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We quantitatively study how the primordial density fluctuations are imprinted on the anisotropy of the
phase transition gravitational wave (PTGW). Generated long before recombination and free from Silk
damping, the anisotropic PTGW might reveal the density perturbation seeded from inflation or alternatives.
We find new behaviors of the PTGW anisotropy power spectrum. The PTGW anisotropy is stronger than
the anisotropy of the cosmic microwave background temperature at all scales, and the high-# multiples are
enhanced about 1 order due to the early integrated Sachs-Wolfe effect. Furthermore, differences in
primordial power spectra at small scales manifest themselves more significantly on the angular power
spectrum of PTGW anisotropy compared to that of the cosmic microwave background. These properties
might provide a novel clue to understanding the primordial density perturbation of our early Universe and
thereby complete our understanding of inflation theory. Taking nanohertz PTGW from dark matter models
as a typical example, we obtain amplitudes of PTGW anisotropy which are about 4 or 3 orders weaker than

the isotropic PTGW energy spectra.
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I. INTRODUCTION

Unraveling the nature of the primordial seeds of our
Universe is one of the most important scientific goals in
fundamental physics. The density perturbation from infla-
tion or other alternative theories provides the primordial
seeds for the evolution and structure formation of our
Universe. From the anisotropy of the cosmic microwave
background (CMB), we could precisely probe the primor-
dial density perturbation at scales k < 0.2 Mpc~'. The
Planck satellite has put strong constraints on the power
spectrum CZ7 of CMB temperature anisotropy in £ range
up to 2500 [1]. However, owing to Silk damping, there is an
obvious suppression of the power spectrum at # > 1000.
Also, the Sunyaev-Zel’dovich effect, cosmic infrared
background, and radio source dominate at # > 3000 [2].
New approaches are required to advance our understanding
of small-scale density perturbation and the underlying
inflation model.

The discovery of gravitational waves (GWs) at LIGO [3]
opens a new window to test the fundamental physics and the
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problem above. Among different GW sources, phase tran-
sition gravitational waves (PTGWs) [4—7] were produced
long before CMB photons were last scattered. Because of its
deep connection to dark matter and baryogenesis of the early
Universe, PTGW has attracted a lot of attention and might be
tested in various GW experiments, including LIGO, TianQin
[8,9], LISA [10], Taiji [11], the Square Kilometre Array
(SKA) [12], and FAST [13]. Recent studies from NanoGrav
[14], PPTA [15], and EPTA [16] also address possible GW
hints that might be explained by PTGW from a dark QCD
phase transition. As in the CMB case, since the isotropic
PTGW has been extensively studied, it has become a new
and important direction to follow for investigating the
anisotropy of a PTGW. The anisotropic behavior of
PTGWSs might provide a novel approach to explore the
primordial density perturbation, the dynamics of cosmic
evolution, the production of dark matter, the origin of
baryon-antibaryon asymmetry, the dynamics of the electro-
weak phase transition, the dark QCD phase transition, the
formation of primordial black holes (PBHs), etc. With the
renaissance of PBH, exploring small-scale information
becomes attractive since large density perturbation at small
scales is needed to form PBH in most models [17].
References [18,19] study the effects of small-scale
density perturbation on the isotropic PTGW energy spectra.

© 2022 American Physical Society
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Here we quantitatively investigate the anisotropy of
PTGWs. Reference [20] estimates the anisotropy in the
GW background from cosmological phase transition,
Ref. [21] calculates the primordial non-Gaussianity in
the GW background, and Ref. [22] studies the large-scale
anisotropy of the stochastic GW from domain walls. In this
work, we take the Sachs-Wolfe (SW) and integrated Sachs-
Wolfe (ISW) effects into account to study how the
primordial density perturbation is imprinted on anisotropic
PTGW analytically and numerically for the first time.
Compared to the CMB temperature anisotropy, we find
a stronger power spectrum at all scales in our case.
Moreover, in contrast to the damping behavior of CMB,
we point out that the power spectrum of PTGW anisotropy
gets enhanced by 1 order of magnitude in the high-# range
because of the ISW effect. Therefore, the anisotropic
PTGW may serve as a new messenger of the primordial
density perturbation, especially at small scales.

