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We observationally examine cosmological models based on primordial power spectra with quantized
wave vectors. Introducing a linearly quantized power spectrum with k0 ¼ 3.225 × 10−4 Mpc−1 and
spacing Δk ¼ 2.257 × 10−4 Mpc−1 provides a better fit to the Planck 2018 observations than the
concordance baseline, with Δχ2 ¼ −8.55. Extending the results of Lasenby et al. [preceding paper,
Perturbations and the future conformal boundary, Phys. Rev. D 105, 083514 (2022)], we show that the
requirement for perturbations to remain finite beyond the future conformal boundary in a universe
containing dark matter and a cosmological constant results in a linearly quantized primordial power
spectrum. It is found that the infrared cutoffs for this future conformal boundary quantized cosmology do
not provide cosmic microwave background power spectra compatible with observations, but future theories
may predict more observationally consistent quantized spectra.
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I. INTRODUCTION

There has been much historical discussion of the signifi-
cance of low-multipole features in the cosmic microwave
background power spectrum [1–3], with many proposed
primordial mechanisms to explain these features with vary-
ing degrees of naturalness [4]. In a recent paper, Lasenby
et al. [5] proposed a novel mechanism for setting initial
conditions on cosmological perturbations derived from
considerations of the future conformal boundary in radiation
dominated universes. The key prediction of this theory is a
quantization of wave vectors for the primordial power
spectrum of curvature perturbations. These quantized pri-
mordial spectra are capable of generating features in the
cosmic microwave background (CMB) power spectrum such
as suppression of power at low multipoles, features at
intermediate multipoles and oscillations at higher multipoles.
Lasenby et al. [5] established in detail how such

quantized spectra arise through consistency considerations
of a linearized treatment of perturbations, and in particular
their behavior as they approach and then pass through the
future conformal boundary (FCB). They also derived the
evolution of particle geodesics through the FCB, and

discussed how one can interpret the nature of a universe
beyond this point, and “two-sheeted universes” have been
discussed by [6]. In Sec. III we fit these models to the latest
Planck 2018 CMB data [7,8] and find that while these
models produce qualitatively interesting observational
features they do not provide a better fit in comparison
with the ΛCDM baseline. In Sec. IV we extend the scheme
and scan through a class of parametrized quantized models,
and find that some models within this class provide a
markedly improved fit in comparison with the ΛCDM
baseline. Such models are capable of reconstructing both
the suppression of power in low-multipole CMB power
spectra and the 20≲ l ≲ 30 dip. We conclude in Sec. Vand
discuss future extensions which may be able to predict
a priori these best-fitting quantization schemes.

II. ΛCDM FCB QUANTIZATION

In Ref. [5] it was shown that for a universe with only
radiation and a cosmological constant, the equations
governing the background and perturbations are analyti-
cally continuable through the future conformal boundary.
Making the requirement that the perturbative expansion
remains finite throughout the domain results in there being
only a discrete set of wave vectors that are allowed.
Lasenby et al. [5] also showed that for a universe with

only matter, the equations are analytically continuable if the
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energy density is viewed as ρm ∼ a−3 ¼ s3. However, as s
and a are negative on the other side of the future conformal
boundary, this results in radically different behavior in
contrast to the symmetry associated with the radiation-only
case. As an alternative to this, one can define the material
component as having a scaling ρm ∼ jaj−3. This retains the
symmetry on either side of the future conformal boundary,
at the expense of analyticity since the modulus function jsj
is not differentiable at the FCB s ¼ 0. One can however
ensure that things remain physical in spite of this by
requiring that energy remains continuous for both the
background and perturbations, which is shown to be
equivalent to requiring that the solutions are symmetric
or antisymmetric about the future conformal boundary.
In this section, we consider universes with a cosmological

constant alongside both noninteractingmaterial and radiative
components as an approximation to the concordanceΛCDM
cosmology. As in Ref. [5], we start by approximating these
components as perfect fluids and later consider the impact
of higher-order multipoles in the Boltzmann hierarchy.
However, unlike in Ref. [5], the equations for the combined
case are not analytically solvable, so we must proceed using
series expansion techniques.

