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A promising way to measure the distribution of matter on small scales (k ∼ 10 hMpc−1) is to use
gravitational lensing of the cosmic microwave background (CMB). CMB-HD, a proposed high-resolution,
low-noise millimeter survey over half the sky, can measure the CMB lensing auto spectrum on such small
scales enabling measurements that can distinguish between a cold dark matter (CDM) model and
alternative models designed to solve problems with CDM on small scales. However, extragalactic
foregrounds can bias the CMB lensing auto spectrum if left untreated. We present a foreground mitigation
strategy that provides a path to reduce the bias from two of the most dominant foregrounds, the thermal
Sunyaev-Zel’dovich effect and the cosmic infrared background. Given the level of realism included in our
analysis, we find that the thermal Sunyaev-Zel’dovich alone and the cosmic infrared background alone
bias the lensing auto spectrum by 0.6σ and 1.1σ, respectively, in the lensing multipole range of
L ∈ ½5000; 20000� for a CMB-HD survey; combined these foregrounds yield a bias of only 1.3σ. Including
these foregrounds, we also find that a CMB-HD survey can distinguish between a CDM model and a
10−22 eV fuzzy dark matter model at the 5σ level. These results provide an important step in demonstrating
that foreground contamination can be sufficiently reduced to enable a robust measurement of the small-
scale matter power spectrum with CMB-HD.
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I. INTRODUCTION

The nature of dark matter (DM) is a major open question
in cosmology and particle physics. In the context of
cosmology, a cold dark matter (CDM) model, where dark
matter consists of a nonrelativistic, collisionless particle,
yields predictions that are consistent with observations of
the large scale structure (e.g., [1–6]). However, on smaller
scales less than 10 kpc (corresponding to M < 109 M⊙),
CDM may overestimate the amount of structure (e.g.,
[7–17]). Many alternative models of dark matter have been
proposed to solve this issue. These alternative models
include warm dark matter [18–20], fuzzy dark matter
(FDM) [21–30], self-interacting dark matter [31–39], and
superfluid dark matter [40,41], to name a few. These
alternative DM models predict varying amounts of the
suppression of structure growth on small scales. In addi-
tion, baryonic processes, such as Active Galactic Nuclei
(AGN) feedback, can alter the distribution of matter on
small scales (e.g., [13,42–44]). Recent work suggests that
baryons alter the shape of the matter power spectrum in a
finite set of ways that can be described with a small set of
parameters [45,46]; moreover, alternate dark matter models
appear to change the shape of the matter power spectrum in
a way that differs from baryonic processes [47]. Therefore,
a robust measurement of the matter power spectrum
below 10 kpc scales will impose stringent constraints on

alternative dark matter models and baryonic effects, and has
the potential to distinguish between the two.
One promising avenue to measure small-scale structure

is a high-resolution (0.25 arcminute), low-noise (0.5 μK-
arcmin) cosmic microwave background (CMB) lensing
measurement [47–50]. Unlike baryonic tracers, such as a
galaxy number counts or Lyman-α, CMB lensing mea-
surements probe the underlying dark matter distribution
directly through gravitational lensing. Furthermore, in a
cold dark matter paradigm, lower mass halos formed first at
high redshift. Since the CMB lensing kernel peaks at
relatively high redshift (z ≈ 2), it is, in principle, more
sensitive to the suppression of structure than local probes.
CMB-HD, an ultradeep, high-resolution millimeter-wave
survey over half the sky, has the potential to measure the
CMB lensing auto spectrum on small scales of order
k ∼ 10 hMpc−1, which no precursor CMB survey can
achieve [48–50]. In particular, CMB-HD is sensitive
enough to make a robust measurement of the small-scale
matter power spectrum and determine whether baryonic
physics or modifications to CDM, or potentially both, are
needed to match observations of the matter distribution on
small scales.
The CMB lensing signal on small scales gains most of its

signal-to-noise ratio (SNR) from CMB temperature maps
[47]. However, CMB temperature maps include contami-
nation from extragalactic foregrounds, such as the thermal
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and kinetic Sunyaev-Zel’dovich effects (TSZ and KSZ), the
cosmic infrared background (CIB), and radio galaxies
(radio). If untreated, these extragalactic foreground
components can significantly bias the CMB lensing signal
[51–56]. Many techniques have been proposed to mitigate
this foreground bias, such as gradient-cleaning, foreground
deprojection, and biased-hardened lensing estimators
[55,57,58]. However, previous works have mainly focused
on the impact of foregrounds on larger scales (L ≤ 5000).
In this work, we focus on a mitigation strategy for smaller
scales (L ∈ ½5000; 20000�), which contribute most of the
SNR in distinguishing, for example, alternative DMmodels
from a CDM model [47]. We apply these techniques to
simulations from [59] that include realistic non-Gaussian
extragalactic foregrounds, after modifying these simula-
tions as described in Sec. II. In Sec. III, we describe the
CMB lensing estimator and foreground mitigation tech-
niques used in this work. In Sec. IV, we show that we are
able to reduce the two most dominant foregrounds, the
TSZ and CIB, enough to make an unbiased measurement
of the CMB lensing auto spectrum in the range of
L ∈ ½5000; 20000�, and robustly distinguish between inter-
esting dark matter models. We discuss additional system-
atic considerations in Sec. V, and conclude in Sec. VI.

II. SIMULATIONS

We use the non-Gaussian extragalactic foreground sim-
ulations from [59] (hereafter S10 simulations), since these
simulations have extragalactic foregrounds correlated with
each other. We rescale the S10 CIB and TSZ maps by a
factor of 0.75 following [51,60] to make the S10 simu-
lations more closely match the latest observations [61–65].
We cut out four 20° × 20° ¼ 400 square degree patches
near the equator, and reproject the corresponding S10 CIB,

TSZ, and radio maps from this patch onto a flat-sky grid
with 0.25 arcmin resolution to match the resolution of
CMB-HD at 150 GHz. We call these maps the S10 CIB,
TSZ, and radio patch maps.

