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In this paper, we implement the adaptive moving mesh method (AMM) to the solution of initial value
problems involving the Schrödinger equation, and more specifically the Schrödinger-Poisson system of
equations. This method is based on the solution of the problem on a discrete domain, whose resolution is
coordinate and time-dependent, and allows us to dynamically assign numerical resolution in terms of
desired refinement criteria. We apply the method to solve various test problems involving stationary
solutions of the SP system, and toy scenarios related to the disruption of subhalo s made of ultralight
bosonic dark matter traveling on top of host galaxies.
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I. INTRODUCTION

The possibility of scalar fields as dark matter has gained
great interest in the community during the last decade due to
its interesting phenomenological implications. Particularly,
scalar field theories describing ultralight axionlike particles
with masses around 10−22 eV have turned appealing owing
to their lack of small scale problems, such as the missing
satellites problem and the halo core-cusp problem, because
of the large de Broglie length of such light particle of the
order of kiloparsecs (e.g., [1–6]). Particularly interesting is
that the accumulation of bosons assembles macroscopic
coherent states corresponding to a Bose-Einstein condensate
that may play the role of dark matter halos as described in
recent reviews (e.g., [4,7–9]).
The analysis of the model includes the study of evolution

and formation of structures, which needs the use of large-
scale numerical simulations. The regime where this analy-
sis happens is that in which the dynamic of the bosonic gas
is ruled by the Gross-Pitaevskii-Poisson (GPP) system,
where the parameter order obeys the Gross-Pitaevskii
equation for the Bose gas subject to the gravitational
potential sourced by the boson cloud itself. This analysis
includes studies of structure formation and formation of
universal density profiles (e.g., [10–17]). Given that proc-
esses of structure formation involve highly nonlinear
physics, these studies required developing codes to carry
out simulations, usually codes initially designed to study

the structure formation within the CDM paradigm were
adapted to include the Bosonic dark matter model in the
fuzzy regime, for example, ENZO [18], RAMSES [19],
AxioNyx [20], and GADGET [21].
Interaction between a few structures need also the

numerical solution of the GPP system that helps to study
the universal properties of binary mergers and relaxation
processes (e.g., [17,22–26]). Even the analysis of single
structure scales involves numerical simulations describing
the relaxation processes, for example the gravitational
cooling [27–29], or possible galactic halos with a specific
structure, like a vortical solution to the GPP system, their
stability and impact on galactic scale dynamics [30–34], or
deformation of the core solitons making up the bosonic
haloes due to tidal effects or rotation due to interactions in
many-body systems [35].
Explicitly, the Gross-Pitaevskii-Poisson system of equa-

tions that rules the dynamics in all these scenarios reads

iℏ
∂Ψ
∂t ¼ −

ℏ2

2m
∇2ΨþmVΨ; ð1Þ

∇2V ¼ 4πGjΨj2; ð2Þ

where m is the mass of a boson, Ψ is an order parameter in
the mean-field approximation at zero temperature of the
Bose gas, subject to the trap of the gravitational potential V
sourced by the gas ground-state occupation-number density
jψ j2 itself [36]. This system defines an initial value problem
(IVP) that is solved using a garden variety of numerical
methods, for example, directly [11,37,38] or a Madelung*ana.avilezlopez@correo.buap.mx
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transformed version of these equations (e.g., [17,39,40]),
which is a hydrodynamical version of the GPP system of
equations. Numerical methods vary from one code to
another, some of them using finite differences, some others
finite volume methods for the hydrodynamical version [14],
some others use spectral methods [13,41] and finally
Lagrangian methods inherited from smoothed particle
hydrodynamics [18,21].
Depending on the degree of detail and precision required

in each case, three-dimensional codes that solve these
equations use refinement strategies in order to optimize
the computational resources with the aim of retaining
precision in the regions where it is needed, for example
in structure formation simulations [11,13], or in the
simulations of local interaction of fluctuations (e.g.,
[17,20]) different spatial scales need different numerical
resolution.
This is the reason why in this paper we add another

possibility to this end. We apply the adaptive mesh moving
method (AMM) based on coordinate transformations, to the
solution of problems involving the Schrödinger equation
and the GPP system. These methods have been previously
proposed for solving a whole class of partial differential
equations, including astrophysics, for example in the early
years of the binary black hole simulations prior to the use of
AMR [42].
The physical motivation of this paper is to describe in

detail a method that can be helpful in the simulation of
fuzzy dark matter dynamics at the scale of galactic halos.
This is why in this paper we describe the implementation of
the AMM method to solve the IVP associated with
Schrödinger equation and especially the GPP system of
equations above.
The paper is organized as follows. In Sec. II we describe

the AMMmethod and in Sec. III the application to the GPP
system. In Sec. IV we present the strategy to implement the
method to problems involving Schrödinger equation.
Finally, in Sec. V we draw some final comments.

