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Friedmann-Lemaître-Robertson-Walker cosmology is examined from the point of view of gravitoelec-
tromagnetism, in the approximation of spacetime regions small in comparison with the Hubble radius.
The usual Lorentz gauge is not appropriate for this situation, while the Painlevé-Gullstrand gauge is
rather natural. Several nontrivial features and differences with respect to “standard” asymptotically flat
gravitoelectromagnetism are discussed.
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I. INTRODUCTION

The weak-field, slow-motion limit of general relativity
(GR) produces Newtonian gravity while, by allowing for
relativisticmotions (but keeping the gravitational field weak),
one obtains the linearized version of GR. It is well known
(e.g., [1]) that linearized gravity can be recast formally as a
Maxwell-like theory by introducing a gravitoelectric and
a gravitomagnetic potential. Gravitoelectromagnetism has
a long history and several applications (e.g., [2–16] and
references therein) and it is universally recognized as a
characteristic of GR. Certain geometries that are solutions
of the Einstein equations are usually not contemplated from
the point of view of gravitoelectromagnetism in their weak-
field limit. Here we address the gravitoelectromagnetic limit
of Friedmann-Lemaître-Robertson-Walker (FLRW) cosmol-
ogy. The weak-field limit is obtained in the approximation of
small regions of space around an observer’s worldine and
small intervals of time centered around a particular time (for
example, the present time of that observer). Comoving
observers are commonly used in cosmology, but we will
introduce also the point of view of radial freely falling
observers and of Painlevé-Gullstrand observers of a de
Sitter space osculating the FLRW universe. The view of
FLRW cosmology through the lens of gravitoelectromagnet-
ism is quite unconventional and exhibits several differences
with respect to “standard” linearized GR in asymptotically
flat spacetimes. In particular, in spite of certain similarities,
cosmological gravitoelectromagnetism offers the chance to
discuss gauges different from the usual Lorentz gauge, which
are necessarily encountered in this context. As expected,

because of spatial isotropy the gravitomagnetic field vanishes
identically, while the gravitoelectric field is purely radial.
Overall, the contexts of standard linearized GR and of the
local approximation of FLRW cosmology with a de Sitter
space are quite different.
To recap, there are three motivations for this work. First,

there is the curiosity to explore the paradigm of gravitoe-
lectromagnetism in cosmology, a context in which (to the
best of our knowledge) it has not been discussed thus far.
Second, we are interested in finding physically meaningful
contexts in which the usual Lorentz gauge does not apply
and one needs to expand the box of existing tools in
gravitoelectromagnetism (the only other gauge used in the
literature is the Bakolopous-Kanti one discussed in
Sec. III). Last but not least, everything we know about
structure formation in the universe comes from N-body
simulations in the early Universe. These simulations are
Newtonian in spite of the fact that they are performed on a
box with side equal to a few times the Hubble radius. The
reason why this is not a problem and Newtonian simu-
lations remain accurate has been discussed in [17–19]:
essentially, it boils down to the fact that the peculiar
velocities of dark matter particles are small compared to
the Hubble flow at redshift z ≃ 100 (when the simulations
begin), but this statement is extrapolated from calculations
in a less than transparent way and depends on the gauge
adopted [17]. In any case, it sounds like stating that
gravitomagnetic effects are negligible in comparison with
gravitostatic ones (which are Newtonian), and it seems to
beg for the point of view of gravitolectromagnetism, which
we therefore develop here for unperturbed and perturbed
FLRW cosmology. The gauge-invariant approach of [19] to
the problem of Newtonian cosmological perturbations
forming early structures is based on splitting the dynamics
of dark matter particles into a local (Newtonian) part and a
cosmological part by introducing the fictitious potential
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Φ ¼ −GMMSH=R ¼ −Gm=RþH2R2=2, where MMSH is
the Misner-Sharp-Hernandez mass contained in a sphere of
(physical) radius R, m is the mass generating the local
Newtonian perturbation, andH is the Hubble function. The
splitting of Φ comes from a splitting of the Misner-Sharp-
Hernandez mass [19]. This procedure teases out the local
dynamics from the cosmological expansion in a gauge-
invariant way but, although it makes sense physically, it
was based on guessing Φ rather than deriving it rigorously.
Here, applying gravitoelectromagnetism to perturbed
FLRW universes, we show that Φ is nothing but the
gravitostatic potential (while the gravitomagnetic contri-
butions are negligible).
We follow the notation and conventions of Ref. [1]: the

metric signature is −þþþ, G is Newton’s constant, and
units are used in which the speed of light c is unity. Round
brackets around indices denote symmetrization.