A. Creation of high-resolution lensing potential map
correlated with TSZ and CIB

The correlation between the CIB and the lensing con-
vergence map, κ, in the S10 simulations is roughly 35% at
150 GHz [66], which is significantly lower than the 70%
correlation measured subsequently by Planck [67]. In
addition, the S10κ map, which has a resolution of 1 arcmi-
nute, only has the information up to l ≈ 10000, missing the
small scale information needed for this analysis. Therefore,
we replace the S10κ map with one we make ourselves that
has higher resolution and 70% correlation with the CIB by
construction. Similarly, the TSZ-κ anticorrelation is 45% at
150 GHz in S10, as opposed to roughly 50% found in [68]
over the range of l ∈ ½100; 10000�. Thus we increase the
correlation between the S10 TSZmap and our new κ map to
50%. In this work, we focus on the bias from the TSZ and
CIB to the lensing signal, as these foregrounds generally
have the largest contributions to the lensing bias [51,66];
thus we do not explicitly include KSZ-κ and radio-κ
correlations in the construction of the new κ map.
However, we do include the KSZ and radio signals as
additional sources of noise throughout this work. We leave
an in-depth exploration of KSZ and radio bias to the lensing
signal for future work.
We model this new κ map as a sum of two parts: one that

is correlated with the foregrounds and one that is inde-
pendent of the foregrounds. We create this new κ map
following Eq. (1) below.

κ ¼ MG þ 1

1 − ½ρCIB×TSZðlÞ�2 ½ρ
κ×CIBðlÞ − ρCIB×TSZðlÞρκ×TSZðlÞ�

ffiffiffiffiffiffiffiffiffiffi
Cκκ
l

CCIB
l

s
MS10

CIB

þ 1

1 − ½ρCIB×TSZðlÞ�2 ½ρ
κ×TSZðlÞ − ρCIB×TSZðlÞρκ×CIBðlÞ�

ffiffiffiffiffiffiffiffiffiffi
Cκκ
l

CTSZ
l

s
MS10

TSZ ð1Þ

Here,Cκκ
l is a theory lensing convergence power spectrum

generated using CAMB [69]. MS10
CIB and MS10

TSZ are the S10
CIB and TSZ patch maps discussed above. We calculate
CCIB
l andCTSZ

l by measuring the power spectrum of the full-
sky S10 CIB and TSZ maps at 150 GHz. These raw spectra
are noisy due to the single realization of the S10 simulation
set; thus, we smooth the resulting power spectra with a 20σ
Gaussian kernel, which smooths the spectra over Δl ∼ 20,
to reduce this noise. Similarly, we compute the correlation

coefficient, ρCIB×TSZðlÞ ¼ CCIB×TSZ
l =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CCIB
l CTSZ

l

q
, using

the full-sky S10 simulations. We set ρκ×CIBðlÞ and
ρκ×TSZðlÞ to 0.7 and −0.5 following the discussion above.
Finally, we generate a Gaussian random field,MG, such that
CG
l ¼ hMG;MGi ¼ Cκκ

l − Cκ×FG
l , where we define Cκ×FG

l
as the cross spectra between κ and the combined TSZ plus
CIB foregrounds; MG serves as the part of the κ map
uncorrelated with the foregrounds. In the limiting case
where we have only one correlated foreground (e.g., let
MS10

TSZ ¼ 0), Eq. (1) simplifies to Eq. (3.2) from [70]. In this
simplified case, it is apparent that Eq. (1) is constructed to
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give the correct cross power spectrum between κ and the
correlated foreground.
Since we are constructing κ as a scaled combination of

MS10
CIB and MS10

tsz , we include the maximum amount of non-
Gaussian features from these foregrounds in our κ maps.
Therefore, higher-order correlations between these new κ
maps and the foreground components are expected to be
larger than those found in the original S10κ simulations. In
addition, a higher correlation between κ and foregrounds
typically leads to a more significant foreground bias. In
these respects, we expect the bias we find with these new κ
maps to be conservative.
Since there is a small difference between the power

spectra of the CIB and TSZ patch maps (MS10
CIB and MS10

TSZ)
and the full-sky average spectra used in Eq. (1), we find that
the new κ maps have a slight excess of power compared to
the expected theory power spectrum, Cκκ

l . Thus, for each of
the four 400 square degree patches, we compute a transfer
function by taking the ratio of the average power spectrum
of 30 independent κ simulations and the CAMB theory Cκκ

l .
We find that the transfer function is less than 1 percent of
the theory power between l ¼ 2000 and l ¼ 28000. We
apply this transfer function to the final version of κ maps
used in this analysis. In the Appendix A, we show an image
of one of our non-Gaussian κ maps, and compare it to a
Gaussian κ map generated with the same Cκκ

l . We generate
25 realizations of these κ maps for each of the 400
square degree patches. With these new κ maps in hand,
we generate lensed CMB maps by first making 100
Gaussian unlensed CMB realizations of the same footprint
as the foregrounds, using a theory spectra generated with
Planck2018 cosmological parameters [71]. Then, we lens
the unlensed CMB maps with the new κ maps using the
publicly available pixell library.1

B. Creation of foreground-reduced maps

We also make foreground-reduced versions of the CIB,
TSZ, and radio patch maps, with flux and cluster cuts
matching what we expect to be achieved by CMB-HD.
CMB-HD is expected to have a resolution of 0.25 and
0.42 arcminutes, and a sensitivity of 0.8 and 0.7 μK-arcmin
white noise, for the 150 and 90 GHz frequency channels,
respectively [49,50]. Given these noise levels and resolu-
tion, we expect to detect point sources (i.e., galaxies) above
0.04 mJy at 90 GHz with more than 5σ significance [72].
This detection threshold assumes the absence of source
confusion from blended sources, which is a reasonable
assumption for radio sources since they are not so densely
clustered; for reference, we expect the number density of
radio sources to be less than 0.07 radio source per
0.42 arcminute beam and 0.03 radio source per 0.25 arcmin
beam [59]. The 5σ detection thresholds given in [72] are

based on an analytic calculation assuming only white noise,
which is the dominant source of noise at the small scales
considered here. Thus we assume that radio sources can be
detected and removed that are above 0.04 mJy at 90 GHz,
and correspondingly 0.03 mJy at 150 GHz, assuming a
spectral index of −0.8. (We note that there will be some
scatter in the extrapolation of radio fluxes from 90 to
150 GHz for a source too faint to be detected in the
150 GHz maps directly, and we ignore this scatter in this
analysis.) We assume that the point source removal is done
via template subtraction, since the point sources have a
known shape corresponding to the instrument beam and
their fluxes can be measured; the advantage of template
subtraction is that we do not cut holes in the map or disturb
the coincident lensing signal.
For CIB sources, given CMB-HD noise levels and