II. ADAPTIVE MOVING MESH

For a general description of themethod, consider an initial
value problem (IVP) formulated within the domain
Ω ⊂ R3 × t ∈ ½0; tf� ⊂ R, for the unknown u ¼ uðx; tÞ;
x ∈ R3 whose evolution equation reads:

ut þ∇ · f ¼ ∇ · ða∇uÞ þ s; ð3Þ

with appropriate initial conditions uðx; 0Þ and boundary
conditions uð∂Ω; tÞ for u, and known functions a, s and f.
The solution can be integrated using a discrete version of the
problem defined on a discrete domain and then using an
evolution method, assuming specific finite differentiation
schemes in order to approximate spatial operators acting on
fluxes, the parabolic term and the sources.

The use of these methods needs the definition of a
discrete domain. Assuming that Ω is a box described in
Cartesian coordinates Ω ¼ ½xmin; xmax� × ½ymin; ymax�×
½zmin; zmax�, a simple discrete domain is the set of points
ΩP ¼ fðxi; yj; zkÞ ∈ Ωjxi ¼ xmin þ iΔx; yj ¼ ymin þ jΔy;
zk ¼ zmin þ kΔzg, where i ¼ 0;…; Nx, j ¼ 0;…; Ny and
k ¼ 0;…; Nz are integer labels and Δx ¼ ðxmax − xminÞ=
Nx, Δy ¼ ðymax − yminÞ=Ny, Δz ¼ ðzmax − zminÞ=Nz are
the spatial resolutions of Ωd. The discretization of time
is commonly defined as a function of the spatial resolution,
as the set of values tn ∈ ½0; tf� such that tn ¼ nΔt, where
Δt ¼ CFLminðΔxα;Δyα;ΔzαÞ, where α ¼ 1, 2 for only
hyperbolic equations a ¼ 0 or parabolic a ≠ 0 respectively
and CFL is the Courant-Friedrichs-Levy factor. In the case
of Schrödinger equation α ¼ 2.
Mesh refinement is motivated by the need for accuracy in

certain regions of the domain where the solution function u
is possibly developing structure or important features to the
problem in turn. This method is implemented by defining a
subset of interest Ωs ⊂ Ω, possibly a box as well, with
higher resolution Δxs, Δys, Δzs where more accuracy is
used to solve the problem in this local domain. Appropriate
boundary conditions for u at the interresolution boundary
∂Ωs are implemented in terms of the values of u inΩd using
the well-known box in box method designed by Berger and
Oliger [43]. As long as the refined domains remain fixed in
space the method is usually called fixed mesh refinement
(FMR) andwewill use it here for comparisonwith theAMM.
Other refinement strategies allow these subdomains to move
in time, which leads to the moving boxes method being well
used in general relativistic simulations (e.g., [44]).
Although the AMM method is also motivated by the

need for accuracy in certain regions of the spatial domain
Ωd it uses a different approach. Instead of defining new
discrete sub-domains with higher resolutions as mesh
refinement methods do, it redefines the equation associated
with the IVP in terms of new coordinates.
The new coordinates identify points of ΩP with the

normalized box called logical domain ΩL ¼ ½0; 1�3, whose
discrete version is the uniformly distributed set of points
ΩL ¼ fðξi; ηj; κkÞjξi ¼ iΔξ; ηj ¼ jΔη; κk ¼ kΔκg, where
i ¼ 0;…; Nξ, k ¼ 0;…; Nκ and Δξ ¼ 1=Nξ, Δη ¼ 1=Nη,
Δκ ¼ 1=Nκ are the spatial resolutions of this logical
domain. For our purposes we use Δξ ¼ Δη ¼ Δκ.
On the other hand, we keep in mind that the physical

discrete domain where the original problem has been
defined for Eq. (3) is ΩP (P stands for physical) will no
longer be uniform. Assume that more resolution is needed
in the subdomain U ⊂ Ω due to a given refinement
criterion. The AMMmethod would assign a high resolution
to the physical discrete domain in the region of U using a
coordinate transformation. The discrete version of Eq. (3) is
solved in the logical domain ΩL where the spatial reso-
lution is uniform and the solution transformed back to the
physical domain ΩP as we describe in detail below. The
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transformation between logical and physical domains can
be dynamical.

A. Physical to logical domain transformation

The general coordinate transformation between the two
domains is a differentiable and invertible application

T ∶ΩL ⊂ R3 → ΩP ⊂ R3;

that takes ξ ∈ ΩL and delivers x ¼ xðξÞ, where ξ ∈ ΩL and
x ∈ ΩP. The inverse of T reads

T −1∶ΩP → ΩL;

which delivers ξ ¼ ξðxÞ ∈ ΩL. By means of T , the
unknown function u can be written in terms of the logical
space coordinates û as ûðξ; tÞ ¼ uðξðx; tÞÞ.
The transformation and its inverse are constructed based

on a variational method that extremizes the functionals I½ξ�
and Î½x� given by

I½ξ� ¼
Z
ΩP

FðJ −1; ξ;xÞdx; ð4Þ

Î½x� ¼
Z
ΩL

F̂ðJ ; ξ;xÞdξ; ð5Þ

where J ¼ ∇ξx and J −1 ¼ ∇xξ are the Jacobians asso-
ciated to T and T −1 respectively, and ∇ and ∇ξ are the
gradient operators with respect to the physical and logical
coordinates. A common choice for F has the form