A. Background equations

Throughout this paper we use units 8πG ¼ c ¼ ℏ ¼
kB ¼ 1 and consider spatially flat universes in the
Newtonian gauge with potentials Ψ, Φ such that the metric
is defined by

gμνdxμdxν ¼ a2ðηÞ½ð1þ 2ΨÞdη2 − ð1 − 2ΦÞdx⃗2�: ð1Þ

The background evolution of a universe filled with non-
interacting barotropic fluids is defined by the Friedmann
equation:

H2 ¼ _a2

a4
¼ 1

3

X
i

ρi; ρi ¼ 3H2
0Ωijaj−3ð1þwiÞ; ð2Þ

where a is the scale factor, ρi is the density of the ith fluid
component with equation of state parameter wi, H0 is the
present-day value of the Hubble parameter H, Ωi is the
fractional contribution of fluid i to the universal energy
budget today and derivatives with respect to conformal time
are denoted with an overdot.

B. Perturbation equations

1. Perfect fluid approximation

Scalar perturbations δρi to the background densities ρi
are defined as δi ≡ δρi=ρ̄i, and the peculiar velocities of

these fluid perturbations are defined to be v⃗i ≡ ∇⃗vi. To
linear order, and assuming that all components are perfect
fluids, the scalar perturbations evolve as [9]

_Φ ¼ −
_a
a
Φ −

1

2
a2
X
i

ð1þ wiÞρivi; ð3Þ

_δi ¼ ð1þ wiÞð3 _Φþ vik2Þ; ð4Þ

_vi ¼ 3
_a
a

�
wi −

1

3

�
vi −

�
Φþ wi

1þ wi
δi

�
: ð5Þ

One can also express potentials algebraically in terms of the
other components via

Φ ¼ Ψ ¼ 1

2k2
X
i

�
3
_a
a
ð1þ wiÞvi − δi

�
a2ρi: ð6Þ

We take the fluid index i to range over i ∈ fr;m;Λg for
radiation wr ¼ 1

3
, matter wm ¼ 0 and dark energy wΛ ¼ −1

respectively, but in general only perturb the first two
of these.
It should be noted that Eqs. (1)–(6) are symmetric under

the transformation a → −a, dη → −dη, provided that
the perturbations transform as Φ → �Φ and δi → �δi,
vi →∓ vi. The opposing sign of vi is intuitive, since it is a
velocity-like term that should change direction on changing
the sign of dη.

2. Boltzmann hierarchy

In reality one should describe photons via a distribution
function in photon momentum and not as a perfect fluid.
Decomposing the perturbation to this distribution function
into momentum-averaged Legendre components, Frl, and
defining Grl to be the photon polarization component, we
must solve the Boltzmann hierarchy [9]

k2Φ ¼ −
1

2
a2
X
i

�
δρi þ 3

_a
a
ðρ̄i þ P̄iÞ

θi
k2

�
; ð7Þ

k2ðΦ −ΨÞ ¼ 3

2
a2
X
i

ðρ̄i þ P̄iÞσi; ð8Þ

_δm ¼ −θm þ 3 _Φ; ð9Þ

_θm ¼ −
_a
a
θm þ k2Ψ; ð10Þ

_δr ¼ −
4

3
θr þ 4 _Φ; ð11Þ

_θr ¼ k2
�
δr
4
− σr

�
þ k2Ψþ aneσTðθb − θrÞ; ð12Þ

_Fr2 ¼ 2_σr ¼
8

15
θr −

3

5
kFr3 −

9

5
aneσTσr

þ 1

10
aneσTðGr0 þ Gr2Þ; ð13Þ
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_Frl ¼ k
2lþ 1

½lFrðl−1Þ − ðlþ 1ÞFrðlþ1Þ�
− aneσTFrl; l ≥ 3; ð14Þ

_Grl ¼ k
2lþ 1

½lGrðl−1Þ − ðlþ 1ÞGrðlþ1Þ�

þ aneσT

�
1

2
ðFr2 þ Gr0 þ Gr2Þ

�
δl0 þ

δl2
5

�
− Grl

�
;