resolution, as well as the confusion of blended CIB sources
(which are more numerous and clustered than radio
sources), we find that sources above 0.2 mJy can be
detected at the 5σ level in 150 GHz maps directly [73].
To get to a lower flux threshold in 90 and 150 GHz maps,
we exploit the fact that CMB-HD will have a 280 GHz
channel with 2.7 μK-arcmin white noise. We find that CIB
sources above 0.15 mJy at 280 GHz can be detected at the
5σ level in the 280 GHz channel; this detection level was
determined by applying a matched filter on maps that
included confusion from other CIB sources, as well as the
KSZ, TSZ, and CMB [73]. Assuming a spectral index of
2.6 for CIB sources [59], this results in the identification of
sources above 0.03 mJy at 150 GHz and 0.008 mJy at
90 GHz. Once detected, we assume these sources can be
removed using template subtraction, using a fluxes extrapo-
lated from the 280 GHz map. Since there can be uncertainty
on the CIB spectral index for a given source, this can lead to
over- or undersubtraction of CIB sources at 90 and
150 GHz. Thus in our analysis, we incorporate some
amount of mis-subtraction (see below); we find that this
mis-subtraction of CIB sources has minimal impact on the
lensing bias (see Sec. IV for more details).
To create the foreground-reduced point source maps,

with the flux cuts discussed above, we remove sources in
the CIB and radio maps prior to adding them to the lensed
CMB maps. To do this, we find all the pixel locations of
CIB sources with fluxes above 0.03 mJy at 150 GHz, and
set them to the mean flux of the remaining CIB map (which
includes only sources below 0.03 mJy); this mimics the
diffuse CIB that will still reside at the template-subtracted
locations. We follow a similar procedure for the 90 GHz
map. To account for some uncertainty in the CIB spectral
index for sources whose flux is extrapolated from 280 GHz,
we “mis-subtract” sources with fluxes between 0.03 and
0.2 mJy at 150 GHz by up to 5% of their original intensity
in both the 150 and 90 GHz maps. For the sources in this
flux range, we add back to the appropriate locations their
original pixel values multiplied by random numbers drawn1https://github.com/simonsobs/pixell.
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from U½−0.05; 0.05�. To remove the radio sources, we zero
out all radio sources with fluxes above 0.04 mJy at 90 GHz
from both the 90 and 150 GHz maps. We perform these cuts
in the S10 patches at 0.5 arcminute resolution, before
projecting these maps to 0.25 arcminute resolution; we do
this because the S10 model was only matched to obser-
vations in its native resolution of 0.5 arcminute, and may
not necessarily match observations if we extrapolate it to
higher resolutions than it was intended to model.2 Since the
radio sources are not correlated with the lensing potential
map by construction, after obtaining the power spectra of
the residual radio sources at each frequency, we model this
component as a Gaussian random field.
We also assume the removal of all 3σ detected TSZ

clusters. These clusters will be found based on their
integrated cluster Compton-y parameter, Y, which is
closely related to cluster mass. We use the cluster mass
threshold for 5σ detected clusters found for CMB-HD by
[74] and shown in their Fig. 3, and we convert this to a mass
threshold for 3σ detected clusters by multiplying their mass
threshold by 0.75, which assumes their Y-M scaling
relation of Y ∝ M1.79. We assume clusters above this mass
threshold are perfectly subtracted from our maps. To
simulate the TSZ cluster subtraction, we find the coordi-
nates of the TSZ clusters with masses above the mass
threshold using the S10 cluster catalog. We then mask these
TSZ clusters in the TSZ maps by replacing them with 5 and
10 arcminute radius holes for the TSZ clusters with z > 0.5
and z < 0.5, respectively. Since a few of the closest TSZ
clusters, which have irregular shapes and large angular
diameters (≈1 degree), are not fully covered by the TSZ
masks, we visually find these irregular sources in the TSZ
maps and set their pixel values to zeros. Note that the
masking is done directly in the TSZ maps, simulating a
near-perfect subtraction. We discuss mis-subtraction in the
context of CIB in Sec. IV and leave an in-depth analysis of
cluster mis-subtraction to future work.
The KSZ signal consists of two components, (1) a

contribution from the epoch of reionization and (2) a late-
time, lower-redshift, component (hereafter reionizationKSZ
and late-time KSZ, respectively) [75]. We assume that the
late-time KSZ can be removed from the large-scale gradient
map with an overlapping galaxy survey [75,76], such as
from the Rubin Observatory [77], and that it can be removed
from the small-scale map with machine learning techniques
(e.g., [66,78–83]) (see Sec. V). The reionization KSZ
originates at early times (z ≈ 10) and is more Gaussian than

the lower redshift foregrounds. In addition, theCMB lensing
kernel peaks at z ≈ 2 and thus has limited overlap with the
reionization KSZ. Previous work focusing on large scales
has found the lensing bias from the reionization KSZ to be
negligible for a CMB-S4-type experiment [84]; we leave
exploration of the lensing bias from the reionizationKSZ for
a CMB-HD-type experiment to future work. Here, we
approximate the reionization KSZ as a Gaussian random
field, which adds noise to the lensing reconstruction but
not bias.
In Fig. 1, we show the power spectra of our simulations at

150 (left) and 90 GHz (right). The theoretical CMB power
spectra are calculated using CAMB [69] with Planck2018
cosmological parameters [71]. The instrumental noise spec-
tra are computed following the CMB-HD technical require-
ments [50]. The power spectra of the foregrounds reflect the
reduced-foreground model described above.

III. METHOD

A standard way to measure a lensing signal from CMB
maps is to reconstruct a lensing convergence map, κ, using a
quadratic estimator (Q) [85–89]. In the presence of non-
Gaussian foregrounds correlated with a κ map, the recon-
structed lensing auto spectrum can be decomposed into four
terms: (1) the lensing signal, (2) the primary bispectrum bias,
(2) the secondary bispectrum bias, and (4) the trispectrum
bias [51–56]. Modeling the signal (S) as the sum of the
lensed CMB temperature map (T) and the extragalactic
foregrounds (FG) (i.e., S ¼ T þ FG), we have

hQ½S; S�;Q½S; S�i|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
lensing auto spectrum

¼ hQ½T; T�;Q½T; T�i|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
lensing signal

þ 2hQ½T; T�;Q½FG;FG�i|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
primary bispectrum bias

þ 4hQ½T; FG�;Q½T; FG�i|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
secondary bispectrum bias

þ hQ½FG;FG�;Q½FG;FG�i|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
trispectrum bias

: ð2Þ

In this work, we use the quadratic estimator described in
[90] (hereafter HDV estimator), which is tailored to
reconstruct κ maps on small scales. On small scales,
lensing induces small dipole perturbations that are aligned
with the smoothly varying background primordial CMB
gradient [91–94]. The HDV estimator looks for these
perturbations aligned with the background gradient, by
taking as input two versions of filtered CMB maps. One
map is filtered to keep only large scales, isolating the
smoothly varying background CMB gradient, and we refer
to this as the “large-scale gradient map.” The other map is
filtered to keep only small scales, isolating the perturba-
tions, and we call this the “small-scale map.”