FðJ −1; ξ;xÞ ¼ F1ðρ; βÞ þ F2ðρ; JÞ; ð6Þ

where ρðxÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðMðxÞÞp

is the mesh density function,
whereas M ¼ MðxÞ is the monitor function, and β is
written in terms of J −1 and M reads

β ¼
X
i

ð∇ξiÞTM−1∇ξi: ð7Þ

For the present work, we consider the particular case
where

M ¼ Inω;

so that ρ ¼ jωj3=2 and

F̂ðJ ; ξ;xÞ ¼ ρ
X
i

ð∇ξxiÞT ·∇ξxi; ð8Þ

where ρ ¼ jωj3=2 is considered to have a particular
dependence on x via an arbitrary differentiable function
v that defines the concentration of resolution as a function
of physical coordinates, so that ω ¼ ωðx; vÞ. The Euler-

Lagrange equations for the Logical domain resulting from
the minimization of (5) reduce to

∇ξ · ðρ∇ξxiÞ ¼ 0; ð9Þ
where i ¼ 1; 2; 3 labels the coordinates x, y, z respectively.
This is a set of differential equations that need to be solved
in order to obtain the transformation between the physical
and logical coordinates, namely x ¼ xðξÞ. Note that this
transformation depends on the monitor function M which
we can handle to produce a mesh with features appropriate
for desired refinement criteria. For the change of coordi-
nates, we notice that the covariant and contravariant vectors
are given by

ai ¼
∂x
∂ξi ; ai ¼ ∇ξi; ð10Þ

they are columns and rows of the Jacobian of T and T −1 as
follows

0J ¼ ½a1; a2; a3�; J −1 ¼

2
64
ða1ÞT
ða2ÞT
ða3ÞT

3
75: ð11Þ

With this in mind, the nabla operator in the physical
domain, written in terms of the logical coordinates, is
expressed in two possible forms

∇ ¼
X
i

ai
∂
∂ξi nonconservative; ð12Þ

¼ 1

J

X
i

∂
∂ξi Ja

i; conservative; ð13Þ

where J ¼ detJ . The parabolic term in Eq. (3) involves
second order derivatives and can be calculated using (12)
and (13) as follows

∇ · ða∇uÞ ¼ 1

J

X
i;j

∂
∂ξi

�
aJai · aj

∂u
∂ξj

�
: ð14Þ

With this term, we have the spatial part of Eq. (3)
transformed into either the physical or logical domains.
The method becomes adaptive-moving if the transfor-

mation depends on time, in which case the coordinate
transformation reads x ¼ xðξ; tÞ, and Eq. (3) has also to be
modified as follows

ut ¼ _u −∇u · _x: ð15Þ

A popular choice for _x is the so called adaptive moving
mesh partial differential equation defined as the time
derivative of the adaptation functionals (4) or (5) [45].
For the case we are considering, (5) results in the time
derivative of x equals to the adaptive mesh equation (9)
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_x ¼ 1

τ
∇ξ · ðρ∇ξxÞ; ð16Þ

where the constant τ controls the mesh speed of response.
With Eqs. (14) and (15) it is possible to rewrite the
expressions for the Schrödinger equation for a general
change of coordinates, solution of Eqs. (9) and (16). This
completes the transformation of the general Eq. (3).

B. Mesh refinement generator and the monitor function

The set of equations (9) determines the connection
between logical and physical domains. This expression
is known as the adaptive mesh equation and depends on the
mesh density ρ ¼ jωj3=2. This function can take different
forms and the choice depends on the partial differential
equation (PDE) to be solved. For illustration we consider
two possible expressions for ω:

ω ¼ ω1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ αv2

p
; ð17Þ

ω ¼ ω2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ αj∇ξvj2

q
; ð18Þ

where α parameter regulates the mesh “stress” through the
function v. Again for illustration, we consider two different
expressions of the resolution concentration function v:

vðx; y; zÞ ¼ v1 ¼ e−ð5x2þ7y2−1Þ2=10; ð19Þ

vðx; y; zÞ ¼ v2 ¼ e−10ðy−x2þ0.5Þ2 ; ð20Þ

needed in (17) and (18). The physical domain mesh
obtained by using the four combinations of ω1, ω2, v1,
v2 is shown in Fig. 1, which actually are standard tests of
the AMMmethod [45–49]. At the top, we show the case for
ω1 and the two expressions v1 and v2, which shows a
higher physical resolution where v2 is around its maximum.
At the bottom we show the results for ω2 and v1, v2; in this
case, the higher resolution for the physical mesh is
concentrated in the region where j∇ξvj2 is maximum.
A particular setup useful to solve the SP system, with

some initial conditions, uses functions v and ω that
concentrate a nearly constant high resolution at the center
of the domain and a constant coarse resolution in the
outskirts. A function v that helps this purpose, is the
following

v ¼ A

�
2þ tanh

�
R − rc

δ

�
− tanh

�
rc
δ

��
: ð21Þ

The result for ω ¼ ω1;ω2, R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
,

