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The standard cosmological model assumes a homogeneous and isotropic universe as the background
spacetime on large scales called the cosmological principle. However, some observations suggest the
possibility of an inhomogeneous and anisotropic universe at large scales. In this paper, we investigate a
model of the Universe with random inhomogeneities and anisotropies on very large scales, motivated by the
supercurvature dark energy model in Nan et al. [Phys. Rev. D 99, 103512 (2019)]. In this model, the
authors introduced a scalar field with Oð1Þ inhomogeneities on a scale sufficiently larger than the current
horizon scale (superhorizon scale), and the potential energy of the scalar field explains the accelerating
expansion, with slight deviations from the cosmological principle. We aim at clarifying the theoretical
prediction on the large-scale structure (LSS) of the matter component in this model. Based on the work on
the superhorizon scale fluctuations (superhorizon mode) presented in Y. Nan and K. Yamamoto [Phys. Rev.
D 105, 063518 (2022)], we derive the equations that the perturbative components to the LSS obey as a
generalization of the cosmological perturbations theory, which is solved to find the influence of the dark
energy inhomogeneities on the formation of the LSS. Finally, we show that the model can be consistent
with observations by comparing the σ8 predicted by the numerical solution of the model with the σ8
indicated by observations such as Planck and the Sloan Digital Sky Survey.
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I. INTRODUCTION

Currently, observations of Type Ia supernovae and the
cosmic microwave background (CMB) have confirmed that
we live in an acceleratively expanding universe. It is known
that the expansion rate of the Universe changes from
decelerating to accelerating at a particular redshift called
the transition redshift, but the actual cause of this phase
transition remains unknown. To explain the present
Universe, models assuming the existence of an energy
source that lives with general relativity (GR) or that
modifies GR are being considered. With GR, the current
accelerating expansion of the Universe is generally driven
by some exotic energy called dark energy. Since the late
1990s, this dark energy has become an essential topic in
cosmology, in addition to cold dark matter (CDM) [1,2],
and is known to account for about 70% of the total energy
density of the Universe today. The simplest and most well-
accepted model to explain the accelerated expansion, the

cosmological constant Λ model as dark energy, is con-
sistent with extensive observations and is still considered
the leading one, which adds to CDM to build up theΛCDM
standard cosmological model.
However, while the standard cosmological model

assumes isotropy and homogeneity on large scales, several
studies suggest that there may be deviations from the
cosmological principle generally assumed in the standard
cosmological model. Some examples are as follows.
(i) Hemispherical asymmetry of CMB power spectrum.
The observed CMB power spectrum suggests the existence
of a power asymmetry modulated as a dipole, analyzed
from data of the Wilkinson Microwave Anisotropy Probe
(WMAP) of different hemispheres over the sky in Ref. [3],
and the Planck results also confirm this dipole modulation
[4,5]. Recently, the authors of Ref. [6] reported that
the observed dipole of the sky of Quasi-stellar objects
(QSO) rejects simply following the canonical, kinematic
Doppler interpretation of the CMB dipole (cf. Ref. [7]).
(ii) Directional dependence of Hubble parameter H0. The
investigation on the Hubble constant over the entire sky
using the x-ray luminosity-temperature relation of galaxy
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clusters suggests a directional dependence of the expansion
rate, which indicates that the expansion rate of the local
Universe may be anisotropic [8]; this possibility of aniso-
tropicH0 is reinforced by analyses from 10 different scaling
relations of galaxy clusters additional to the luminosity-
temperature relation [9]. Moreover, similar directional
dependence of H0 is suggested by observations on QSO
and gamma-ray burst sources [10]. Additionally, other
possible deviations have been observed (see, e.g.,
Ref. [11] for an extensive review on large-scale anomalies,
Ref. [12] for possible scale dependence of the dipole
modulation, Ref. [13] for low-multipole alignments, and
Ref. [14] for a comprehensive review on CMB anomalies).
Out of these anomalies in observations, the possibility of
probing the breakdown of cosmological principle is being
examined by some authors [15]. In addition, there is a recent
work testing the cosmological principle based on theΛCDM
modelwith the CMASSgalaxy sample of BOSSDR12 [16].
Since several previous observations and analyses suggest

possible deviations from the cosmological principle, it is
worthwhile enough to consider a cosmological model with
large-scale inhomogeneity that violates the cosmological
principle. Our motivation is to reveal whether a model
with large-scale inhomogeneity is consistent with observa-
tions and to figure out the theoretical predictionsof themodel.
In particular, this paper investigates the effect of inhomoge-
neity on the large-scale structure (LSS) of the Universe.
A commonly used statistical measurement for the

density perturbations in the Universe is the power spectrum
PðkÞ. Recent observations on the power spectrum of the
LSS have been accurately performed by galaxy surveys
such as the Sloan Digital Sky Survey (SDSS) and the Dark
Energy Survey (DES). Therefore, the purposes of this
research are to determine the power spectrum PðkÞ to find
out how the large-scale nonuniformity affects it, to deter-
mine the order of magnitude of the effect, and to check the
consistency with observations.
In recent years, cosmological models breaking the

cosmological principle have been constructed to study
various aspects of the accelerating Universe [17–22]. In
this paper, we consider a simplified version of the super-
curvature mode dark energy model [23], which is a
stochastic model of dark energy with large-scale inhomo-
geneity assuming an open universe associated with a
specific inflationary scenario. The model introduces the
potential energy of a scalar field with fluctuations of Oð1Þ
on a supercurvature scale sufficiently larger than the current
horizon scale, which is responsible for the accelerated
expansion. Motivated by the model, in the present paper,
we consider the dark energy model of a scalar field with
inhomogeneities on scales larger than the current horizon
scale assuming the spatial curvature K is set to K ¼ 0. In
the following, we first review the previous study [24] to
introduce this model and then find the equations governing
the terms of perturbations relevant to the LSS, the solutions

for the evolution of the perturbations, and the formulation
for the power spectrum based on these solutions.
The remaining parts of the paper are organized as

follows. In Sec. II, we explain the definitions for the
perturbations introduced by the large-scale inhomogeneity
of the dark energy and introduce the basic setups for the
formulation. In Sec. III, specific derivations leading to
the power spectrum of the LSS of matter following the
formulation are performed. Section IV is devoted to the
details of numerical calculation aimed at quantitative
evaluation of the modifications in matter distribution
introduced by the inhomogeneous model. In Sec. V, we
conclude the results and discuss their implications on the
cosmological model. The Appendix is attached as addi-
tional explanations for parts of the formulations and is
organized as follows. In Appendix A, we review the
derivation of the Einstein equations following the metric
perturbations from the superhorizon inhomogeneities of
dark energy introduced by this model. Appendix B presents
a generalized expression for a higher order of a source term
concerning the solution of the equation that governs the
isocurvature mode, which is introduced in Sec. III C.
Appendix C follows as additional details of the analytic
approximations for the modification to the LSS power
spectrum, which arises from different modes of perturba-
tions induced by large-scale inhomogeneity of dark energy
introduced in this paper; the approximations are useful in
the numerical evaluation and helpful for comprehending
the behaviors of the modifications induced by our model.
Throughout the present paper, we use the unit that
the velocity of light equals unity c ¼ 1, and Mpl denotes
the Planck mass defined byM2

pl ¼ ð8πGÞ−1, whereG is the
gravitational constant.

II. BASIS OF THE FORMULATION

We formulate for the evolution of matter density fluc-
tuation with dark energy inhomogeneities on superhorizon
scales based on the standard perturbation theory.
Subsequently, we evaluate the model predictions on the
matter power spectrum with the solution of the system. We
are mainly interested in the LSS formation in the late time,
where the modification on observables such as the matter
power spectrum are expected to occur. For the late-time
evolution of cosmological perturbations, in addition to the
cold dark matter, we consider that the inhomogeneous dark
energy on superhorizon scales is sourced by some light
scalar field ϕ, which is also treated as perturbations to a
homogeneous and isotropic universe. We start with the
basic equations governing the evolution of the dark matter,
the scalar field ϕ, and the metric perturbations.
This section shows how to describe different modes of

perturbations and how to derive the equations that the
components of perturbations follow. The formation of LSS
of galaxies in a uniformly isotropic universe has already
been well known within the cosmological perturbation
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theory. We start with generalizing the framework of
cosmological perturbation theory in the homogeneous
universe to that in an inhomogeneous universe.

A. Basic equations

In the following, the basic equations in the framework
of cosmological perturbation theory are introduced.
Following linear perturbation theory, we adopt the con-
formal Newtonian gauge,

ds2 ¼ −ð1þ 2Ψðt; xÞÞdt2 þ a2ðtÞð1þ 2Φðt; xÞÞdxidxjδij:
ð1Þ

As for the metric perturbations, we consider the equations
up to the first order of Ψ and Φ. The Einstein equation
associated with the energy-momentum tensor is

Gμ
ν ¼ 8πGðTμðmÞ

ν þ TμðϕÞ
ν Þ: ð2Þ

Here, TμðmÞ
ν and TμðϕÞ

ν are the energy-momentum tensor
of the matter and the scalar field, respectively, which

follow the conservation equation ∇μTμðcÞ
ν ¼ 0 with

c¼mðmatter componentÞ;ϕðscalar field componentÞ. The
equation of continuity for the matter component in an
expanding universe reads

∂ρ
∂t þ 3Hρþ 1

a
∂iðρviÞ þ 3 _Φρ ¼ 0; ð3Þ

and the Euler equation reads,

∂
∂t ðρv

iÞ þ 4Hρvi þ 1

a
∂jðρvivjÞ þ

ρ

a
∂Ψ
∂xi þ 4 _Φρvi ¼ 0: ð4Þ

The Klein-Gordon equation for the scalar field denoted
by ϕ is

1ffiffiffiffiffiffi−gp ∂μð
ffiffiffiffiffiffi
−g

p
gμν∂νϕÞ −m2ϕ ¼ 0: ð5Þ

As assumed in the previous works [23,24], we consider the
model that the ultralight scalar field is varying at a very
large spatial scale, much longer than the Hubble length in
the present Universe. Thus, they create large-scale inho-
mogeneities of the dark energy on superhorizon scales and
break the cosmological principle, but the violation is small
within the horizon of our Universe at present. To describe
the LSS in our model, we introduce two parameters. One is
the parameter ϵ to describe the inhomogeneities on the
superhorizon scales coming from the ultralight scalar field
ϕ. The other is the parameter κ for the standard cosmo-
logical perturbations. Our approach is based on the scheme
with two-parameter expansion.

