctuations with wavelength scales
beyond the survey volume/region were investigated and
discussed. By using simulations that are compatible with
our model, we expect to find more clues to understand the
small-scale growth in proportion to k> in the nonlinear
regime of density perturbations.
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APPENDIX A: EINSTEIN EQUATIONS
WITH THE SH-MODE

In this section, we find the Einstein tensors and energy-
momentum tensors that are necessary to obtain the

equations governing the evolution of the sh-mode while
referring to Ref. [24]. The metric adopted is

—(1+42%(t,x)) 0
9ij = ( 0 a*(1)(1 +2q>(z,x))6,-,,->’ o

where ¥ = "W, @ = sh® for the purpose of characterizing
the sh-mode. To find the equations that the sh-mode follow,
let us start with the Einstein equation Eq. (2), which we
write out again as

G*, = 8aG(T"{" + 7)),

where T# £m) is the energy-momentum tensor of matter, and
T”,(fﬁ) is that of the scalar field ¢. With the metric in

Eq. (Al), we calculate G*,, T"ﬁm), T”l(,(/’) and write the
explicit expressions, respectively. The energy-momentum
tensor for scalar field is

1 1
T",(fﬁ) = g0, 0, — ", <59aﬂaa¢aﬁ¢ +5m2¢2> ; (A2)
hence, we obtain its components as
’ 1 . 1 . . .
1O = =303 =53+ B — g D= gD, (A3)

7O — — o0, (A4)

(& 1., 1 . C ,
T = (SR =305 - B0 + = g )3,
(3)

(m)

On the other hand, for matter, 7#," is also well known,

1% = ~po = po. (A6)

" = apyt, (A7)

Ti" =0 (A8)
o,

Here, in the T j» the pressure is zero for the matter, and the
anisotropic stress IT’ j is set to zero. Then, the components
of the Einstein tensor are

ASPD

a2

G% = —3H? — 6H® + 6H>"Y + 2 . (A9)

G =20,d — 2HO;MW, (A10)
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: i ) . . .1
Gl = (—ﬂ - H2) §i+— [(Zad + &)™ 4 ad™ — 2D — 3aa D + Ec’),~c’),(Ash\If + AhD) | 5
a a
1
- ?aiaj(shqf + hp). (A11)

By substituting the above expressions into the Einstein equation Eq. (2), we obtain the background equations Egs. (18) and
(19) and sh-mode equations Egs. (28)—(30). Other equations come from the equations of motion (3)—(5) (see also Ref. [24]).

APPENDIX B: THE SOURCE TERM OF THE ISO-MODE WITH THE
QUADRUPOLE COMPONENT UP TO O(ke?)

When the quadrupole component is included, instead of Eq. (20), the superhorizon mode inhomogeneities are written as
ehp(t.x) —62451 i”x+eZZ¢2 T xixi + O(Ex%), (B1)

where T,(- " is identical to the definition of P( " in Appendix A of Ref. [24]. The order of the quadrupole component in the

sense of perturbatlon order is O(ke?). In th1s case, Eq. (64) holds by replacing the source term Eq. (65) with

$5(1p) = = S VI OTL (i) HD (03, () 27 (1) 1>——Zv ip")D1 (13 (p)

# VOO HG0 + 07 L e+ sz 10 e |2 00,030
S VT 2 op e | + 3L T 88,[ D05, )
. n n D] ! 8
SCUUDICRULY )<D1E2 +2H)D1(t) (p—25L(p) — i[5L(p)]>
—iHiéS”(r)ﬂ")% (1)D1(1)3 (p) +zHZ5 (01} f)H)Dl(oaL(p)]
D (1) ) 70
+Hf(t)<Dl(t) H ) DI {1 o [ Bt - 10 o )
#3202 (2 om0 )] - 5’;%%[f<rwl<rm<p>]
{3iH(f()+2) -~ [D1<r>5L<p>]}Zd>5"><r>T§ -y o o 2 om0, 0)
—312q> 9 1D,(05, (0] + 3H(f Zsjcp" 0 09 11 (16, p)
op L 2 T;; o opi o 1\oL
v S 01 2o (2 o aL@]HZ@ 1) 1Dy 5 o)) (B2)

where the subscripts “1”” and “2” mean the dipole and quadrupole of the sh-mode, respectively, again. As we have explained
in Sec. II D, we neglected the quadrupole contribution of O(ke?) in our specific formulation for structure formation up to
O(xe); nevertheless, we list the O(ke?) terms for the convenience of possible extension of the formulation.