A ¼ 2.7, rc ¼ 15, δ ¼ 1, on the physical domain
½−20.8; 20.8�3, discretized with Nξ ¼ Nη ¼ Nκ ¼ 104 cells
along each direction, is shown in Fig. 2. For this example
we actually consider the domain useful for the evolution of

interesting scenarios for the SP system and resolutions that
will be used in some examples below. Notice that ω1

provides the needed mesh with a high-density central
resolution of ∼0.2 and a coarse resolution of ∼0.4 in the
outskirts. Notice also that ω2 concentrates resolution on a
spherical ring and maintains the coarse resolution every-
where else.
In summary, the implementation of the AMM method

can be described in a number of simple steps. For this,
consider there is a method to evolve the solution un from

FIG. 1. Physical mesh in the κ ¼ 0 plane for the four combi-
nations of ω1, ω2, v1, v2. At the top we show the two
combinations for ω1, at the bottom the cases for ω2, at the left
column the cases v1 and at the right those for v2. For these meshes
we fix the parameter α ¼ 100.

FIG. 2. Example of a physical domain ½−20.8; 20.8�3 discre-
tized using N ¼ 1043 cells, projected on the κ ¼ 0 plane z ¼ 0.
In this specific case we use v given by Eq. (21) with parameters
R ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
, A ¼ 2.7, rc ¼ 15 and δ ¼ 1. At the left we

show the result for ω ¼ ω1 which defines a region with high
resolution ∼0.2 in the center and a coarse resolution near the
boundary of ∼0.4. At the right we show the result for ω ¼ ω2 that
defines a spherical shell of high resolution. From these two cases
we use ω ¼ ω1 in various simulations below.
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time tn to the solution unþ1 at time tnþ1 in a uniformly
discretized domain, in our case this role is played the
logical domain ΩL. The steps needed to construct this
evolution on the logical domain are the following:
(1) Consider the objective is to construct a numerical

solution of Eq. (3) in the numerical physical domain
ΩP along with the discrete-time levels as tn.

(2) At time tn, construct a version of Eq. (3) for
uðξi; ηj; κk; tÞ described in coordinates ðξi; ηj; κkÞ ∈
ΩL using the following steps:
(a) Define functions ω and v, for example those in

(17), (18) and (19), (20) respectively.
(b) With this information, solve Eq. (9) and con-

struct transformations T and T −1.
(c) By knowing the transformations it is possible to

calculate the Jacobian of the transformations J
and J −1 in (11). Then use the chain rule to
construct space derivative operators in the log-
ical domain through expressions (12), (13), (14).

(d) It also allows one to use the chain rule for the
construction of the time derivative of uðξ; η; κÞ
through Eq. (16).

(3) Use an evolution method within the logical domain
ΩL to evolve the solution and the physical coor-
dinates from unðξi; ηj; κkÞ to unþ1ðξi; ηj; κkÞ and
xni ðξi; ηj; κkÞ to xnþ1

i ðξi; ηj; κkÞ respectively.
(4) Finally, the solution in the physical domain is calcu-

lated by transforming back the solution fromΩL toΩP

with unþ1ðxi; yj; zkÞ ¼ unþ1ðT ðξi; ηj; κkÞÞ.
This set of steps is applied from initial time n ¼ 0 until a

desired number of time steps, using the evolution scheme
described in the next section.

III. APPLICATION TO THE SCHRÖDINGER
EQUATION

A. Initial conditions

We consider various scenarios involving the Schrödinger
equation. Problem A corresponds to a particle on a
harmonic trap, where the initial conditions used corre-
sponds to the exact solution for a given number of nodes.
Problems B correspond to various cases involving the SP
system of equations, that start with stationary solutions of
the SP system, where the wave function for the stationary
solution is injected in the numerical domain using inter-
polation; in this case, after the wave function is injected,
consistent initial data require the solution of Poisson
equation at the initial time. Finally, problem C corresponds
to the evolution of a toy problem of a dark matter subhalo
orbiting a host halo with a fixed density profile and
gravitational potential. In this case, the wave function of
the subhalo is again an equilibrium configuration at the
initial time and is evolved in the test field regime in order to
see its disruption process.

B. Evolution

The evolution of the various examples is ruled by
Schrödinger equation, and in the case of the SP system,
its potential has to fulfill the Poisson equation during
evolution.
In order to solve the Schrödinger equation we use the

second-order accurate implicit Crank-Nicholson finite
differences scheme [50]. The method starts by writing
Schrödinger equation at the points of the logical domain
ðξi; ηj; κk; tnÞ and ðξi; ηj; κk; tnþ1Þ, where the wave function
evaluated at each time step is written as ψn

i;j;k and ψnþ1
i;j;k

respectively and these values are related as follows

ðI þMÞψnþ1
i;j;k ¼ ðI −MÞψn

i;j;k; ð22Þ

where Δt is time resolution, M ¼ i
2
ĤΔt and H is the

Hamiltonian discrete operator defined on the logical
domain ΩL. Equation (22) is a linear system of equations
whose unknowns are the values of the wave function ψnþ1

i;j;k

at time tnþ1.
This evolution scheme suffices to solve problem A (IVA),

where the potential term in the Schrödinger equation is a
fixed function of the spatial coordinates. For problems
B (IVB) and C (IV C), it is still necessary to solve the
Poisson equation during the evolution for the gravitational
potential that enters back into the Schrödinger equation
(specifically the subhalo potential for problem C).
Poisson equation, being elliptic, is solved on the discrete

logical domain using the Multigrid method with a three
resolution levels V cycle at each time step tn. [50].