B. Perturbations in an inhomogeneous universe

This subsection describes the notations for the perturba-
tions to clarify the LSS with the inhomogeneities on the
superhorizon scales. First, as for the metric perturbations,
we consider the first-order perturbation of Ψ and Φ in
Eq. (1). Furthermore, we introduce the two expansion
parameters ϵ and κ. Within them, ϵ describes the perturba-
tions of superhorizon scales, whereas κ describes the
conventional cosmological perturbations of the LSS of
galaxies on scales well inside the horizon scale. We denote
the superhorizon perturbations (superhorizon modes, for
short, sh-mode) by quantities labeled with “sh” and the
perturbations to the LSS by quantities labeled with “lss”.
Then, the metric perturbations can be written as

Φ ¼ κlssΦþ ϵshΦ; ð6Þ

Ψ ¼ κlssΨþ ϵshΨ: ð7Þ

Similarly, as for the density perturbations and the velocity
field, we write

ρ ¼ ρ0ðtÞð1þ κlssδþ ϵshδÞ; ð8Þ

vi ¼ κlssvi þ ϵshvi: ð9Þ

The scalar field has only the superhorizon scale perturba-
tions; then, we write

ϕ ¼ ϕ0 þ ϵshϕ; ð10Þ

where ϕ0 is the dark energy background. The evolution of
the superhorizon perturbations of ϕ was investigated in
Ref. [24], which is briefly reviewed in Sec. II D. In the
present paper, we focus on investigating the effect of the
superhorizon inhomogeneities on the LSS perturbations,
which is described by the perturbations of the order
of OðκϵÞ.
The superhorizon perturbations of the scalar field behave

as an isocurvature inhomogeneous dark energy model,
which give rise to the perturbations of the order of OðκϵÞ
through the coupling with the standard perturbations on the
LSS. Consequently, to characterize the effect of the order of
OðκϵÞ, we may write

κlssδ≡ κðadδþ ϵisoδÞ: ð11Þ

In the following, we ignore the terms higher order than
OðκaϵbÞ with a > 1 and b > 1 and keep the coupling terms
of Oðκ1ϵ1Þ which describes the imprints that the sh-mode
induces on the LSS matter distribution. Correspondingly,
we assume the following form for the perturbation expan-
sion in addition to Eq. (10),
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ρ ¼ ρ0ð1þ κlssδþ ϵshδÞ ¼ ρ0ð1þ κadδÞ þ ϵðshρþ κρ0
isoδÞ;
ð12Þ

vi ¼ κadvi þ ϵðshvi þ κisoviÞ; ð13Þ

Φ ¼ κadΦþ ϵðshΦþ κisoΦÞ; ð14Þ

Ψ ¼ κadΨþ ϵðshΨþ κisoΨÞ; ð15Þ

where shρ≡ ρ0
shδ. We note that the quantities labeled with

“ad” describe the conventional adiabatic perturbations of
the LSS, while the quantities labeled with “iso” describe the
perturbations on the LSS generated by the coupling with
the superhorizon inhomogeneities of dark energy, whose
effect is negligible in the early time hence obeying the
isocurvature initial condition.
To summarize this subsection, the evolution of the

superhorizon mode was expanded and represented by ϵ,
which was investigated in Ref. [23]. In the following, after
briefly reviewing the background equations and the super-
horizon perturbations of the order κ, we find the expression
for the perturbation to the LSS of the order κϵ as an original
work of the present paper.

C. The homogeneous background [Oðκ0ϵ0Þ]
We first consider the homogeneous background evolu-

tion of the model of the order Oðκ0ϵ0Þ, which is well
known, without the inhomogeneities induced by the
lss-mode and the sh-mode perturbations introduced in
Sec. II B. From the fluid equation in an expanding universe,
the equation of motion of the scalar field (Klein-Gordon
equation), and the Einstein equation, the background
equations follow:

_ρ0 þ 3Hρ0 ¼ 0; ð16Þ

ϕ̈0ðtÞ þ 3HðtÞ _ϕ0ðtÞ þm2ϕ0ðtÞ ¼ 0; ð17Þ

3H2 ¼ 8πG

�
1

2
_ϕ2
0 þ

1

2
m2ϕ2

0 þ ρ0

�
; ð18Þ

�
2
ä
a
þH2

�
¼ 8πG

�
1

2
m2ϕ2

0 −
1

2
_ϕ2
0

�
: ð19Þ

Here, ρ0 is the background density, and m is the scalar
field mass.

D. Superhorizon modes [Oðκ0ϵ1Þ]
We here review the evolutions of the superhorizon mode

(sh-mode) perturbations of the order Oðκ0ϵ1Þ. First, the sh-
mode can be spatially expanded and rewritten as the
following multipolar form; for instance, for ϕ, we have

ϵshϕðt; xÞ ¼ ϵ
X3
n¼1

ϕðnÞ
1 ðtÞTðnÞ

i xi þOðϵ2x2Þ; ð20Þ

where TðnÞ
i is defined by

Tðn¼1Þ
i ¼

ffiffiffiffiffiffi
3

4π

r 0
B@

1

0

0

1
CA; Tðn¼2Þ

i ¼
ffiffiffiffiffiffi
3

4π

r 0
B@

0

1

0

1
CA;

Tðn¼3Þ
i ¼

ffiffiffiffiffiffi
3

4π

r 0
B@

0

0

1

1
CA; ð21Þ

and the subscript “1” in ϕðnÞ
1 ðtÞ denotes the dipole compo-

nent. Throughout the present paper, we implicitly assume
the Einstein summation convention with respect to the
index of xi. Similarly, for the sh-mode up to the order of
Oðκ0ϵ1Þ, we can expand

shvi ≡ ∂i
shV ≃

X3
n¼1

VðnÞ
1 ðtÞTðnÞ

i ; ð22Þ

shδ ≃
X3
n¼1

δðnÞ1 ðtÞTðnÞ
i xi; ð23Þ

shΦ ≃
X3
n¼1

ΦðnÞ
1 ðtÞTðnÞ

i xi; ð24Þ

where we introduced the velocity potential shV ¼P
3
n¼1 V

ðnÞ
1 ðtÞTðnÞ

j xj, which is associated with the sh-mode
velocity. From Eq. (22), it is worth mentioning that shvi is
spatially uniform and plays a role similar to the dipole
modulation of the background density.
Next, we introduce the equations of the sh-mode, which

were given in Ref. [24], and a review with more details of
this part given in Appendix A. The sh-mode of Oðκ0ϵ1Þ
follows the equations

δðnÞ1 þ 3ΦðnÞ
1 ¼ 0; ð25Þ

_V 0ðnÞ
1 −ΨðnÞ

1 ¼ 0; ð26Þ

ϕ̈ðnÞ
1 þ 3H _ϕðnÞ

1 þm2ϕðnÞ
1

þ ð3 _ΦðnÞ
1 − _ΨðnÞ

1 − 6HΨðnÞ
1 Þ _ϕ0 − 2ΨðnÞ

1 ϕ̈0 ¼ 0; ð27Þ

3Hð _ΦðnÞ
1 −HΨðnÞ

1 Þ ¼ 4πGðρ0δðnÞ1 þm2ϕ0ϕ1

− _ϕ2
0Ψ

ðnÞ
1 þ _ϕ0

_ϕðnÞ
1 Þ; ð28Þ

_ΦðnÞ
1 −HΨðnÞ

1 ¼ −4πGðρ0V 0ðnÞ
1 þ _ϕ0ϕ

ðnÞ
1 Þ; ð29Þ
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ΨðnÞ
1 þΦðnÞ

1 ¼ 0; ð30Þ

where all subscripts “1” stand for the dipole of the

perturbations, and we introduced V 0ðnÞ
1 ≡ −aVðnÞ

1 .1 We also
note that the initial condition for the sh-mode perturbation

is the isocurvature type; hence, excepting ϕðnÞ
1 , we assume

that δðnÞ1 ¼ ΨðnÞ
1 ¼ ΦðnÞ

1 ¼ V 0
1
ðnÞ ¼ 0 at the initial time.

The initial value of ϕðnÞ
1 determines the amplitude of the

superhorizon mode perturbations (see Appendix C). The
evolution of the superhorizon modes was investigated in
Ref. [24] using both an analytic method and a numerical
method based on the above equations. We remark on some
of the results. The superhorizon modes come from the
scalar field perturbations on the superhorizon scales, which
is understood as an inhomogeneous dark energy model
effectively. The matter density perturbations in the region
of the higher amplitude of the scalar field decrease in
comparison with other regions because the larger amplitude
of the dark energy makes the Universe expand faster and
suppresses the growth of the density perturbations. Then,
the sign of the density perturbation of the sh-modes
becomes opposite to that of the scalar field perturbation.
We can put a constraint on the sh-mode using the dipole

observation in the CMB, as is discussed in Sec. IVA and in
Ref. [24]. Our model predicts dipole anisotropies in
the CMB due to the sh-modes. The dipole observations
in the CMB put a constraint on the predictions of
our model. We roughly find a constraint on the order of
magnitude of the sh-mode as ϵ≲Oð10−2Þ. Usually, the
CMB dipole is explained by the Doppler effect due to

the Galaxy motion, but it can also be explained by the
inhomogeneity of the sh-modes in our model. A combi-
nation of these two effects may explain the CMB dipole.
The constraint on the sh-mode ϵ≲Oð10−2Þ comes from
the assumption that the CMB dipole cannot exceed the
prediction caused by the sh-modes. A more accurate value
of the constraint is given later using the Planck data.

III. SPECIFIC FORMULATION OF
THE LSS [Oðκ1ϵ1Þ]

In our following formulation, for clarity, we temporarily
write the terms related to κ denoting the ad-mode/lss-mode
and ϵ denoting the iso-mode/sh-mode explained earlier in
Sec. II B and keep them to the order of Oðκ1ϵ1Þ that we are
interested in. Thereafter, we concretely seek the evolution
of the density fluctuations in a nonuniform universe,
described by Eqs. (3) and (4). We perform the calculation
based on the argument of Sec. II in the following steps:
(i) Step 1, we substitute Eqs. (12)–(15) into Eqs. (3) and (4).
(ii) Step 2, we introduce Fourier transformation with the
first-order perturbation expansion and obtain the two
equations. (iii) Step 3, we obtain formulations to describe
the matter density perturbations and the matter power
spectrum under the influence of inhomogeneous dark
energy.

A. Substitution of different modes into the
fluid equations

First, we substitute Eqs. (12)–(15) into the continuity
Eq. (3); then, we have

_ρ0ð1þ κadδÞ þ κρ0
ad_δþ ϵðsh_ρþ κ _ρ0

isoδþ κρ0
iso_δÞ þ 3Hðρ0ð1þ κadδÞ þ ϵðshρþ κρ0

isoδÞÞ

þ 1

a
∂ifρ0ð1þ κadδÞκadvi þ ϵ½ρ0ð1þ κadδÞðshvi þ κisoviÞ þ ðshρþ κρ0

isoδÞκadvi�g
þ 3fκad _Φρ0ð1þ κadδÞ þ ϵ½ρ0ð1þ κadδÞðsh _Φþ κiso _ΦÞ þ κad _Φðshρþ κρ0

isoδÞ�g ¼ 0: ð31Þ

The continuity equation for the background density ρ0 in a
homogeneous expanding universe of the order ðκ0ϵ0Þ reads

_ρ0 ¼ −3Hρ0; ð32Þ

which can be used to eliminate _ρ0 in the following. Next,
we consider the equations of perturbations. By inserting

Eq. (32) into Eq. (31), the zeroth-order part of ϵ, i.e., the
Oðϵ0Þ piece, is

κad_δþ 1

a
∂ifð1þ κadδÞκadvigþ 3κad _Φð1þ κadδÞ ¼ 0; ð33Þ

while the first-order part of ϵ, i.e., the Oðϵ1Þ piece,
reads

sh_ρþ κρ0
iso_δþ 3Hshρþ 1

a
∂i½ρ0ð1þ κadδÞðshvi þ κisoviÞ

þ ðshρþ κρ0
isoδÞκadviÞ� þ 3ρ0ð1þ κadδÞðsh _Φþ κiso _ΦÞ

þ 3κad _Φðshρþ κρ0
isoδÞ ¼ 0: ð34Þ

1To clarify the difference of the notations between this paper
and the previous work Ref. [24], we note that in this paper, V 0ðnÞ

1 is
equivalent with the V1ðmÞ defined in Sec. II A of Ref. [24] instead
of V1. The behaviors of the background ϕ0 and dipole perturba-
tions ϕ1, Φ1, and V1 predicted by the model under different
parameters can be found in Ref. [24].
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Equation (33) is the familiar equation for the matter
adiabatic perturbations. The sh-mode follows the equation
of the order of Oðϵ1Þ in Eq. (34),

sh_ρþ 3Hshρþ 3ρ0
sh _Φ ¼ 0: ð35Þ

Here, we note that the ∂i
shvi term vanishes due to the spatial

uniformity of shvi in Eq. (22). On the other hand, the
remaining part of Eq. (34) is