II. PTGW FROM QCD-LIKE PHASE TRANSITION

We consider the PTGW from a QCD-like phase tran-
sition motivated by various dark matter models [4,23]. The
first-order phase transition occurring from 1 to 100 MeV
can produce PTGWs with peak frequency in the vicinity
of nanohertz, which is within the sensitive frequency ranges
of pulsar timing array (PTA) [24] experiments such as
SKA. Three mechanisms contribute to PTGWSs, namely,
bubble collisions [6,25,26], sound waves [7,27,28], and
magnetohydrodynamic turbulence [6,29]. Recent studies
[30-37] give further developments for bubble collision
signals. In most cases, sound wave mechanism is the
dominant source of PTGWs [7,27,28]. Thus, we take the
PTGW from the sound wave as an example for simplicity.
The isotropic PTGW energy spectrum from sound wave
mechanism with the suppression effect is given by [28,38]
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where a is the strength parameter of the phase transition
and g, is the total degrees of freedom. H,R, describes
the mean bubble separation scaled by the Hubble rate at
temperature 7', that the GW generated. The efficiency
parameter k, is the fraction of the energy released by the
phase transition that converted into fluid bulk kinetic
energy of the plasma and is determined by the bubble
wall velocity v, and a [39].

fow =2.6x 107 Hz

The energy spectrum is proportional to the energy
density since H: = p/3M}. We assume here that the

density perturbation would produce the anisotropy of the
PTGW. We choose the following benchmark parameters:

Benchmarkl: 7, = 1 MeV,
Benchmark2: 7, = 5 MeV,

H.R, =0.15,
H.R. =02, (3)

with @ = 0.5, v, = 0.95, g, = 10, and «, = 0.44.

III. ANISOTROPY OF THE PTGW

After getting the isotropic PTGW, we calculate its
anisotropy. We employ a line-of-sight integration to describe
the free stream of gravitons and calculate the power spectrum
of the PTGW anisotropy. References [40—44] develop similar
methods to calculate the power spectrum of a stochastic
GW background. We expand the distribution function of the
GW as

fnx.p) = Fn. p) - p%ﬂgw, p. (4

The dimensionless quantity G(,x, p) characterizes the
perturbation of the distribution function f and gives rise to
the anisotropy of the PTGW. p is the momentum vector of
the GW. Although PTGW:s were produced after inflation, the
anisotropy is sourced from primordial density perturbation
[20]. Also, the anisotropy we consider here comes from
superhorizon scale perturbations at the time of phase tran-
sition. Thus, we assume a frequency independent anisotropy
in Eq. (4). We use the conformal-Newtonian gauge

dsz = —(1 —|— 2"1")61[2 + a2(1 - 2@)5,de’dx/ (5)

With this metric, the Boltzmann equation then gives the
equation that rules the free stream of the GW as

G + ikuG = @ — iky'?. (6)

A prime denotes the derivative with respect to the conformal
time#n. Hereu = k- D is the cosine of the angle between p and
the Fourier mode k. Integrating over 7 to r, we get the current
anisotropy,
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where 7, is the conformal time when the PTGW was
produced. For simplicity, G(1,,) has no dependence on the
GW direction in our assumption. We integrate the iku'¥ term
by parts and drop the i independent term ¥ (1, k), which is an
undetectable alteration to the monopole of the PTGW. The
same procedure can be found in the CMB case, but a surface
term is removed because the plasma is extremely opaque to
photons, which is not the case for a PTGW. The initial term for
the CMB vanishes for the same reason. Howeyver, in our case,
the initial term [G (1, k) + (1, k)]e™ I =0) is what we
need and is given by the GW relic from the phase transition at
the early stage. This term shows the SW effect for the PTGW,
and the second term gives rise to the ISW effect which comes
from the time evolution of the gravitational potential. These
two effects dominate the anisotropy of the PTGW. As with the
last scattering surface of CMB, here we have an emitting
surface of the PTGW at time 77, < 77,.. Free from scattering,
the PTGW could carry information from the very early stage
closely after inflation.

