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We study a model of two-field ultraslow-roll (USR) inflation bounded by a curve in the field space.
Curvature perturbations and non-Gaussianities can be enhanced both during the USR phase and from the
inhomogeneities at the boundary. We employ the full nonlinear δN formalism to calculate the probability
distribution function (PDF) for curvature perturbation nonperturbatively and show that nonlinear effects
can significantly enhance the abundance of primordial black holes (PBHs). For large curvature
perturbations, the PDF has a universal exponential tail, but for the intermediate values, the PDF—and,
therefore, the abundance of the PBHs—depend sensitively on the geometry of the boundary.
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I. INTRODUCTION

Inflation is the leading paradigm for the early Universe
cosmology which is well supported by cosmological
observations [1,2]. An almost universal property of the
single-field models of inflation is that the amplitude of the
local-type non-Gaussianity, known as the fNL parameter, is
at the level of the slow-roll parameters and, therefore, very
small. This is known as the non-Gaussianity consistency
condition [3,4], which provides a relation between the scale
dependence of the power spectrum of the density pertur-
bations (i.e., the two-point correlation functions) and the
amplitude of the three-point functions and fNL. The ultra-
slow-roll (USR) model [5] is among the very few known
single-field models of inflation which can violate this
consistency condition [6–9]. In the simplest USR setup,
the potential is exactly flat, so the inflaton velocity falls off
exponentially. As a result, unlike in conventional models,
the curvature perturbation on superhorizon scales keeps
evolving, leading to a violation of the non-Gaussianity
consistency condition.
The discovery of the gravitational waves from black hole

binary mergers by LIGO/VIRGO [10] drew attention to
primordial black holes (PBHs) [11,12] as a possible
source which may also contribute to dark matter [13–23].
A natural question is under what circumstances an infla-
tionary model can predict a large abundance of PBHs.
Again, an attractive—yet simple—possibility is the USR
phase of inflation, which enhances the typical size of the

density perturbations [compared, e.g., to the cosmic micro-
wave background (CMB)-scale fluctuations]. Besides
enhancement in the power spectrum, it has been noticed
that the tail of the probability distribution function (PDF) of
fluctuations can be raised significantly due to the non-
perturbative effects in the USR (and, more generally, in the
nonattractor) models [24–26]. This may lead to a drastic
change in the PBH formation probabilities.
Given the significance of the USRmodel, inspired by the

above two applications, it is natural to ask how the
predictions are affected if one raises the dimensionality
of the field space in a similar setup. In this work, we extend
the USR ideas to a two-field scenario with a flat potential.
The USR phase takes place for a few e-folds before it ends
on a boundary in the field space. Curvature perturbations
can be enhanced not only during the USR phase (i.e., the
bulk) but also from the inhomogeneities generated from the
boundary of the end of USR. The latter phenomenon was
studied in slow-roll inflation in [27–29]. We show that the
correlation functions of the curvature perturbation and,
more generally, its PDF depend on the geometry of the
boundary curve as well as the duration of the USR phase,
which then lead to nontrivial predictions for the PBH’s
formation probability.

II. THE MODEL AND THE
BACKGROUND EVOLUTION

The setup we consider consists of two scalar fields
φa ¼ ðϕ; χÞ minimally coupled to gravity. The Universe
experiences a phase of slow-roll inflation first—during
which the CMB-scale perturbations are generated. Then a
sudden transition to a short phase of USR occurs, which
terminates when the trajectory in the field space hits a
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boundary. Another phase of slow-roll inflation begins right
after, when—we assume—the modes of interest, affected
by the USR phase and its boundary, do not evolve
significantly until the end of inflation. That is, the adiabatic
condition is assumed to be approximately satisfied immedi-
ately after the USR phase. A mild transition to the
adiabaticity may cause a significant change to the statistics
of the curvature perturbation [30], which we do not
consider in this paper. The location of the USR phase
within the entire inflationary trajectory is a freedom in this
setup that can be fixed by demanding a specific mass
window for the PBHs.
During the USR phase the two fields simultaneously roll

on a constant potential and, assuming an almost constant
Hubble expansion rate H, their background evolutions are
given by the following Klein-Gordon (KG) equation

d2φa

dN2
þ 3

dφa

dN
≃ 0: ð1Þ

Here N is the number of e-folds and is related to the cosmic
time t via dN ¼ Hdt. Defining the slow-roll parameters via
ϵH ¼ − 1