κρ0
iso_δþ 3κρ0

adδsh _Φþ 1

a
∂i½ρ0ðκ þ κ2adδÞisovi

þ κ2ρ0
isoδadvi þ ρ0ð1þ κadδÞshvi þ shρκadviÞ� ¼ 0: ð36Þ

Here, since we consider the matter density perturbations
relevant to the LSS after the matter dominant epoch, we
assumed

κlss _Φ ¼ κðad _Φþ ϵiso _ΦÞ ≃ 0: ð37Þ

Next, we substitute Eqs. (12)–(15) into the Euler
equation Eq. (4), which gives the zeroth order piece
[Oðϵ0Þ] to determine the adiabatic mode as

ð _ρ0ð1þ κadδÞ þ ρ0κ
ad_δÞκadvi þ ρ0ð1þ κadδÞκad_vi

þ 4Hρ0ð1þ κadδÞκadvi þ 1

a
∂j½ðρ0ð1þ κadδÞκadviκadvj�

þ 1

a
ðρ0ð1þ κadδÞ∂i½κadΨ� þ 4κad _Φρ0ð1þ κadδÞκadvi ¼ 0:

ð38Þ

Using Eqs. (32) and (38) can be simplified as

κad_viþHκadviþ1

a
κadvj∂j½κadvi�þ

1

a
∂i½κadΨ�þκad _Φκadvi¼0:

ð39Þ

The first order of ϵ in the Euler equation yields

sh_vi þ κiso_vi þHðshvi þ κisoviÞ

þ 1

a
ðshvj þ κisovjÞ∂j½κadvi� þ

1

a
κadvj∂j½shvi þ κisovi�

þ 1

a
∂i½shΨþ κisoΨ� þ κad _Φðshvi

þ κisoviÞ þ ðsh _Φþ κiso _ΦÞκadvi ¼ 0; ð40Þ

which leads to the Euler equation for the sh-mode at the
order of Oðκ0ϵ1Þ,

sh_vi þHshvi þ 1

a
∂i½shΨ� ¼ 0; ð41Þ

and the remaining part reads

κiso_vi þHκisovi þ 1

a
ðshvj þ κisovjÞ∂j½κadvi�

þ 1

a
κadvj∂j½shvi þ κisovi� þ 1

a
∂i½κisoΨ�

þ κad _Φðshvi þ κisoviÞ þ ðsh _Φþ κiso _ΦÞκadvi ¼ 0: ð42Þ

Using Eqs. (35), (37), and (41), we finally obtain the
following equations from the continuity equation and the
Euler equation:

κ

�
ad_δþ 1

a
∂i½advi�

�
þ κ2

1

a
∂i½adδadvi� ¼ 0; ð43Þ

κ

�
ad_vi þHadvi þ 1

a
∂i½adΨ�

�
þ κ2

1

a
advj∂j½advi� ¼ 0; ð44Þ

at the order of Oðϵ0Þ, and

κ

�
iso_δþ 3adδsh _Φþ 1

a
∂i½isovi þ adδshvi þ shδadvi�

�

þ κ2
�
1

a
∂i½adδisovi þ isoδadvi�

�
¼ 0; ð45Þ

κ

�
iso_vi þHisovi þ sh _Φadvi þ 1

a
ðshvj∂j½advi�

þ advj∂j½shvi� þ ∂i½isoΨ�Þ
�

þ κ2
1

a
fisovj∂j½advi� þ advj∂j½isovi�g ¼ 0; ð46Þ

at the order of Oðϵ1Þ, respectively. Equations (43) and (44)
are the familiar equations for the standard cosmological
perturbations theory of the matter density, while Eqs. (45)
and (46) are the basic equations to describe the matter
density perturbations under the influence of the sh-mode
dark energy.

B. Fourier modes of the order Oðκ1ϵ1Þ perturbations
We perform Fourier transformation for the perturbations

derived in the previous section. In the following, we focus
on the equations of the order ϵ first. The Fourier trans-
formations of the perturbations are written as

lssδðt; xÞ ¼ 1

ð2πÞ3
Z

d3plssδðt; pÞeip·x; ð47Þ

lssviðt; xÞ ¼ 1

ð2πÞ3
Z

d3p
−ipi

p2
aHlssθðt; pÞeip·x; ð48Þ

isoΨðt; xÞ ¼ 1

ð2πÞ3
Z

d3pisoΨðt; pÞeip·x; ð49Þ

with
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lssθðt; xÞ≡∇i
lssviðt; xÞ
aH

: ð50Þ

Here, p is the wave number vector, and we define
p ¼ jpj. Since the ad-mode and sh-mode of Ψ do not
contribute to density fluctuations, we write the iso-mode
only for Ψ.
The perturbations δ, θ, Ψ can be expanded according to

standard perturbation theory with respect to κ as

κlssδ ¼ κlssδκ þOðκ2Þ; ð51Þ

κlssθ ¼ κlssθκ þOðκ2Þ; ð52Þ

κisoΨ ¼ κisoΨκ þOðκ2Þ; ð53Þ

and we ignore terms higher than the order of Oðκ2Þ.
We consider the Fourier transform of the continuity

equation Eq. (45). By using the multipole expansion
Eq. (23), we have

shρ ≃ ρ0
X3
n¼1

δðnÞ1 TðnÞ
i ðtÞxi; ð54Þ

with which, from Eq. (45), we obtain the continuity
equation of OðκϵÞ as

1

ð2πÞ3
Z

d3k1
iso_δκðt; k1Þeik1·x þH

1

ð2πÞ3
Z

d3k2isoθκðt; k2Þeik2·x þ
X3
n¼1

VðnÞ
1 ðtÞTðnÞ

i
1

a
1

ð2πÞ3
Z

d3k1ðiki1Þadδκðt; k1Þeik1·x

þ 1

a

X3
n¼1

δðnÞ1 ðtÞTðnÞ
i

1

ð2πÞ3
Z

d3k1
−iki1
k21

aHadθκðt; k1Þeik1·x þ iH
X3
n¼1

δðnÞ1 ðtÞTðnÞ
j

1

ð2πÞ3
Z

d3k1
∂
∂kj1

½adθκðt; k1Þ�eik1·x

þ 3
X3
n¼1

_ΦðnÞ
1 ðtÞTðnÞ

i
1

ð2πÞ3
Z

d3k1
∂
∂ki1 ½

adδκðt; k1Þ�ieik1·x ¼ 0: ð55Þ

Hereafter, we omit κ and ϵ in the expressions whose order of perturbation are understood as OðκϵÞ.
By applying the Fourier transformations in each term of Eq. (55), we rewrite it as

1

H
iso_δκðt; pÞ þ isoθκðt; pÞ þ

X3
n¼1

VðnÞ
1 ðtÞTðnÞ

i
1

aH
ðipiÞadδκðt; pÞ þ

X3
n¼1

δðnÞ1 ðtÞTðnÞ
i

−ipi

p2
adθκðt; pÞ

þ i
X3
n¼1

δðnÞ1 ðtÞTðnÞ
j

∂
∂pj ½adθκðt; pÞ� þ 3i

1

H

X3
n¼1

_ΦðnÞ
1 ðtÞTðnÞ

i
∂
∂pi ½adθκðt; pÞ� ¼ 0: ð56Þ

Similarly, we obtain the Euler equation of OðκϵÞ after the Fourier expansions to Eq. (46),

1

ð2πÞ3
Z

d3k1
−iki1
k21

ðäisoθκðt; k1Þ þ _aiso_θκðt; k1ÞÞeik1·x þ
1

ð2πÞ3
Z

d3k1
−iki1
k21

aH2isoθκðt; k1Þeik1·x

þ 1

a
1

ð2πÞ3
Z

d3k1ðiki1ÞisoΨκðt; k1Þeik1·x þ
1

a
shvj

1

ð2πÞ3
Z

d3k1
ðki1Þðkj1Þ

k21
aHadθκðt; k1Þeik1·x

þ 1

a
1

ð2πÞ3
Z

d3k1
−ikj1
k21

aHadθκðt; k1Þeik1·x∂j½shvi� þ sh _Φ
1

ð2πÞ3
Z

d3k1
−iki1
k21

aHadθκðt; k1Þeik1·x ¼ 0: ð57Þ

Note that ∂j½shvi� ¼ 0 if we recall that shvi is a spatially uniform field independent of the coordinate xi [see Eq. (22)]. Hence,
substituting the multipole expansions Eqs. (22) and (24), we obtain the following Euler equation of OðκϵÞ:

1

H
iso_θκðt; pÞ þ

�
_H
H2

þ 2

�
isoθκðt; pÞ−

p2

a2H2
isoΨκðt; pÞ

þ i
aH

X3
n¼1

VðnÞ
1 ðtÞTðnÞ

j pjadθκðt; pÞ þ
1

H

X3
n¼1

_ΦðnÞ
1 ðtÞipiTðnÞ

j
∂
∂pj

�
pi

p2
adθκðt; pÞ

�
¼ 0: ð58Þ
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C. The power spectrum of structure formation

From the cosmological Poisson equation (for scales with
wave number k ≫ aH), we have

lssΨ ¼ −
4πGa2ρ0

p2
lssδ; ð59Þ

which is also applicable for both the ad-mode adδ and the
iso-mode isoδ as they sum up to be the lss-mode by
definition, that lssδ≡ad δþiso δ. Furthermore, for the famil-
iar ad-mode adδ, we may apply standard cosmological
perturbation theory up to the linear order OðκÞ; hence,
the equation reads

ad̈δκðt; pÞ þ 2Had _δκðt; pÞ − 4πGρ0adθκ ¼ 0; ð60Þ
whose standard solutions are written as

adδκ ¼ D1ðtÞδLðpÞ; ð61Þ
adθκ ¼ −fðtÞD1ðtÞδLðpÞ; ð62Þ

fðtÞ ¼ dðlnD1Þ
dðln aÞ ¼ 1

H

_D1

D1

: ð63Þ

Here, D1ðtÞ ∝ad δðtÞ is the growth factor of the growing
mode, δLðpÞ a constant depending on the Gaussian dis-
tribution of the initial density fluctuations, and fðtÞ the
linear growth rate.
We can use Eq. (56) to obtain the isoθκ expressed with

isoδκ and the ad-mode adδκ, adθκ. Subsequently, inserting the
obtained isoθκ into Eq. (58) and applying Eqs. (59)–(63), we
reach the equation that isoδκ follows, which can be written as

isöδκðt; pÞ þ 2Hiso _δκðt; pÞ − 4πGρ0isoδκ ≡ Sδðt; pÞ: ð64Þ

Here, the source term Sδðt; pÞ can be written explicitly to
the order OðκϵÞ that we are interested in, as

Sδðt;pÞ≡−
X3
n¼1

VðnÞ
1 ðtÞTðnÞ

i
1

a
ðipiÞHD1ðtÞδLðpÞð2fðtÞ þ 1Þ

−
1

a

X3
n¼1

_VðnÞ
1 TðnÞ

i ðipiÞD1ðtÞδLðpÞ þOððH0=pÞ0Þ;

ð65Þ

whose generalized form in higher order of perturbations for
the inhomogeneities is noted in Appendix B as Eq. (B2).