Now we calculate the anisotropy of Qgw from fluc-
tuation of the distribution function. The GW energy density
can be expressed as

paw (1, X) :/d3ppf(f1,x,17) :/dpdi?p3f(f7,x,p,ﬁ)'
(8)

We also have

pow(n.Xx) = p. / dlIn pQegw(n.x. p). 9)

where p,. is the critical density of the Universe. Thus,
P
Qow(nx.p) = [ dpP-flx.pp) (10)

Then we separate the GW energy spectrum into an isotropic
part plus the fluctuation,

dp = .
QGW(”hx,p):/4_”QGW<”IJ7>[1+5GW(7vavp7p)]’ (11)

with the energy density contrast of GW given as

_ aanGW(ﬂ’ p)

5GW(;7’x’pvf)) = |:4

We define the frequency dependence in the square brackets
as g(p) and write in Fourier space

Saw (1. k, p.u) = g(p)G(n, k, ). (13)

Then the power spectrum of GW energy spectrum
anisotropy is written as

2V (p) = ¢(p)CY. (14)

For PTGWs from sound wave mechanism in the radiation
era, Qagw is proportional to the energy density of the
radiation. Thus,

1

(G +%)(nps k) = —gR(k), (15)

where R is the primordial curvature perturbation and is
conserved in the superhorizon scale. All scales we are
interested in today were outside the horizon at such an early

time. The SW part of Cg can be integrated simply by using
the spherical Bessel function j, as follows:

2 [ .
C5 = o [T ke pr) k=) (16)

In the following, we use the conventional power-law
parametrization Pg (k) at a pivot scale k, as the default
primordial spectrum:

2”2 k ne—1
Prp(k)=—%A, — . 17
) =254 () (1)
Then we have

7[2
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(18)

In a scale-invariant case, £(¢ + I)Cg'SW /27 is a constant.
The ISW part of Cg has no simple analytic expression,

and we estimate it at large £ as follows. The multiple
moment is

@Ww@z/%M@+VMkMW%—M-(M

Npt

A perturbation with wave number k contributes most
strongly to multiples # ~ k(g — 17). For a large-scale
k(1o —np) < ¢, the peak of j, is always far outside the
integration range. Thus, the transfer function is approx-
imately zero. We only consider wave number range
k(ng —ny) 2 ¢. For a small-scale k(ng —1ny) 2 € > 1,
perturbations decay rapidly after entering the horizon at
a very early stage. Thus, we can approximate as

(@' + W) (n, k) m =(© +¥) (1, K)S(n = i), (20)

where 7, is the conformal time when the £ mode decays.
A phase transition happened long before matter-radiation
equality, so we set 17, to zero for our integration. The above
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approximation is valid because the peak width of j, is
about kAn ~ ['/3, which is much larger than the peak width
of (@' + ¥). Thus, we get the following final expression
for multiples at large ¢

Ge(no.k) 2 [(G+Y) — (@ +)](np. k) je [k (0 —11)]. (21)
Then the initial condition is
[(G+ W) = (® + )| (1, k) = R(k) for large £.  (22)

Thus, the overall power spectrum at large ¢ is 9 times larger
than that for Cg.sw only.

With the power spectrum, we can compute the variance
of the fluctuation with

1
Var9 = = > e+ 1)c. (23)
4

For dgw (1o, X, p.pt), we have Var’sw(p) = ¢*(p)Var?.
We employ the frequency dependent standard deviation

oaw(p) = W*Qqw(p)y/ Var’ (p) (24)
to quantify the amplitude of the PTGW anisotropy. It is
worth noticing that one should use the normalized variance
VarY for an evaluation of the density perturbation.

IV. RESULTS AND DISCUSSION

Planck [1] currently gives us the best constraint on the
primordial power spectrum, and we take this as the starting
point: In(10'°A;) = 3.044 and n, = 0.966. The pivot scale
is set at k, = 0.05 Mpc™'. We modify cLASS [45] to
compute the power spectrum and testify our analytical
calculation. The angular power spectra of PTGW
anisotropy and CMB for different primordial power spectra
are shown in Fig. 1. Note that since all the power spectra
that we plot are dimensionless, one should multiply CZ” by
the square of the background temperature of CMB to get
the most commonly used one in the literature.

