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The discovery of black-hole-binary mergers through their gravitational wave (GW) emission has
reopened the exciting possibility that dark matter is made, at least partly, of primordial black holes (PBHs).
However, this scenario is challenged by many observational probes that set bounds on the relative PBH
abundance across a broad range of viable PBH masses. Among these bounds, the ones coming from
microlensing surveys lead to the strongest constraints in the mass range from ∼10−10 to a few M⊙. The
upper part of this range precisely corresponds to the mass window inside which the formation of PBHs
should be boosted due to the QCD phase transition in the early Universe, which makes the microlensing
probes particularly important. However, it has been argued that taking into account the inevitable clustering
of PBH on small scales can significantly relax or entirely remove these bounds. While the impact of PBH
clustering on the GWevent rate has been studied in detail, its impact on the microlensing event rate has not
yet been fully assessed. In this paper, we address this issue, and show that clusters arising from isocurvature
perturbations, that originating from PBHs formed from Gaussian initial curvature perturbations, do not alter
the current microlensing constraints, as they are not sufficiently compact.
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I. INTRODUCTION

The advent of gravitational wave (GW) astronomy [1]
has opened a new window on the Universe. In particular,
the peculiar mass range inferred from the first observations
of binary-black-hole (BBH) mergers [1–3] has been inter-
preted as a hint for a possible primordial-black-hole (PBH)
origin of these events [4,5]. This revived the exciting idea
that the still mysterious dark matter (DM), which pervades
the Universe and is currently the pillar of the theory of
structure formation [6–8], could be made, at least partly, of
PBHs [4,9,10].
However, this scenario has to confront several observa-

tional constraints that currently bound the PBH abundance
along an extended range of masses (for recent reviews, see,
e.g., [11,12]). Among them, microlensing surveys provide
a powerful probe for constraining the abundance of PBHs
with masses between asteroid and Solar mass scales
[13,14]. The higher end of this mass range is particularly
interesting as it corresponds to PBHs that could have been
formed during the QCD phase transition, when a drop of
pressure decreases the overdensity threshold above which
density fluctuations can collapse directly to black holes
(BHs) [15]. For approximately scale-invariant preexisting

density perturbations, one expects thus a peak in the mass
function of PBHs around one Solar mass [16], which is
within the reach of numerous Galactic, but also extraga-
lactic, microlensing surveys [17–21].
Current constraints limit PBHs to represent fpbh ≲ 0.1 of

the total DM abundance in the aforementioned mass range.
However, these limits have been derived assuming the
PBHs are randomly distributed along a given DM density
profile. Throughout the literature it has been suggested that
the inevitable clustering of PBHs could significantly relax
these bounds [22–24]. In this paper, we wish to explore in
detail how such clustering affects the microlensing limits.
We shall see that for Gaussian inflationary perturbations
they are actually unlikely to change.
Where do these clusters come from? On large scales, the

behavior of PBHs is indistinguishable from that of any
viable cold dark matter (CDM) particle candidate [25].
However, on small scales there are two important
differences compared to the particle hypothesis, i.e., the
macroscopic PBH masses and their essentially vanishing
initial peculiar velocities. For Gaussian perturbations over-
dense regions exceeding the threshold for PBH formation
are randomly distributed in space [26,27]. This sub-
sequently leads to Poisson fluctuations of PBH numbers
in any given volume [28,29]. These fluctuations represent
the dominant source of isocurvature perturbations on small
scales and inevitably seed the formation of PBH clusters
already at very early times [30]. However, due to small
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relaxation times, smaller clusters are subject to later
evaporation.
The Poisson fluctuations in PBH numbers and their

vanishing initial velocities lead to efficient formation of
PBH binaries [30–32]. These binaries are highly eccentric
due the vanishing initial PBH peculiar velocities, and one
expects a large BBHmerger rate if PBHs make a significant
fraction of CDM. In fact for fpbh ¼ 1, it was thought that
the merger rate of PBHs should be orders of magnitude
larger than the one observed by LIGO/Virgo [33].
However, these estimates did not take into account the
presence of dense clusters, and PBH three-body inter-
actions within, which significantly perturb the orbits and
thus coalescence times of binaries. Detailed studies found
that the merger rate could indeed be consistent with the
observed one [34,35], in case that most of the PBH binaries
are actually residing in clusters. As of now, it seems that a
fpbh ¼ 1 with M ∼M⊙ is marginally ruled out due to the
coalescence of isolated and highly eccentric binaries [36].
In this work we carefully examine the impact of PBH