2The S10 simulations include a catalog of CIB sources in which
many lowflux sources add together to a larger flux sourcewhenplaced
in a 0.5 square arcminute pixel. If we had instead populated
0.25 arcminute maps with the CIB sources from the catalog, then
we would have obtained a higher CIB power spectrum than
observations allow. Thus we make the CIB flux cut in maps at the
native S10 resolution of 0.5 arcminute, and then project the residual
sources to higher resolution by upsampling the maps.
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To minimize foreground bias, we only include CMB
multipoles in the range of l ∈ ½5000; 30000� in the small-
scale map. Filtering out modes with l < 5000 in the “small-
scale leg” reduces contributions to the bias from the TSZ
signal, which peaks at l ≈ 3000, and the clustering of
galaxies, with negligible loss in SNR [47]. For the large-scale
gradientmap,we only includeCMBmultipoles in the range of
l ∈ ½200; 2000�. In addition, foreground components with
known frequency dependence, such as the TSZ, CIB, and
radio, can be removed by leveraging multiple frequency
channels; the constrained internal linear combination tech-
nique can deproject these foregrounds from a CMBmap with
some increase in noise [56,95]. However, the deprojection
noise penalty is expected to be negligible for the signal
dominated large-scale gradient map [57]. Thus in this work
we assume that we can completely remove the TSZ and CIB
from the gradient map with negligible increase in noise.3

Since we assume that we can remove non-Gaussian
foregrounds in the large-scale gradient map perfectly, that
eliminates the primary bispectrum bias and the trispectrum
bias terms in Eq. (2). This simplifies Eq. (2) as follows4:

hQ½SlargenoFG; S
small�;Q½SlargenoFG; S

small�i|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
lensing auto spectrum

¼ hQ½T large; Tsmall�;Q½T large; Tsmall�i|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
lensing signal

þ hQ½T large; FGsmall�;Q½T large; FGsmall�i|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
secondary bispectrum bias

; ð3Þ

where the only bias term left is the secondary bispec-
trum bias.
We note that a “gradient-inversion” (GI) estimator can

also reconstruct the lensing potential on small scales
[96,97]. In the small-scale, low-noise limit, the GI method
should yield even lower lensing reconstruction noise than a
QE estimator. We also expect a similar set of foreground
mitigation techniques to apply to the GI method; however,

FIG. 1. Shown are the expected power spectra at 150 GHz (left) and 90 GHz (right) for a CMB-HD survey. The theoretical CMB
power spectra are calculated using CAMB [69] with Planck2018 cosmological parameters [71]. Instrumental noise curves are shown as
red dashed curves. CMB-HD is expected to have a resolution of 0.25 and 0.42 arcminutes, and a sensitivity of 0.8 and 0.7 μK-arcmin
noise, in the 150 and 90 GHz channels, respectively [50]. The reionization KSZ spectrum is shown as the brown curve [75]. The TSZ,
CIB, and radio power spectra are computed using the S10 simulations, with the scalings and source cuts as described in Sec. II. In
particular, we assume CIB sources above 0.03 and 0.008 mJy at 150 and 90 GHz, respectively, are removed, as well as radio sources
above 0.03 and 0.04 mJy at 150 and 90 GHz, respectively. Note that we also account for some amount of CIB mis-subtraction due to
uncertainty in the CIB spectral index for source fluxes extrapolated from higher frequencies, as discussed in Sec. II. We also assume that
TSZ clusters detected at the 3σ level are removed from the maps. The total foreground spectra (blue curves) are the sum of the
reionization KSZ, TSZ, CIB, and radio spectra.

3This deprojection of the large-scale map can be achieved with
upcoming Simons Observatory (SO) data [60] with an increase in
noise that is below the sample variance uncertainty, and thus
negligible. The removal of the TSZ will be nearly perfect given
the known frequency dependence, however, there may be some
residual CIB and radio signal due to uncertainty in the spectral
indices. We discuss this further in Sec. V.

4The factor of 4 in front of the secondary bispectrum bias in
Eq. (2) disappears in Eq. (3) because the HDV estimator is not
symmetric in the two legs.
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since these techniques have been less explored in the
context of the GI method, we use the HDV estimator
throughout this work.

A. Lensing reconstruction

We perform lensing reconstructions on maps that include
the lensed CMB temperature and the foreground-reduced
maps discussed in Sec. II. The foreground-reduced maps
include the non-Gaussian CIB and TSZ components,
correlated with the κ map and each other, as well as the
radio and reionization KSZ components modeled as
Gaussian random fields. We also add the instrumental
white noise levels for CMB-HD, and show the power
spectra of these components for 90 and 150 GHz in Fig. 1
as discussed above.
We coadd the 90 (M90) and 150 GHz (M150) maps by the

inverse of their noise spectra, NðlÞi for
i ∈ ½90 GHz; 150 GHz�, such that

Mcoadd ¼
W90

Wtot
M90 þ

W150

Wtot
M150; ð4Þ

where Wi ¼ 1=NðlÞi and Wtot ¼ ΣiWi. We use the pub-
licly available symlens library5 to do the lensing recon-
structions with and without the non-Gaussian foregrounds
added to the maps. We include the Gaussian radio signal
and the reionization KSZ to both the “with” and “without”
non-Gaussian foreground cases; we do not expect either of
these to introduce a bias, but we do this to keep consistency
between the two cases. We also include the radio and
reionization KSZ signals in both the large-scale and small-
scale maps, anticipating that removing the reionization
KSZ will be challenging in general at all scales, and
allowing for the increased noise from unresolved radio
sources.
We perform lensing reconstructions in the range of L ∈

½5000; 30000� using only the lensed CMB temperature
maps; at these small scales lensing reconstructions from
temperature maps, as opposed to polarization maps, domi-
nate the SNR [47]. As mentioned above, for the large-scale
gradient leg in the HDV estimator, we include CMB
multipoles in the range of l ∈ ½200; 2000�. For the
small-scale leg, we use CMB multipoles in the range of
l ∈ ½5000; 30000�. We process the simulations described in
Sec. II to obtain 100 simulated lensing reconstructions.