II. LINEARIZED GENERAL RELATIVITY AND
GRAVITOELECTROMAGNETISM

In linearized GR [1] it is assumed that an asymptotically
Cartesian coordinate system exists in which the spacetime
metric assumes the form

gμν ¼ ημν þ hμν; ð2:1Þ

where ημν is the Minkowski metric and the perturbations
hμν are small, jhμνj ≪ 1. The metric perturbations are
supposed to be of order OðϵÞ, where ϵ is a small
dimensionless parameter and, in linearized theory, the
Einstein equations are written by discarding terms of an
order higher thanOðϵÞ. The first order Einstein tensor is [1]

Gð1Þ
μν ¼ −

1

2
∂α∂αh̄μν þ ∂α∂ðνh̄μÞα −

1

2
ημν∂α∂βh̄αβ: ð2:2Þ

It is convenient to use the quantity

h̄μν ≡ hμν −
1

2
ημνhαα; ð2:3Þ

where indices are raised and lowered with the unperturbed
tensors ηαβ and ηαβ. The Lorentz gauge

∂μh̄μν ¼ 0 ð2:4Þ

is then imposed in order to simplify the first order Einstein

equations Gð1Þ
μν ¼ 8πGTμν to

∂α∂αh̄μν ¼ −16πGTμν: ð2:5Þ

The matter energy-momentum tensor is usually assumed to
be of the form

Tμν ¼ ρuμuν ð2:6Þ

describing a dust with energy density ρ and 4-velocity
field uμ.
Gravitoelectromagnetism is introduced by noting that the

linearized Einstein equations in the Lorentz gauge (2.4)
assume the form of Maxwell equations and that the
geodesic equation resembles the equation for the Lorentz
force acting on a particle of unit charge [1–15] [there are,
however, subtleties in the Lorentz force equation when ϕðgÞ
and A⃗ðgÞ are time-dependent [20]]. The line element is
written as

ds2 ¼ −ð1 − 2ϕðgÞÞdt2 þ 2A⃗ðgÞ · dx⃗dt

þ ð1þ 2ϕðgÞÞδijdxidxj; ð2:7Þ

from which one reads off the gravitoelectromagnetic
potentials ϕðgÞ and A⃗ðgÞ [2–15].
The three-dimensional projection of the timelike

geodesic equation for a massive particle of 3-velocity v⃗
assumes the form analogous to the Lorentz force
equation [1]

a⃗ ¼ −E⃗ðgÞ − 4v⃗ × B⃗ðgÞ: ð2:8Þ

In the following, we develop gravitoelectromagnetism for
FLRW cosmology and we compare it with the “standard”
version summarized in this section.

III. GRAVITOELECTROMAGNETISM
IN FLRW SPACETIME

Let us consider now the FLRW metric in comoving
coordinates ðt; x; y; zÞ

ds2 ¼ −dt2 þ a2ðtÞðdx2 þ dy2 þ dz2Þ; ð3:1Þ

¼ −dt2 þ a2ðtÞðdr2 þ r2dΩ2
ð2ÞÞ; ð3:2Þ

where the last line uses polar comoving coordinates
ðt; r;ϑ;φÞ and dΩ2

ð2Þ ≡ dϑ2 þ sin2ϑdφ2 is the line element

on the unit 2-sphere. The areal radius is

Rðt; rÞ ¼ aðtÞr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 þ Y2 þ Z2

p
; ð3:3Þ

where Xi ≡ aðtÞxi (i ¼ 1, 2, 3) are (oriented) physical
lengths along the xi axes, while the comoving coordinates
xi instead follow the expansion of the cosmic fluid. More
precisely, two points located on the xi axis and separated by
the comoving infinitesimal distance dxi have physical
separation aðtÞdxi at time t. Two such points at finite
comoving distance xi have physical separation Xi ¼ aðtÞxi
[however, dXi does not coincide with the physical
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infinitesimal separation aðtÞdxi unless aðtÞ is approxi-
mated with its value aðt0Þ at the time t0].
In order to write the FLRW metric as a formal

Minkowski metric plus small perturbations, it is convenient
to switch to the use of coordinates Xi instead of xi, and of
the areal radius R as the radial coordinate instead of the
comoving r. We have

dxi ¼ dXi −HXidt
a

; dr ¼ dR −HRdt
a

; ð3:4Þ

where H ≡ _a=a is the Hubble function and an overdot
denotes differentiation with respect to the comoving
time t. Substituting into the FLRW line element (3.2),
one obtains [21]

ds2 ¼ −ð1−H2R2Þdt2 − 2HXidtdXi þ dX2 þ dY2 þ dZ2;

¼ −ð1−H2R2Þdt2 − 2HRdtdRþ dR2 þR2dΩ2
ð2Þ;

¼ ðημν þ hμνÞdXμdXν; ð3:5Þ

where, in the last line,1 the metric is formally the
Minkowski metric ημν plus a deviation hμν from it that,
at this stage, is not yet required to be small. Explicitly,
we have

h00 ¼ H2R2; h0i ¼ −HXi; hij ¼ 0: ð3:6Þ

This form of the metric resembles linearized gravitational
theory where the hμνs are small. To establish a parallel with
linearized GR, we now assume that the corrections to the
formal Minkowski metric appearing in Eq. (3.5) are small.
There is a conceptual difference with respect to “standard”
linearized GR. While usually one assumes the existence of
an asymptotically Cartesian coordinate system in which the
metric splits as gμν ¼ ημν þ hμν [1], in cosmology we have
the opposite situation. Spacetime is asymptotically (indeed,
exactly) FLRW and one obtains jhμνj ≪ 1 only by restrict-
ing to spacetime regions small with respect to the Hubble
radius H−1, which implies