We show in Fig. 1 the differences between the PTGW
and CMB angular power spectra for the default primordial
power spectrum P (k) given in Eq. (17) with parameters
from Planck. The blue line is (£ + 1)CJ/2x for PTGW
anisotropy, and the black solid line is the CMB temperature
spectrum. We find that, at all scales, the PTGW shows
stronger anisotropy than the CMB temperature. The most
obvious feature of Cg is that it goes up instead of damping
quickly at high #. This is a result of the ISW effect and the
absence of Silk damping. The ISW effect contributes
mostly to the rising of angular power spectrum at high
¢. GWs can hardly be scattered by matter and dark matter,
meaning there is no Silk damping. Thus, PTGW anisotropy
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FIG. 1. Angular power spectrum. The blue line is the angular

power spectrum Cg for the anisotropy of a PTGW with the
default primordial power spectrum Pz given by parameters from
Planck [1]. The light purple line is for Py ., with the amplitude
increased by 10% in the k > 0.3 Mpc~! range compared to Pz,
and the light blue one is for Py _, with amplitude decreased by
10 percent in the k > 0.3 Mpc~! range. The black solid line,
green dashed line, and orange dotted line are CMB temperature
power spectra CZT corresponding to Pg, Pr.,, and Pg_
separately. We can see obvious distinctions in Cg for the PTGW,
but not in CIT for the CMB. All angular power spectra are
dimensionless, so one should multiply the TT power spectrum by
the squared CMB temperature to get the conventional one in units
of uk2.

keeps the small-scale information from the early Universe
which was erased in the CMB.

We then slightly vary the primordial power spectrum at
small scales and show how the response on the angular
power spectrum of the PTGW differs from that of the CMB.
We increase and decrease the primordial power spectrum
by 10% starting from a step at k, = 0.3 Mpc~! by taking
the following parametrization:

PR,i<k):PR(k)<1io.1xtanh[3(k—ks)]+1>, (25)

2

with Py (k) being the default primordial power spectrum
and B = 10 Mpc. As shown in Fig. 1, the light purple line
is the PTGW power spectrum for Py, and the light blue
line is for P _. We can see that these two lines deviate
obviously at high Z from Cg for the default power spectrum
Pr. The green dashed line and the orange dotted line are
the CMB temperature power spectrum corresponding to
Pr . and Py _, respectively. We can see that they almost
overlap with the one for Pgp. In summary, remarkable
distinctions can be seen in PTGW power spectra, while no
significant difference appears in CMB temperature angular
power spectra; small-scale information is retained more in
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FIG. 2. Upper panel: frequency dependence g(f) between the
fluctuation gy of the energy spectrum Qgw and the fluctuation
G of the distribution function. The variable momentum p has been
substituted by the frequency f. The dashed line is g(f) for
benchmark 1, and the solid one is for benchmark 2. Lower panel:

realization of the PTGW anisotropy power spectrum C‘;GW.

PTGW anisotropy. To pin down an inflation model requires
a solid understanding of the small-scale primordial power
spectrum; different models might give different small-scale
behaviors. See Ref. [46] and references therein. Thus,
PTGWs could theoretically be helpful to distinguish among
different inflation models.

The frequency dependence factor g(f) between dgw and
G for the default primordial power spectrum is shown in the
upper panel of Fig. 2. The momentum p is substituted by
frequency f hereafter. The dashed and solid lines are for
benchmarks 1 and 2, respectively. This factor equals 8 in
the frequency range that is larger than the peak frequency
few- We absorb it into C‘;GW as in Eq. (14) and give one
realization map as an example in the lower panel of Fig. 2.
We remind the reader that the map here is not the real
distribution but instead only a realization of our PTGW
power spectrum. The real one might be correlated to the
CMB temperature field because the two share the same
origin, which is the primordial density perturbation.

1074

=== Isotropic PTGW, Benchmark 1
Isotropic PTGW, Benchmark 2
1076 === Anisotropic PTGW, Benchmark 1
—— Anisotropic PTGW, Benchmark 2

1012

10—14 .