ð15Þ

where the subscript b refers to baryons, ne is the electron
number density, σT is the Thomson scattering cross section,
and

θi ¼ −k2vi; σi ¼
Πi

6
; ð16Þ

for anisotropic stress Πi. Once again, we consider the fluid
index over the range i ∈ fr;m;Λg and perturb only the first
two of these.
As in Ref. [5], we work in an approximation where,

before recombination, there is tight coupling between
matter and radiation, and therefore use the perfect fluid
approximation. After recombination we assume free
streaming, and therefore set ne ¼ σm ¼ 0. We see that this
decouples Grl from the other perturbations, so we do not
consider these terms further.

C. Initial conditions

We may initialize the perturbation equations close to the
singularity η ¼ 0 uniquely if we select the finite perturba-
tive modes and consider only adiabatic perturbations so that
δm ¼ 3

4
δr and vm ¼ vr as η → 0. Expanding Eqs. (4)–(6) as

power series in η under these constraints yields to first order

δrðηÞ ∝ −2 −
H0Ωm

4
ffiffiffiffiffiffi
Ωr

p ηþOðη2Þ; ð17Þ

vrðηÞ ∝ −
1

2
ηþOðη2Þ; ð18Þ

δmðηÞ ∝ −
3

2
−
3H0Ωm

16
ffiffiffiffiffiffi
Ωr

p ηþOðη2Þ; ð19Þ

vmðηÞ ∝ −
1

2
ηþOðη2Þ; ð20Þ

ΦðηÞ ∝ 1 −
H0Ωm

16
ffiffiffiffiffiffi
Ωr

p ηþOðη2Þ; ð21Þ

where the proportionality constant is the same for all
expressions and without loss of generality following
Ref. [5] we define Φ ¼ 1 at the singularity. Although
written here to first order, we evaluate the velocity
perturbations to fourth order, and the overdensity and
potential to third order. We find that reducing this to third
and second order, respectively, does not change our results.

D. The future conformal boundary

Wemay now solve for the perturbations up to an arbitrary
rescaling by integrating the background and perturbation
equations beginning with the initial conditions (17)–(21).
If we extrapolate this evolution beyond the present day, at
some finite time in the conformal future we reach the future
conformal boundary η ¼ η∞. Although the scale factor
diverges a → ∞ as Δη ¼ η − η∞ → 0−, all other terms in
the background and perturbation equations remain finite,
and the solution may be continued beyond this boundary.
By symmetry, the background solution eventually arrives at a
big crunch at η ¼ 2η∞. In order for our setup to be valid,
following Ref. [5] we should also demand that our pertur-
bation variables remain finite at all times. For a general wave
vector k, this will not be true, but for a discrete spectrum of
wave numbers it can be. As determined in Ref. [5], all of the
technical considerations about perturbations remaining finite
and analytic continuation through the future conformal
boundary crystallize in practice into a symmetry requirement
which we may numerically impose.
The conceptual strategy is therefore to compute the

solutions of the perturbations at the future conformal
boundary for each k, selecting those wave numbers whose
solutions pass through the boundary with the correct
symmetry (Fig. 1).

1. Perfect fluid approximation

We start by considering perturbations for a perfect fluid,
where the power series solutions about the future conformal
boundary of Eqs. (2)–(5) take the form

δr ¼ δ∞r −
2

3k2

�
signðΔηÞ × 9H3

∞
Ωm

ΩΛ
ðδ∞m þ 3_v∞m Þ − 2

�
k4 − 18H4

∞
Ωr

ΩΛ

�
v∞r

�
ΔηþOðΔη2Þ; ð22Þ

vr ¼ v∞r −
1

4
δ∞r ΔηþOðΔη2Þ; ð23Þ

δm ¼ δ∞m −
9

2k2

�
signðΔηÞ ×H3

∞
Ωm

ΩΛ
ðδ∞m þ 3_v∞m Þ þ 4H4

∞
Ωr

ΩΛ
v∞r

�
ΔηþOðΔη2Þ; ð24Þ
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vm ¼ _v∞mΔηþOðΔη2Þ; ð25Þ

Φ ¼ −
3

2k2

�
signðΔηÞ ×H3

∞
Ωm

ΩΛ
ðδ∞m þ 3_v∞m Þ þ 4H4

∞
Ωr

ΩΛ
v∞r

�
ΔηþOðΔη3Þ; ð26Þ

where the Hubble constant at the future conformal boundary is calculated as H∞ ¼ H0

ffiffiffiffiffiffiffi
ΩΛ

p
.