clustering on the interpretation of microlensing searches for
massive compact halo objects (MACHOs). In our analysis,
we pay particular attention to the differences in the
probability distribution for the expected number of events,
as well as the probability for recurring microlensing events,
which were typically discarded from the observational
samples. For concreteness, we provide quantitative results
for the EROS-like microlensing survey [19] of the Large
Magellanic Cloud (LMC). However, the implications of our
findings can be easily generalized to other similar Galactic
surveys, such as those of MACHO [37] and OGLE [20],
or even Subaru/HSC observations of the Andromeda
galaxy [38].

II. MICROLENSING SEARCHES FOR MACHOS

Microlensing surveys search for temporary brightening
of distant sources (e.g., stars) due to the passage of a
MACHO near the line-of-sight (l.o.s.). In essence, this
phenomenon is a particular case of strong lensing, where
the angular separation between multiple images of the
source is smaller than the resolution of the telescope (i.e., of
order of microarcseconds, hence the name microlensing).
The observed effect is the amplification of the source’s
brightness by a factor [13,39]:

AðuÞ ¼ u2 þ 2

u
ffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ 4

p ; ð1Þ

where u ¼ R=RE is the displacement of the lens from the
l.o.s. axis, expressed in units of Einstein radius,

RE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2rSðDs −DlÞDl

Ds

s
; ð2Þ

where rS; Ds, and Dl are the Schwarzschild radius of
the lens, the distance of the observer to the source, and
the distance of the observer to the lens, respectively. The
observed light curves are typically fitted using the follow-
ing parametrization of u [40]:

uðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u20 þ

ðt − t0Þ2
t2E

s
ð3Þ

where u0 is the impact parameter of the lens, t0 the time of
maximum amplitude, while tE is the characteristic crossing
time, i.e., tE ¼ RE=v⊥ with v⊥ being the lens transverse
velocity with respect to the l.o.s.
The main quantity in predicting the observational sig-

natures of MACHOs is the differential event rate dΓ=dtE.
The latter quantifies the rate at which lenses enter the
“microlensing tube,” defined as the volume along the l.o.s.
axis that leads to an amplification above a certain threshold
AT ≡ AðuTÞ (for more details see, e.g., [14] and Fig. 1
therein). dΓ=dtE can be used to compute the expected
number of microlensing events in a given survey with
detection efficiency εðtEÞ and total exposure E:

N̄ ¼ E
Z

dtEεðtEÞ ×
dΓ
dtE

ðtEÞ: ð4Þ

In microlensing studies, it is commonly assumed that
PBHs follow a smooth and spherically symmetric Galactic
halo density profile ρðrÞ, where r denotes the galactocentric
distance, and have an isotropic Maxwellian velocity dis-
tribution with a dispersion σðrÞ. In that case, the differential
event rate can be computed by performing a single l.o.s.
integral [14,17].

FIG. 1. Probability distribution functions for the number of
observed microlensing events Nobs in EROS-2-like survey of the
LMC. The black curve shows the standard result assuming
smoothly distributed PBHs, while color curves represent our
results for PBHs bound in clusters of different masses. The
vertical red line shows the mean number of events, N̄obs, which is
independent of PBH clustering.
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However, as argued in [22–24,41], these assumptions
may no longer be justified if PBHs are bound into compact
clusters, but rather should be applied to the clusters
themselves and no longer to individual PBHs. This argu-
ment was used to evade microlensing constraints on PBH
dark matter simply from the fact that (compact) cluster
masses fall outside from the microlensing target mass
range. It is straightforward and intuitively clear to write
down the approximate condition for when a cluster should
be treated as a single lens (compact cluster) and when as a
compilation of spatially correlated individual lenses
(extended cluster). Imagine a perfectly aligned observer-
lens-source event where the bending of light rays by the
Einstein angle ΘE ¼ REðMclÞ=Dl is maximal, whereMcl is
the cluster mass. These light rays pass approximately
ΘEDl ¼ REðMclÞ from the center of the cluster and do
not enter it if its radius is rcl ≪ REðMclÞ. Therefore, a
cluster has to be treated as compact from the point of view
of microlensing surveys when rcl ≪ REðMclÞ. We will see
that for Gaussian perturbations this is not the case, as the
clusters are orders of magnitude larger than the correspond-
ing Einstein radius, i.e., rcl ≫ REðMclÞ. In such situations,
characterized by low optical depth, accounting only for the
PBH that is the closest to the l.o.s. is sufficient to model the
net lensing effect [42].

