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We present constraints on the tensor-to-scalar ratio r using a combination ofBICEP/Keck 2018 (BK18) and
Planck PR4 data allowing us to fit for r consistently with the six parameters of theΛCDMmodel.We discuss
the sensitivity of constraints on r to uncertainties in the ΛCDM parameters as defined by the Planck data.
In particular, we are able to derive a constraint on the reionization optical depth τ and thus propagate its
uncertainty into the posterior distribution for r. While Planck sensitivity to r is slightly lower than the current
ground-based measurements, the combination of Planck with BK18 and baryon-acoustic-oscillation data
yields results consistent with r ¼ 0 and tightens the constraint to r < 0.032 at 95% confidence.
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I. INTRODUCTION

Introduced in order to resolve problems within the big
bang cosmological model (such as the horizon, flatness,
and magnetic-monopole problems), inflation also naturally
provides the seeds for generating primordial matter
fluctuations from quantum fluctuations (see for instance
Ref. [1] and references herein).
Measurements of the cosmic microwave background

(CMB) allow constraints to be placed on the amplitude of
the tensor perturbations that are predicted to be generated by
primordial gravitational waves during the inflationary
epoch, leaving some imprints on the CMB anisotropies
[2–5]. Over the last decade, while no primordial signals have
been discovered, significant improvements on the upper
limit for the tensor-to-scalar ratio r have progressively led to
the constraint becoming lower than a few percent in
amplitude (Fig. 1): r < 0.11 in 2013 using only temperature
data from Planck [6]; r < 0.12 in 2015 using polarization
from BICEP/Keck and Planck [7] to debias the initially
claimed detection from BICEP/Keck in 2014, r ¼ 0.2þ0.07

−0.05

FIG. 1. History of constraints on the tensor-to-scalar ratio r
(Planck PR1 [6], Planck PR1þ BK [7], Planck PR2þ BK [9],
BK15 [10], Planck PR3þ BK15 [11], Planck PR4 [12], Planck
PR4þ BK15 [12], BK18 [13], Planck PR4þ BK18 this work).
Upper limits are given at 95% C.L.
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[8]; r < 0.09 in 2016 using BICEP/Keck and Planck [9];
r < 0.07 in 2018 usingBICEP/Keck 2015data (BK15 [10]);
r < 0.065 in 2019 using Planck in combination with BK15
[11]; r < 0.044 in 2021 using Planck in combination with
BK15 [12]; and r < 0.036 in 2021 using the latest BICEP/
Keck data (BK18 [13]).
In this paper, we first discuss the impact of uncertainties

in ΛCDM parameters for constraints on r derived from the
latest BICEP/Keck data (BK18) [13] alone. Then we add in
data from the latest Planck release (PR4) [14] in order to
provide the best currently available constraint on the tensor-
to-scalar ratio r.

II. COSMOLOGICAL MODEL

The cosmological model used in this paper is based on
adiabatic, nearly scale-invariant perturbations. It has been
established as the simplest model that is consistent with the
different cosmological probes and in particular with the
CMB [11].
The standard ΛCDMþ r model includes 6þ 1 param-

eters. Power spectra for scalar and tensor modes are
parametrized by power laws with no running and so
the parameters include the scalar amplitude As and the
spectral scalar index ns, while the spectral index for
the tensor mode nt is set using single-field slow-roll
inflation consistency. The amplitudes and the tensor-to-
scalar power ratio, r≡ At=As, are evaluated at a pivot
scale of 0.05 Mpc−1. Three other parameters (Ωbh2,
Ωch2, and θ�) determine the linear evolution of pertur-
bations after they reenter the Hubble scale. Finally, the
reionization is modeled with a widely used steplike
transition between an essentially vanishing ionized frac-
tion at early times, to a value of unity at low redshifts.
The transition is modeled using a tanh function with a
nonzero width fixed to Δz ¼ 0.5 [15]. The reionization
optical depth τ is then directly related to the redshift at
which this transition occurs.
The CMB power spectra are generated using the

Boltzmann-solver code CAMB [16,17]. We sample the
likelihood combinations using the COBAYA framework
[18] with fast and efficient Markov chain Monte Carlo
sampling (MCMC) methods described in Refs. [19,20].
All the likelihoods that we use are publicly available on
the COBAYA website1 and are briefly described in the next
section.