H
dH
dN and ηH ¼ 1

ϵH

dϵH
dN , the solution of Eq. (1) leads to

the exponential falloff of the first slow-roll parameter
ϵH ∝ e−6N (justifying constant H approximation), while,
accordingly, the second slow-roll parameter is nearly
constant, ηH ≃ −6þOðϵHÞ. Furthermore, since there is
no coupling between the fields at the background level, the
trajectory of the evolution in the field space is characterized
by a straight line with a slope determined by the ratios
of the initial velocity of the background fields, i.e.,

tan θ ¼ dχ̄i
dN = dϕ̄i

dN . Therefore, it is more convenient to rotate
the field space so that the new coordinate axes are parallel
and normal to the background trajectory (see Fig. 1):

σ ¼ cos θϕþ sin θχ; s ¼ − sin θϕþ cos θχ: ð2Þ

The new fields σ and s are referred to as the “adiabatic” and
“entropy” modes, respectively [31]. The solutions of the
KG equation (1) then become

σðNÞ ≃ σi þ
πi
3
ð1 − e−3NÞ; s ¼ si; ð3Þ

where ðσi; siÞ are the initial values of the fields, while πi ¼
dσi=dN is the initial velocity of σ. The above solution
indicates that the adiabatic field evolves similarly to the
single-field setup [6]. However, nontrivial effects may arise
from the surface at the end of the USR phase. Unlike the
single-field case, where this nonattractor phase ends at a
specific point, in the multiple field scenario it is terminated
at a surface determined by the equation σe ¼ HðseÞ. As we
will see in subsequent sections, entropic perturbations
contribute to the comoving curvature perturbation R only
through the surface determined by H.
Note that the boundary H may come from physical

phenomena such as interactions between fields or geomet-
rical features in the field space. An explicit example is the
multiple field extension of the hybrid inflation scenario, in
which inflation may end when the fields satisfy a certain
condition that triggers the instability of the waterfall field,
as studied, for example, in [27–29].
The number of e-folds from the initial flat hypersurface

to reach the boundary from Eq. (3) is given by

Nðσi; siÞ ¼ −
1

3
log

�
1þ 3

σi − σeðsiÞ
πi

�
: ð4Þ

This formula resembles the result of the single-field setup
in the regime where the classical drift dominates over the
quantum diffusion, with the crucial difference that the
additional degree of freedom appears due to the boundary
being a curve rather than a point. In the drift-dominated
regime, the amplitude of stochastic jumps, H=2π, is small
compared to the classical field excursion associated
with the classical velocity of the field. Since velocity
decays exponentially—to avoid a significant stochastic
evolution—it is sufficient to demand that the ratio of the
stochastic kicks to the classical velocity is small at the end
of USR. This leads to the smallness of the power spectrum
of curvature perturbation

ffiffiffiffiffiffiffi
PR

p
≪ 1 [32]. Furthermore, the

velocity inherited from the pre-USR stage during inflation
must be the main source of the inflaton dynamics. For the
field to exit the USR phase without the interference of the
quantum diffusion, one must have jπij > 3jσe − σij. These
two conditions guarantee that the system does not expe-
rience a diffusion-dominated regime during the USR phase.
In Sec. IV we shall deal with the rare events that may call
into question the validity of the above analysis considering
typical realizations. However, it is unlikely that when
diffusion is subdominant for the typical events, it contrib-
utes to the rare ones, corresponding to the PBH formation,
more than the classical effects. See [25] for further

FIG. 1. Schematic view of the USR phase in our setup. Rotating
the old coordinates ðϕ; χÞ by the angle θ leads to the adiabatic-
entropy coordinates ðσ; sÞ. The end of the USR phase is indicated
by the thick solid green boundary. The end of the unperturbed
USR trajectory is parametrized by the angle of intersection ψ .

HOOSHANGI, TALEBIAN, NAMJOO, and FIROUZJAHI PHYS. REV. D 105, 083525 (2022)

083525-2



discussions. We leave the studies of the diffusion-domi-
nated regime for future work; for relevant works on this
direction, see [33–36].