III. SOME PROPERTIES OF PBH CLUSTERS

For Gaussian primordial curvature perturbations the
probability for the collapse into BHs is uniform in space
and, therefore, results in initially randomly distributed
PBHs. This unavoidably seeds Poissonian isocurvature
perturbations on small scales, which later lead to the
formation of PBH clusters. The overdensities associated
with scales that on average contain N PBHs are of the size
of δðNÞ ∼ ΔN=N ¼ 1=

ffiffiffiffi
N

p
. In the radiation dominated era,

these fluctuations only grow logarithmically, however, after
matter-radiation equality, they enter the linear growth
regime and collapse. Throughout their subsequent evolu-
tion, smaller clusters evaporate, but are themselves aggre-
gated into more massive structures. The typical evaporation
time can be estimated as [43]:

tevap ∼ 140trelax ∼
14Npbh

logNpbh
tcross; ð5Þ

where trelax is the system relaxation time rewritten in terms
of the number of PBHs within the cluster, Npbh, and the
typical crossing time tcross ∼ rcl=vcl determined by the
cluster size, rcl, and its virial velocity, vcl. At present time,
one expects to find the largest abundance of PBH clusters
with total masses Mcl ∼ 104 M⊙, consisting of ∼103–104
individual PBHs with masses ∼1–10 M⊙, and with typical
cluster sizes rcl ∼ 10 pc [34,35,44]. Larger clusters, which
are less dense, are made up of these basic building blocks,

i.e., the of Mcl ∼ 104 M⊙ clusters, as these are the smallest
structures that have not yet evaporated.

IV. MICROLENSING CONSTRAINTS
FOR CLUSTERED PBH

As mentioned above, if PBHs live in compact clusters,
one can readily rescale the microlensing limits on the DM
fraction in PBHs by considering single lenses of mass Mcl.
This can completely lift the current microlensing bounds
on sub-Solar mass PBHs for Mcl ≫ M⊙ [22]. However,
the condition for PBH clusters to act as individual
lenses in surveys of the Magellanic Clouds is that rcl ≪
10 auðMcl=M⊙Þ1=2 (for surveys targeting the Andromeda
galaxy this ratio is larger, but only by a factor of ∼20). This
criterion is definitely not fulfilled for PBH clusters formed
through the collapse of Gaussian primordial adiabatic
perturbations [32], whose typical features have been
recalled above. Such dense PBH clusters can only form
in the early Universe through some other mechanism
(e.g., [45–47]), or different initial conditions, such as
non-Gaussian perturbations [48] (see also [49]). We post-
pone a dedicated study of such scenarios to future work,
however, we anticipate that substantial fine-tuning of the
corresponding PBH production mechanism would be
required to significantly relax the microlensing bounds,
while still obeying other observational constraints.
Therefore, in the following, we focus on the effect of
extended PBH clusters on the microlensing limits derived
from the surveys of the LMC.

A. Probability distribution for the number
of observed events

To carry out the statistical analysis of the event rate, we
resort to dedicated Monte-Carlo (MC) simulations of
microlensing signals produced by clustered PBHs. While
semianalytical estimates are possible for sparsely distrib-
uted sources, the crowded stellar fields of nearby galaxies
make it necessary to perform a numerical convolution of
associated complex stellar surface densities with the
probability distribution of PBH cluster positions, rendering
it analytically intractable.