The four variables fv∞r ; δ∞r ; _v∞m ; δ∞mg are the leading terms
in each solution’s power series expansion, determine the
higher order terms in the series and are themselves deter-
mined up to an overall scaling by integrating Eqs. (2)–(5) up
to η∞ beginning with the initial conditions (17)–(21),
and can beviewed therefore as functions of k. For continuity,
fv∞r ; δ∞r ; δ∞m g take the same value either side of the future
conformal boundary; however this is not necessarily true for
_v∞m as the derivative of vm could be discontinuous.
Equation (23) is critical, as we can only have antisym-

metry in vr if v∞r ¼ 0. Assuming this is not true, we would
require that the term depending on the sign ofΔη in Eq. (24)
is the same on either side of the future conformal boundary,
since this is added to a term proportional to v∞r , which does
not change sign. For this to be true, we require

δ∞m ¼ −
3

2
½ _v∞m ðΔη> 0Þ þ _v∞m ðΔη< 0Þ�; if v∞r ≠ 0: ð27Þ

We find that we always have a finite δm at the future
conformal boundary and therefore δm is required to be
symmetric about this point. This is equivalent to requiring
the linear term in Eq. (24) to change sign; hence

8H∞Ωrv∞r ¼ −3Ωm½ _v∞m ðΔη > 0Þ − _v∞m ðΔη < 0Þ�: ð28Þ

Solving for _v∞m on either side of the future conformal
boundary and substituting into Eq. (24), we obtain

FIG. 1. Radiation, matter and potential perturbations for the first three solutions which remain finite on both sides of the future
conformal boundary in a ΛCDM universe containing only perfect fluids with cosmological parameters set to the Planck 2018 best-fit
values.
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vm ¼ −
1

3

�
δ∞m þ signðΔηÞ × 4H∞

Ωr

Ωm
v∞r

�
ΔηþOðΔη2Þ:

ð29Þ

We have assumed v∞r ≠ 0 and used δ∞m ≠ 0 but, if both of
these are true, the above expression means we cannot make
vm either symmetric or antisymmetric about the future
conformal boundary and we thus arrive at a contradiction.
The only allowed modes are those where v∞r ¼ 0. We note
that in this case _v∞m is the same on either side of the future
conformal boundary as the vm is antisymmetric about
this point.
If no matter were present ðΩm ¼ 0Þ then we could have

either symmetry in vr if δ∞r ¼ 0 or antisymmetry if v∞r ¼ 0.
However,with the inclusionofmatter, the coefficient ofΔη in
Eq. (24) one of these channels due to the presence of terms
that depend on the sign of Δη. The choice v∞r ¼ 0 auto-
matically imposes symmetry on the remaining Eqs. (22) and
(24)–(26) so we have no further quantization conditions.
These series expansions also recover the results of

Ref. [5] if there is no radiation, since if Ωr ¼ 0 then
Eqs. (24) and (25) have the correct symmetry however one
chooses δ∞m or _v∞m. It should also be noted that at all points
signðΔηÞ is multiplied by Ωm, since it is the offending
jsj3 ≠ s3 accompanying the material terms that prevents
nonanalyticity in the expansions.