III. NONLINEAR CURVATURE
PERTURBATION AND ITS SPECTRA

To study the statistical properties of the comoving
curvature perturbations R, we use the δN formalism
[37–41]. To also capture the nonlinear effects, we employ
the full nonlinear δN formalism without Taylor expansion.
If we neglect the fluctuations in the initial velocity of the
fields, which are diluted rapidly during expansion, the
nonlinear R may be obtained by perturbing the initial field
values, resulting in

R ¼ Nðσ̄i þ δσ; s̄i þ δsÞ − Nðσ̄i; s̄iÞ; ð5Þ

where an overline denotes the background quantities. As
illustrated in Fig. 1, the contribution of the entropy
fluctuations to R is included in the nonlinear perturbation
of adiabatic fluctuations at the boundary, δσe. Therefore,
δσe can be found in terms of the entropy perturbations,

δσe ¼ Hðs̄e þ δseÞ − Hðs̄eÞ≡ hðδseÞ: ð6Þ

Then we immediately find the master equation for R as
follows:

Rðδσ; δsÞ ¼ −
1

3
log

�
1þ 3

δσ − hðδsÞ
πe

�
; ð7Þ

where the single-field USR result can be recovered by
δs ¼ 0. The nonlinear R can also be given in terms of the
fluctuations in the old coordinates ðδϕ; δχÞ, which is
somewhat complicated but coincides with Eq. (7).
Having the nonlinear relation (7) at hand, one can

expand R to any desired order and calculate its spectra.
Our main assumption here is that ðδϕ; δχÞ are uncorrelated
and Gaussian field fluctuations with amplitudes Δ≡ H

2π.
This property is passed on to ðδσ; δsÞ due to the linear
relation (2).
The dimensionless power spectrum ofR at the end of the

USR phase when N ¼ Ne is given by

PR ¼ PSFð1þ h02Þ; h0 ≡ dhðδsÞ
dδs

����
δs¼0

; ð8Þ

where PSF ¼ ðΔ=πeÞ2 is the single-field USR counterpart
of the power spectrum. The above relation indicates that the
power spectrum can be enhanced in two different ways.
One is via growing the curvature perturbation during the
USR phase controlled by πe (as in the single-field case),
and the other is by the slope of the boundary at the
intersection point—which is a genuine feature of the
multiple field scenario. For the USR regime to remain

perturbatively under control, Ne cannot be arbitrarily large.
We may allow for a few e-folds of the USR phase in the
following analysis, corresponding to Ne ≲ 3.
The above two mechanisms of generating curvature

perturbations are degenerate at the level of the power
spectrum. To break the degeneracy, we need to investigate
the higher spectra. It is straightforward to show [42,43]

fNL ¼ 5

2
þ 5

6
πe

h02h00

ð1þ h02Þ2 ; ð9Þ

τNL ¼ 9þ 6πe
h02h00

ð1þ h02Þ2 þ π2e
h02h002

ð1þ h02Þ3 : ð10Þ

Here the primes denote the derivative with respect to the
entropy perturbation calculated on the boundary (setting
δs ¼ 0 after taking the derivative); fNL measures the
amplitude of the three-point correlation function (bispec-
trum), while τNL represents the amplitude of the four-point
function (trispectrum) [41,43] (see Appendix A for the
other trispectrum parameter, gNL). The first (constant) terms
in fNL and τNL correspond to the bulk (USR) evolution
which are the same as in the single-field USR setup, while
the remaining terms are the boundary effects. Since the
velocity decays rapidly during the USR phase, one may
naively conclude that the new terms are subdominant.
However, as we shall see below, depending on the proper-
ties of the boundary, one can obtain a significant effect
from them.
At this step it is worth checking the Suyama-Yamaguchi

inequality τNL ≥ ð6
5
fNLÞ2 [44]. For the setup under our

consideration, we obtain

τNL −
�
6

5
fNL

�
2

¼
�
πe

h0h00

ð1þ h02Þ2
�

2

≥ 0: ð11Þ

For the boundaries with h0 ¼ 0 or h00 ¼ 0, the equality is
satisfied as in the case of the single-field USR setup.
The above analysis was general and is valid for any

boundary. We comment that the boundary can take any
smooth shape in the two-dimensional field space, closed
like a circle or an ellipse or open like a line or a hyperbola.
As a simple example, we now consider a circle as the
boundary, given by the relation σ2e þ s2e ¼ R2 in the field
space. In this case, from Eq. (6), δσe is related to the
entropy fluctuations by

hðδsÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 − ðR sinψ þ δsÞ2

q
− R cosψ : ð12Þ

The angle ψ is defined via tanψ ¼ s̄e=σ̄e, as illustrated in
Fig. 1; throughout, we assume that 0 < ψ < π=2.
Therefore, using Eqs. (8)–(10), the spectra for R are
given by
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PR ¼ PSFð1þ tan2 ψÞ; ð13Þ

fNL ¼ 5

2
þ 5

6α
sinψ tanψ ; ð14Þ

τNL ¼ 9þ 6

α
sinψ tanψ þ 1

α2
tan2 ψ ; ð15Þ

where the parameter α is related to the radius of the
boundary by R≡ αjπej and we assume that πe < 0. We
see that for some ranges of ψ the power spectrum and the
amplitudes of non-Gaussianities may be predominantly
generated from the boundary. This is more pronounced
when ψ ∼ π

2
.

As previously mentioned, the nonlinearity of the curva-
ture perturbation also alters the shape of the PDF of R,
which in turn affects the PBH formation during the
radiation-dominated Universe. We deal with this issue in
the next section.

IV. PBH FORMATION

According to the δN formalism, the comoving curvature
perturbation R on a final surface is expressed nonlinearly
by the perturbations of initial surface ðδσ; δsÞ. Using the
nonlinear expression in Eq. (5), we thus can calculate the
PDF of R (which we denote by ρ̄R) without appealing to
any Taylor expansion via

ρ̄R ¼
Z þ∞

−∞
δDðR −Rðδσ; δsÞÞρδσ;δs dδσ dδs; ð16Þ

where, δDð·Þ is the Dirac delta function and ρδσ;δs is the joint
PDF for the two random fields δσ and δs. As mentioned
earlier, we assume that the two fields δσ and δs are
Gaussian and uncorrelated,

ρδσ;δs ¼
1

2πΔ2
exp

�
−
δσ2 þ δs2

2Δ2

�
; ð17Þ

where, recall, Δ ¼ H=2π is the square root of the variance.
To compute the probability densities associated with R, a
subtlety arises due to the fact that not all perturbations in δσ
and δs lead to a trajectory along which the fields roll on the
USR region and hit the boundary. This may cause an eternal
inflation to occur, in which case—among other problems—
the modes under consideration would not be observable.
We thus assume, a priori, that inflation is not eternal, so the
probability density that we aim to compute is the PDF ofR
conditioned on the trajectories that cross the boundary. We
shall denote that conditional probability density by ρR.
Notice that in the eternal inflation regime stochasticity may
dominate the dynamics, so excluding the eternal inflation
avoids—at least partially—the stochasticity as well.
From the standard relations for the conditional proba-

bilities, we thus obtain

ρR ¼ hδDðR −Rðδσ; δsÞÞiB; ð18Þ

in which, for an arbitrary function f, we define

hfiB ≡
R
B fρδσ;δsdδσ dδsR
B ρδσ;δsdδσ dδs

; ð19Þ

where
R
B denotes that the integral is taken over the range of

ðδσ; δsÞ that the boundary crossing is possible—which
shall be discussed in some detail shortly. For f ¼
δDðR −Rðδσ; δsÞÞ, which is the case of interest, we
may simplify the numerator by using

δDðR −Rðδσ; δsÞÞ ¼ δDðδσ − δσ�Þ
j∂δσRjδσ¼δσ�

; ð20Þ

where, from Eq. (7), we have

δσ�ðR; δsÞ≡ hðδsÞ þ πe
3
ðe−3R − 1Þ ð21Þ

and j∂δσRjδσ¼δσ� ¼ e3R
jπej. Putting these together, Eq. (18)

then yields

ρR ¼ jπeje−3R
R
Bs
expð− δs2þδσ2�

2Δ2 ÞdδsR
B expð− δs2þδσ2

2Δ2 Þdδσ dδs ; ð22Þ

where
R
Bs

indicates that the limits of the integral depend
only on δs (since the integral over δσ is performed). The
integral in the denominator changes the normalization (and
significantly deviates from 2πΔ2 only if one assumes a
background trajectory next to the disallowed regions—
which we do not consider).
Note that for large values of R, the PDF (22) behaves as