HjXij ≤ HR ≪ 1: ð3:7Þ

The physical meaning of this approximation is that space-
time is locally flat and the effects of the cosmological
expansion can only be felt by systems of size non-
negligible with respect to the radius of curvature of
spacetime, in this case the Hubble radius H−1. However,
Eqs. (3.5) and (3.6) are exact, no expansion is required for

their validity, and the hμν are not a priori small. It is only
when one wants the hμν to be small in order to mirror
linearized gravity, and to introduce gravitoelectromagnet-
ism (which is our goal here), that one restricts oneself to
regions much smaller than H−1 and uses ϵ≡HR as a
smallness parameter.
In practice, when one studies cosmological physics in

the neighborhood of a certain instant of time t0, for
example the present time in the history of the Universe
in cosmography, one expands the Hubble function HðtÞ
around the present time t0. If one allows jt − t0j to be
arbitrary, then light signals reaching the observer at time t0
can arrive from distant regions of the Universe, breaking
the assumption that only regions with HR ≪ 1 are con-
sidered. Therefore, as done in cosmography, we replace
the Hubble functionHðtÞwith its valueH0 ≡Hðt0Þ and we
consider only time intervals such that H0jt − t0j ≪ 1, in
addition to restricting to regions with H0R ≪ 1. The local
deviations of the spacetime metric from the Minkowski one
then read

h00 ¼ H2
0R

2; h0i ¼ −H0Xi; hij ¼ 0 ð3:8Þ

in coordinates ðt; XiÞ or, with equivalent terminology, in the
gauge in which the line element assumes the form

ds2¼ðημνþhμνÞdXμdXν;

¼−ð1−H2
0R

2Þdt2−2H0XidtdXiþδijdXidXj: ð3:9Þ

The approximation HðtÞ ≃H0 ¼ const is equivalent to
replacing the exact FLRW manifold with a de Sitter
spacetime with Hubble constant equal to the value H0 ≡
Hðt0Þ of the Hubble function of the real FLRW spacetime.
As in linearized gravity [1], one can introduce

h̄μν ≡ hμν − 1
2
ημνhαα, which has the only nonvanishing

components

h̄00 ¼
H2

0R
2

2
; ð3:10Þ

h̄0i ¼ h̄i0 ¼ −H0Xi; ð3:11Þ

h̄ij ¼
H2

0R
2

2
δij; ð3:12Þ

in coordinates ðt; XiÞ, in which the line element (3.9) can be
written as

ds2 ¼ −ð1 − 2ΦÞdt2 þ 2AidXidtþ δijdXidXj: ð3:13Þ

Here

Φ ¼ H2
0R

2

2
; A⃗ ¼ −H0X⃗ ð3:14Þ

1We stress that, in the line element (3.5), t is still the comoving
time and the only difference with respect to Eq. (3.2) is the
coordinate switch xi → Xi: we are now considering observers
using a Schwarzschild-like radius and moving radially with
respect to the comoving observers.
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can be regarded as the gravitoelectric and gravitomagnetic
potentials, respectively. There is, however, something very
unconventional about this identification: usually [1], the
linearization of the Einstein equations and the formulation
of gravitoelectromagnetism are performed by imposing the
Lorentz gauge ∂μh̄μν ¼ 0 in which the linearized Einstein
equations simplify and the resulting line element assumes
the form (2.7). Here, instead, the line element appears in the
different form (3.9). Our gauge (3.10)–(3.12) is incompat-
ible with the Lorentz gauge because ∂μh̄μ0 ¼ −3H0 ≠ 0. Is
this a problem? A priori, it is not: the gravitoelectromag-
netic potentials are gauge dependent and the gravitoelectric
and gravitomagnetic fields are gauge independent, as
expected [10,20]. Clearly, the metric looks different in
the two gauges and physical interpretations based on such
gauges will be different.
There is, however, a more substantial conceptual and

gauge-independent difference between standard linearized
gravity and the linearized version of cosmology. In the
former, the matter stress-energy tensor Tμν is assumed to
describe a dust [Eq. (2.6)]. In the cosmological context,
instead, we have replaced the exact FLRW space with its de
Sitter approximation at time t0, which means that Tμν has
necessarily the form of the effective energy-momentum
tensor of a cosmological constant Λ ¼ 3H2

0,

Tμν ¼ −Λgμν ¼ −3H2
0ðημν þ hμνÞ: ð3:15Þ

Contrary to a dust, this effective stress-energy tensor has
nonvanishing pressure

PΛ ¼ −ρΛ ¼ −
Λ

8πG
¼ −

3H2
0

8πG
; ð3:16Þ

it depends in an essential way from the metric perturbations
hμν. In particular, in the gauge (3.10)–(3.12) adopted, the
nondiagonal components

T0i ¼ −3H2
0h0i ¼ 3H3

0X
i ð3:17Þ

describe an energy current which is generated by the
transformation from the comoving coordinates xi (which
expand with the cosmic substratum) to the (oriented)
physical lengths Xi along the spatial axes. This means that
the observers at rest in coordinates ðt; XiÞ (which we call
“Schwarzschild-like observers” because they use the
Schwarzschild-like areal radius as the radial coordinate)
move radially with respect to the comoving observers and
see a spatial current of radially moving matter, while
comoving observers see the cosmic fluid at rest. This
current is due to the use of spatial coordinates not adapted
to the spatial symmetries. The de Sitter approximation to
the FLRW metric satisfies the Einstein-Friedmann equa-
tions (here listed in comoving coordinates)