2. Anisotropic stress

As in Ref. [5], we now consider the properties of matter
and radiation perturbations as they approach the future
conformal boundary in the more realistic case where we do
not treat radiation as a perfect fluid. To do this, we truncate
Eqs. (7)–(15) so we only retain terms with l ≤ 2, so our
only new term is Πr. As before, we obtain power series
about the future conformal boundary. Equations (22), (24)
and (25) are unchanged with the addition of anisotropic
stress. Our new expansions are

vr ¼ v∞r −
1

12
ð3δ∞r − 2Π∞

r ÞΔηþOðΔη2Þ; ð30Þ

Πr ¼ Π∞
r −

8

5
k2v∞r ΔηþOðΔη2Þ; ð31Þ

Φ ¼ −
3

2k2

�
signðΔηÞ ×H3

∞
Ωm

ΩΛ
ðδ∞m þ 3_v∞m Þ

þ 4H4
∞
Ωr

ΩΛ
v∞r

�
ΔηþOðΔη2Þ; ð32Þ

Ψ ¼ −
3

2k2

�
signðΔηÞ ×H3

∞
Ωm

ΩΛ
ðδ∞m þ 3_v∞m Þ

þ 4H4
∞
Ωr

ΩΛ
v∞r

�
ΔηþOðΔη2Þ; ð33Þ

which differ from before since the linear term of vr now
contains a correction due to anisotropic stress and the
potentials now contain a term OðΔη2Þ, whereas before this
was zero. It is at this order that Ψ and Φ start to disagree.
We have one more equation than before, and thus one more
free parameter, Π∞

r .
Our arguments to enforce v∞r ¼ 0 for a perfect fluid just

considered the δr, δm and vm perturbations, whose power
series have not changed to linear order. Therefore, at this
order in the Boltzmann hierarchy, our quantization con-
dition is unchanged. As before, this assertion automatically
enforces symmetry or antisymmetry in Eqs. (22), (24), (25)
and (30)–(33), giving us a set of allowed wave numbers
with a single condition.

3. Higher-order corrections

We previously neglected the term Fr3 in Eq. (13), so we
now reintroduce this. Denoting F∞

rl as the value of Frl at
the future conformal boundary, the expansion for Πr
becomes

Πr ¼ Π∞
r −

k
5
ð8kv∞r þ 9F∞

r3ÞΔηþOðΔη2Þ; ð34Þ

with all other series expansions unchanged at this order.
Again, the quantization condition is v∞r ¼ 0. However, Πr
is no longer automatically either symmetric or antisym-
metric, so we would need to introduce a second quantiza-
tion condition

Π∞
r ¼ 0 or F∞

r3 ¼ 0: ð35Þ

We can generalize this to higher l using Eq. (14), obtaining
a further condition for each l > 3

lF∞
rðl−1Þ ¼ ðlþ 1ÞF∞

rðlþ1Þ or F∞
rl ¼ 0: ð36Þ

There is no reason a priori why this should occur for any
one k if we set each Frl to be zero at recombination, let
alone for some set of these. Since fFrlg do not have to
become nonzero at exactly the same conformal time, the
freedom in F∞

rl can be thought of as a freedom in when
(near the surface of last scattering) Frl first becomes
nonzero. By changing the latter the anisotropies at the
FCB could be forced to have the correct symmetry.
A detailed analysis of how these initial conditions are

related to each other is beyond the scope of this work, so we
focus on l ≤ 2 only. We refer to l ≤ 1 and l ≤ 2 as the
“Perfect Fluid” and “Imperfect Fluid” cases respectively.

III. OBSERVATIONAL CONSEQUENCES

To compute the quantized power spectrum as detailed
in the previous section we use the Planck 2018 best-fit
parameters from the plik TTTEEEþ lowlþ lowEþ
lensing likelihoods [3] (henceforth “Planck baseline”)
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for H0, ΩΛ, Ωm and Ωr. We integrate our background
equations using LSODA from scipy.integrate.solve_ivp
[10] with relative and absolute precision of 10−13. The
resulting background is used to solve for perturbations up
to recombination by integrating Eqs. (3)–(5). We set
Φ ¼ Ψ at recombination and let this equal the potential
from the perfect fluid integration. Likewise, the density and
velocity perturbations are assumed to be continuous at
recombination and we set Πr ¼ 0 at this point. We now
integrate Eqs. (7)–(13) for l ≤ 2 from recombination up to
the future conformal boundary and find the perturbations
which satisfy v∞r ¼ 0 via a root-finding algorithm.
The first three allowed perturbations are plotted in Fig. 1

for a perfect fluid. For numerical stability, we solve for
log a instead of a at small conformal times.
The quantized primordial power spectrum in the perfect

fluid approximation is shown graphically1 for the first 500
allowed wave numbers in Fig. 2.
In Fig. 3 we plot the radiation velocity perturbation at the