Specially, we note here that the usage of subscripts “1” and
“2” of the growth modeD1 and decay modeD2 follows the
convention, which should not be confused with all other
cases where subscript “1” combined with a superscript
“(n)” denote the dipole of the perturbations in the following

parts, for example, most importantly in VðnÞ
1 . We also note

that OððH0=pÞ0Þ denotes the higher order terms of the
expansion ðH0=pÞn with n ≥ 0.
The source term Sδðt; pÞ for the solution of the iso-mode

arises from the existence of the sh-mode; physically, it
represents the inhomogeneity in matter distribution induced
by the existence of the dark energy inhomogeneity. The
solution of Eq. (64) is

isoδκðt; pÞ ¼ c1ðpÞD1ðtÞ þ c2ðpÞD2ðtÞ

þ
Z

t

0

dt0
D1ðt0ÞD2ðtÞ −D1ðtÞD2ðt0Þ

W½D1ðt0Þ; D2ðt0Þ�
Sδðt0; pÞ;

ð66Þ

where W½D1ðt0Þ; D2ðt0Þ� is the Wronskian defined as

W½D1ðtÞ; D2ðtÞ� ¼ D1ðtÞ _D2ðtÞ − _D1ðtÞD2ðtÞ; ð67Þ

and D2 is the decay mode of adδ that vanishes in late times.
The first term and second term of Eq. (66) are the
homogeneous solutions which correspond to the well-
known normal ad-mode; the third term is a particular
solution related to the source term arising from the
existence of the spatial inhomogeneities of the sh-mode
mentioned previously. If the sh-mode of dark energy does
not exist, then by definition of the perturbations in Sec. II B,
no iso-mode additional to the ad-mode will arise; hence,
isoδκðt; pÞ ¼ 0. Therefore, only the particular solution part
related to the source term is nontrivial for the isocurvature
perturbations (iso-mode) to matter distribution to be con-
sidered in the followings. Hence, we write

isoδκðt;pÞ¼
Z

t

0

dt0
D1ðt0ÞD2ðtÞ−D1ðtÞD2ðt0Þ

W½D1ðt0Þ;D2ðt0Þ�
Sδðt0;pÞ: ð68Þ

Since isoδκ are perturbations that can be comprehended as
the modifications to the adiabatic mode, it is important on
relatively short wavelengths with large wave numbers p.
Therefore, if we keep terms to order OðpÞ and neglect the
assumed small quadrupole contribution, the analytical
solution can be approximated as

isoδκðt; pÞ ≃
Z

t

0

dt0
D1ðt0ÞD2ðtÞ −D1ðtÞD2ðt0Þ

W½D1ðt0Þ; D2ðt0Þ�
�
−
X3
n¼1

VðnÞ
1 ðt0ÞTðnÞ

i
1

a
ðipiÞHD1ðt0ÞδLðpÞð2fðt0Þ þ 1Þ

−
1

a

X3
n¼1

_VðnÞ
1 ðt0ÞTðnÞ

i ðipiÞD1ðt0ÞδLðpÞ
�
: ð69Þ
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Furthermore, from Eq. (69), transforming the variable from t to aðtÞ, we have

isoδκða; pÞ ≃
ffiffiffiffiffiffi
3

4π

r �
i
X3
n¼1

pneðnÞ
�Z

a

0

1

a0Hða0Þ da
0D1ða0ÞD2ðaÞ −D1ðaÞD2ða0Þ

W½D1ða0Þ; D2ða0Þ�

×

�
−3V1ða0Þ

1

a0
HD1ða0ÞδLðpÞð2fða0Þ þ 1Þ − 1

a0
a0H

dV1

da0
D1ða0ÞδLðpÞ

�
; ð70Þ

where we rewrote the velocity fields of the sh-mode as

VðnÞ
1 ðaÞ ¼ eðnÞV1ðaÞ; ð71Þ

where e ¼ ðeð1Þ; eð2Þ; eð3ÞÞ is the unit vector. With the
solutions for the density fluctuations, we calculate the
power spectrum.
To go further, we calculate the Wronskian, whose time

derivative is

_W½D1ðtÞ; D2ðtÞ� ¼ D1ðtÞD̈2ðtÞ − D̈1ðtÞD2ðtÞ ð72Þ

by definition. D1 and D2 follow the equation of motion of
the ad-mode Eq. (60), for example,

D̈1 þ 2H _D1 − 4πGρ0D1 ¼ 0: ð73Þ

Following these relation, the Wronskian can be rewritten as

D1ðtÞD̈2ðtÞ − D̈1ðtÞD2ðtÞ ¼ −2HW½D1ðtÞ; D2ðtÞ�: ð74Þ

Using Eqs. (72) and (74), we can obtain

_W
W

¼ −2
_a
a
; ð75Þ

whose solution is

W ¼ Ca−2; ð76Þ

where C is a constant to be determined in the following. In
the limit of a → 0 in a matter-dominant epoch, the
Wronskian yields

W½D1ða0Þ; D2ða0Þ� ≃ −
5

2
H0

ffiffiffiffiffiffiffi
Ωm

p
a−2; ð77Þ

where we have found the constant C ¼ − 5
2
H0

ffiffiffiffiffiffiffi
Ωm

p
by

using the initial condition similar to the ΛCDM model.
Using the previous expressions of the Wronskian W to

compute isoδκða; pÞ, we obtain

isoδκða; pÞ ¼
2

5

ffiffiffiffiffiffi
3

4π

r
i
P

np
neðnÞ

H0

ffiffiffiffiffiffiffi
Ωm

p δLðpÞD2ðaÞ
Z

a

0

da0
�
2D2

1ða0Þfða0ÞV1ða0Þ þD2
1ða0ÞV1ða0Þ þD2

1ða0Þa0
dV1

da0

�

−
2

5

ffiffiffiffiffiffi
3

4π

r
i
P

np
neðnÞ

H0

ffiffiffiffiffiffiffi
Ωm

p D1ðaÞδLðpÞ
Z

a

0

da0D2ða0Þ
�
V1ða0Þð2fða0ÞD1ða0Þ þD1ða0ÞÞ þD1ða0Þa0

dV1

da0

�

≡ 2

5
D1ðaÞ

ffiffiffiffiffiffi
3

4π

r
i
P

np
neðnÞ

H0

ffiffiffiffiffiffiffi
Ωm

p δLðpÞðIðaÞ − J ðaÞÞ: ð78Þ

Here, we have defined

IðaÞ≡D2ðaÞ
D1ðaÞ

Z
a

0

da0D1ða0ÞGða0Þ; ð79Þ

J ðaÞ≡
Z

a

0

da0D2ða0ÞGða0Þ; ð80Þ

with the growth kernel GðaÞ defined by

GðaÞ≡D1ðaÞ
�
V1ðaÞ½2fðaÞ þ 1� þ a

dV1ðaÞ
da

�
; ð81Þ

which arises from the coupling of the sh-mode V1ðaÞ and
ad-mode D1ðaÞ. Therefore, the density fluctuations of the
lss-mode up to OðκÞ can be written as

lssδ ¼ adθκ þ ϵisoδκ

¼ D1ðaÞδLðpÞ þ ϵ
2

5

ffiffiffiffiffiffi
3

4π

r
D1ðaÞ

i
P

np
neðnÞ

H0

ffiffiffiffiffiffiffi
Ωm

p

× δLðpÞðIðaÞ − J ðaÞÞ: ð82Þ

By using the above results, we evaluate the matter power
spectrum Pða; kÞ defined by
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hlssδða; k1Þlssδða; k2Þi ¼ Pða; k1Þδð3ÞD ðk1 þ k2Þ; ð83Þ

where δð3ÞD ðk1 þ k2Þ is the Dirac delta function. Because we
obtain the following expectation value,

hlssδða; k1Þlssδða; k2Þi ¼ D2
1ðaÞhδLðk1ÞδLðk2Þi

− ϵ2
3

25π

P
n;n0k

n
1e

ðnÞkn02 e
ðn0Þ

H2
0Ωm

ðIðaÞ

− J ðaÞÞ2D2
1ðaÞhδLðk1ÞδLðk2Þi;

ð84Þ

we finally obtain the power spectrum under the influence of
the dark energy inhomogeneity as

Pða;kÞ¼Pða;k;θÞ¼P0ða;kÞð1þϵ2k2cos2θRðaÞÞ; ð85Þ

where we used the relation

hδLðk1ÞδLðk2Þi ¼ Pmðk1Þδð3ÞD ðk1 þ k2Þ; ð86Þ

with the matter power spectrum in a homogeneous universe
PmðkÞ,

P0ða; kÞ ¼ D2
1ðaÞPmðkÞ: ð87Þ

Here, we defined time evolution of the relative correction as

RðaÞ ¼ 3

25π

1

ΩmH2
0

ðIðaÞ − J ðaÞÞ2 ð88Þ

and

X3
n¼1

kneðnÞ ¼ k cos θ; ð89Þ

where θ is the angle between the wave number vector k and
the direction of the superhorizon velocity.
Now we have completed the basic formulation of the

LSS under the influence of the superhorizon inhomogene-
ities of dark energy, which is used for the theoretical
predictions in the next section.

IV. NUMERICAL EVALUATION AND RESULTS

Since we have obtained the formulation of the calcu-
lation, the next step is to evaluate the power spectrum
Pða; kÞ numerically. For this purpose, we need to consider
the limits on the amplitudes of the perturbations in the
formulations.

A. Amplitude of the perturbations arising from
the sh-mode

Wemay obtain the maximum allowed value of ϵ from the
integrated Sachs-Wolfe (ISW) effect of the CMB temper-
ature anisotropies [23,24]. The ISW effect on the CMB
temperature anisotropies coming from the superhorizon
dark energy can be estimated by

ΔT
T

ðγÞ ≃ 2ϵ

Z
η0

ηd

dη

�∂shΨðη; χ; γÞ
∂η

�				
χ¼η0−η

≃ 2ϵ

Z
η0

ηd

dη

�X3
n¼1

∂ΨðnÞ
1 ðηÞ
∂η TðnÞ

i χγi
�				

χ¼η0−η
; ð90Þ

where γ is the unit vector of the line of sight direction,
and we used that the comoving coordinate xi is written as
xi ¼ χγi using the radial coordinate χ and the component of γ.

It can also be confirmed that the matrices TðnÞ
i introduced in

Sec. II D are related to the real basis spherical harmonics as

YðnÞ
l¼1ðω;φÞ≡ TðnÞ

i
xi

χ
; ð91Þ

where we used γ ≡ ðsinω cosφ; sinω sinφ; cosωÞ. Then,
we can rewrite Eq. (90) as

ΔT
T

ðγÞ ¼ 2ϵ
X3
n¼1

JðnÞ1 YðnÞ
1 ðω;φÞ; ð92Þ

where we defined

JðnÞ1 ≡
Z

η0

ηd

dηðη0 − ηÞ
�∂ΨðnÞ

1 ðηÞ
∂η

�
; ð93Þ

where η0 and ηd are the conformal time at the present epoch
and the decoupling time, respectively. Using the previous

work in Ref. [24], the solution of JðnÞ1 can be obtained, as
demonstrated inTable I,withwhichwecanput a constraint on
the sh-mode from the observation of the CMB as

ð2ϵÞ2
3

X3
n¼1

ðJðnÞ1 Þ2 ≤ Cobs
1 ; ð94Þ

whereCobs
1 is the dipole component of themultipole expansion

of the angular correlation function of the CMB temperature
anisotropies, CðϑÞ ¼Pl C

obs
l Plðcos ϑÞð2lþ 1Þ=4π.