H2 ¼ 8πG
3

ρ −
K
a2

; ð3:18Þ

ä
a
¼ −

4πG
3

ðρþ 3PÞ; ð3:19Þ

_ρþ 3HðPþ ρÞ ¼ 0; ð3:20Þ

with K ¼ 0 in the approximation

HðtÞ ≃H0; ρðtÞ ≃ ρðt0Þ ¼
3H2

0

8πG
≃ −PðtÞ ð3:21Þ

and

aðtÞ ¼ a0e
R

HðtÞdt ≃ eH0t; ð3:22Þ

where we set a0 ¼ 1 for convenience.
There is another important difference between standard

linearized gravity and the local approximation to cosmol-
ogy: usually, one assumes that hμν ¼ OðϵÞ, where ϵ is a
smallness parameter, and keeps only terms of order ϵ in the
Einstein equations while discarding higher order terms.2

In our expansion of the FLRW metric, we have metric
components with different orders of magnitude in the
dimensionless expansion parameter ϵ ¼ H0R:

h00 ¼ Oðϵ2Þ; h0i ¼ OðϵÞ; ð3:23Þ

while the hij are exactly zero. As a consequence, our
context is not the usual first order GR and the comparison
of results is necessarily limited. In particular, we should not
expect a one-to-one correspondence between these two
contexts. With this caveat, let us proceed.
As expected from the spherical symmetry about every

spatial point, the gravitoelectric field E⃗ðgÞ ¼ −∇⃗Φ is purely

radial. The gravitomagnetic potential A⃗ ¼ −H0X⃗ is also
purely radial and the gravitomagnetic field then vanishes,

B⃗ðgÞ ¼ ∇⃗ × A⃗ ¼ 0: ð3:24Þ

The spatial acceleration of a test particle of unit mass is

a⃗ ¼ E⃗ðgÞ ¼ −∇⃗Φ ¼ −H2
0Re⃗R; ð3:25Þ

where e⃗R is the spatial unit vector in the radial direction in
coordinates ðt; X⃗Þ. Moreover, in the approximation made
HðtÞ ≃Hðt0Þ≡H0, the gravitoelectric and gravitomag-
netic potentials are time independent,

2We are not concerned here with expansions in inverse powers
of the speed of light, which one finds in standard linearized GR.
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∂Φ
∂t ¼ ∂Ai

∂t ¼ 0; ð3:26Þ

which removes certain unpleasant terms in the Lorentz
force equation associated with the time dependence and
reported, e.g., in Ref. [22].

A. Bakopoulos-Kanti gauge

A gauge similar to the one used in this section is reported
in linearized GR by Bakopolous and Kanti [20,22]. This is
the only instance that we are aware of in which gravitoe-
lectromagnetism is discussed in a gauge different from
the Lorentz gauge (2.4). Specifically, in the context of the
linearized theory summarized in Sec. II, the Bakopolous-
Kanti gauge is [20,22]

h̄00 ¼ ϕðgÞ; h̄0i ¼ −AðgÞ
i ; h̄ij ¼ ϕðgÞδij ð3:27Þ

or, equivalently,

h00 ¼ 2ϕ; h0i ¼ −AðgÞ
i ; hij ¼ 0; ð3:28Þ

these authors derive the result that this gauge choice is only
possible in vacuo, Tμν ¼ 0. At first sight, this result seems
to conflict with the gauge that we obtained in FLRW space,
but this conclusion would be incorrect. In fact, the two
contexts are quite different: first, Bakopolous and Kanti
[20,22] assume the stress-energy tensor of a dust, while we
assume that of a cosmological constant (3.15). Second, in
standard linearized theory the metric perturbations are all
of the same (first) order hμν ¼ OðϵÞ, while this is not true in
the de Sitter space approximating a FLRW universe.
Indeed, by denoting loosely with R the radius of curvature
of spacetime, the standard linearized Einstein equa-
tions (2.5) give, in order of magnitude, ϵ=R2 ∼ ρ, where
all terms of order higher than OðϵÞ are discarded. In the
cosmological case, the stress-energy tensor (3.15) propor-
tional to H0 gives, instead, an equation of the form
h ≃H2

0R
2 ¼ Oðϵ2Þ, where the right hand side is of second

order in the smallness parameter ϵ ¼ H0R. Therefore, this
right-hand side would be dropped from the linearized field
equations in “standard” theory and one would conclude that
this gauge only applies to vacuum, but the cosmological
context is quite different from the usual linearized theory
(moreover, vacuum cosmology without Λ is meaningless).
The procedure that we followed, and the standard results on
Painlevé-Gullstrand coordinates for static spherical space-
times that we discuss in the next section and that agree with
the previous procedure, are legitimate and do not contradict
Ref. [20] because of the different assumptions.
In the light of the fact that FLRW spacetimes are

spherically symmetric, we can think of the Bakopolous-
Kanti gauge in such situations. By virtue of the Jebsen-
Birkhoff theorem [1], if a linearized geometry is expressed

in the Bakopolous-Kanti gauge and is spherical, then it
must be the linearization of the Schwarzschild spacetime

ds2 ¼ −
�
1 −

2Gm
r

�
dt2 þ dr2

1 − 2Gm=r
þ r2dΩ2

ð2Þ ð3:29Þ

because it is a vacuum, spherical, and asymptotically flat
solution of the Einstein equations (this conclusion applies
also to the spacetime outside spherical black holes in most
scalar-tensor theories of gravity in “reasonable” situations,
see [23–26]). Indeed, it is not even necessary to linearize
the Schwarzschild metric to recast it in the Painlevé-
Gullstrand gauge [27–29]

ds2 ¼−
�
1−

2Gm
r

�
dT2þ 2

ffiffiffiffiffiffiffiffiffiffi
2Gm
r

r
dTdrþdr2þ r2dΩ2

ð2Þ;