FCB and indicate the allowed wave numbers at the zeros of
v∞r . We see that the spacing is initially nonlinear, but, like in
the pure radiation case, the wave numbers quickly settle
down to linear. A linear fit to the allowed wave numbers
k=

ffiffiffiffi
Λ

p
≤ 10 yields a smallest two allowed wave numbers of

kperfect0 ¼ 0.056
ffiffiffiffi
Λ

p
¼ 1.79 × 10−5 Mpc−1; ð37Þ

FIG. 2. Quantized primordial power spectrum PRðkÞ. Red
vertical lines indicate the first 500 allowed comoving wave
numbers k for a ΛCDM universe containing only perfect fluids
with future conformal boundary quantization. Our quantization
condition is that perturbations remain finite for all conformal
times.

FIG. 3. Radiation velocity perturbation evaluated at the future
conformal boundary, v∞r , as a function of comoving wave number
k for a ΛR and a ΛCDM universe with Planck baseline
parameters. The perturbations associated with a given k remain
finite for all conformal times at the wave numbers shown with red
lines. Note that the ΛR cosmology containing only perfect fluids
does not have an allowed mode at the first zero of v∞r [5]. For this
case we also plot the radiation density perturbation at the future
conformal boundary, δ∞r , since in this case δ∞r ¼ 0 is also a
permitted quantization condition.

1Throughout this paper we use an approximate conversion
between k and l via the Limber approximation [11] l ∼ kDA
where DA is the comoving angular diameter distance to last
scattering. This is a parameter-dependant conversion so for
consistency we use the Planck 2018 ΛCDM baseline cosmo-
logical parameters from Ref. [3] to define this transformation.
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kperfect1 ¼ 7.22
ffiffiffiffi
Λ

p
¼ 2.32 × 10−3 Mpc−1; ð38Þ

and asymptotic spacing

Δkperfect ¼ 0.877
ffiffiffiffi
Λ

p
¼ 2.82 × 10−4 Mpc−1; ð39Þ

for the perfect fluid, and

kimperfect
0 ¼ 0.042

ffiffiffiffi
Λ

p
¼ 1.34 × 10−5 Mpc−1; ð40Þ

kimperfect
1 ¼ 5.39

ffiffiffiffi
Λ

p
¼ 1.73 × 10−3 Mpc−1; ð41Þ

Δkimperfect ¼ 0.657
ffiffiffiffi
Λ

p
¼ 2.11 × 10−4 Mpc−1; ð42Þ

when we include the effects of anisotropic stress.
As expected, since vr has an oscillatory complementary

function near the FCB which varies as ∼ cos ðkη= ffiffiffi
3

p Þ, the

spacing should be approximately Δk ¼ ffiffiffi
3

p
π=ηfcb ¼ 2.82×

10−4 Mpc−1, which is consistent with the numerically
calculated value of the perfect fluid case.
We note three differences in comparison with the pure

radiation case:
(i) The introduction of matter dramatically decreases the

infrared cutoff since we do not have to exclude the
k=

ffiffiffiffi
Λ

p ¼ ffiffiffi
2

p
mode.

(ii) The inclusion of matter creates “missing” modes;
there are local minima in v∞r which do not have roots
of v∞r ¼ 0 between them. This results in k1 for
ΛCDM universes being much larger than the first
few allowed modes of ΛR universes. This is illus-
trated in Fig. 1, where we see that the radiation
density and velocity perturbations for the n ¼ 1
mode exhibit many cycles of oscillation before the
FCB, although one would naively expect just one
given the shape of the n ¼ 0 mode.