10—16

[ [Hz]

FIG. 3. Isotropic and anisotropic PTGW energy spectra for the
default primordial power spectrum. The black lines indicate the
isotropic PTGW, with the dashed line representing benchmark 1
and the solid line benchmark 2. The blue lines indicate the aniso-
tropic PTGW, with the dashed line representing benchmark 1 and
the solid line benchmark 2. The amplitude of the anisotropy is
about 4 or 3 orders weaker than the isotropic PTGW.

The amplitude of anisotropic PTGW for the default
primordial power spectrum is shown in Fig. 3. The black
lines are the isotropic PTGW for benchmark 1 (dashed) and
2 (solid). The blue lines are the anisotropic PTGW, dashed
for benchmark 1 and solid for benchmark 2. The blue lines
show ogw at different frequencies. The shape of ogw
differs from the isotropic PTGW energy spectrum h?Qgyw
because of the factor g(f) shown in the upper panel of
Fig. 2. The shape change is small and not significant in
the log-scale plot of the power spectrum. Compared to the
4 x 107> level CMB temperature anisotropy (which can be
computed from the CMB temperature map from Planck or
the results of the power spectrum), the anisotropic PTGW is
at the 1 x 10~* level for G and the 8 x 10~ level for the
frequency dependent Sgw (f) in the range right to the peak
frequency. The measured variance is related to the reso-
lution of the observation, but the small-# multiples con-
tribute the most. So the value of ogw does not change
significantly if the resolution is not far from the degree
level.

Detailed study of the detectability of the anisotropy
components is an important but challenging new direction
which is beyond the scope of this work. For PTA
observation, the GW affects the pulsar timing residuals,
and the relative direction between GW propagation and
pulsar location determines the response on timing residuals.
Known locations of pulsars, a specific distribution of GW
strength on the sky, leave a unique imprint on the cross-
correlation of timing residuals between pulsars, which is
called the overlap reduction function. Thus, information
about PTGW anisotropy as well as isotropy is coded into
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the overlap reduction function. The famous Hellings and
Downs curve is the overlap reduction function for an
isotropically distributed GW background. With knowledge
about pulsars and an assumption of GW strength angular
distribution, a prior of the overlap reduction function can be
achieved. The prior goes into the covariance matrix of
the timing residuals of the pulsars, and one then fits the
data with the pulsar timing model and covariance matrix;
see Refs. [47-53] for details. In general, a PTA with a
pulsar population of N can constrain at most N, =
N(N —1)/2 spherical harmonic amplitudes, which corre-
sponds t0 Zpax < /Npair — 1 & (N — 1)/v/2 — 1. Future
PTA experiments such as SKA may have the potential
to observe ~10* pulsars, which corresponds roughly to
Zmax ~ 10*. However, according to current studies on PTA
data analysis, the detection will be challenging because the
sensitivity for anisotropy is more downgraded at higher
multiples. We are expecting future GW experiments with
better sensitivity and resolution, data combined from
different experiments [54], and also new methods to
explore the anisotropy of PTGWs.

V. CONCLUSION

We have developed a methodology for computing the
anisotropy of phase transition gravitational waves from
sound wave mechanism. We calculated the power spectrum
of the anisotropy analytically and numerically. The Sachs-
Wolfe effect is considered, and we find that a higher level of
anisotropy at all scales shows up than in the CMB case.

The power spectrum was even enhanced by about 1 order of
magnitude at high £ due to the integrated Sachs-Wolfe
effect. Different primordial power spectra at small scales
could lead to different PTGW angular power spectra, but it
could lead to almost the same CMB angular power
spectrum. Thus, the anisotropy may leave us a window
to explore the primordial density perturbation, especially at
small scales. Our results can be applied to phase transitions
at different energy scales, which would trigger gravitational
waves with different peak frequencies. We leave detailed
discussions on the anisotropy of gravitational waves by
bubble collision and turbulence to future work. We point
out that, for these two mechanisms, the integrated Sachs-
Wolfe effect also contributes a large portion to small-scale
anisotropy. Besides the implications for dark matter or
baryogenesis in the early Universe from the isotropic phase
transition gravitational wave, the study of its anisotropy
here might be helpful for understanding the underlying
inflation or alternative theories.
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