ð3:30Þ

where

T ¼ tþ 4m

� ffiffiffiffiffiffiffiffiffiffi
r

2Gm

r
þ 1

2
ln

����
ffiffiffiffiffiffiffi
r

2Gm

p
− 1ffiffiffiffiffiffiffi

r
2Gm

p þ 1

����
�

ð3:31Þ

is the Painlevé-Gullstrand time [27–29]. This gauge coin-
cides with the Bakopolous-Kanti gauge without the need
to assume jhμνj ≪ 1. This situation is well known and we
conclude that the Bakopolous-Kanti gauge is most inter-
esting in nonspherical situations.

IV. RELATION WITH PAINLEVÉ-GULLSTRAND
OBSERVERS

The Schwarzschild-like observers used in the previous
section to discuss gravitoelectromagnetism in FLRW cos-
mology employ the comoving time t but differ from
comoving observers, as they move radially. In the first
part of this section we recall known material from a variety
of sources in the literature with the purpose of elucidating
the physical meaning of these observers (which we do at
the end of this section).
First, let us recall the transformation from comoving to

Schwarzschild-like coordinates for spatially flat FLRW
universes and, in particular, for the special de Sitter case
that we use to approximate a FLRW universe. Beginning
from the spatially flat FLRW metric in comoving coor-
dinates (3.2) and using the areal radius R≡ aðtÞr, we have
obtained the line element

ds2 ¼ −ð1 −H2R2Þdt2 − 2HXidtdXi þ δijdXidXj: ð4:1Þ

The cross term in dtdR can now be eliminated by
introducing the new time T defined by

dT ¼ 1

F
ðdtþ βdRÞ; ð4:2Þ
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where Fðt; RÞ is an integrating factor satisfying

∂
∂R

�
1

F

�
¼ ∂

∂t
�
β

F

�
ð4:3Þ

to guarantee that dT is a locally exact differential, while
βðt; rÞ is, for the moment, an unknown function [30].
Substituting dt ¼ FdT − βdR into the line element yields

ds2¼−ð1−H2R2ÞF2dT2

þ2F½ð1−H2R2Þβ−HR�dTdR
þ½1−ð1−H2R2Þβ2þ2βHR�dR2þR2dΩ2

ð2Þ: ð4:4Þ

Setting

βðt; RÞ ¼ HR
1 −H2R2

ð4:5Þ

reduces the FLRW line element to its Schwarzschild-like
form

ds2 ¼ −ð1 −H2R2ÞF2dT2 þ dR2

1 −H2R2
þ R2dΩ2

ð2Þ: ð4:6Þ

In the special case of de Sitter space the Hubble function H
is constant and F ¼ 1 satisfies Eq. (4.3), which transforms
(4.6) into the de Sitter line element in static coordinates. As
done in the previous section, we approximate the spatially
flat FLRW space with a de Sitter space by replacing HðtÞ
with H0 ≡Hðt0Þ around a fixed time t0. The result is

ds2 ≃ −ð1 −H2
0R

2ÞdT2 þ dR2

1 −H2
0R

2
þ R2dΩ2

ð2Þ ð4:7Þ

for H0R ≪ 1.
Let us review now the Painlevé-Gullstrand coordinates

for de Sitter space, which are a special case of the more
general Martel-Poisson family [29] derived in [21] for
de Sitter space.
Begin from the de Sitter line element in Schwarzschild-

like coordinates and define a new time coordinate T̄ by

dT̄ ¼ dT þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − pf

p
f

dR; ð4:8Þ

where f ≡ 1 −H2
0R

2 and p is a parameter labeling different
charts (it is straightforward to check that the differential dT̄
is exact). The physical meaning of p is obtained by
writing the equation of outgoing ( _R > 0) radial timelike
geodesics [21,31]

ds2

dτ2
¼ −f

�
dT
dτ

�
2

þ 1

f

�
dR
dτ

�
2

¼ −1; ð4:9Þ

where τ is the proper time along timelike geodesics.
Because of the presence of the timelike Killing vector
Ta ¼ ð∂=∂TÞa in the de Sitter metric approximating the
FLRW universe, the energy is conserved along these
radial timelike geodesics and, denoting with pc ¼ muc

the four-momentum of a particle of mass m and 4-velocity
uc, paTa ¼ −E is constant along the geodesic. If Ē≡ E=m
denotes the particle energy per unit mass, then
u0 ¼ dT=dτ ¼ Ē=f,

�
dR
dτ

�
2

¼ Ē2 − f; ð4:10Þ

and

dR
dτ

¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ē2 − f

q
; ð4:11Þ

where the upper sign refers to outgoing and the lower sign
to ingoing geodesics. Introducing p≡ 1=Ē2, the radial
component of the 4-velocity reads [21]

dR
dτ

¼dR
dt

dt
dτ

¼�γðvÞv¼� vffiffiffiffiffiffiffiffiffiffiffiffi
1−v2

p ¼�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Ē2−f

q
; ð4:12Þ

where γðvÞ is the Lorentz factor and v ¼ jv⃗j is the
magnitude of the coordinate 3-velocity.
At the origin it is