FIG. 4. CMB power spectrum residuals between future conformal boundary quantized cosmologies and the ΛCDM baseline.
ΛCDMþ FCB quantization is in red and green, while ΛRþ FCB is in blue and orange. The Planck data residuals are also plotted for
reference. The quantized cosmologies only allow comoving wave numbers k such that perturbations remain finite for all conformal
times. This restriction results in a drop in power at low l due to a minimum allowed k0 (and a corresponding rise at k0) and oscillatory
features from the finite spacing Δk between allowed wave vectors. The cosmological parameters for all models are fixed to the Planck
baseline values.
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(iii) We only allow half the modes as in the perfect fluid
radiation case (just the zeros of v∞r as opposed to
both the zeros and turning points). However, since
ηFCB is approximately twice as large in the ΛCDM
case, the spacing is almost unchanged.

Due to the linearity at high n, we will explicitly calculate
the allowed wave numbers for k=

ffiffiffiffi
Λ

p
≤ 10, and then

extrapolate to produce a complete spectrum.
To investigate the observational consequences of FCB

quantization, we compute the predicted Cl spectra using a

FIG. 5. Upper: profile likelihood plot showing the difference of quality of fit Δχ2 between linearly quantized and ΛCDM models as a
function of the first allowed comoving wave number k0 and spacing Δk optimized over all other cosmological and nuisance parameters.
NegativeΔχ2 indicates a better fit for the quantized model. The best-fit point (A) has χ2 ¼ 2759.34 which corresponds to Δχ2 ¼ −8.55.
The plot was produced by exploiting the embarrassingly parallel nature of the problem by randomly choosing ðk0;ΔkÞ pairs,
then optimizing over all other cosmological and nuisance parameters, which accounts for the small amount of noise in the contours.
Lower: improvement in χ2 is driven by the reduction in lowl, although there is intriguingly also an improved high-l contribution.
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modified version of CLASS [12], changed to allow
primordial power spectra with a discrete rather than
continuous set of wave numbers (for more details, see

the Appendix). We implement this by adapting parts of the
code traditionally used for closed universes since these also
have a quantized spectrum. We initially consider five cases:

(i) The traditional ΛCDM power spectrum.
(ii) The quantized power spectrum arising from future

conformal boundary considerations for a ΛCDM
universe using the perfect fluid approximation.

(iii) The quantized power spectrum arising from future
conformal boundary considerations for a ΛCDM
universe where we include the effects of anisotropic
stress.

(iv) The quantized power spectrum arising from future
conformal boundary considerations for aΛR universe
from Ref. [5], using the perfect fluid approximation.

(v) The quantized power spectrum arising from future
conformal boundary considerations for a ΛR uni-
verse from Ref. [5], where we include the effects of
anisotropic stress.

Assuming the Planck baseline cosmological parameters,
the power spectral differences between ΛCDM and the
quantized cosmologies are plotted in Fig. 4 alongside the
Planck residuals. There are two main features observed in
all three plots. The first is a drop in power at low l, which is
to be expected since there exists a minimum allowed k
in our quantized cosmology. We find k0 corresponds to
l0 < 1 for ΛCDM FCB quantization, whereas k1 corre-
sponds to l1 ¼ 32 for the perfect fluid, and l1 ¼ 24 for the
imperfect case. This explains why we see smaller values of
Dl for l ≲ 30, but no rise in power at the smallest l, and
thus the effective infrared cutoff can be considered to be k1
in this scenario. The absence of the k=

ffiffiffiffi
Λ

p ¼ ffiffiffi
2

p
mode for

a ΛR cosmology of perfect fluids explains the lack of the
rise in that case and can therefore account for the low
quadrupole [13] of the TTand octupole of the TE spectrum.
The second disparity between the two cosmologies is an
oscillatory behavior at all l values due to the spacing
between allowed k values.
It is clear that these infrared cutoffs are implausible for

both the ΛCDM and ΛR cases, and completely ruled out by

TABLE I. Cosmological and nuisance parameters which opti-
mize χ2 for a linearly quantized k spectrum. The parameter shifts
between the quantized spectrum and the ΛCDM baseline are
given in terms of the posterior parameter widths σ [3].