III. PLANCK LIKELIHOODS

We use the polarized likelihood at large scales, lowlEB,
described in Ref. [12] and available on github.2 Speci-
fically, it is a Planck low-l polarization likelihood based on
cross-spectra using the Hamimeche-Lewis approximation

[21,22]. Using this formalism, the likelihood function
consistently takes into account the two polarization fields
E and B (including EE, BB, and EB power spectra), as well
as all correlations between multipoles and modes. It is
important to appreciate that such correlations are relevant at
large angular scales where cut-sky effects and systematic
residuals (both from the instrument and from the fore-
grounds) are important. The cross-spectra are calculated on
component-separated CMB “detset” maps processed by
COMMANDER from the Planck PR4 frequency maps, on
50% of the sky. The sky fraction is optimized in order to
obtain maximum sensitivity (and lowest sample variance),
while ensuring low contamination from residual fore-
grounds. The covariance matrix is estimated from the
PR4 Monte Carlo simulations. The statistical distribution
of the recovered Cls naturally includes the effect of all
components included in the Monte Carlo simulation,
namely the CMB signal, instrumental noise, Planck sys-
tematic effects incorporated in the PR4 simulations (see
Ref. [14]), component-separation uncertainties, and fore-
ground residuals. In the case of Planck, we are not able
to analytically predict the shape of the full covariance
matrix for component-separated maps. However, analytical
predictions exist for the covariance of instrumental noise in
low-resolution individual-frequency maps. Analysis of
these matrices highlights nontrivial structures in the har-
monic space noise, whose covariance cannot be approxi-
mated as diagonal. Since component-separated maps are a
combination of the input frequency maps, part of these
structures will carry over into the final covariance matrix,
on top of any additional correlations induced by systematic
effects, masking, and foreground residuals that cannot be
modeled analytically but only reconstructed via simula-
tions. Given these considerations, we cannot apply any type
of simplifying “conditioning” (such as setting off-diagonal
elements to zero), as done for some ground-based ex-
periments, nor do we wish to make such assumptions
about the data. In this paper, unlike previous CMB work
to our knowledge, we now marginalize the likelihood over
the unknown true covariance matrix (as proposed in
Ref. [23]) in order to propagate the uncertainty in the
estimation of the covariance matrix caused by a limited
number of simulations. This provides us with a likelihood
that is unbiased and accurate for the estimation of the
uncertainty. The robustness of the results is discussed
further in the Appendix.
At large angular scales in temperature, we make use of

the Planck public low-l temperature-only likelihood, based
on the CMBmap recovered from the component-separation
procedure (specifically COMMANDER) described in detail
in Ref. [24].
At small scales, we use thePlanckHiLLiPoP likelihood,

which can include the TT, TE, and/or EE power spectra
computed on the PR4 detset maps at 100, 143, and 217GHz.
The likelihood is a spectrum-based Gaussian approximation,

1cobaya.readthedocs.io.
2github.com/planck-npipe.
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withsemianalyticestimatesof theCl covariancematrixbased
on the data. Themodel consists of a linear combination of the
CMB power spectrum and several foreground residuals,
including Galactic dust, cosmic infrared background
(CIB), thermal and kinetic Sunyaev-Zeldovich effects,
Sunyaev-Zeldovich-CIB correlations, and unresolved point
sources. For details, see Refs. [12,25–27].

IV. BICEP/KECK LIKELIHOOD

We use the publicly available BICEP/Keck likelihood
(BK18) corresponding to the data taken by the BICEP2,
Keck Array, and BICEP3 CMB polarization experiments,
up to and including the 2018 observing season [13]. The
format of the likelihood is identical to the one introduced in
Refs. [7,10]; it is a Hamimeche-Lewis approximation [21]
to the joint likelihood of the ensemble of BB auto- and
cross-spectra taken between the BICEP/Keck (two at 95,
one each at 150 and 220 GHz), WMAP (23 and 33 GHz),
and Planck (PR4 at 30, 44, 143, 217, and 353 GHz)
frequency maps. The effective coverage is approximately
400 deg2 (which corresponds to 1% of the sky) centered on
a region with low foreground emission. The data model
includes Galactic dust and synchrotron emission, as well as
correlations between dust and synchrotron.
In the following, we neglect correlations between the

BICEP/Keck and Planck datasets. This is justified because
the BK18 spectra are estimated on 1% of the sky, while the
Planck analysis is derived from 50% of the sky.