���� dRdτ
����
R¼0

���� ¼ v0ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v20

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Ē2 − 1

p
; ð4:13Þ

p≡ 1

Ē2
¼ 1 − v20; ð4:14Þ

and the parameter p spans the range 0 < p ≤ 1 (this is
similar to the case of Martel-Poisson coordinates in
Schwarschild space [29]).
The outgoing “Martel-Poisson” observer freely falling

from rest from the origin R ¼ 0 perceives the geometry

ds2¼−fdT̄2þ2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1−pf

p
dT̄dRþpdR2þR2dΩ2

ð2Þ ð4:15Þ

where the time coordinate T̄ is given explicitly by [21]

T̄ ¼ T þ
ffiffiffiffiffiffiffiffiffiffiffi
1 − p

p Z
dR

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p

1−pH
2
0R

2
q

1 −H2
0R

2
;

¼ T þ
ffiffiffiffi
p

p
H0

2
641
p
tanh−1

0
B@ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pð1 − pÞp H0Rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p

1−pH
2
0R

2
q

1
CA

− sinh−1
� ffiffiffiffiffiffiffiffiffiffiffi

p
1 − p

r
H0R

�375þ const: ð4:16Þ
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The special parameter value p ¼ 1 gives Painlevé-
Gullstrand coordinates (see [31] for a discussion of differ-
ent radial geodesic observers in FLRW cosmology) and it is
now clear that it corresponds to vanishing initial velocity
v0 ¼ 0 of the freely falling observer at the origin. With
p ¼ 1, the de Sitter line element (4.15) assumes the
Painlevé-Gullstrand form [21]

ds2 ¼ −fdT̄2 þ 2H0RdT̄dRþ dR2 þ R2dΩ2
ð2Þ: ð4:17Þ

The time slices are flat and the Painlevé-Gullstrand time is
simply [21]

T̄ ¼ T −
1

2H0

ln j1 −H2
0R

2j þ const; ð4:18Þ

which was used in previous literature [32].
The Schwarzschild-like observers seeing the geometry

(3.9) and using comoving time t and coordinates Xi ¼
aðtÞxi are not Painlevé-Gullstrand observers, although the
line element (3.9) has the Painlevé-Gullstrand form with
flat spatial sections. The reason is that all freely falling
observers are related by a Lorentz boost and do not
accelerate with respect to each other (indeed, in a general
spacetime freely falling observers, which do not accelerate
with respect to each other, are determined up to a Lorentz
transformation [33]). The line element (3.9) is Lorentz
invariant and has the same form for all these observers
boosted with respect to Painlevé-Gullstrand ones. However,
the special initial condition v0 ¼ 0 at R ¼ 0 is satisfied
only by Painlevé-Gullstrand observers (using the time T̄)
and not by all those Lorentz boosted with respect to them.

A. Geodesic observers in FLRW and de Sitter

In a FLRW universe sourced by a perfect fluid, the
comoving observers are not, in general, geodesic because
they are subject to the pressure gradient ∇μP and they
accelerate. Because of spatial isotropy, P ¼ PðtÞ and ∇μP
points in the direction of comoving time. In de Sitter space
the pressure P ¼ − Λ

8πG is constant, ∇μP vanishes identi-
cally and the comoving observers of the effective fluid in de
Sitter space are geodesic. Therefore, freely falling and
comoving observers in de Sitter space differ only by a
Lorentz boost, which agrees with what we have already
found with different considerations. Painlevé-Gullstrand
observers are special radial geodesic observers, as
shown above.

B. FLRW gravitoelectromagnetism and quasilocal mass

It is well known [29,34,35] that the line element of a
spherically symmetric (possibly time-dependent) spacetime
can be recast in the Painlevé-Gullstrand form

ds2¼−
�
1−

2GMMSHðt̄;RÞ
R

�
dt̄2

�2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2GMMSHðt̄;RÞ

R

r
dt̄dRþdR2þR2dΩ2

ð2Þ; ð4:19Þ

where R is the areal radius, MMSHðt̄; RÞ is the Misner-
Sharp-Hernandez mass of a sphere of radius R, and one can
choose either sign in front of the time-radius cross term (see
the discussion in [21]). The expression (4.19) holds when
MMSH is non-negative. The Misner-Sharp-Hernandez mass
is defined by3 [36,37]

1 −
2GMMSH

R
≡∇cR∇cR: ð4:20Þ

This definition is expressed by a scalar equation, therefore
MMSH is coordinate invariant. The Hawking-Hayward qua-
silocal mass [38,39] reduces to the Misner-Sharp-Hernandez
mass in spherical symmetry [40] and, in this case, it is the
Noether charge associated with the conservation of the
Kodama current and with spherical symmetry [40]. In
general, however, Painlevé-Gullstrand observers with zero
initial velocity cannot be used in nonstatic (spherical)
spacetimes because their introduction makes use of energy
conservation along radial timelike geodesics [21,29].
Before approximating HðtÞ with Hðt0Þ in the spatially flat
FLRW universe, one can introduce the coordinates ðt; XiÞ
which turn the FLRW line element into what looks like the
Painlevé-Gullstrand form with flat spatial sections. However,
these coordinates are not those associated with freely falling
radial observers with zero initial velocity until the approxi-
mation HðtÞ ≃H0 is made: Painlevé-Gullstrand observers
can be introduced in the Sitter space, but not in general
(nonstatic) FLRW universes [21].
As noted, Painlevé-Gullstrand coordinates are not