B. Lensing auto spectra

After generating the lensing reconstructions, we take
their power spectra. Since we mask the simulations by a
cosine window function (Mwin) before making the recon-
structions, we divide the resulting lensing auto spectra by
w4 ¼

P
jðMwin

j Þ4=Pj 1, where j sums over all the pixels

in Mwin; this accounts for the misnormalization of the auto
spectra due to the window function. We then subtract the
realization dependent lensing bias (RDN0), which arises
from the Gaussian component of the auto spectrum [98],
and the N1 bias, which arises from higher-order corrections
to the auto spectrum [99], from each of the 100 recon-
structed auto spectra following [87,100]. We discuss in
detail our RDN0 and N1 computations in Appendix B.
CMB lensing analyses often further subtract a mean-field κ
map, which is a transfer function that mainly affects large
scales (L < 100), from reconstructed κ maps; however,
since the mean field contribution is negligible compared to
the reconstruction noise in the range of L ∈ ½5000; 30000�,
it can be safely ignored.
While the κ realizations (and hence also their power

spectra) are not fully independent from each other due to
the shared foreground components (MS10

CIB andMS10
TSZ), these

simulated spectra are sufficient to compute a covariance
matrix. On the scales of L ∈ ½5000; 30000�, the lensing
reconstruction is noise dominated. Therefore, the sample
variance contribution to the total covariance matrix is
subdominant to that from the reconstruction noise, NL.
Thus, we compute a covariance matrix using the 100
simulated lensing power spectra after subtracting the
RDN0 and the N1 biases from each simulation.
Since the simulations have a sky area of 400 square

degrees, we rescale the simulated covariance matrix to
match the expected covariance for an observation over half
the sky, fsky ¼ 0.5. While the RDN0 subtraction is impor-
tant in making the covariance matrix roughly diagonal [47],
the off-diagonal components are not negligible. We find
that the off-diagonal components of our simulation-based
covariance matrix are not fully converged after processing
100 simulations. Thus, we replace the off-diagonal ele-
ments of our covariance matrix with those computed by
[47], which work used 1000 simulations and a lensing
estimator and experimental configuration (0.25 arcmin
resolution and 0.5 μK-arcmin white noise) nearly identical
to that used in our analysis. In addition, that work included
the reionization KSZ in the covariance matrix calculation,
however, no additional foregrounds. Given that the TSZ
and CIB foregrounds contribute only 20% to the diagonals
of our covariance matrix, we do not expect them to
appreciably contribute to the off-diagonal elements. In
Appendix C, we compare a covariance matrix obtained
from an analytic calculation with our simulation-based
covariance matrix and discuss the impact of the off-
diagonal elements of the covariance matrix on the SNR.
To calculate the bias to the lensing signal from the non-

Gaussian correlated TSZ and CIB foregrounds, we com-
pute the lensing auto spectra with and without them, which
we label Cκκ;NGFG

L and Cκκ;GFG
L , respectively. Then, we

compute the foreground bias, CFG bias
L , as the difference

between the two lensing auto spectra. For the case “with-
out” these correlated non-Gaussian foregrounds (i.e.,5https://github.com/simonsobs/symlens.
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Cκκ;GFG
L ), we match the 2D power spectrum of the non-

Gaussian foregrounds patch by patch. To do this, we
generate Gaussian TSZ and CIB maps by randomizing
the phases of the non-Gaussian TSZ and CIB maps; this
phase randomization not only makes the resulting TSZ and
CIB maps Gaussian but also breaks the correlations
between TSZ, CIB, and κ. We further improve the match
between these two cases by using the same realizations of
CMB, κ, and instrumental noise. These shared realizations,
plus the phase-randomized foreground maps, make the
RDN0 and N1 biases closely match for the two cases,
minimizing any apparent lensing bias due to slight mis-
estimations of RDN0 and N1. Explicitly the lensing auto
spectrum bias is given by

CFG bias
L ¼ 1

100

X100

m¼1

ðCκκ;NGFG
L;m − Cκκ;GFG

L;m Þ;

¼ 1

100

X100

m¼1

½ðCκκ;NGFG
L;raw;m − RDNNGFG

0;m − NNGFG
1 Þ

− ðCκκ;GFG
L;raw;m − RDNGFG

0;m − NGFG
1 Þ�; ð5Þ

where m sums over the 100 reconstructed auto spectra.
Note that the N1 bias term does not have the m subscript
because the same N1 bias is subtracted from each

simulation. Here, any additive bias not induced by the
non-Gaussian correlated TSZ and CIB maps will cancel out
in the difference. Similarly, any multiplicative bias will
cancel out in the ratios used to calculate the fractional bias
or SNR, since the denominators are also a function of the
simulated auto spectra.

IV. RESULTS

Figure 2 shows the effect of the extragalactic fore-
grounds on the lensing reconstruction in the range of
L ∈ ½5000; 20000�; this L range is chosen because it
contributes most of the SNR in determining if there is a
problem with CDM on small scales [47]. Following [47],
we use a uniform binning of Δl ¼ 300. The left panel
shows the fractional lensing bias for various foreground
scenarios (CIB alone, TSZ alone, and CIB plus TSZ). Here,
the foreground bias is computed as the difference between
the reconstructed lensing auto spectrum with and without
the non-Gaussian TSZ and/or CIB foregrounds. All cases
have the same realizations of CMB, κ, instrumental noise,
and Gaussian radio and reionization KSZ foregrounds,
such that the difference in the lensing spectra is solely due
to the TSZ/CIB foregrounds. The total foreground bias
(blue curve) includes both CIB and TSZ, and is within a
few percent of the unbiased spectra over the range of
interest.

FIG. 2. Left: shown is the fractional lensing bias for various foreground scenarios. The total foreground case (blue curve) includes both
TSZ and CIB foregrounds, while the other two cases include either TSZ alone or CIB alone. Here, TSZ and CIB foregrounds are either
modeled as uncorrelated Gaussian random fields (G) or prepared from the non-Gaussian (NG) simulations discussed in Sec. II. We
include the reionization KSZ and radio sources, modeled as Gaussian random fields, to all scenarios. The black dashed lines indicate 1%
bias, while the black dotted lines indicate 5% bias. We find that the foreground bias is below a few percent for most of the range
L ∈ ½5000; 20000�. Right: shown is the SNR of the total foreground bias (both TSZ and CIB) over half the sky, fsky ¼ 0.5. The error
bars are the square root of the diagonal elements of the covariance matrix described in Sec. IV. The simulation-based covariance matrix
is computed by processing 100 simulations described in Sec. II through the lensing reconstruction and auto spectrum pipeline described
in Sec. III. Using the full covariance matrix, we find that the total foreground bias to the lensing auto spectrum deviates from zero by
only 1.25σ in the range of L ∈ ½4800; 20100�.
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The right panel of Fig. 2 shows the total foreground bias
divided by the diagonal error bars of the simulation-based
Cκκ
L covariance matrix discussed in Sec. III. We find that the

total foreground bias is below 0.5σ for many spectral bins
in the range shown. In order to determine whether this
foreground bias is detectable, we use the full covariance
matrix to calculate the SNR as follows. The χ2 of the total
foreground bias with respective to a null signal (i.e.,
Cbias
L ¼ 0) is computed as