V. IMPACT OF ΛCDM UNCERTAINTY

In the baseline analysis described in Ref. [13], the
BICEP/Keck Collaboration fixed the cosmology to that
of best-fitting model from Planck 2018 and quote an upper
limit of r < 0.036 at 95% C.L. Within this baseline, the
uncertainty on ΛCDM parameters was not propagated,
reducing the width of the posterior for the tensor-to-scalar
ratio r. We find that when fitting the BK18 data for ΛCDM
parameters in addition to r, the uncertainty on r slightly
increases (as illustrated in Fig. 2) because the ΛCDM
parameters except for As are poorly constrained.
The constraints on r then become

r ¼ 0.014þ0.012
−0.011 ðBK18withΛCDMfixedÞ; ð1Þ

r ¼ 0.015þ0.015
−0.013 ðBK18withΛCDMfreeÞ; ð2Þ

all compatible with zero3 and resulting in the following
upper limits at 95% C.L.:

r < 0.036 ðBK18withΛCDMfixedÞ; ð3Þ

r < 0.042 ðBK18withΛCDMfreeÞ: ð4Þ

VI. COMBINING PLANCK AND BICEP/KECK

The addition of Planck data allows us to constrain
ΛCDM parameters, thus reducing the uncertainty on r.
This was mentioned in a secondary analysis of Ref. [13]
(their Appendix E.1), yielding an upper limit on r similar to
that of the baseline when using the earlier Planck PR3 data.
In this paper, we update the Planck data to PR4 and add
constraints from the polarized low-l likelihood.
With the new BICEP/Keck dataset included, the uncer-

tainty on r has decreased to σðrÞ ¼ 0.014. We may
compare this to the Planck uncertainty σðrÞ ¼ 0.056 based
on polarized low multipoles; this uncertainty reduces to
σðrÞ ¼ 0.024 when the TT þ TEþ EE high multipole
data are included as well. The addition of low-l from
Planck polarization modes allows the degeneracy with τ to
be broken and also slightly reduces the width of the
posterior distribution for r. This is illustrated in Fig. 3.
The resulting constraint on r using a combination of

Planck and BK18 data tightens to

r ¼ 0.014þ0.011
−0.009 ðPlanckþ BK18Þ; ð5Þ

which corresponds to r < 0.034 at 95% C.L. The reioni-
zation optical depth is found to be

τ ¼ 0.057� 0.007: ð6Þ

The combination of the two datasets allows us to cover
the full range of multipoles that are most sensitive to tensor
modes. In combination with baryon acoustic oscillation
(BAO [28]) and CMB lensing [29] data, we obtain an
improved upper limit of

FIG. 2. Posterior distribution for the tensor-to-scalar ratio r,
showing the impact of marginalization over ΛCDM parameters.

3Uncertainties in Eq. (1) are slightly larger than those in
Ref. [13], despite using the same likelihood. This small difference
could be due to assuming different values for the reference
ΛCDM model parameters (we used Planck 2018 TT;TE;
EEþ lowEþ lensing [11]), or might arise from using different
MCMC/Boltzmann solver codes.
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r < 0.032 ð95% C:L:Þ: ð7Þ

In the ns − r plane (Fig. 4), the constraints now rule out the
expected potentials for single-field inflation (strongly
excluding V ∝ ϕ2, ϕ, and even ϕ2=3 at about 5σ).