IV. SPECIFIC PROBLEMS

In this section we solve three problems in order to test the
AMM approach. For comparison, we use a code that works
using fixed mesh refinement [31] in problems A and B.
Problem C is related to a more dynamical scenario and is
solved only with the AMM code. In this case, the AMM
code shows the ability to track the evolution of deformed
density profiles and can be related to astrophysical
scenarios.

A. Problem A: Schrödinger equation for a particle
in a harmonic oscillator potential

We aim to test the implementation of the Schrödinger
equation for a nontrivial case of an exact solution, which
allows one to assess the numerical results. This basic test
was carried out using the AMM off-mode in order to test
the Schrödinger equation integrator exclusively in a very
simple situation where the density jψ j2 remains concen-
trated in a fixed region. In this case Schrödinger equation
reads
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ĤΨ ¼ −iℏ
∂Ψ
∂t ¼ −

ℏ2

2m
∇2Ψþ 1

2
mω2ðx2 þ y2 þ z2ÞΨ;

ð23Þ

where Ĥ is the Hamiltonian operator corresponding to a
tridimensional harmonic oscillator.
Initial conditions correspond to the solution of the

stationary exact solution ψ s of the above equation which
obeys E

ℏω ψ s ¼ − ℏ2
2m∇2ψ s þ 1

2
mω2ðx2 þ y2 þ z2Þψ s, where

Ê ¼ ðnx þ ny þ nz þ 3
2
Þℏω, whose solution is given by:

ψ sðx; y; zÞ ¼ Cðnx; ny; nzÞHnxðxÞHnyðyÞHnzðzÞ
× e−β

2x2þy2þz2

2 ; ð24Þ

where HniðxiÞ are the Hermite polynomials of order ni and
the normalization constant is given by

Cðnx; ny; nzÞ ¼
�
β2

π

�
3=4 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2nxþnyþnznx!ny!nz!
p ;

β ¼
ffiffiffiffiffiffiffi
mω

ℏ

r
:

Problem A consists in the evolution of this initial
condition for the particular state nx ¼ ny ¼ nz ¼ 2, and
m ¼ ω ¼ ℏ ¼ 1, and it is expected that the evolution
reproduces the properties and behavior of the fully time
dependent wave function Ψðx; y; z; tÞ ¼ e−iEt=ℏψ sðx; y; zÞ.
The numerical parameters used are the following.

The domain is the box ðx; y; zÞ ∈ ½−10; 10� × ½−10; 10�×
½−10; 10�, discretized with resolution Δx¼Δy¼Δz¼ 0.2.
We show the numerical solution is stationary by check-

ing the density remains nearly time-independent, whereas
the wave function oscillates with the frequency ω. In Fig. 3
some snapshots of ReðΨÞ and jΨj2 are shown at various
times, illustrating how the wave function evolves and the
density remains nearly time independent. In Fig. 4 we show
that N ¼ R jΨj2d3x, the number of particles within the
numerical domain, remains close to one by less than one
part in a million during 250 oscillations of the wave
function, which indicates that the evolution is nearly
unitary.
In order to assess in more detail the numerical solution,

we compare the oscillation frequency of ReðΨÞ of a
numerical solution with the frequency of the exact solution.
For this, we compute a Fourier transform (FT) of the central
value of ReðΨÞ. As shown in Fig. 4 the FT shows a well-
defined peak at the theoretical value ð2þ 2þ 2þ 3=2Þ. In
summary, all these results together indicate that the
evolution solves correctly the Schrödinger equation in a
nontrivial but well-known case. Additionally, in order to
provide a convergence test we calculate interpolated values
of the density a the local maxima P1ð0; 0; 0Þ and

P2ð
ffiffiffiffiffiffiffi
2.5

p
;

ffiffiffiffiffiffiffi
2.5

p
; 0Þ as a function of time using two reso-

lutions Δxyz ¼ 0.4 and Δxyz ¼ 0.2, and show the results
also in Fig. 4, where convergence toward the exact values
.02245 for P1 and 0.0387 is manifest.