e−3R independent of the shape of the boundary. At first
thought, it seems that the boundary and its geometrical
properties may thus not be important for PBH formation.
However, we shall see that the transition to the above-
mentioned exponential tail does depend on the geometry of
the boundary of the USR phase. Correspondingly, the PBH
abundance predicted for various geometries may differ by
many orders of magnitudes.
In a two-field setup, besides fixing the boundary, we

need to fix four additional freedoms to fully determine the
background evolution. Since the coordinates are rotated so
that the trajectory is along the σ axis, we have already set
dsi
dN ¼ 0 (see Fig. 1). The intersection angle, ψ , is the other
parameter that we use which determines s̄i (recall that
s̄i ¼ s̄e). Moreover, we require the prior-to-USR power
spectrum to be CMB compatible, i.e., PRi

¼ 2.1 × 10−9.
Considering π2i ¼ 2 × 10−4M2

Pl for the initial velocity, we
obtain a constant potential with the height V0 ¼
12π2Δ2 ∼ 5 × 10−11M4

Pl, in which MPl is the reduced
Planck mass. Finally, we consider the total number of
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e-folds during the USR phase, Ne, as one of the parameters
that we vary. According to the background solutions (3),
this determines σ̄i for fixed ψ . Therefore, in what follows,
we study the predictions of our model by varying ψ and Ne
as 2 degrees of freedom.
As for the boundary, we mainly consider a circle with the

radius R parametrized via R ¼ αjπej (notice that πe is
determined via πe ¼ πie−3Ne ). We consider only the case
α ¼ 1 in this paper. This choice, besides allowing the
boundary to play a notable role, also guarantees that the
scale of boundary R is larger than the quantum jumps (with
the typical size of Δ), so the stochasticity can be neglected.
For a fixed value of δs, the boundary crossing condition

for the adiabatic mode is

3

jπej
ðδσ − hðδsÞÞ ∈ ½1 − e3Ne ; 1� for fixed δs; ð23Þ

while for a circular boundary we require

δsþ R sinψ ∈ ½−R;R� for a circular boundary ð24Þ

for the entropy mode (see Appendix A for details). These
conditions determine the limits of the integrals in Eq. (22),
which may be performed numerically.
In Fig. 2 we have plotted ρR for different values of ψ . For

comparison, we also Taylor expand Eq. (5) up to the second
order and then calculate ρR and also show the single-field
nonperturbative results. The results demonstrate the impor-
tance of the nonlinear treatment of R for PBH formation.
This proves the effectiveness of the δN formalism, which
captures the full nonlinear effects in the classical regime.
Compared with the single-field scenario, we also see that
the probabilities are enhanced as a result of the boundary.
Having obtained the PDF forR, one—in principle—can

compute the mass function for PBHs by relating R to the
density contrast [45]. This is a well-known procedure
which can be followed now that the full PDF of R is

computed (see Appendix B where this is outlined for the
simplified case of a linear boundary). However—to keep
things simple—as a proxy for the PBH abundance, here we
calculate the parameter β, which is the probability that
R > Rc for a critical value Rc. Although there are some
subtleties regarding Rc [23], we simply take Rc ¼ 1.
Figure 3 shows β for different angles of intersection ψ

when the boundary is a circle. We also show the results for
the single-field case for comparison.
Furthermore, Fig. 4 shows how different boundaries

affect the PBH abundance. In addition to the circle,
we also consider a hyperbola and a line as the boundaries.
We demand that the hyperbola [with the equation
c2ðσe − σ0Þ2 − s2e ¼ R2

h] and the line are tangent to the
circle at the point where the background trajectory hits the
boundary (see Appendix A for details). This guarantees that
the initial condition parameters and the power spectrum
given by Eq. (8) are equal for all boundaries and the
differences in the PBH abundance come purely from the
geometry of the surfaces. We found that under these
assumptions, the PBH abundance is maximal for a circular

FIG. 2. PDF of R for a circular boundary calculated from
Eq. (22) with Ne ¼ 2 for different values of ψ . The dotted lines
were obtained by Taylor expanding Eq. (7) up to second order.

FIG. 3. PBH abundance β for a circular boundary for different
values of ψ vs the duration of the USR phase Ne. The differences
are more significant for smaller values of Ne.

FIG. 4. The parameter β when ψ ¼ π
3
for different boundaries.
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boundary. This is because the curvature of the circle is
larger, which implies that a larger δN is possible for smaller
(and more probable) δs.