VII. CONCLUSIONS

We have derived constraints on the tensor-to-scalar ratio
r using the two most sensitive datasets to date, namely
BICEP3 and Planck PR4. The BICEP/Keck Collaboration
recently released a likelihood derived from their data up to
the 2018 observing season, demonstrating a sensitivity on r
of σr ¼ 0.013, covering the multipole range from l ¼ 20 to
300 [13]. Complementary Planck PR4 data released in
2020 [14] provide information on the large scales, with
a polarized likelihood covering the multipole range from
l ¼ 2 to l ¼ 150 [12]. This has poorer sensitivity, with
σr ¼ 0.024, but offers independent information, with the
constraint on r coming from a combination of TT, TE, and
large-scale E and B data. It is interesting to note that
constraints derived purely from temperature anisotropies
alone are not competitive anymore (σr ¼ 0.1 [12]), since
those data are dominated by cosmic variance.
The addition of Planck data (including large angular

scales in polarization, as well as small angular scales in TT
and TE) allows us to increase the sensitivity on r, as well as
to break the degeneracy with the usual six parameters of
the ΛCDM model. We find that other ΛCDM parameters
are not affected by the addition of BK18 data (Fig. 5).
Combining Planck PR4 and BK18, we find an upper limit
of r < 0.034, which tightens to r < 0.032 when adding
BAO and CMB lensing data.
Ground-based experiments (such as BICEP/Keck, the

Simons Observatory [30], and later CMB-S4 [31]) will
observe the sky with ever deeper sensitivity, placing
even stronger constraints on the tensor-to-scalar ratio r
(or detecting primordial B modes of course). However,
improved measurements of the ΛCDM parameters are
essential to achieve strong constraints on r. In particular
reionization optical depth require very large scales, which
are extremely difficult to measure from ground. The next
generation of polarized CMB space missions (including
LiteBIRD [32]) will be able to deliver τ with a precision
dominated by cosmic variance.
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APPENDIX: STATISTICAL DISCUSSIONS

The Planck likelihood used in this analysis is described in
detail in Ref. [12]. It is based on the N ¼ 400 simulations
provided with the Planck PR4 data. Those simulations have
been shown to be the most realistic description of the Planck
data, including all relevant systematic effects [14]. Using the
Planck data, we expect correlations at very low-l, related to
long-term systematics, residuals from foregrounds, and cut-
sky effects. These should not be neglected.
The covariance used in the likelihood has been con-

structed from the simulationsmentioned above, ensuring the

propagation of statistical and systematic uncertainties up to
the fitted parameters. Nevertheless, the limited number of
available simulations induces an uncertainty on the esti-
mated covariance of the order of 5% (1=

ffiffiffiffi

N
p

). The robust-
ness of the covariance matrix has been checked in two
different ways.
First, we marginalized over the unknown true covariance

matrix, as described in Ref. [23]. The recovered maximum
posterior is unchanged, while the width of the posterior
is slightly enlarged, as expected due to the marginali-
zation (see left panel of Fig. 6). We also applied the
correction on the inverse covariance estimate, as proposed
in Refs. [23,33], recovering the same result.
Secondly, we ran the same chains using covariance

estimates based on only 200 simulations (right panel of
Fig. 6). The posterior distributions of r reconstructed from
the lowlEB likelihood using covariance estimates based
on either the first or the last 200 simulations are compatible,
given the statistical deviations from the covariance matrix
estimates.
We built a Monte Carlo toy model in order to check

potential biases in the recovered constraints. We found that

FIG. 5. Constraint contours (at 68 and 95% confidence) on parameters of a ΛCDM þ r model using Planck (red) and Plankþ BK18
(black).
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the distribution of the maximum a posteriori probability
(MAP) peaks at the input value, ensuring that the likelihood
is not biased. We found that the marginalization over
the unknown covariance matrix ensures that the additional
uncertainty coming from the covariance estimation is
properly propagated throughout the parameter constraints
(see Ref. [23]). This is illustrated in Fig. 7, where we
show that the estimated width of the posterior distribution
after marginalization is compatible with the standard
deviation of the maximum a posteriori probability. On
the contrary, the Hamimeche & Lewis likelihood without
marginalization significantly underestimates the uncer-
tainty for low N.

While there may be concern that this could induce a bias
in the derived upper limit, we have verified that the
recovered upper limits are underestimated by more than
10% compared to upper limits computed with the input
covariance in less than 6% of the realizations.
We conclude that covariance matrices based on full end-

to-end simulations can be successfully used in likelihoods
to infer parameters. The final uncertainty then depends on
the number of simulations used to estimate the covariance,
but this can be properly taken into account after margin-
alizing over the true covariance matrix.
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