B. Problem B: The Schrödinger-Poisson system

In this section we use the AMM method to solve the SP
system, and since there are no exact analytic solutions, we
compare the solutionswith those constructed using the xBEC
code, that implements the FMRmethod [51]. This code is set
to solve Schödinger equation in time with the Crank-
Nicholson and alternating direction implicit (ADI)
approaches, in order to have similar integration methods.
Each particular case of the SP problem involves the evolution
of a specific set of initially equilibrium configurations of the
Schrödinger-Poisson system solved as described in [36].
For the three problems in B, we use the same numerical

domain ½−20; 20�3 with a base resolution Δxyz ¼ 0.4.
Unigrid mode of xBEC uses a simple discretization of the
domain ½−20; 20�3 with resolution Δx ¼ Δy ¼ Δz ¼ 0.4.
The FMR mode uses the same numerical domain, but this
time with the additional subdomain ½−10; 10�3 discretized
with resolution Δx ¼ Δy ¼ Δz ¼ 0.2, which will increase
the accuracy of the solution within this box.
On the other hand, for the AMM code, mode off sets the

logical and the physical meshes as uniform discretizations
with resolution Δx ¼ Δy ¼ Δz ¼ 0.4. The mode on con-
siders a transformation that on one hand defines a mesh
with coarse resolution Δx ¼ Δy ¼ Δz ¼ 0.4 where gra-
dients of density are small and, on the other hand, nearly
double resolution ΔxΔy ¼ Δz ¼ 0.2 in the regions where
density gradients are high. The idea is that the numerical
setup with xBEC and AMM are similar in resolution and
accuracy.

1. Problem B.1: Evolution of an equilibrium
configuration

As a first problem, we consider the evolution of a ground
state stationary spherical configuration. The numerical
domain is set to the box ½−20; 20�3. For comparison, both
the control code xBEC is used in unigrid/FMR mode, and
for comparison, the AMM code is set in the equivalent off/
on mode.
Physically, because the initial configuration is stationary in

the continuum, it is expected that the density jΨj2 remains
time-independent during the evolution. Nevertheless, finite
differences approximation and time integration introduce
permanent truncation errors that perturb the wave function.
The effect is that the configuration oscillates, in fact with
specific mode frequencies (see, e.g., [52]), whose amplitude
should converge to zero when increasing resolution. The
results using the xBEC code in unigrid and FMR modes
appear in the first panel of Fig. 5. This figure shows that the
amplitude of density oscillation reduces by a factor of four
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when doubling resolution, indicating second-order conver-
gence.On theother hand, the results for theAMMcode in on/
offmodes appear in the second panel and shows also a similar
convergent behavior. In the case of the AMM method,
precise convergence is not expected since the resolution is
not exactly double, but gradually increasing resolutions that
depend on the domain coordinates Also notice that the
oscillations are damped in the case ofAMM-onmode,which
is due to the spatially dependent resolution, that produces
space-dependent discretization errors different in each part of
the domain.

2. Problem B.2: Evolution of a boosted
equilibrium configuration

The code needs to show the ability to simulate moving
configurations. This is why a second test involves a boosted
equilibrium configuration. The setup consists in redefining
the wave function of an equilibrium configuration
Ψeqðx; 0Þ → e−ivzΨeqðx; 0Þ, which produces the configu-
ration to move along the z direction with velocity vz.
For illustration, we use vz ¼ −1 and the configuration

located initially at the coordinate origin. In Fig. 6 we show
snapshots of the density jΨj2 projected along the z-axis
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using the AMM code in off and on modes. In order to know
about the effects of refinement within the AMM code, we
look closer at the snapshot at time t ¼ 0 and compare the
results using the AMM-off and AMM-on modes with the
expected solution in the continuum also in Fig. 6. The
AMM-off uses a constant resolution Δxyz ¼ 0.4 whereas
the AMM-on uses a transformation that covers the range of
resolutions from Δxyz ¼ 0.4 far from the blob to Δxyz ¼
0.2 around the maximum density. The solution in the
continuum is calculated as the Richardson extrapolation of
solutions obtained with the xBEC in unigrid mode with
resolutions Δxyz ¼ 0.2 and 0.1. The results show con-
vergence toward the solution in the continuum when using
the AMM-on mode..
Most important for the AMM method is the evolution of

the physicalmesh illustrated In Fig. 7. Notice that themethod
designates higher resolution in regions with higher density
gradients, which in this case is moving toward the left.

3. Problem B.3: Evolution of a binary configuration

For the next step, we show the solution of the SP system
for the frontal collision of two equal mass equilibrium
configurations with head-on velocity vz ¼ �0.5 launched
from initial positions z0 ¼ �8 along the z-axis. This case
with E < 0 corresponds to a merger where the two initial
configurations fuse and for a final single blob. In Fig. 8 we
show some snapshots of the projected density on the yz-
plane. In Fig. 9 we show some diagnostics, including the
time series of the central density of the system and the
virialization function 2K þW. Also shown is a conver-
gence test of the density at two times. For this, we
generated three runs with a different resolution with
xBEC and produced the Richardson extrapolated solution
to the continuum. The plots show that the solutions using
AMM-off with uniform resolution 0.4 and AMM-on with
resolution from 0.4 to 0.2, the numerical solutions converge
to the expected in the continuum.
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C. Problem C: Embedded SP configurations
inside a soliton halo