1. Monte Carlo simulations

OurMC simulations consist in drawingNcl ∼ PoisðλLMCÞ
PBH clusters, whose positions and velocities are distributed
according to a chosen globalmodel of theGalacticDMhalo.
The latter also defines λLMC ¼ Ml:o:s:=Mcl, i.e., the expected
number of PBH clusters within the observed volume (Ml:o:s:
corresponds to the DM mass contained in a cone with the
apex at the position of the observer and the base in the
approximate plane of the stellar source population, encom-
passing the observed area in the sky). We additionally
assume that all PBH clusters have the same mass Mcl,
which is justified by the fact that the smallest nonevaporated
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clusters will be the most abundant and represent the
elementary building blocks of larger clusters [34,35,44].
For each of the clusters, we draw a number of microlensing
events from a Poisson distribution with the appropriate
mean. The latter is determined by computing the differential
event rate, dΓ, from its standard expression (see, e.g., Eq. (8)
in [14]).We further assume that all PBHs have equalmasses,
MPBH ¼ 1 M⊙, and that the velocity dispersion of PBHs
inside a cluster is negligible with respect to the cluster
velocity in the Galactic halo, such that the velocity distri-
bution of the cluster members can be modeled as a delta
function picked at the cluster’s peculiar velocity v⃗p. Thus,
the differential event rate dΓ (integrated over angles) can be
written as:

dΓ ¼ 2nPBHðxÞuTv⊥REðxÞdx; ð6Þ
where nPBHðxÞ is the PBH number density at position x
along the l.o.s. Consequently, the Einstein crossing time of
each event associated with this cluster is fixed to
tE ¼ REðxÞuT=v⊥. The corresponding differential event rate
inside a cluster for a l.o.s with impact parameter b can then
be expressed as the l.o.s. integral:

dΓ
dtE

ðb; tEÞ ¼
2v⊥uTREðxclÞ

MPBH
δ

�
REðxclÞuT

v⊥
− tE

�

×
Z

xclþΔx

xcl−Δx
dxρcl

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx − xclÞ2 þ b2

q �
; ð7Þ

where xcl denotes the position of the PBH cluster along the
l.o.s., Δx≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2cl − b2
p

the half-length of the l.o.s. segment
penetrating the cluster, and ρclðrÞ the radial density profile of
the cluster (we assume that the PBH clusters are spherically
symmetric). The expected number of microlensing events
for the entire cluster is obtained by convoluting the above
expression with the surface density of stellar targets, Σ⋆ðqÞ,
over the area of the cluster (neglecting the small angle
correction as rcl ≪ xcl):

dΓcl

dtE
ðtEÞ ¼

Z
rcl

0

dbb
dΓ
dtE

ðb; tEÞ

×
Z

2π

0

dφΣ⋆ðqcl − qðb;φÞÞ; ð8Þ

where qcl denotes the position of the cluster on the celestial
sphere and qðb;φÞ the displacement corresponding to given
values of b and φ. This differential rate translates into the
expected number of lensing events induced by the ith cluster:

N̄e;i ¼ tobs

Z
dtEεðtEÞ ×

dΓcl;i

dtE
ðtEÞ: ð9Þ

Finally, we draw the number of events due to each cluster,
Ne;i ∼ PoisðN̄e;iÞ, and sum them up to obtain the total
number of events in a given simulation run:

Nobs ¼
XNcl

i¼1

Ne;i: ð10Þ

Note that the stochastic distribution of PBH clusters in the
observational cone and the uneven distribution of target stars
on the celestial sphere lead to Nobs that does not trivially
follow a Poisson distribution. This explains the need for
performing dedicated MC simulations.