V. DISCUSSION

We have studied a two-field model of USR inflation
bounded by various curves in the field space and have shown
that nontrivial effects are generated from the inhomogene-
ities at the boundary.We have employed the δN formalism in
its full nonlinear form to calculate the PDF of the curvature
perturbation, and also the resulting polyspectra. We have
shown that while the PDF has a universal tail for large values
of R, i.e., ρR ∝ e−3R, for the intermediate values of R the
PDF—and hence the abundance of the PBHs—sensitively
depends on the geometry of the boundary.
Our analyses can be extended to arbitrary multiple field

scenarios with higher-dimensional boundaries in the field
space to explore how the PDF and statistics of R are
sensitive to the dimensionality of the field space.
Furthermore, we have considered the drift-dominated case,
but it would be interesting to study the case where quantum
diffusion becomes important during the USR and on the
boundary. We leave consideration of these questions to
future works.
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APPENDIX A: BOUNDARIES AND BOUNDARY
CROSSING CONDITIONS

Here we present some details of how different
boundaries—which are tangent to each other—are
obtained, and how the boundary crossing criteria put limits
on the allowed range of δσ and δs. First consider a line
with the equation se ¼ aσe þ b [which implies that
hðδsÞ ¼ δs=a]. We require that the line and the circle
are tangent to each other at the point where the background
(unperturbed) trajectory hits the boundary (see Fig. 5). This
implies that

a ¼ − cotψ ; b ¼ R
sinψ

: ðA1Þ

A hyperbolic boundary with the equation c2ðσe − σ0Þ2 −
s2e ¼ R2

h will be tangent to the circle at the conjunction
point if

σ0 ¼ R cosψ −
πi
3
; ðA2Þ

c2 ¼ 3

jπij
R cosψ ; ðA3Þ

R2
h ¼

jπij
3

R cosψ − R2 sin2 ψ ; ðA4Þ

where the chosen value of σ0 (which determines the
location of the hyperbola’s center) guarantees that all
possible trajectories (with πi < 0) hit the branch of the
hyperbola that is tangent to the circle. Note also that for a
hyperbola we have

chðδsÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
h þ ðRh sinhψh þ δsÞ2

q
− Rh coshψh; ðA5Þ

which may be inserted into Eqs. (8)–(10) to obtain different
correlation functions. Here we have defined ψh by the
relation Rh sinhψh ¼ s̄e.
We are now prepared to obtain the allowed limits of

perturbed fields for a given boundary, needed to determine
the limits of the integrals in ρR [Eq. (22)]. Note that we
always perform the integral on δσ first, so in what follows
we first find the allowed range of δσ for a fixed value of δs
and then present the remaining limit on δs for different
boundaries.
Consider first a fixed value of δs and a generic boundary.

For the δσ fluctuations not to be large enough to bypass the
boundary, the perturbed initial conditions have to satisfy
σi ≥ σe, which in terms of the field fluctuations implies that

σ̄i þ δσ ≥ σ̄e þ hðδsÞ: ðA6Þ

On the other hand—to avoid eternal inflation—for the fixed
initial field’s velocity πi, we need σi to be such that the
initial velocity suffices to reach the boundary. Using Eq. (3)
this requirement yields

σ̄i þ δσ þ πi
3
≤ σ̄e þ hðδsÞ: ðA7Þ

Using Eq. (3) again for the unperturbed trajectory, we have

σ̄e ¼ σ̄i þ
πi
3
ð1 − e−3NeÞ; ðA8Þ

FIG. 5. Sketch of the classical trajectory hitting different
boundaries.
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and noting that πe ¼ πie−3Ne , we end up with