The main purpose of this section is to show we can use
our AMM code to simulate the evolution of a subhalo
with the density profile of an equilibrium configuration,
laying inside a background potential of a host halo whose
gravitational potential dominates and eventually disrupts
the subhalo.
Our main goal of considering this case is to explore a

simple scenario reminiscent of SFDM halos laying in highly
interacting astrophysical environments. For problem C, we
evolved an initially stationary configuration interacting
gravitationally with a larger configuration with a fixed
corelike density profile. Simulations of this kind are prom-
ising for studies of highly interacting galactic systems such as
groups and clusters of galaxies which are scarce or even
lacking so farwithin alternative scenarios toCDMsuch as the
SFDM model. The complexity of phenomena involved in
those systems is so high, that sophisticated numerical and
physical methods are required in order to even accomplish a
fair description of their dynamics and evolution.
With that goal in mind, we consider the host galaxy halo

is spherical with density profile given as a soliton with a

density profile prescribed from cosmological simulations as
follows [53]

ρcðrÞ ¼
0.019ðm=10−22 eVÞ−2ðrc=kpcÞ−4

½1þ 0.091ðr=rcÞ2�8
ð25Þ

where

rc ¼ 1.6

�
m

10−22 eV

�
−1
�

Mvir

109 M⊙

�
−1=3

kpc; ð26Þ

 0.96

 0.98

 1

 1.02

 1.04

 1.06

 1.08

 1.1

 1.12

 1.14

 1.16

 0  50  100  150  200

ρ

t

Unigrid
FMR

 0.96

 0.98

 1

 1.02

 1.04

 1.06

 1.08

 1.1

 1.12

 1.14

 1.16

 0  50  100  150  200

ρ
(0

)
(0

)

t

AMM off
AMM on

FIG. 5. Central density as a function of time for an equilibrium
configuration using the xBEC code in unigrid and FMR modes,
using the ADI evolution methods (top). Results were obtained
using the AMM method in off and on modes (bottom).
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corresponding to a core size of approximately 2 kpc. This
density distribution sources a gravitational potential Vbg
that is kept fixed during the evolution.
The host halo produces a fixed gravitational potential

that is plugged into the Schrödinger equation. This poten-
tial arises from solving the Poisson equation ρcðrÞ in (25) at
the initial time and plays the role of a gravitational trap that
confines the substructure into a bound region.
In our case of study, we consider a mass of the host halo

that is larger than the mass of the subhalo by a factor of two.
Since it is of our interest to study the disruption effect
suffered by the subhalo due to the interaction with the
host, we set the initial conditions such that the center of the
host halo stays fixed at the origin of coordinates, whereas
the subhalo configuration is initially centered at x⃗ð0Þ ¼
ð0; 10; 0Þ in code units (corresponding to x⃗ð0Þ ¼ ð0;
19.2; 0Þ kpc, using v ∼ 10 km=s as the average velocity
of bosons in the condensate [4] in order to calculate the de

Broglie length), with initial velocity v⃗ð0Þ ¼ ð0; 0;−v0Þ. The
initial velocity magnitude v0 is the only parameter that is
varied in the three different simulations. In order to set the

values of v0 we take as reference the value vref ¼
ffiffiffiffiffiffiffiffiffi
McðrÞ

r

q
and

McðrÞ ¼
R
r
0 ρcðr0Þr02dr0. The idea is that with this initial

velocity the trajectory of the center of the subhalo corre-
sponds to a nearly circular orbit on the yz-plane.

FIG. 8. Projections of the density at three different times during the merger of the binary configurations on the yz-plane.
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The three runs correspond to different values of the
initial velocity of the subhalo defined as follows:

Run 1 v0 ¼ vref − 0.2 ≃ 0.4. In this case it is expected
that the gravitational force dominates over the cen-
tripetal force.

Run 2 v0 ¼ vref ≃ 0.6. The subhalo would move in a
nearly circular trajectory. Due to tidal effects, the
spherical shape would be destroyed and part of the
mass of the subhalo would be torn apart whereas
the other part would be accreted toward the center of
the potential.

Run 3 v0 ¼ vref þ 0.2 ≃ 0.8. The subhalo would tend to
escape from the host potential and eventually its mass
will be lost through the boundaries.

The settings for the AMM-on mode of the code are the
same as in problem B (see IV B). The domain for all our
simulations is given by a cubic box with edges placed at:
½−20.8; 20.8�3 which is discretized into a mesh containing
N ¼ 1043 points.
Figure 10 shows the maximum density of the subhalo,

for Runs 1, 2 and 3 as a function of time. Also in Fig. 10 we
show the self convergent behavior for Run1 of the

maximum of density, using three runs with successive
resolutions with resolution factors of 1.25.
We considered the time series of the maximum density

of the subhalo as an indicator of the extent of deformation
of the subhalo. The behavior of density maximum indicates
that the subhalo tends to remain closer to the initial value as
the angular momentum is bigger and also oscillates with
larger amplitude. In conclusion, the larger the angular
momentum is, the more deformed results of the subhalo.
Finally, in Fig. 11 we illustrate the evolution of the subhalo
density for the three runs, projected on the yz-plane.
Interestingly, as clearly can be seen in snapshots shown
in Fig. 11, we can distinguish two possible fates of the
subhalo, for run 1 since the angular momentum is suffi-
ciently small, a significantly large fraction of the mass
remains as a bounded configuration infalling toward the
host center, while the rest of the initial mass is ripped away
from the subhalo and either scatters around the host
potential well or gets away from it. In conclusion, in the
last scenario, the disruption effect on the subhalo results in
a deformation and a reduction in mass. In contrast, in the
other side limit, simulated in run 3, the subhalo holds large