defined in spherical spacetimes or spacetime regions in
which the Misner-Sharp-Hernandez mass becomes nega-
tive. This is the case, e.g., of anti–de Sitter space with
the physical interpretation that the repulsion of the
negative cosmological constant prohibits a freely falling
observer with zero initial velocity from leaving the origin
R ¼ 0 [21]. When M ≥ 0 and Painlevé-Gullstrand coor-
dinates are defined, their characterizing feature is that
spatial sections are flat.
In a spatially flat FLRW universe, the Misner-Sharp-

Hernandez mass defined by Eq. (4.20) reads

MMSH ¼ H2R3

2G
¼ 4πR3

3
ρ; ð4:21Þ

where, in the last equality, we used the Friedmann
equation (3.18) in a spatially flat universe. This is

3Since the areal radius R is defined only in spherical symmetry,
so is the Misner-Sharp-Hernandez mass [36,37].
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consistent with the expression of MMSH obtained by
comparing the line element (3.9) with the form (4.19)
for general spherical geometries.
By comparing the forms (3.13) and (4.19) of the

line element, one can express the gravitoelectric and
gravitomagnetic potentials as functions of the Misner-
Sharp-Hernandez mass,

Φ ¼ GMMSH

R
; ð4:22Þ

A⃗ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2GMMSH

R

r
e⃗R ¼

ffiffiffiffiffiffiffi
2Φ

p
e⃗R ð4:23Þ

to first order in the perturbation.

V. PERTURBED FLRW UNIVERSE

We now discuss a toy model of a perturbed FLRW
universe, in which there is a single, spherically symmetric,
scalar perturbation described by the post-Newtonian poten-
tial ϕ. The line element in the Newtonian gauge is

ds2¼−ð1þ2ϕÞdt2þa2ðtÞð1−2ϕÞðdr2þr2dΩ2
ð2ÞÞ; ð5:1Þ

where, for the moment, we allow the spherically symmetric
post-Newtonian potential to depend on time, ϕ ¼ ϕðt; rÞ
with jϕj ≪ 1. Consistently with the fact that the peculiar
velocities of scalar perturbations (both primordial dark
matter perturbations and well-developed galaxies) are
usually small in comparison with the Hubble flow,
the vector perturbations are neglected, which leads to the
absence of the gravitomagnetic potential A⃗ in this gauge.
This fact is consistent with gravitoelectromagnetism when
terms of higher order in v=c (where v is a typical velocity)
are neglected.
The areal radius is

Rðt; rÞ ¼ aðtÞr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2ϕðt; rÞ

p
ð5:2Þ

and its gradient

∇μR¼ _arð1−2ϕÞ−ar _ϕffiffiffiffiffiffiffiffiffiffiffiffiffi
1−2ϕ

p δ0μþ
að1−2ϕ−rϕ0Þffiffiffiffiffiffiffiffiffiffiffiffiffi

1−2ϕ
p δ1μ ð5:3Þ

(where a prime denotes differentiation with respect to the
comoving radius r of the FLRW background) gives

∇cR∇cR ¼ 1 −H2R2ð1 − 2ϕÞ þ 2HR2 _ϕ − 2rϕ0 ð5:4Þ

to first order. Equation (4.20) then gives the Misner-Sharp-
Hernandez mass

MMSHðt; rÞ ¼
H2R3

2G
þ rRϕ0

G
−
HR3

G
ðHϕþ _ϕÞ: ð5:5Þ

The first contribution to the right-hand side has a cosmo-
logical nature (in a spatially flat universe, this is the mass of
the cosmic fluid enclosed by the sphere of radius R); the
second contribution is purely local, while the third con-
tribution is mixed. Thus far, we have performed an
expansion in powers of ϕ, keeping only linear terms.
We now restrict to regions much smaller than the
Hubble radius, obtaining two expansions with smallness
orders OðϕÞ ¼ Oðrϕ0Þ and HR. The mixed term
− HR3

G ðHϕþ _ϕÞ is of higher order than the two previous
terms and is usually discarded unless tiny relativistic effects
are searched for in cosmology [41–45].
As in any spherically symmetric spacetime, the line

element can be written4 in the Painlevé-Gullstrand form
(4.19) [34,35], which becomes

ds2 ¼ −½1 −H2R2 − 2rϕ0 þ 2HR2ðHϕþ _ϕÞ�dt̄2

� 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2R2 þ 2rϕ0 − 2HR2ðHϕþ _ϕÞ

q
dt̄dR

þ dR2 þ R2dΩ2
ð2Þ: ð5:6Þ

At this stage, we do not yet have gravitoelectromagnetism,
which requires the metric to be Minkowskian with small
corrections. By neglecting the time dependence ofHðtÞ and
ϕðt; rÞ, one makes the now familiar approximations