Using the Planck Legacy Archive,2 we have
Cobs
1 ≤ 6.3 × 10−6, and obtain the maximum allowed value

of ϵ as

2Based on observations obtained with Planck (http://www.esa
.int/Planck), an ESA science mission with instruments and
contributions directly funded by ESA Member States, NASA,
and Canada.
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ϵmax

�X3
n¼1

ðJðnÞ1 Þ2
�1=2

≤ 2.2 × 10−3: ð95Þ

We use this maximum allowed value for the numerical
calculation of the power spectrum in the next subsection.

B. Power spectrum and σ8
We here focus on the power spectrum described by

Eq. (85). The relative difference of the power spectrum is
given by

ξmodifðk; θ; aÞ≡ Pða; k; θÞ
P0ða; kÞ

− 1 ¼ ϵ2maxk2 cos2 θRðaÞ; ð96Þ

where RðaÞ is defined by Eq. (88). Figure 1 plots the time
evolution ofRðaÞ. We note that θ means the angle between
the dipole direction and the wave number vector as defined
by Eq. (89). Each curve in this figure adopts the four sets of
the parameters in Table I, which can be consistent with
cosmological observations [24]. Here, we assumed the
amplitude of the superhorizon mode as the maximum value
of ϵ given by Eq. (95). This is equivalent to the assumption
that the entire contribution to the dipole anisotropies in the
observed CMB arises from the influence of the super-
horizon mode dark energy inhomogeneities.
By applying the transfer function in radiation-matter

domination transition and the linear matter power spectrum
from the Cosmic Linear Anisotropy Solving System [25]
for P0ða; kÞ in Eq. (85), Fig. 2 demonstrates the modified
power spectrum predicted. The dashed curve (θ ¼ 0) and
the solid curve ðθ ¼ π=2Þ correspond to Pða ¼ 1; k; θ ¼ 0Þ and Pða ¼ 1; k; θ ¼ π=2Þ ¼ P0ða ¼ 1; kÞ, respectively.

The quasi-nonlinear effect of the density perturba-
tions on the power spectrum becomes influential for
k≳ 0.2 hMpc−1, which is ignored in our computation.
Because our theoretical model relies on the linear theory of
the density perturbation, then our theoretical predictions for
the quasi-nonlinear regions k≳ 0.2 hMpc−1 should be
carefully understood. From the aspect of the cosmological
perturbation theory, we keep in mind that the scope of
validity of OðκÞ linear expansion used for the OðκϵÞ
modification to power spectrum in Fig. 3 is roughly up
to k ∼ 0.2 hMpc−1.
Figure 3 plots the relative correction to the power

spectrum, Eq. (96), for θ ¼ 0 at the present epoch a ¼ 1
with adopting the maximum allowed value, Eq. (95). This
figure shows that the matter power spectrum at the present
epoch may be modified by∼0.4% ð1%Þ at the wave number
k ∼ 0.1 hMpc−1 ð0.15 hMpc−1Þ due to the existence of
dipole anisotropies in dark energy at a ¼ 1. Each curve in
Fig. 3 adopts the same sets of the parameters as those of
Fig. 1, denoted in Table I, where r̃; m̃ are the parameters
characterizing the superhorizon dark energy model defined
as r̃≡ 1

6
ðϕ0=MplÞ2, m̃≡m=H0 with ϕ0 ≡ ϕ̄0ϕ̃0, and F is a

constant used in the numerical computation (see also
Appendix C).

FIG. 1. This figure plots the time-evolution behavior of the
modification term RðaÞ to the matter power spectrum defined in
Eq. (88). The modification to the matter power spectrum grows
rapidly after a≳ 0.5 when the dark energy becomes important;
hence, the sh-mode perturbation associated with the inhomoge-
neity of the dark energy assumed in this model begins to show its
impact on structure formation. Notice that the curve and the ticks
of the vertical axis are multiplied by a factor of 100. We here
adopt the model No. 1 in Table I as an example.

FIG. 2. This figure shows the modified matter power spectrum
Pða ¼ 1; kÞ in Eq. (85) for θ ¼ 0 compared with θ ¼ π=2, which
is evaluated at the present epoch a ¼ 1. Here, the curve with
θ ¼ π=2ðcos θ ¼ 0Þ can also be understood as the linear power
spectrum of the standard model without modification. Typically,
the theoretical prediction of the modification scales as ∝ k2 and
becomes powerful on small scales with large k, although we
confine our discussion on the possible observational imprints of
the model modification to the LSS power spectrum up to k ∼
0.2 hMpc−1 due to the usage of linear perturbation theory in the
formulation (see also Fig. 3), where the estimated modification is
supposed small and consistent with existent observational results.
In this figure, we adopted the model No. 1 in Table I.
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From Figs. 1 and 3, we find that power spectrum
Pða; k; θÞ depends on Ωm; however, it does not much
depend on the parameters r̃ and m̃. This is because we fixed
the amplitude of the inhomogeneities of the superhorizon
mode dark energy ϵmax from Eq. (95). The parameters r̃ and
m̃ change the dynamics of the dark energy, as demonstrated
in Ref. [24], but the predictions on the observational
quantities only depend on the amplitude of the inhomo-
geneities of the superhorizon mode dark energy ϵmax.
Therefore, the modification to the matter power spectrum
depends on Ωm but not on r̃ and m̃.
Next, we consider the effect of the superhorizon mode

dark energy on σ8, which is often used as a quantity to
characterize the amplitude of the matter power spectrum
weighing the clustering of matter within radius R denoted
by σR at the scale of R ¼ 8 h−1Mpc. As a forecast of
order estimation, this can be evaluated roughly as
σ28 ∼ PðkÞk3jk¼0.1 hMpc−1 . From this naive estimation, the
correction on PðkÞ due to the existence of the iso-mode of

LSS is about 0.4%, and the modification to σ8 is forecasted
to be about 0.16%. However, we have obtained the
numerical solutions for the sh-mode and iso-mode and
calculate σ8 with numerical evaluations more carefully in
the following. We define σR in our mode including the
inhomogeneities of the superhorizon mode dark energy by

shσ2Rða; θÞ ¼
1

2π2

Z
∞

0

dkk2Pða; k; θÞW2ðkRÞ; ð97Þ

with the window function WðkRÞ

WðkRÞ ¼ 3ðsin kR − kR cos kRÞ
ðkRÞ3 ; ð98Þ

and Eq. (85). Figure 4 plots shσ8ða ¼ 1; θÞ as a function of
θ, indicating the possible anisotropic imprints of the model
modification.
The maximum result for shσ8ðθÞ at cos θ ¼ 1 with the

model No. 1 or No. 2 will be shσ8ðθ ¼ 0Þ ¼ 0.833, while
the standard part neglecting the effects from growth
induced by the coupling of the iso-mode and ad-mode is
shσ8ðθ ¼ π=2Þ ¼ 0.825. We conclude that the maximum
correction from the iso-mode induced by superhorizon dark
energy is roughly 1.0%.

C. Discussion

In Sec. IV, we presented the numerical results for the
matter power spectrum and the cosmological parameter σ8,
following the theoretical model with the superhorizon dark
energy inhomogeneities. In this section, we compare these
results with the observations and discuss possible impli-
cations for further verification and application.

TABLE I. The parameters of the models applied for calculation
in this work.

Model r̃ m̃ F Ωm ϵmax JðnÞ1

No. 1 70 1=10 1.00 0.30 0.0117 0.107
No. 2 6.3 1=3 1.01 0.30 0.0117 0.107
No. 3 72 1=10 1.00 0.28 0.0108 0.116
No. 4 68 1=10 1.00 0.32 0.0127 0.0985

FIG. 3. Relative modification term to the power spectrum,
ξmodifðk; θ; aÞ in Eq. (96) as a function of k, which arises from the
iso-mode. In this figure, we fixed θ ¼ 0 and a ¼ 1 and adopted
the maximum allowed value for the initial amplitude of the
sh-mode inferred from the ISW effect, Eq. (95). Here, we use the
parameter sets shown in Table I. As expressed in Eq. (96) and
addressed in the caption of Fig. 2, ξmodifðk; θ; aÞ ∝ k2, but the
validity of the prediction may be restricted by the usage of linear
perturbation theory up to k ∼ 0.2 hMpc−1. However, a possible
indication of the modification to the power spectrum predicted by
the model together with consideration of the quasi-linear and
nonlinear regime would be interesting as a future exploration.

FIG. 4. The direction-dependent shσ8ðθÞ predicted by our model
in Eq. (97). The θ angle is related to the dipole direction of the
dark energy inhomogeneities noted as the sh-mode. This figure
demonstrates that, in an anisotropic way, the clumpiness of the
LSS matter power spectrum on scale of 8 h−1 Mpc may be
enhanced by the iso-mode perturbation to the matter introduced
in this work, which is sourced by the sh-mode perturbation.
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For the matter power spectrum PðkÞ, there have been
measurements from various observations by, e.g., SDSS
and DES. From the numerical results in Sec. IV, the matter
power spectrum might be modified in a manner depending
on the direction of the iso-mode by the order of 1% at
k ∼ 0.15 hMpc−1, as shown in Figure 3, which results in
the directional dependence of the σ8 parameter due to the
superhorizon dark energy inhomogeneities. The numerical
results in Sec. IV show that σ8 may change depending on
the direction by 1% at the present epoch.
On the other hand, as for recent analyses with observa-

tional measurements, σ8 is analyzed as σ8 ¼ 0.829� 0.015
with Planck [26], σ8 ¼ 0.821� 0.023 with WMAP [27],
and σ8 ¼ 0.785� 0.044with SDSS [28]. As a comparison,
the S8 ≡ σ8ðΩm=0.3Þ1=2 parameter was constrained as
S8 ¼ 0.780þ0.030

−0.022 for flat ΛCDM with cosmic shear data
analysis from the Subaru Hyper Suprime-Cam [29], where
an S8 tension arises when compared with the Planck results,
which is followed by the Kilo-Degree Survey (KiDS-1000)
results [30]. However, the authors in Ref. [31] argued that it
may still be premature to claim a firm tension in the S8
parameter by use of the combination of fσ8 from mea-
surements of the redshift-space distortions. Taking the
current status of debates and systematic errors of these
relevant results into account, we conclude that our model
prediction is not contradictory to current observations. This
modification to σ8 due to the iso-mode is also considered to
be consistent with a previous constraint on the σ8 modi-
fication [32]. The correction indicated by the large-scale
inhomogeneities from our model are within the range of
allowed error, and the model may be worth future tests/
analyses with observational data.
As for the σ8 tension, the additional effect given by the

coupling of the iso-mode with the ad-mode introduced by
the superhorizon dark energy works in a way to boost the
value of σ8 inferred from LSS. On the other hand, Ref. [33]
showed that dynamical dark energy (DDE) could ease the
σ8 tension indicated by the CMB and LSS observations
compared with ΛCDM model. The superhorizon dark
energy model adopted in the present paper is a kind of
thawing quintessential DDE consistent with the Chevallier-
Polarski-Linder parametrization for its equation of state
[34,35]. The directional-dependent increase in σ8, which is
induced by the additional matter fluctuations (iso-mode)
from DE inhomogeneities (sh-mode) modeled, could also
possibly work to ease the σ8 tension between the CMB and
LSS slightly. For the H0 tension potentially relevant to the
σ8, it could be interesting to examine the prediction of
fσ8ðaÞ evolution with the iso-mode of our model against the
observational measurements (e.g., Ref. [36]) as a future
investigation. A recent work based on DDE from a rolling
scalar field showed the potential of easing H0 and σ8 in the
same time by special coupling with dark matter [37],
motivated by the de Sitter swampland conjecture [38–42],
which is also relevant to the ultralight scalar field ϕ for