However, even if we use the generalized form in Eq. (B2), for small scales p/aH > 1, neglecting the terms that are the
higher order infinitesimal of O(aH/ p) starting from the third term in the second line of Eq. (B2) will lead us to Eq. (65).
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APPENDIX C: ANALYTIC APPROXIMATIONS

In this Appendix, we find the analytic approximate for
the solutions of the equations and the sh-mode and then the
predicted power spectrum subsequently. First, we assume
an initial period of matter dominance as a — 0 or t — 0;
then, the background matter density yields p, = Q,,H3/a’
from Eq. (16). With these, we find the analytic approxi-
mation for the scalar field ¢. Assuming the previous initial
period in matter dominance as t — 0, we may rewrite
Eq. (17) using the relation a(t) = (3Hy/Q,,1)** as the
ordinary differential equation in terms of ¢ or a(t¢). By
defining 7= Hyt, Eq. (17) leads to the solution of ¢,
written as

S - _sinmt - m-t

$o = oo = hoF mt ﬁ¢oF<1 —), (C1)
where F is the amplitude of the dimensionless background
scalar field ¢y, ¢, a constant with the dimension of the
scalar field ¢, and i = m/H, and ¥ = £ (¢g/M ;) are the
dimensionless parameters. From Eq. (18), F' obeys

1-Q, :7;712((;50(}7’61)‘”])2_'_7(%1’,61)

i) ©

from which we can obtain the solution for /' making use of
the initial condition ¢,(0) — const. o

Similar to the definition that ¢y = ¢g¢hy, we define
parameters and nondimensionalized dipole pertur-
bation as ¢\" = god\”, 3" = Hioé(ln), P\ = HLO‘P(IW,
" = Hi()(l)(l"). Then, the equations that the sh-mode
follows read

3" 430" =0, (C3)
P 4 e =0, (C4)
vy
L _ gl _ o,
at 1 O (CS)
PP | 10a0g!" -
a7 aa o T
od" 9P 10a -\ 0
3L L 3 Zhgin) 20
+< ot ot adi ') 0i
< (n) 0%
— 29! >7°:0, (C6)
00" 10ag Sy 2990 5 )
27 =2 W = -30,a7 VY -6 =2 (CT)

Next, we assume the following power-law time depend-
ence for the perturbations in the limit of ¢ — 0,

3 = e Aja, (C8)

¢\ = (D + Dyir), (C9)

where A;, D, and D; are some constants to be determined
subsequently. At the same time, we have ¢, = F(1 — %)
following Eq. (C1).
Hence, combining Eq. (C7) with Eq. (C5), we find
2, 10 2a=2 _ @52 S22 7
3% 5@ A% —6FFim*D—2FFin*(y +2)D#" =0.
(C10)

When 7 — 0 with a, y # 0, the only nontrivial solution is
the case that o = 2. Therefore, we obtain
22A; + 277Fin®D = 0. (C11)

In a similar way, Eq. (C6) reduces to
- - 4 -
(P24 7)Di#2 + (D + Di¥) + 5 Aila+ 1)Fin2i

2 -

—|—§Fm Aif* = 0. (C12)
Similarly, when 7 — 0 with a, y # 0, we have y = 2 so that
6D; + m*D = 0. (C13)
Since we have defined (™ for the initial dipole direction of
the sh-mode in Eq. (71), solving for Egs. (C11) and (C13)

by setting to D = 1 without loss of generality, we obtain the
analytic solutions as the approximates of ¢ - 0(a — 0),

. - 1.

P\ gH0¢0<1 —6ﬁ1212> e, (C14)
o 27

8" & 5 Hom® e, (C15)
. 3

Vi ~ — oy TP, (C16)

We write again the modified power spectrum P(a, k, 6) in
Egs. (85) and (88) so that

P(a,k) = P(a,k,0) = Py(a, k)(1 + e*k*cos*0R(a)),

Wil R(@) = 52 ot (T(a) - T(@)F,
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following which we show a quantitative order estimation of
the correction to LSS power spectrum by applying the
previous analytic approximates in the limit of of matter
dominance. As we are interested in the evolution after early
matter dominance era (a,, < a < 1), the Hubble param-
eter can be approximated as (see Eq. (42) of Ref. [24])

. [P+ Qa3
H(a)=H(a)/Hy= Wﬁ
- 0

Also, in the standard cosmological model, growth mode
and decay mode become

Q,a>3. (C17)

Dy (a) :%Fl(a) A"%:a, (C18)
Ds(a) = M ~ a2, (C19)

Ve,

By using this, we use the linear growth rate f(a) ~ 1 during
matter dominance. Using these approximations, we esti-
mate Z, J as

4 (1-9,) (13 ,
G(a) ~ @W {7 612}, (C20)
T(a) a3 A “dddg(a), (C21)
J(a) ~ Aa dd'a'~G(d)). (C22)

On the other hand, from Eq. (C16), recalling V(I") =

—V'"™ /4 and using a general approximation for parameters
F?in* ~ 1 —Q,, that follows Eq. (C2), we obtain

Vi(a) :%F?Z—i \/;Tma%
~ %%ai (C23)
hence,
I(a) =~ ;‘;ma“, (C24)
T(a) =2 T(a) (c25)

Now, we can approximate R(a) in Eq. (88) as

R(a) = 22—ﬂ leH% @) ’ <%%> " (C26)

Eventually, the approximate solution of the power spectrum
becomes

3 1
P(a,k,0) =~ Py(a, k) (1 + €k? cos? 0 —

4r Q,, H}
1 (1-9,)\? g
) (®F<9m>3/2> “)

We note that the accuracy of this analytic approximation for
estimation is strongly restricted by the validity of approx-
imations for V| in Eq. (C16) and f(a) ~ 1 in the late time,
but it helps to understand the parameter dependence and
time-evolution behavior of the model modification to the
matter power spectrum.

(C27)
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