HðtÞ≃H0; H0R≪1; _ϕ≃0; HRϕ≃0; ð5:7Þ

obtaining

ds2 ≃ ds2ð0Þ ¼ −ð1 −H2
0R

2 − 2rϕ0Þdt̄2

� 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2

0R
2 þ 2rϕ0

q
dt̄dRþ dR2 þ R2dΩ2

ð2Þ:

ð5:8Þ

The usual identification of the gravitoelectromagnetic
potentials follows:

Φ ¼ H2
0R

2

2
þ rϕ0; ð5:9Þ

A⃗ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2

0 þ
2rϕ0

R2

r
X⃗: ð5:10Þ

Again, the gravitomagnetic potential is purely radial, giving

gravitomagnetic field BðgÞ ¼ ∇⃗ × A⃗ ¼ 0. If we assume that
the FLRW perturbation is due to a single (constant) point

mass m, then ϕ ¼ −Gm=r and Φ ≃ H2
0
R2

2
þ Gm

R .

4Since the FLRW geometry is not static, Martel-Poisson and
Painlevé-Gullstrand observers cannot be introduced, but the
spherical metric can always be cast in the form (4.19).
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The decomposition (5.5) of the Misner-Sharp-Hernandez
mass in three contributions was performed in Ref. [19] in
the context of the potential problem that N-body simu-
lations of large scale structures are Newtonian, even though
they span volumes larger than the Hubble volume at the
redshift of structure formation [17,18,41–45]. There, a
“potential” ∼ H2R2

2
þ Gm

R was introduced ad hoc to quantify
the degree of “non-Newtonianity” of dark matter perturba-
tions (the result was that the Newtonian simulations of large
scale structures are adequate) [19]. It was not realized,
however, that this fictitious potential appears in the grav-
itoelectromagnetic description of cosmology in the
approximation in which the FLRW background is replaced
with a de Sitter one.

VI. CONCLUSIONS

We have examined FLRW cosmology from the perspec-
tive of the most well-known version of gravitoelectromag-
netism in linearized GR. The alternative formulation of
gravitolectromagnetism using electric and magnetic parts
of the Weyl tensor with respect to a given observer (e.g.,
[9]) does not apply to FLRW universes, in which the Weyl
tensor vanishes identically [1].
In retrospect, even the “standard” picture of gravitoelec-

tromagnetism is not so standard when applied to FLRW
universes. In fact, one must replace the exact FLRW
manifold with its instantaneous de Sitter approximation,
which implies that the matter stress-energy tensor must
necessarily be the effective one associated with a cosmo-
logical constant Λ ¼ 3H2

0, and not that of a dust. Moreover,
in order for the spacetime metric to be the Minkowski one
plus small perturbations, one must restrict oneself to
spacetime regions small in comparison with the Hubble
radiusH−1, instead of large regions far away from localized
energy distributions.
A freely falling (geodesic) observer will always see the

spacetime metric as the flat one plus small perturbations in
a local expansion [46,47]. Freely falling observers are
determined up to a Lorentz boost (e.g., [33]). In FLRW
universes, it is natural to consider freely falling radial
observers, to which are associated special coordinates in
cosmology [21,31,32,48–50]. Since the FLRW universe is
approximated locally with an osculating de Sitter space,
which is locally static, one can introduce Martel-Poisson
observers and their special subclass, the Painlevé-
Gullstrand observers [21]. It is rather natural to formulate
gravitoelectromagnetism in the Painlevé-Gullstrand gauge.

This is different from the usual Lorentz gauge and is more
similar to the Bakopolous-Kanti gauge [20,22]. In asymp-
totically flat linearized GR, the Bakopoulos-Kanti gauge
is valid only in vacuo but the situation is different in
cosmology, in which the metric components have two
different orders of smallness.
As expected from spatial isotropy, the gravitoelectric

field is purely radial and the gravitomagnetic field vanishes
identically as a consequence of the gravitomagnetic poten-
tial A⃗ being radial. Due to the spherical symmetry of FLRW
spaces about every spatial point, one can introduce the
Misner-Sharp-Hernandez quasilocal mass [36,37] and we
have expressed the gravitoelectromagnetic potentials Φ, A⃗
in terms of it.
It is also interesting to consider perturbed FLRW

universes from the perspective of gravitoelectromagnet-
ism. For simplicity, we have considered the situation of a
single spherically symmetric metric perturbation. The
analysis of Ref. [19] of the physics of N-body simula-
tions, which are Newtonian even though the box used is a
few Hubble scales in size, was based on the splitting of
the Misner-Sharp-Hernandez mass into local and cosmo-
logical perturbations, discarding a much smaller contri-
bution [19]. Here the fictitious potential used in [19] has
been shown to coincide with the gravitoelectrostatic
potential of FLRW universes, making more meaningful
the discussion of [19]. One could generalize the dis-
cussion to arbitrary (small) cosmological perturbations,
in which case the Misner-Sharp-Hernandez mass (defined
only in spherical symmetry) cannot be used. However,
one can use its Hawking-Hayward quasilocal generali-
zation [38–40], as done in Ref. [19]. We do not repeat the
discussion of [19] here, the conclusion being the rather
obvious generalization of the gravitoelectromagnetic
potentials to the nonspherical case.
To conclude, even though gravitoelectromagnetism in

FLRW cosmology could be expected to be rather trivial, it
is not: we have uncovered several nontrivial aspects and
many differences with respect to the usual discussion of
linearized GR in asymptotically flat spaces.
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