superhorizon dark energy adopted in this paper. As a
comparison with the model in this work, the authors of
Ref. [43] show the possibility of easing the H0 tension by
introducing local inhomogeneities from the coupling of a
chameleon dark energy model with dark matter.
Let us refocus on the hemispherical power asymmetry of

the CMB. The origin of the CMB dipole is usually
explained by the Galactic motions; however, it can be an
open question as discussed in Refs. [44,45]. The super-
horizon dark energy model adopted in this work is a
possible scenario to account for the CMB dipole by
introducing an intrinsic dipole [24]. We have formulated
for the prediction of the LSS matter power spectrum in this
model and checked for its consistency with observations in
this work, and the model remains to be tested by future
analyses of the LSS observations. The generalization of the
formulation with the source term in Appendix B could be
potentially interesting to investigate if an intrinsic dipole
from superhorizon perturbations is confirmed/detected.
As mentioned in Sec. I, several studies are suggesting

large-scale anomalies. In addition, it has been suggested that
there might be a directional dependence of the fine structure
constant α, where a nonzero-dipole-component model fits
better than a uniform universe model at 4.2σ level [46].
Moreover, an isotropic nonvanishing cosmic birefringence,
or in other terms CMB polarization rotation, which is of
order Oð0.1Þ degree, is reported by a recent analysis on
the Planck 2018 polarization data at 99.2% C.L. [47].
Concerning this effect, some previous researches have
studied its possible implications on dynamical dark energy
models possibly related to axionlike particles (e.g.,
Ref. [48]), which is similar to the ultralight field ϕ of
superhorizon dark energy model adopted in this work.
Hence, it would be interesting to explore whether our model
could make theoretical predictions on these observations or
be tested from these observations in the future, in hope of
possible clues of constraints from these aspects to improve
the model prediction on the LSS matter power spectrum in
turn. Another interesting direction is to extend the formu-
lation of superhorizon dark energy on the matter power
spectrum of the LSS beyond the linear regime to examine its
prediction on smaller scales, although this is beyond the
scope of the present work. Potentially related to the dis-
crimination of dark energy models with ours using LSS as
the probe, Ref. [49] investigated the effect of nonlinear
clustering of matter with quintessence dark energy, follow-
ing which Refs. [50,51] showed the comparison of matter
clustering with quintessence dark energy against tachyonic
dark energy in the linear and nonlinear regime.

V. SUMMARY AND CONCLUSIONS

In this study, motivated by observational anomalies
indicating potential anisotropies beyond the cosmological
principle with ΛCDM model, we formulated for the
theoretical framework to investigate LSS under the super-
horizon scale dark energy inhomogeneities. Based on this
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formulation, we determined the LSS matter power spec-
trum of matter in the inhomogeneous dark energy model
[24]. This model assumes an ultralight scalar field ϕ with
Oð1Þ inhomogeneities of the field configuration and the
potential energy on superhorizon scales, called the sh-mode
dark energy, whose inhomogeneities are small within the
present horizon. The sh-mode dark energy causes iso-mode
perturbations in addition to the usual adiabatic perturba-
tions for the LSS matter distribution, leading to a modi-
fication to the matter power spectrum in a way that the
amplitude of the perturbations depends on the dipole
direction of the dark energy inhomogeneities.
Assuming the maximum allowed value of the sh-mode to

the CMB dipole, we put a constraint on the amplitude of the
sh-mode. This is used to evaluate the modification to the
matter power spectrum of the LSS. With the parameters in
Table I, we found that the modification to the matter power
spectrum caused by the sh-mode scales as k2 and gives
modification to the matter power spectrum as ≃0.5% at
k ≃ 0.1 hMpc−1 and ∼1% at k ∼ 0.15 hMpc−1. The modi-
fication could be large on the smaller scales, but linear
perturbation theory used for the formulation may break
down at scales smaller than this scale. Also, we evaluated
the possible correction to σ8, which predicted 1% enhance-
ment in the direction θ ¼ 0, compared with the value in the
direction θ ¼ π=2. Our analysis contains the effects arising
from superhorizon perturbations beyond the horizon. The
model may also be interesting when it is investigated with
the separate universe simulation method [52–54] associated
with the viewpoint of the “super-sample” mode [55–59],
where the effects of the fluctuations with wavelength scales
beyond the survey volume/region were investigated and
discussed. By using simulations that are compatible with
our model, we expect to find more clues to understand the
small-scale growth in proportion to k2 in the nonlinear
regime of density perturbations.
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APPENDIX A: EINSTEIN EQUATIONS
WITH THE SH-MODE

In this section, we find the Einstein tensors and energy-
momentum tensors that are necessary to obtain the

equations governing the evolution of the sh-mode while
referring to Ref. [24]. The metric adopted is

gij¼
 
−ð1þ2Ψðt;xÞÞ 0

0 a2ðtÞð1þ2Φðt;xÞÞδij

!
; ðA1Þ

where Ψ ¼ shΨ, Φ ¼ shΦ for the purpose of characterizing
the sh-mode. To find the equations that the sh-mode follow,
let us start with the Einstein equation Eq. (2), which we
write out again as

Gμ
ν ¼ 8πGðTμðmÞ

ν þ TμðϕÞ
ν Þ;

where TμðmÞ
ν is the energy-momentum tensor of matter, and

TμðϕÞ
ν is that of the scalar field ϕ. With the metric in

Eq. (A1), we calculate Gμ
ν, TμðmÞ

ν , TμðϕÞ
ν and write the

explicit expressions, respectively. The energy-momentum
tensor for scalar field is

TμðϕÞ
ν ¼ gμα∂αϕ∂νϕ−gμν

�
1

2
gαβ∂αϕ∂βϕþ

1

2
m2ϕ2

�
; ðA2Þ

hence, we obtain its components as

T0ðϕÞ
0 ¼−

1

2
_ϕ2
0−

1

2
m2ϕ2

0þ _ϕ2
0
shΨ− _ϕ0

sh _Φ−m2ϕ0
shΦ; ðA3Þ

T0ðϕÞ
i ¼ − _ϕ0∂i

shϕ; ðA4Þ

TiðϕÞ
j ¼

�
1

2
_ϕ2
0 −

1

2
m2ϕ2

0 − _ϕ2
0
shΨþ _ϕ0

sh _Φ −m2ϕ0
shΦ
�
δij:

ðA5Þ

On the other hand, for matter, TμðmÞ
ν is also well known,

T0ðmÞ
0 ¼ −ρ0 − ρ0

shδ; ðA6Þ

T0ðmÞ
i ¼ aρ0shvi; ðA7Þ

TiðmÞ
j ¼ 0: ðA8Þ

Here, in the Ti
j, the pressure is zero for the matter, and the

anisotropic stress Πi
j is set to zero. Then, the components

of the Einstein tensor are

G0
0 ¼ −3H2 − 6Hsh _Φþ 6H2shΨþ 2

ΔshΦ
a2

; ðA9Þ

G0
i ¼ 2∂i

sh _Φ − 2H∂i
shΨ; ðA10Þ
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Gi
j ¼

�
−2

ä
a
−H2

�
δij þ

2

a2

�
ð2aäþ _a2ÞshΨþ a _ash _Ψ − a2shΦ̈ − 3a _ash _Φþ 1

2
∂i∂jðΔshΨþ ΔshΦÞ

�
δij

−
1

a2
∂i∂jðshΨþ shΦÞ: ðA11Þ

By substituting the above expressions into the Einstein equation Eq. (2), we obtain the background equations Eqs. (18) and
(19) and sh-mode equations Eqs. (28)–(30). Other equations come from the equations of motion (3)–(5) (see also Ref. [24]).

APPENDIX B: THE SOURCE TERM OF THE ISO-MODE WITH THE
QUADRUPOLE COMPONENT UP TO Oðκϵ2Þ

When the quadrupole component is included, instead of Eq. (20), the superhorizon mode inhomogeneities are written as

ϵshϕðt; xÞ ¼ ϵ
X3
n¼1

ϕðnÞ
1 ðtÞTðnÞ

i xi þ ϵ2
X5
n¼1

ϕðnÞ
2 ðtÞTðnÞ

ij xjxi þOðϵ3x3Þ; ðB1Þ

where TðnÞ
ij is identical to the definition of PðnÞ

ij in Appendix A of Ref. [24]. The order of the quadrupole component in the
sense of perturbation order is Oðκϵ2Þ. In this case, Eq. (64) holds by replacing the source term Eq. (65) with

Sδðt; pÞ≡ −
X3
n¼1

VðnÞ
1 ðtÞTðnÞ

i
1

a
ðipiÞHD1ðtÞδLðpÞð2fðtÞ þ 1Þ − 1

a

X3
n¼1

_VðnÞ
1 TðnÞ

i ðipiÞD1ðtÞδLðpÞ

þ
X5
n¼1

VðnÞ
2 ðtÞ

�
HðfðtÞ þ 1ÞTðnÞ

ij
1

a
∂
∂pj ½piD1ðtÞδLðpÞ� þ

H
a

X5
n¼1

VðnÞ
2 ðtÞTðnÞ

jk p
i ∂
∂pk

�
pipj

p2
fðtÞD1ðtÞδLðpÞ

�

−
H
a

X5
n¼1

VðnÞ
2 ðtÞTðnÞ

ij
pipj

p2
fðtÞD1ðtÞδLðpÞ

�
þ
X5
n¼1

1

a
_VðnÞ
2 ðtÞTðnÞ

ij
∂
∂pj ½piD1ðtÞδLðpÞ�

− iHfðtÞ
X3
n¼1

δðnÞ1 ðtÞTðnÞ
i

�
D̈1ðtÞ
_D1ðtÞ

þ 2H

�
D1ðtÞ

�
pi

p2
δLðpÞ −

∂
∂pi ½δLðpÞ�

�

− iH
X3
n¼1

_δðnÞ1 ðtÞTðnÞ
i

pi

p2
fðtÞD1ðtÞδLðpÞ þ iH

X3
n¼1

_δðnÞ1 ðtÞTðnÞ
j

∂
∂pj ½fðtÞD1ðtÞδLðpÞ�

þHfðtÞ
�
D̈1ðtÞ
_D1ðtÞ

þ 2H

�
D1ðtÞ

X5
n¼1

δðnÞ2 ðtÞ
�
TðnÞ
ij

∂
∂pj

�
pi

p2
δLðpÞ

�
− TðnÞ

jk
∂
∂pj

∂
∂pk ½δLðpÞ�

�

þ
X5
n¼1

H _δðnÞ2 ðtÞTðnÞ
ij

∂
∂pj

�
pi

p2
fðtÞD1ðtÞδLðpÞ

�
−
X5
n¼1

H_δðnÞ2 ðtÞTðnÞ
jk

∂
∂pj

∂
∂pk ½fðtÞD1ðtÞδLðpÞ�

−
�
3iHðfðtÞ þ 2Þ ∂

∂pi ½D1ðtÞδLðpÞ�
�X3

n¼1

_ΦðnÞ
1 ðtÞTðnÞ

i − iH
X3
n¼1

_ΦðnÞ
1 ðtÞTðnÞ

l pi ∂
∂pl

1

�
pi

p2
fðtÞD1ðtÞδLðpÞ

�

− 3i
X3
n¼1

Φ̈ðnÞ
1 ðtÞTðnÞ

i
∂
∂pi ½D1ðtÞδLðpÞ� þ 3HðfðtÞ þ 2Þ

X5
n¼1

_ΦðnÞ
2 ðtÞTðnÞ

ij
∂
∂pi

∂
∂pj ½D1ðtÞδLðpÞ�

þ iH
X5
n¼1

_ΦðnÞ
2 ðtÞTðnÞ

lm pi ∂
∂pl

∂
∂pm

�
pi

p2
fðtÞD1ðtÞδLðpÞ

�
þ 3

X5
n¼1

Φ̈ðnÞ
2 ðtÞTðnÞ

ij
∂
∂pi

∂
∂pj ½D1ðtÞδLðpÞ�; ðB2Þ

where the subscripts “1” and “2”mean the dipole and quadrupole of the sh-mode, respectively, again. As we have explained
in Sec. II D, we neglected the quadrupole contribution of Oðκϵ2Þ in our specific formulation for structure formation up to
OðκϵÞ; nevertheless, we list the Oðκϵ2Þ terms for the convenience of possible extension of the formulation.
However, even if we use the generalized form in Eq. (B2), for small scales p=aH ≫ 1, neglecting the terms that are the

higher order infinitesimal of OðaH=pÞ starting from the third term in the second line of Eq. (B2) will lead us to Eq. (65).
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APPENDIX C: ANALYTIC APPROXIMATIONS