χ2null ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
L;L0

ðXL − YLÞC−1
L;L0 ðXL0 − YL0 Þ

s
; ð6Þ

where XL ¼ Cκκ;NGFG
L − Cκκ;GFG

L , YL ¼ 0, and C−1
L;L0 are the

elements of the inverted covariance matrix. We calculate
this over the range of L ∈ ½4800; 20100�. We compute
χ2best-fit by replacing YL ¼ 0 with the best-fit Cbias

L line
obtained from fitting a straight line in the range of
L ∈ ½4800; 20100�; for the total FG case we find a slope
of 7.91 × 10−17 and an intercept of 2.74 × 10−14 for this
best-fit. We also obtain best-fit lines for the TSZ-only and
CIB-only cases. We find that the lensing bias in the total FG
case favors the best-fit line over the null at only 1.25σ,
where we compute this significance as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
χ2null − χ2best-fit

p
. We

find that the significance of detecting the foreground bias
for the TSZ-only and CIB-only cases is 0.59σ and 1.11σ,
respectively. As discussed in more detail in Appendix C,
the inclusion of the off-diagonal elements of the covariance
matrix is important for the total SNR calculation. We find
that the total SNR would increase by a factor of 2 if we used
only the diagonal elements to compute the SNR.
Figure 3 shows the SNR for distinguishing between an

m ¼ 10−22 eV FDM model [25,30] and a CDM model, in
the presence of extragalactic foregrounds. Here, the signal
is the difference between a theoretical m ¼ 10−22 eV FDM
Cκκ
l and a theoretical CDM Cκκ

l obtained from the
WarmAndFuzzy code [101] and used in [47]. Here we
use the same error bars and covariance matrix used in the
right panel of Fig. 2. We compute the total SNR in the range
of L ∈ ½4800; 20100� following

SNR ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
L;L0

ðXL − YLÞC−1
L;L0 ðXL0 − YL0 Þ

s
; ð7Þ

where XL ¼ Cκκ;FDM
L , YL ¼ Cκκ;CDM

L (the FDM and CDM
Cκκ
L , respectively), andC

−1
L;L0 are the elements of the inverted

covariance matrix, including off-diagonal elements.
Calculating this, we obtain a SNR of 5.06σ. As shown
in the right panel of Fig. 2, the foreground bias in the same
L range is not detectable.

A. Uncertainty in the CIB spectral index

Even though CMB-HD will detect CIB sources with an
unprecedented sensitivity [48–50], there will likely be some
uncertainty in the CIB spectral indices for the fainter
sources. Since we template-subtract some dimmer CIB
sources by extrapolating their flux measurements at the
280 GHz channel down to 150 and 90 GHz, this uncertainty
can lead to a mis-subtraction of the CIB sources. In our
baseline analysis, we include this mis-substraction effect
(see Sec. II for details). Here, we quantify its effect on
the foreground bias and the simulation-based covariance
matrix.
In our baseline analysis, we “mis-subtract” CIB sources

in the flux range of 0.03 to 0.2 mJy at 150 GHz, in both 90
and 150 GHz maps by up to 5%. These sources will be
detected in 280 GHz maps with a significance between 5
and about 30σ, and thus will have some uncertainty from
the flux measurement itself at 280 GHz as well as some
uncertainty in the CIB spectral index when extrapolating to
150 GHz. We pick a mis-subtraction level up to 5% for all
the sources, noting that for the bright sources, 5% mis-
subtraction may be conservative since their fluxes are
measured with better precision than that, and they will

FIG. 3. Shown is the SNR for distinguishing an m ¼ 10−22 eV
FDM model from a CDM model when including the noise from
extragalactic foregrounds in the covariance matrix. The fore-
grounds include the reionization KSZ, TSZ, CIB, and radio
sources, with the source cuts discussed in Sec. II, resulting in the
power spectra shown in Fig. 1. Here, the signal is the difference
between a theoretical 10−22 eV FDM Cκκ

l and a theoretical CDM
Cκκ
l obtained from the WarmAndFuzzy code [101]. We do not

include bias from the foregrounds in either the CDM or FDM
models here. The error bars are the square root of the diagonals of
the covariance matrix described in Sec. III. Using the full
covariance matrix, we find a SNR of 5.06σ in the range of
L ∈ ½4800; 20100�. As shown in the right panel of Fig. 2, the
foreground bias is not detectable in this same L range.
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also be detected at 220 GHz, thereby lowering the
uncertainty in their spectral index; for fainter sources, a
larger mis-subtraction amount may be warranted, however,
since these sources are faint, that should minimally increase
the noise, and, as we show below, may serve to lower the
lensing auto spectrum bias.
We also run a case where these CIB sources are

subtracted perfectly and their pixel values replaced with
the mean flux of the residual CIB sources. Figure 4 shows
the effect of this CIB mis-subtraction compared to the
perfect subtraction case. Overall, the lensing bias from the
CIB component stays roughly the same in the range of
L ∈ ½4800; 20100�. When including the effect of mis-
subtracting the CIB sources, the SNR of the total FG bias
goes from 1.73σ to 1.25σ. The reduction in the SNR is
likely due to both the increase in the lensing reconstruction
noise and the decrease in the CIB foreground bias. For the
latter, the random “mis-subtraction” may break some
correlation between the κ and CIB maps resulting in the
lower foreground bias. The effect of the mis-subtraction on
distinguishing a 10−22 eV FDMmodel from a CDM model
(see Fig. 3) is also negligible. In this case, the total SNR

goes from 5.11σ to 5.06σ when we include CIB mis-
subtraction in our simulations.

V. DISCUSSION

The results above suggest that the two most dominant
foregrounds, the TSZ and the CIB, can be reduced to a level
that will not significantly bias the lensing auto spectrum in
the range L ∈ ½4800; 20100�. In addition, the noise penalty
in using the HDV estimator and including the residual
foregrounds still allows for the ability to determine if CDM
is a good match to the small-scale matter power spectrum,
or if structure is suppressed at the level, for example, that a
10−22 eV FDM model would predict.
Below we outline some additional foreground contribu-

tions that were not included in this analysis, and we outline
how we foresee them being mitigated. In future work, these
additional contributions will be explored in more detail.