FIG. 11. Snapshots of the subhalo density projected on the yz-plane at times t ¼ 0, 19, 101 from left to right in different simulations.
For reference, the center of the host galaxy lies at the coordinate origin.
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enough angular momentum to dissolve the subhalo and part
of its mass is kidnapped by the host and the other fraction
runs away from it.

V. FINAL COMMENTS

We have presented the use of the AMM method applied
to initial value problems associated with the Schrödinger
equation, under various scenarios. Being our main interest
the application to the dynamics of ultralight bosonic dark
matter at local scales, we study cases with localized
distributions of bosons where gravity plays a role.
We consider 2 simple cases which have been extensively

studied in the literature. problems A and B served as tests to
our AMM code. Specifically, we tested the numerical
performance and precision of our code (both AMM-on
and off options) by comparing its outputs to well-known
solutions. However, we did not explore any new physics
since this has been addressed before.
For these problems, we have shown the ability of the

AMM method to provide adaptability of the numerical
resolution to desired high-density regions in the physical
domain, where simulations are expected to bemore accurate.
We have shown that the method can handle scenarios

involving the dynamics of dark matter configurations, and
expect the implementation of this method contributes to the
analysis of at least galaxy scale phenomena related to
ultralight bosonic dark matter.
Particularly, we studied problem C as a simple but fairly

complex scenario which brings up some insights for
studying highly interacting galactic systems such as groups
and clusters of galaxies that are scarce or even lacking so
far within alternative scenarios such as the SFDM model.
The complexity of phenomena involved in those systems is
so high, that sophisticated numerical and physical methods
are required in order to even accomplish a fair description
of their dynamics and evolution. Our main achievement
regarding problem C was to track the evolution of a
configuration playing the role of a galactic-sized SFDM-
subhalo suffering a disrupting effect produced by the
gravity of a host halo. Out main conclusions regarding
this problem are: (1) The largest the angular momentum the
stronger disruption of the subhalo and (2) there are two
possible fates of the subhalo after being disrupted: it
remains bounded or it is dissolved into the host.
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APPENDIX: ACCURACY AND
COMPUTATIONAL COST

We present a measure of the trade-off between accuracy
and computational cost for the AMM-on and AMM-off
modes of our code. The Schrödinger-Poisson system is a
constrained evolution system composed by an elliptical
constraint and a parabolic-type evolution equation. The
evolution from time tn to time tnþ1 for a variable Ψ is given
by an evolution operator Ψnþ1 ¼ AΨn for all points in the
spatial domain, where A ¼ ðI þMÞ uses an explicit dis-
cretization of the evolution equation.
On the other hand, Poisson equation (2) is an elliptic

equation, whose solution requires an iterative algorithm, in
this work we used the multigrid method, in which Poisson
equation is written as a linear system of equations (LSE) for
the potential Aum ¼ b, where um ¼ Vn

m is the mth step in
the recursion for the nth iterative time step, b ¼ jψn

i;j;kj2 is
the source and A corresponds to the matrix representation
of the Laplacian operator. The above is applied recursively
until the infinity norm of the error Err ¼ jb − Auij∞ of the
residual crosses a threshold close to zero.
Due to the fact that the solution of Poisson equation

requires the solution of an LSE problem several times in
each time step, it is the most expensive operation in
computational resources terms. For that reason we consider
Poisson equation to analyze computational cost, in the
(a) AMM ON and (b) AMM OFF scenarios.

FIG. 12. The error of the solution of Poisson equation vs
number of V-cycle iterations. The convergence of the solution of
Poisson’s equation is shown. For the threshold 10−5 the use of
only 1003 cells with AMM-on shows to be more efficient that
AMM-off.
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We calculate the computational cost using the conver-
gence rate metric for the multigrid method taking a trunca-
tion error Err ¼ 10−5. A stationary configuration was
studied within a box ½−20; 20�3 in both scenarios, the first
one with N ¼ 1003 for (a) achieving a central resolution
of Δx ∼ 0.2, and the second one with N ¼ 2003 points for
(b) also with a resolution of Δx ¼ 0.2. In both cases the
initial guess is the field zero. The results are shown in

Fig. 12, where we observe that scenarios (a) and (b) the
number of iterations needed for convergence are of the
same order. However, for the latter case, the number of
operations performed by the CPU is 23 ¼ 8 times bigger
than in the AMM-ON case. This allows one to quantify the
difference of using a logical domain discretized with 1003

cells instead of 2003 cells with similar accuracy in the refined
region.
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