In this Appendix, we find the analytic approximate for
the solutions of the equations and the sh-mode and then the
predicted power spectrum subsequently. First, we assume
an initial period of matter dominance as a → 0 or t → 0;
then, the background matter density yields ρ0 ¼ ΩmH2

0=a
3

from Eq. (16). With these, we find the analytic approxi-
mation for the scalar field ϕ0. Assuming the previous initial
period in matter dominance as t → 0, we may rewrite
Eq. (17) using the relation aðtÞ ¼ ð3

2
H0

ffiffiffiffiffiffiffi
Ωm

p
tÞ2=3 as the

ordinary differential equation in terms of t or aðtÞ. By
defining t̃≡H0t, Eq. (17) leads to the solution of ϕ0

written as

ϕ0 ≡ ϕ̄0ϕ̃0 ¼ ϕ̄0F
sinmt
mt

≃ ϕ̄0F

�
1 −

m̃2 t̃2

6

�
; ðC1Þ

where F is the amplitude of the dimensionless background
scalar field ϕ̃0, ϕ0 a constant with the dimension of the
scalar field ϕ, and m̃≡m=H0 and r̃≡ 1

6
ðϕ̄0=MplÞ2 are the

dimensionless parameters. From Eq. (18), F obeys

1−Ωm¼ r̃m̃2ðϕ̃0ðF;aÞja¼1Þ2þ r̃

�∂ϕ̃0ðF;aÞ
∂ t̃

				
a¼1

�
2

; ðC2Þ

from which we can obtain the solution for F making use of
the initial condition ϕ0ð0Þ → const.
Similar to the definition that ϕ0 ≡ ϕ̄0ϕ̃0, we define

parameters and nondimensionalized dipole pertur-

bation as ϕðnÞ
1 ≡ ϕ̄0ϕ̃

ðnÞ
1 , δ̃ðnÞ1 ≡ 1

H0
δðnÞ1 , Ψ̃ðnÞ

1 ≡ 1
H0

ΨðnÞ
1 ,

Φ̃ðnÞ
1 ≡ 1

H0
ΦðnÞ

1 . Then, the equations that the sh-mode
follows read

δ̃ðnÞ1 þ 3Φ̃ðnÞ
1 ¼ 0; ðC3Þ

Ψ̃ðnÞ
1 þ Φ̃ðnÞ

1 ¼ 0; ðC4Þ

∂V 0ðnÞ
1

∂ t̃ − Ψ̃ðnÞ
1 ¼ 0; ðC5Þ

∂2ϕ̃ðnÞ
1

∂ t̃2 þ 3
1

a
∂a
∂ t̃

∂ϕ̃ðnÞ
1

∂ t̃ þ m̃2ϕ̃ðnÞ
1

þ
�
3
∂Φ̃ðnÞ

1

∂ t̃ −
∂Ψ̃ðnÞ

1

∂ t̃ − 3
1

a
∂a
∂ t̃ Ψ̃

ðnÞ
1

� ∂ϕ̃0

∂ t̃
− 2Ψ̃ðnÞ

1

∂2ϕ̃0

∂ t̃2 ¼ 0; ðC6Þ

2
∂Φ̃ðnÞ

1

∂ t̃ −2
1

a
∂a
∂ t̃ Ψ̃

ðnÞ
1 ¼−3Ωma−3V

0ðnÞ
1 −6r̃

∂ϕ̃0

∂ t̃ ϕ̃ðnÞ
1 : ðC7Þ

Next, we assume the following power-law time depend-
ence for the perturbations in the limit of t → 0,

δ̃ðnÞ1 ¼ eðnÞAIt̃α; ðC8Þ

ϕ̃ðnÞ
1 ¼ eðnÞðDþDI t̃γÞ; ðC9Þ

where AI, D, and DI are some constants to be determined
subsequently. At the same time, we have ϕ̃0 ¼ Fð1 − m̃2 t̃2

6
Þ

following Eq. (C1).
Hence, combining Eq. (C7) with Eq. (C5), we find�
−
2

3
α2−

10

9
α

�
AI t̃α−2−6r̃Fm̃2D−2r̃Fm̃2ðγþ2ÞDIt̃γ ¼0:

ðC10Þ

When t̃ → 0 with α, γ ≠ 0, the only nontrivial solution is
the case that α ¼ 2. Therefore, we obtain

22AI þ 27r̃Fm̃2D ¼ 0: ðC11Þ

In a similar way, Eq. (C6) reduces to

ðγ2 þ γÞDI t̃γ−2 þ m̃2ðDþDI t̃γÞ þ
4

9
AIðαþ 1ÞFm̃2t̃α

þ 2

9
Fm̃2AI t̃α ¼ 0: ðC12Þ

Similarly, when t̃ → 0 with α, γ ≠ 0, we have γ ¼ 2 so that

6DI þ m̃2D ¼ 0: ðC13Þ

Since we have defined eðnÞ for the initial dipole direction of
the sh-mode in Eq. (71), solving for Eqs. (C11) and (C13)
by setting toD ¼ 1without loss of generality, we obtain the
analytic solutions as the approximates of t → 0ða → 0Þ,

ϕðnÞ
1 ≃H0ϕ̄0

�
1 −

1

6
m̃2t̃2

�
eðnÞ; ðC14Þ

δðnÞ1 ≃ −
27

22
H0m̃2r̃Ft̃2eðnÞ; ðC15Þ

V 0ðnÞ
1 ≃ −

3

22
m̃2r̃Ft̃3eðnÞ: ðC16Þ

We write again the modified power spectrum Pða; k; θÞ in
Eqs. (85) and (88) so that

Pða; kÞ ¼ Pða; k; θÞ ¼ P0ða; kÞð1þ ϵ2k2cos2θRðaÞÞ;

with RðaÞ ¼ 3

25π

1

ΩmH2
0

ðIðaÞ − J ðaÞÞ2;
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following which we show a quantitative order estimation of
the correction to LSS power spectrum by applying the
previous analytic approximates in the limit of of matter
dominance. As we are interested in the evolution after early
matter dominance era (aeq ≪ a ≪ 1), the Hubble param-
eter can be approximated as (see Eq. (42) of Ref. [24])

H̃ðaÞ≡HðaÞ=H0¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r̃m̃2ϕ̃2

0þΩma−3

1− r̃a2ϕ̃02
0

s
≃

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωma−3

q
: ðC17Þ

Also, in the standard cosmological model, growth mode
and decay mode become

D1ðaÞ ¼
5Ωm

2
H̃ðaÞ

Z
a

0

da0

ða0H̃ða0ÞÞ3 ≃ a; ðC18Þ

D2ðaÞ ¼
H̃ðaÞffiffiffiffiffiffiffi
Ωm

p ≃ a−3=2: ðC19Þ

By using this, we use the linear growth rate fðaÞ ≃ 1 during
matter dominance. Using these approximations, we esti-
mate I , J as

GðaÞ ≃ 4

99

ð1 −ΩmÞ
FðΩmÞ3=2

�
13

2
a

9
2

�
; ðC20Þ

IðaÞ ≃ a−
5
2

Z
a

0

da0a0Gða0Þ; ðC21Þ

J ðaÞ ≃
Z

a

0

da0a0−3
2Gða0Þ: ðC22Þ

On the other hand, from Eq. (C16), recalling VðnÞ
1 ¼

−V 0ðnÞ
1 =a and using a general approximation for parameters

F2r̃m̃2 ≃ 1 −Ωm that follows Eq. (C2), we obtain

V1ðaÞ ≃
4

99
Fr̃

m̃2

Ωm

1ffiffiffiffiffiffiffi
Ωm

p a
7
2

≃
4

99

ð1 −ΩmÞ
FðΩmÞ3=2

a
7
2; ðC23Þ

hence,

IðaÞ ≃ 4

99

ð1 −ΩmÞ
FðΩmÞ3=2

a4; ðC24Þ

J ðaÞ ≃ 13

8
IðaÞ: ðC25Þ

Now, we can approximate RðaÞ in Eq. (88) as

RðaÞ ¼ 3

25π

1

ΩmH2
0

�
5

8

�
2
�
4

99

ð1 −ΩmÞ
FðΩmÞ3=2

�
2

a8: ðC26Þ

Eventually, the approximate solution of the power spectrum
becomes

Pða; k; θÞ ≃ P0ða; kÞ
�
1þ ϵ2k2 cos2 θ

3

4π

1

ΩmH2
0

×
�
1

99

ð1 −ΩmÞ
FðΩmÞ3=2

�
2

a8
�
: ðC27Þ

We note that the accuracy of this analytic approximation for
estimation is strongly restricted by the validity of approx-
imations for V1 in Eq. (C16) and fðaÞ ≃ 1 in the late time,
but it helps to understand the parameter dependence and
time-evolution behavior of the model modification to the
matter power spectrum.

[1] P. A. Ade, N. Aghanim, C. Armitage-Caplan, M. Arnaud, M.
Ashdown, F. Atrio-Barandela, J. Aumont, C. Baccigalupi,
A. J. Banday, R. Barreiro et al., Astron. Astrophys. 571, A16
(2014).

[2] N. Aghanim, Y. Akrami, M. Ashdown, J. Aumont, C.
Baccigalupi, M. Ballardini, A. Banday, R. Barreiro, N.
Bartolo, S. Basak et al., Astron. Astrophys. 641, A6 (2020).

[3] H. K. Eriksen, A. Banday, K. Górski, F. Hansen, and P.
Lilje, Astrophys. J. Lett. 660, L81 (2007).

[4] N. Aghanim, C. Armitage-Caplan, M. Arnaud, M.
Ashdown, F. Atrio-Barandela, J. Aumont, C. Baccigalupi,
A. Banday, R. Barreiro, J. Bartlett et al., Astron. Astrophys.
571, A27 (2014).

[5] S. Ghosh, R. Kothari, P. Jain, and P. K. Rath, J. Cosmol.
Astropart. Phys. 01 (2016) 046.

[6] N. J. Secrest, S. von Hausegger, M. Rameez, R. Mohayaee,
S. Sarkar, and J. Colin, Astrophys. J. Lett. 908, L51
(2021).

[7] K. Yamamoto, Mon. Not. R. Astron. Soc. 341, 1199 (2003).
[8] K. Migkas, G. Schellenberger, T. H. Reiprich, F. Pacaud,

M. E. Ramos-Ceja, and L. Lovisari, Astron. Astrophys. 636,
A15 (2020).

[9] K. Migkas, F. Pacaud, G. Schellenberger, J. Erler, N. T.
Nguyen-Dang, T. H. Reiprich, M. E. Ramos-Ceja, and L.
Lovisari, Astron. Astrophys. 649, A151 (2021).

[10] O. Luongo, M. Muccino, E. O. Colgain, M. M. Sheikh-
Jabbari, and L. Yin, arXiv:2108.13228.