A. Foregrounds in the large-scale gradient map

In the current analysis, we assumed that there were no
TSZ and CIB foregrounds in the large-scale gradient map.
For this map, we only included CMB multipoles in the
range of l ∈ ½200; 2000�. We anticipate that these large-
scale gradient maps will be provided by Simons
Observatory data, which extends down to CMB multipoles
of l ¼ 30 [60], as opposed to lmin ¼ 1000 for CMB-HD
[48]. Since the frequency dependence of the TSZ signal is
exactly known, we can deproject it using the constrained
internal linear combination technique [56,95]. While there
is some noise penalty in using this deprojection technique,
given the SO noise levels, the temperature maps will still
be sample variance limited over half the sky for
l ∈ ð200; 2000Þ; the increase in noise from the deprojec-
tion will be negligible compared to the uncertainty from the
sample variance [57].
CIB and radio sources can be similarly deprojected

from the large-scale gradient map. However, uncertainty
in the spectral indecies will leave some residual fore-
grounds. A path forward would be to template-subtract the
same sources detected in CMB-HD maps from the SO
maps, and then deproject the SO maps using their multi-
frequency data. In addition, CCAT-p data, which is
designed to map the CIB on large scales, can be used to
further clean the CIB from the gradient leg [102]. Given
that our current analysis shows that some amount of source
mis-subtraction actually lowers the bias to the lensing auto
spectrum; we do not expect residual CIB and radio sources
in the gradient map to add significantly to the lensing bias.
In addition, we can apply point-source hardening tech-
niques to our lensing reconstruction procedure; point-
source hardening is shown to reduce the foreground bias
from point sources with only small increases in the
reconstruction noise [55,56]. We leave a detailed analysis
of this to future work.

FIG. 4. Shown is the fractional lensing bias due to the CIB
foreground with and without accounting for some uncertainty in
the CIB spectral indecies. The black dashed lines indicate 1%
bias, while the black dotted lines show 5% bias. The magenta
curve represents the case where we can perfectly remove all the
CIB sources in the range of 0.03 to 0.2 mJy at 150 GHz. The
green curve shows the case where some sources are either over or
under subtracted by up to 5% of their original fluxes in both 90
and 150 GHz maps. After including the effect of the mis-
subtraction, the SNR of the total foreground bias (including both
CIB and TSZ) in the range of L ∈ ½4800; 20100� gets smaller,
changing from 1.73σ to 1.25σ (see Sec. IV for details). The total
SNR in distinguishing a 10−22 eV FDM model from a CDM
model changes only slightly from 5.11σ to 5.06σ.
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B. Bias from radio galaxies

We did not explicitly include correlated radio sources in
this analysis since we focused on the bias from the TSZ and
CIB foregrounds, anticipating these to be the dominant
sources of bias as is the case for the lensing auto spectrum
on large scales (see e.g., [66]). As mentioned in Sec. II, we
expect to be able to template-subtract radio sources above
0.04 mJy in 90 GHz maps at the 5σ level. [Radio sources
are subdominant in 150 GHz maps compared to the CIB
(see Fig. 1).] Given this low flux cut, and the fact that radio
sources are fewer in number and less correlated with the κ
map, we do not anticipate significant bias to the lensing
auto spectrum from radio sources; however, we leave a
detailed investigation to future work.

C. Bias from the late-time KSZ effect

The KSZ effect arises when CMB photons inverse-
Compton scatter off ionized gas that has a bulk motion. As
discussed in Sec. II, the KSZ effect has two components,
(1) one from the epoch of reionization and (2) one from the
lower redshift Universe (e.g., [75]). We assume in this work
that the reionization KSZ, which is from z ≈ 10, is
Gaussian and uncorrelated with the κ map, whose kernel
peaks at much lower redshift (z ≈ 2). We include the
reionization KSZ in both the large-scale gradient map
and the small-scale map, to add it as an extra noise source;
from Fig. 1, we see that this is a significant source of noise
below l ¼ 10000. In terms of bias to the lensing auto
spectrum, the reionization KSZ has been shown to lead to
negligible bias on larger scales than studied here [84], and
future investigation is warranted to explore its effect on
smaller scales.
The late-time KSZ may lead to considerable bias to the

lensing auto spectrum. However, there are a number of
promising avenues for removing it. For the large-scale
gradient map, removing the late-time KSZ with an over-
lapping galaxy survey (e.g., the Vera C. Rubin Observatory
[77]) using variations of the techniques discussed in
[75,76,103,104] seems promising. For the small-scale
map, recent advances in Deep Learning pattern recognition
is a promising avenue to remove the late-time KSZ. While
the KSZ effect has no frequency dependence, making it
hard to remove with multifrequency techniques [53],
the KSZ signal has a characteristic spatial pattern that
can be recognized by a convolution neural network (e.g.,
[66,78,80–82]). In turn, we can use this recognized spatial
pattern to remove the KSZ signal, especially on small
scales above l ¼ 5000 where it is the dominant signal.
Examples of deep learning foreground mitigation methods
are shown in [79,83].
Since the KSZ signal is proportional to the bulk motion

of the electron gas, and because the motion of the gas
toward and away from an observer is equally likely, the
mean correlation between the KSZ signal and κ is zero.
As a result, we expect the secondary bispectrum bias

[see Eq. (2)], which arises due to the correlation between
a non-Gaussian foreground and κ, to be small. If we can
clean the late-time KSZ from either the large-scale or small-
scale maps, then this secondary bispectrum bias is the only
bias term that will remain. We leave a thorough examina-
tion of the bias from the late-time KSZ to subsequent work.

VI. CONCLUSION

In this work, we provide a proof of concept demon-
stration that lensing bias from the two most dominant
foregrounds, the TSZ and CIB, can be mitigated, and that
CMB-HD can measure the CMB lensing auto spectrum on
small scales (L ∈ ½5000; 20000�). We find that the
combined TSZ and CIB foreground bias, in the coadded
CMB-HD 90 and 150 GHz channels, has a SNR of only
1.3σ. We also find that modest mis-subtraction of faint CIB
sources due to their uncertain spectral indices has negli-
gible impact. Using an interesting alternative dark matter
model as a benchmark, we find that CMB-HD can
distinguish a 10−22 eV FDM model from a CDM model
at the 5σ level. While this analysis provides an initial proof
of concept demonstration, a full investigation including all
potential sources of bias, and an exploration of the optimal
path to mitigate them is warranted. Such measurements of
the high-resolution CMB lensing auto spectrum will probe
the matter spectrum power spectrum out to small scales
(k ∼ 10 hMpc−1). In addition to providing a robust
measurement of the small-scale matter distribution via
gravitational lensing, this will put stringent constraint on
alternative dark matter models and baryonic processes,
informing both fundamental physics and galaxy evolution.
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APPENDIX A: GAUSSIAN AND
NON-GAUSSIAN κ MAPS