1 − e3Ne ≤
3

jπej
ðδσ − hðδsÞÞ ≤ 1: ðA9Þ

Note that the lower bound (by demanding that the field
fluctuations do not bypass the boundary) may seem less
justified (because the trajectories that violate that bound
would, in principle, be legitimate but unknown to us, as we
do not specify the post-USR phase of inflation). However,
since in our setup and choice of parameters the correspond-
ing jδσminj is much larger than the width of the Gaussian
PDF of the field fluctuations, Δ, this bound—while making
the mathematics more rigorous—is practically irrelevant.
For the limits on δs, we need to specify the boundary. For

a circle, we simply obtain ð−R ≤ δsþ R sinψ ≤ RÞ, as can
be seen in Fig. 1. On the other hand, since—unlike for a
circle—the linear and hyperbolic boundaries are open, they
put no limit on δs (because for any value of δs there are
always allowed trajectories for the appropriate range of δσ).
Before we end the paper, let us present the results for the

other trispectrum parameter gNL and comment on its
implications. We have [41,43]

gNL ¼ 25

3
þ 25

6
πe

h02h00

ð1þ h02Þ2 þ
25

54
π2e

h03h000

ð1þ h02Þ3 ; ðA10Þ

which for the case of circle yields

gNL ¼ 25

3
þ 25

6α
sinψ tanψ þ 25

18α2
sin2 ψ tan2 ψ : ðA11Þ

Comparing this to Eq. (14), we see that, for typical values
of ψ , gNL and τNL are of the same order. It is well known
that large non-Gaussian curvature perturbations can
induce observable second order gravitational waves
(GWs) [46–48]. To be consistent, one has to compare
the amplitudes of the trispectrum in various shapes, i.e., the
τNL and gNL parameters. Specifically, since the contribution
of gNL in the amplitude of the induced GWs can be
comparable to that of τNL and f2NL, one may not be justified
to simply use the standard perturbative treatment studied
before [46,47]. We leave the investigation of GWs induced
by nonlinear curvature perturbations to future work.

APPENDIX B: PDF OF THE
DENSITY CONTRAST

In this Appendix we outline the derivation of the PDF for
the density contrast, from which one can compute the PBH
mass function. The nonlinear relations between the density
contrast and the curvature perturbation was discussed, e.g.,
in Ref. [45], where the procedure of deriving the mass
function was also discussed. Here we shall present only the
analysis for the simple case where a line represents the
boundary of the USR phase, in which case the analytic

computation of the probability distribution of the density
contrast would be possible.
We follow the approach outlined and the notation used in

Ref. [24] (and skip the details that can be found there). The
key variable for determining the PBH abundance is the
following:

δl ¼ −
4

3
rmζ0ðrmÞ; ðB1Þ

where the prime denotes the derivative with respect to
the radial coordinate rm. In our setup, from Eq. (7), this
reduces to

δl ¼
4

3
rm

δσ0=πe − δs0=πedh=dδs
1þ 3δσ=πe − 3hðδsÞ=πe

; ðB2Þ

where δσ0 ≡ δσ0ðrmÞ, and so on. Considering a line as the
boundary, we have

δl ¼
4

3
rm

δσ0=πe þ tanψδs0=πe
1þ 3δσ=πe þ 3 tanψδs=πe

; ðB3Þ

where, similar to Appendix A, we have assumed that the
line is tangent to the circle so that Eq. (A1) holds. Both
numerator and denominator in the above relation are
Gaussian random fields since they are the summation of
Gaussian fields δσ0 and δs0 or δσ and δs. Therefore, we may
rewrite our main variable as δl ≡ X

Y, where X and Y are two
uncorrelated, Gaussian random fields with means 0 and 1,
respectively, and variances

σ2X ¼ 1

cos2 ψ
16r2m
9π2e

Z
d ln kk2PðkÞ; ðB4Þ

σ2Y ¼ 1

cos2 ψ
9

π2e

Z
d ln kPðkÞ: ðB5Þ

These are the same as Eq. (19) of Ref. [24] with the extra
factor cos−2 ψ. Therefore, the case under study can be
obtained simply from the results of [24] using a rescaling of
πe. That is, when the boundary is linear, the multiple field
scenario is degenerate with the single-field one. And the
PDF is simply given by

ρδlðδlÞ ¼
Z

δDðδl − X=YÞ ρX ρY dXdY

¼ σXσYe
− 1

2σ2
Y

πΣ2
þ
σ2Xerfð σXffiffi

2
p

σYΣ
Þe−

δ2
l

2Σ2ffiffiffiffiffiffi
2π

p
Σ3

; ðB6Þ

which coincides with the findings of Ref. [24]. Here we
have defined Σ2 ≡ σ2X þ δ2l σ

2
Y and erf is the error function.

From this PDF one can obtain the PBH mass function,
which, due to the aforementioned degeneracy, can be
obtained from the results of [24].
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