[11] L. Perivolaropoulos, Galaxies 2, 22 (2014).
[12] P. K. Rath and P. Jain, J. Cosmol. Astropart. Phys. 12

(2013) 014.

LARGE-SCALE STRUCTURE WITH SUPERHORIZON … PHYS. REV. D 105, 083531 (2022)

083531-17

https://doi.org/10.1051/0004-6361/201321591
https://doi.org/10.1051/0004-6361/201321591
https://doi.org/10.1051/0004-6361/201833910
https://doi.org/10.1086/518091
https://doi.org/10.1051/0004-6361/201321556
https://doi.org/10.1051/0004-6361/201321556
https://doi.org/10.1088/1475-7516/2016/01/046
https://doi.org/10.1088/1475-7516/2016/01/046
https://doi.org/10.3847/2041-8213/abdd40
https://doi.org/10.3847/2041-8213/abdd40
https://doi.org/10.1046/j.1365-8711.2003.06477.x
https://doi.org/10.1051/0004-6361/201936602
https://doi.org/10.1051/0004-6361/201936602
https://doi.org/10.1051/0004-6361/202140296
https://arXiv.org/abs/2108.13228
https://doi.org/10.3390/galaxies2010022
https://doi.org/10.1088/1475-7516/2013/12/014
https://doi.org/10.1088/1475-7516/2013/12/014


[13] J. Muir, S. Adhikari, and D. Huterer, Phys. Rev. D 98,
023521 (2018).

[14] D. J. Schwarz, C. J. Copi, D. Huterer, and G. D. Starkman,
Classical Quantum Gravity 33, 184001 (2016).

[15] C. Krishnan, R. Mohayaee, E. Ó Colgáin, M. M. Sheikh-
Jabbari, and L. Yin, Phys. Rev. D 105, 063514 (2022).

[16] Y. Kim, C.-G. Park, H. Noh, and J.-c. Hwang, arXiv:2112.
04134.

[17] A. K. Yadav, Res. Astron. Astrophys. 12, 1467 (2012).
[18] H. Amirhashchi, Phys. Rev. D 96, 123507 (2017).
[19] H. Amirhashchi and S. Amirhashchi, Phys. Rev. D 99,

023516 (2019).
[20] H. Amirhashchi, Phys. Rev. D 97, 063515 (2018).
[21] B. Mishra, P. P. Ray, and S. Pacif, Eur. Phys. J. Plus 132, 429

(2017).
[22] B. Mishra, P. P. Ray, and R. Myrzakulov, Eur. Phys. J. C 79,

1 (2019).
[23] Y. Nan, K. Yamamoto, H. Aoki, S. Iso, and D. Yamauchi,

Phys. Rev. D 99, 103512 (2019).
[24] Y. Nan and K. Yamamoto, Phys. Rev. D 105, 063518

(2022).
[25] D. Blas, J. Lesgourgues, and T. Tram, J. Cosmol. Astropart.

Phys. 07 (2011) 034.
[26] K. L. Pandey, T. Karwal, and S. Das, J. Cosmol. Astropart.

Phys. 07 (2020) 026.
[27] G. Hinshaw et al., Astrophys. J. Suppl. Ser. 208, 19 (2013).
[28] S. More, H. Miyatake, R. Mandelbaum, M. Takada, D. N.

Spergel, J. R. Brownstein, and D. P. Schneider, Astrophys. J.
806, 2 (2015).

[29] C. Hikage et al., Publ. Astron. Soc. Jpn. 71, 43 (2019).
[30] M. Asgari et al., Astron. Astrophys. 645, A104 (2021).
[31] R. C. Nunes and S. Vagnozzi, Mon. Not. R. Astron. Soc.

505, 5427 (2021).
[32] C. M. Hirata, J. Cosmol. Astropart. Phys. 09 (2009) 011.
[33] G. Lambiase, S. Mohanty, A. Narang, and P. Parashari, Eur.

Phys. J. C 79, 141 (2019).
[34] M. Chevallier and D. Polarski, Int. J. Mod. Phys. D 10, 213

(2001).
[35] E. V. Linder, Phys. Rev. Lett. 90, 091301 (2003).
[36] B. Sagredo, S. Nesseris, and D. Sapone, Phys. Rev. D 98,

083543 (2018).
[37] P. Agrawal, G. Obied, and C. Vafa, Phys. Rev. D 103,

043523 (2021).

[38] C. Vafa, arXiv:hep-th/0509212.
[39] A. Arvanitaki, S. Dimopoulos, S. Dubovsky, N. Kaloper,

and J. March-Russell, Phys. Rev. D 81, 123530 (2010).
[40] G. Obied, H. Ooguri, L. Spodyneiko, and C. Vafa,

arXiv:1806.08362.
[41] S. K. Garg and C. Krishnan, J. High Energy Phys. 11

(2019) 075.
[42] H. Ooguri, E. Palti, G. Shiu, and C. Vafa, Phys. Lett. B 788,

180 (2019).
[43] R.-G. Cai, Z.-K. Guo, L. Li, S.-J. Wang, and W.-W. Yu,

Phys. Rev. D 103, L121302 (2021).
[44] Y. Akrami et al. (Planck Collaboration), Astron. Astrophys.

644, A100 (2020).
[45] R. M. Sullivan and D. Scott, arXiv:2111.12186.
[46] J. K. Webb, J. A. King, M. T. Murphy, V. V. Flambaum,

R. F. Carswell, and M. B. Bainbridge, Phys. Rev. Lett. 107,
191101 (2011).

[47] Y. Minami and E. Komatsu, Phys. Rev. Lett. 125, 221301
(2020).

[48] T. Fujita, K. Murai, H. Nakatsuka, and S. Tsujikawa, Phys.
Rev. D 103, 043509 (2021).

[49] M. Pratap Rajvanshi and J. S. Bagla, J. Cosmol. Astropart.
Phys. 06 (2018) 018.

[50] M. P. Rajvanshi and J. S. Bagla, Classical Quantum Gravity
37, 235008 (2020).

[51] M. P. Rajvanshi, A. Singh, H. K. Jassal, and J. S. Bagla,
Classical Quantum Gravity 38, 195001 (2021).

[52] C. Wagner, F. Schmidt, C.-T. Chiang, and E. Komatsu, Mon.
Not. R. Astron. Soc. 448, L11 (2015).

[53] T. Baldauf, U. Seljak, L. Senatore, and M. Zaldarriaga,
J. Cosmol. Astropart. Phys. 09 (2016) 007.

[54] D. Jamieson and M. Loverde, Phys. Rev. D 100, 023516
(2019).

[55] Y. Li, W. Hu, and M. Takada, Phys. Rev. D 89, 083519
(2014).

[56] Y. Li, W. Hu, and M. Takada, Phys. Rev. D 90, 103530
(2014).

[57] K. Akitsu and M. Takada, Phys. Rev. D 97, 063527 (2018).
[58] K. Akitsu, N. S. Sugiyama, and M. Shiraishi, Phys. Rev. D

100, 103515 (2019).
[59] S. Masaki, T. Nishimichi, and M. Takada, Mon. Not. R.

Astron. Soc. 496, 483 (2020).

YAMASHITA, NAN, SUGIYAMA, and YAMAMOTO PHYS. REV. D 105, 083531 (2022)

083531-18

https://doi.org/10.1103/PhysRevD.98.023521
https://doi.org/10.1103/PhysRevD.98.023521
https://doi.org/10.1088/0264-9381/33/18/184001
https://doi.org/10.1103/PhysRevD.105.063514
https://arXiv.org/abs/2112.04134
https://arXiv.org/abs/2112.04134
https://doi.org/10.1088/1674-4527/12/11/002
https://doi.org/10.1103/PhysRevD.96.123507
https://doi.org/10.1103/PhysRevD.99.023516
https://doi.org/10.1103/PhysRevD.99.023516
https://doi.org/10.1103/PhysRevD.97.063515
https://doi.org/10.1140/epjp/i2017-11697-y
https://doi.org/10.1140/epjp/i2017-11697-y
https://doi.org/10.1140/epjc/s10052-018-6506-5
https://doi.org/10.1140/epjc/s10052-018-6506-5
https://doi.org/10.1103/PhysRevD.99.103512
https://doi.org/10.1103/PhysRevD.105.063518
https://doi.org/10.1103/PhysRevD.105.063518
https://doi.org/10.1088/1475-7516/2011/07/034
https://doi.org/10.1088/1475-7516/2011/07/034
https://doi.org/10.1088/1475-7516/2020/07/026
https://doi.org/10.1088/1475-7516/2020/07/026
https://doi.org/10.1088/0067-0049/208/2/19
https://doi.org/10.1088/0004-637X/806/1/2
https://doi.org/10.1088/0004-637X/806/1/2
https://doi.org/10.1093/pasj/psz010
https://doi.org/10.1051/0004-6361/202039070
https://doi.org/10.1093/mnras/stab1613
https://doi.org/10.1093/mnras/stab1613
https://doi.org/10.1088/1475-7516/2009/09/011
https://doi.org/10.1140/epjc/s10052-019-6634-6
https://doi.org/10.1140/epjc/s10052-019-6634-6
https://doi.org/10.1142/S0218271801000822
https://doi.org/10.1142/S0218271801000822
https://doi.org/10.1103/PhysRevLett.90.091301
https://doi.org/10.1103/PhysRevD.98.083543
https://doi.org/10.1103/PhysRevD.98.083543
https://doi.org/10.1103/PhysRevD.103.043523
https://doi.org/10.1103/PhysRevD.103.043523
https://arXiv.org/abs/hep-th/0509212
https://doi.org/10.1103/PhysRevD.81.123530
https://arXiv.org/abs/1806.08362
https://doi.org/10.1007/JHEP11(2019)075
https://doi.org/10.1007/JHEP11(2019)075
https://doi.org/10.1016/j.physletb.2018.11.018
https://doi.org/10.1016/j.physletb.2018.11.018
https://doi.org/10.1103/PhysRevD.103.L121302
https://doi.org/10.1051/0004-6361/202038053
https://doi.org/10.1051/0004-6361/202038053
https://arXiv.org/abs/2111.12186
https://doi.org/10.1103/PhysRevLett.107.191101
https://doi.org/10.1103/PhysRevLett.107.191101
https://doi.org/10.1103/PhysRevLett.125.221301
https://doi.org/10.1103/PhysRevLett.125.221301
https://doi.org/10.1103/PhysRevD.103.043509
https://doi.org/10.1103/PhysRevD.103.043509
https://doi.org/10.1088/1475-7516/2018/06/018
https://doi.org/10.1088/1475-7516/2018/06/018
https://doi.org/10.1088/1361-6382/abbb63
https://doi.org/10.1088/1361-6382/abbb63
https://doi.org/10.1088/1361-6382/ac1b49
https://doi.org/10.1093/mnrasl/slu187
https://doi.org/10.1093/mnrasl/slu187
https://doi.org/10.1088/1475-7516/2016/09/007
https://doi.org/10.1103/PhysRevD.100.023516
https://doi.org/10.1103/PhysRevD.100.023516
https://doi.org/10.1103/PhysRevD.89.083519
https://doi.org/10.1103/PhysRevD.89.083519
https://doi.org/10.1103/PhysRevD.90.103530
https://doi.org/10.1103/PhysRevD.90.103530
https://doi.org/10.1103/PhysRevD.97.063527
https://doi.org/10.1103/PhysRevD.100.103515
https://doi.org/10.1103/PhysRevD.100.103515
https://doi.org/10.1093/mnras/staa1579
https://doi.org/10.1093/mnras/staa1579