2. Results

For concreteness, here we apply our method to study the
distribution of microlensing events in the EROS-2 survey
of the LMC [19]. In particular, we adopt the corresponding
target star distribution and detection efficiency, while for
the Milky Way DM halo we assume the same cored DM
halo model—for details see [19].
The MC simulations allow us to determining the

probability distribution for the total number of observed
events, PobsðNobsÞ, which we report in Fig. 1 for various
Mcl while keeping rcl ¼ 10 pc.1 First thing to note is that
the mean number of events, N̄obs ≈ 23, is always the same,
regardless of the cluster mass, as it only depends on the
total number of PBHs within the probed volume, i.e.,
Ml:o:s:=MPBH. From the same figure it can also be seen that
PobsðNobsÞ is virtually indistinguishable from the standard
result obtained for unclustered PBH ifMcl ≲ 106 M⊙. This
comes from the fact that for a large number of individual
clusters, fluctuations about individual l.o.s.’s average out
and PobsðNobsÞ simply reduces to Poisson distribution (for
Mcl ¼ 106 M⊙ one expects Ncl ∼ 1300 within the field of
view). However, for higher cluster masses, PobsðNobsÞ
becomes increasingly skewed toward low Nobs, but with
a thin tail reaching much larger values. For the highest PBH
cluster mass considered in this work, Mcl ¼ 108 M⊙,
PobsðNobsÞ peaks at Nobs ¼ 8, but has an extremely long
tail, stretching to hundreds of events. This would lead to
very different exclusion limits on the allowed fraction of
DM in the form of PBHs. For example, one could not
exclude (at 95% confidence level) DM being fully made of
PBH clusters of masses Mcl ¼ 108 M⊙ if more than three
microlensing events were detected, while for smoothly
distributed PBH the threshold value shifts to 15. This
clearly demonstrates the importance of taking into the
account correlations along neighboring l.o.s.’s in the case of
PBH clusters with Mcl approaching Ml:o:s:.

1In the scenario where PBHs are formed from Gaussian
curvature perturbations, the adopted value of rcl corresponds
to clusters with Mcl ∼ 104 M⊙, while more massive clusters are
expected to be larger and less dense, since rcl ∝ M5=6

cl . However,
forMcl ≳ 107 M⊙ this would imply extremely large clusters with
high chance of spatial overlap, and, therefore, we conservatively
keep rcl ¼ 10 pc for all the considered values of Mcl. Note that
despite this choice even clusters with Mcl ¼ 108 M⊙ still acts as
extended clusters.
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While the presented results were obtained for an EROS-
like survey of the LMC, we wish to emphasize that
analogous conclusions are applicable also to other micro-
lensing surveys aimed toward the Magellanic Clouds, as
well as the Andromeda galaxy. Indeed, extended PBH
clusters can significantly affect PobsðNobsÞ only if their
individual masses represent a large fraction of the expected
DM mass within the observational cone. Otherwise, the
fluctuations in the expected number of the events along
individual l.o.s.’s of each realization average out and the
predicted signal becomes very similar to that of smoothly
distributed PBH.

B. Recurrence of events

Microlensing events are extremely rare due to the
smallness of the volume that has to be crossed by a
compact object to produce an observable amplification.
Therefore, multiple microlensing events from the same
source are conventionally attributed to its intrinsic vari-
ability rather than microlensing. This view has been
challenged in several works proposing that highly clustered
PBHs could lead to recurring amplifications along the same
l.o.s. [22,23]. In the following, we critically reexamine this
hypothesis, first focusing on the effect of small separation
distances between individual PBHs in extremely compact
clusters and, subsequently, on the possibility of recurring
events due to PBH binaries, which are expected to be
efficiently formed in the early Universe.

1. Small PBH separation distances

For dense PBH clusters, the dynamical time is typically
orders of magnitude smaller than their ages. Therefore, they
should be virialized and the total energy of the cluster can
be expressed as Ecl ¼ −NMpbhv2cl=2 ¼ −GðNÞ2=ð4rclÞ
[43], where vcl is root-mean-square velocity of an individ-
ual PBH of massMpbh, andN is the number of PBHs within
the cluster. This gives v2cl ¼ GNMpbh=ð2rclÞ. On the other
hand, the separation distance between the PBH can be
estimated as Δr ≈ ðVcl=NÞ1=3 ¼ rclð4π=ð3NÞÞ1=3. From
this, the typical time required for a PBH to cross Δr reads:

Δt ≈
Δr
vcl

¼
�
4π

3N

�
1=3

�
2r3cl

GNMpbh

�
1=2

: ð11Þ

By adopting a conservative approximation, rcl ≥ffiffiffiffi
N

p
REðMpbhÞ, for which the extended-cluster condition

is only marginally fulfilled, we get:

Δt≳ 9.8 yr

�
xð1 − xÞ

0.5

�
3=4

�
Ds

55 kpc

�
3=4

×

�
Mpbh

M⊙

�
1=4

×

�
104

N

�
1=12

; ð12Þ

where2 x ¼ Dl=Ds. While this is comparable to the
duration of a typical microlensing survey, it is important
to note that most of the events would not produce light
curves consistent with Eq. (1) if rcl ∼

ffiffiffiffi
N

p
REðMpbhÞ, as the

light rays would likely be affected by multiple PBHs.
Therefore, in reality, Δt has to be significantly (orders of
magnitude) larger than the above value, making recurring
events due to small PBH separation distances very unlikely,
even for clusters consisting of an overwhelming number of
sub-Solar mass PBHs.

2. Binary PBHs

PBH binaries are efficiently formed in the early Universe
around matter-radiation equality. A large fraction of
these binaries survive three-body interactions in clusters
[31,32,34] and could potentially lead to recurring events
[22,23,41]. We can derive a lower bound on the time
separation of microlensing events under the assumption
that one of such pairs happens to lie along a given l.o.s.
aligned with its orbital plane. The latter can be simply
estimated as one half of the orbital period of a two-body
system:

Δt ¼ T
2
¼ π

ffiffiffiffiffiffiffi
a3

Gμ

s
; ð13Þ

where a is the orbital semimajor axis and μ is the reduced
mass of the PBH. To minimize Δt, we assume that both
PBHs have the same mass, μ ¼ Mpbh=2, while we set
a ≥ 2REðMpbhÞ, so that the single-lens assumption in
Eq. (1) is still marginally applicable. This yields:

Δt≥ 116 yr

�
xð1−xÞ
0.5

�
3=4

�
Ds

55 kpc

�
3=4

�
Mpbh

M⊙

�
1=4

: ð14Þ

This is again very conservative, since only a fraction of
PBHs should be in the form of binaries with the orbital
plane aligned along the l.o.s. and, additionally, one should
have a ≫ 2RE to observe light curves that are not distorted
by the presence of the second object (such anomalies have
already been detected in a binary BH lens [50]). Therefore,
we conclude that PBH binaries are also very unlikely
sources of recurring events, even for Mpbh ≪ M⊙.

V. SUMMARY AND CONCLUSIONS

In this work we have carefully examined the impact of
PBH clustering on the interpretation of microlensing
searches for MACHOs. Heuristically, it has often been
argued that microlensing constraints on DM in the form
of PBHs can be significantly relaxed, or even entirely

2Without impacting our conclusions below, for less dense
clusters vp should be taken in Eq. (11).
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removed, if one accounts for the fact that PBHs are bound
into clusters. However, our dedicated MC simulations of
EROS-2-like experiment show that microlensing limits
can be lifted only if clusters are extremely compact,
rcl ≪ REðMclÞ, or very massive,Mcl ≳ 108 M⊙. In the most
commonly considered scenarios, where PBHs are formed
through the collapse of Gaussian primordial curvature
perturbations, both of these conditions are far from being
fulfilled. Our conclusions equally apply to other micro-
lensing surveys of theMagellanic Clouds, as well as those of
the Andromeda galaxy. Similar results have also been
obtained in recent semianalytical study [51], which has
appeared during the publication of this work. While it is
important to acknowledge that there exist alternative models
of PBH formation, such as those with non-Gaussian initial
conditions or formation through topological defects, which
might produce sufficiently dense PBH clusters to avoid the
microlensing limits, further work is needed to establish the
survivability of such dense clusters to the present days.
Similarly, it has been argued that PBH clustering can

lead to recurring microlensing events which have been
spuriously discarded from the observational samples.

However, using simple analytical estimates, we have shown
that recurring microlensing events due to dense PBH
clusters or PBH binaries should occur on significantly
longer timescales than the typical duration of microlensing
surveys. Therefore, it is unlikely that any of the observed
recurring events were in fact of a PBH origin.
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