In Fig. 5, we show a visual comparison between one
realization of the non-Gaussian κ map generated via the
procedure discussed in Sec. II, and a Gaussian κ map
generated with the same Cκκ

l . We generate the Gaussian κ
map as a Gaussian random field, and use many realizations
of them to compute a realization dependent bias (RDN0)
and N1 bias (see Sec. III and Appendix B for details). The
non-Gaussian κ map is generated using Eq. (1) from Sec. II,
and is 70% correlated with the S10 CIB map and 50%
correlated with the S10 TSZ map at 150 GHz by
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construction. Note that Eq. (1) leaves in the maximum
amount of non-Gaussian structure from the S10 CIB and
TSZ maps in the non-Gaussian κ maps. In general, this will
lead to larger higher-order correlations between these non-
Gaussian foregrounds and the non-Gaussian κ map than
expected. Visually, we find that the large-scale fluctuations
look similar between the Gaussian and non-Gaussian κ
maps. However, we find more small structure in the non-
Gaussian κ maps. In particular, the brighter spots in the
non-Gaussian κ maps roughly coincide with the location of
bright CIB sources.

APPENDIX B: SIMULATION-BASED RDN0 AND
N1 COMPUTATIONS

We compute the realization dependent Gaussian lensing
bias (RDN0) [98] following Eq. (7) from [87]. Unlike the
analytic N0 bias described in [86], the RDN0 bias was
designed to account for a slight difference between the
power spectra of simulations and data. In this work, our
“data” is the realistic non-Gaussian and phase-randomized
simulations discussed in Sec. II. Our “simulations” are

Gaussian simulations constructed to match the power
spectra of these realistic simulations.
We calculate the RDN0 bias as

CRDN0
L ½XY;AB�¼ hQ½XYS;ABS�þQ½XYS;ASB�

þQ½XSY;ABS�þQ½XSY;ASB�
−Q½XSYS0 ;ASBS0 �−Q½XSYS0 ;AS0BS�iS;S0 ;

ðB1Þ

where Q stands for a quadratic estimator. Since Eq. (B1)
does not assume any symmetry in Q, it works for the HDV
estimator without any modification. S and S0 superscripts
indicate two independent realizations of Gaussian simu-
lations. For each of the 100 “data” simulations, we average
over 20 RDN0 computations, where each RDN0 run
requires two new Gaussian simulations (for S and S0);
thus, in total, we make 2 × 100 × 20 ¼ 4000 Gaussian
simulations for the RDN0 calculation. As in [47], we find
that subtracting the RDN0 bias removes a large amount

FIG. 5. Shown is a Gaussian (top panel) and a non-Gaussian
(bottom panel) κ map. We generate the non-Gaussian κ map using
Eq. (1), and the Gaussian κ map as a Gaussian random field with
the same Cκκ

l . By construction, the non-Gaussian κ map is 70%
correlated with the S10 CIB map and 50% correlated with the S10
TSZ map at 150 GHz. Visually, we find that the large-scale
fluctuations look similar between the Gaussian and non-Gaussian
κ maps, however, there is more small-scale structure in the non-
Gaussian κ map that mirrors bright structures in the CIB and TSZ
maps. We expect that these κ maps will yield a bias to the lensing
auto spectrum that is conservative, as discussed in Sec. II.

FIG. 6. The same as in Fig. 3, except for three additional curves
calculated with analytic error bars. The blue curve is the same as
shown in Fig. 3. We compute the analytic error bars for other
three curves using Eq. (4) from [105] given the theoretical Cκκ

L
spectrum and analytic N0 lensing noise curves. The same
experimental configuration (white noise level, resolution, and
sky coverage) is assumed in all four cases. As in [47], we find that
the diagonal variance from simulations is larger than that
predicted by the analytic calculation. We also find that the off-
diagonal variance has a large impact on the total SNR calculation.
Using only the diagonal variance, we find that the analytic case
(yellow curve) gives a SNR of 13.42σ, while the simulation-
based case (blue curve) gives a SNR of 9.37σ. Once we include
the off-diagonal variance for the simulation-based case, we find
that the SNR reduces by roughly a factor two, going from 9.37σ
to 5.06σ.
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off-diagonal correlation in the simulation-based Cκκ
L covari-

ance matrix.
Similarly, we compute the N1 bias, which arises from

higher-order corrections to the auto spectrum [99], follow-
ing [87,100]:

CN1
L ½XY;AB�¼hQ½XSϕYS0ϕ ;ASϕBS0ϕ �þQ½XSϕYS0ϕ ;AS0ϕBSϕ �

−Q½XSYS0 ;ASBS0�−Q½XSYS0 ;AS0BS�iS;S0;Sϕ;S0ϕ :
ðB2Þ

Here, S and S0 superscripts again indicate two independent
realizations of Gaussian simulations, while Sϕ and S0ϕ
superscript stand for two independent CMB realizations
lensed by the same κ map. Note that the N1 bias is
computed using only the Gaussian simulations. We average
over 100 N1 computations; using, in total, 4 × 100 ¼ 400
Gaussian simulations.

APPENDIX C: ANALYTIC VERSUS
SIMULATION-BASED CKK

L VARIANCE

Figure 6 shows the comparison of SNRs for distin-
guishing a 10−22 eV FDM model from a CDM model,
computed either using an analytic or simulation-based
CKK
L covariance matrix. The error bars for the blue curve

are the square root of the diagonal elements of the

simulation-based covariance matrix described in
Sec. IV. We compute the analytic error bars for the other
three curves using Eq. (4) from [105] given the theo-
retical Cκκ

L spectrum and analytic N0 lensing noise
curves. The analytic N0 lensing noise curves are com-
puted using symlens assuming the same experimental
configuration (white noise level, resolution, and sky
coverage) used in the simulated case. As in [47], we
find that the diagonal variance from the simulations is
larger than that predicted by the analytic calculation
(compare yellow and blue curves). Where the discrep-
ancy between the diagonal variance is largest coincides
with where the simulation-based Cκκ

L band powers are
significantly correlated L ∈ ½5000; 12000�. In addition,
we find that the off-diagonal variance has a large impact
on the total SNR. Using only the diagonal of variance,
we find that the analytic case (yellow curve) gives a SNR
of 13.42σ, whereas the simulation-based case (blue
curve) gives a SNR of 9.37σ. However, once we include
the off-diagonal variance for the simulation-based case,
we find that the SNR reduces by roughly a factor
of 2, going from 9.37σ to 5.06σ. Note that the
analytic variance calculations do not include any off-
diagonal contributions. We also show how the
analytic diagonal variance changes with the addition
of different foregrounds.
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