Parameter Best-fit value Change/σ

Ωbh2 0.022279 −0.36
Ωch2 0.12031 0.04
100θMC 1.041871 0.14
ln ð1010AsÞ 3.0380 −0.01
ns 0.96067 −0.66
τ 0.0529 0.10

ycal 1.00071 0.22
ACIB
217

45.5 −0.20
ξtSZ−CIB 0.60 0.86
AtSZ 8.69 0.58
APS
100

195.7 −1.23
APS
143

28.0 −1.00
APS
143×217 35.8 −0.18

APS
217

106.2 −0.60
AkSZ 9.763 2.08
AdustTT
100

7.65 0.08
AdustTT
143

17.00 1.66
AdustTT
143×217 24.83 1.03

AdustTT
217

99.1 0.37
AdustTE
100

0.02 −0.95
AdustTE
100×143 0.12 0.26

AdustTE
100×217 0.53 −0.25

AdustTE
143

0.279 1.00
AdustTE
143×217 0.66 −0.17

AdustTE
217

2.202 −0.20
c100 0.99689 −1.90
c217 0.99738 −0.81
k0=10−3 Mpc−1 0.3225 …
Δk=10−3 Mpc−1 0.2257 …

FIG. 6. CMB temperature residuals between the best-fitting linearly quantized cosmologies and the Planck baseline ΛCDM model,
fitted using the full Planck baseline likelihood. Each of the lines correspond to the three best-fitting points from Fig. 5. Our quantization
condition introduces a drop in power at low l and a dip at 20≲ l≲ 30.
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modern cosmological observations. To test this, we use
parameters from the Planck posterior samples [14] and find
that we cannot obtain cosmological parameters which give
a nonzero likelihood for the predicted CMB power spectra.
We compute the first two allowed k values for all
parameters from the Planck posterior samples, and find
that the smallest value of l1 is 30.5 for a perfect fluid, and
22.8 for the imperfect case. As will become apparent in
Sec. IV, these are too high to allow reasonable low-l
behavior, although the Δk obtained could be acceptable if
more modes were allowed between k0 and k1. Since the
imperfect fluid produced a smaller k1 than the perfect fluid
approximation, in future work we will investigate the
effects of including higher-order terms in the Boltzmann
hierarchy and more sophisticated modeling of recombina-
tion on the quantized primordial power spectrum, as this
may reintroduce the “missing” modes in Fig. 3.

IV. LINEAR QUANTIZATION IN GENERAL

Although FCB quantization does not provide quantita-
tively good fits to CMB power spectra, the previous section
demonstrated that a quantized k spectrum produces quali-
tatively interesting features such as a drop in power at low l
and a dip at 20≲ l≲ 30. Since the ΛR and ΛCDM FCB
quantized spectra become linearly spaced at large k,
we now consider whether a more general quantized,
linearly spaced k spectrum can provide a better fit to the
Planck data.
To do this, we introduce a finite spacing between allowed

wave numbers Δk and a minimum allowed k value k0
such that

kn ¼ k0 þ nΔk; n ¼ 0; 1; 2… ð43Þ

where we treat k0 and Δk as free parameters.
The profile likelihood plot conditioned on k0 and Δk

with the remaining parameters minimized over is shown in
Fig. 5. We optimize using the Nelder-Mead algorithm [15]

with a simplex consisting of the parameters within the
Planck posterior samples with the highest likelihood.
For small Δk (for which Δl≲ 1 and thus the spacing

between k values is negligible), we see that we can achieve
a marginally better fit than the ΛCDM case if k0∼
3 × 10−4 Mpc−3. This is consistent with previous studies
[16,17] which found that introducing an infrared cutoff can
slightly improve the low-l predictions.
The six labeled points (A–F) are local minima in χ2. The

resulting χ2 and its contributions for these points are also
shown in Fig. 5. All these points have Δl≳ 3.1, and thus
we find that introducing a nontrivial finite spacing between
k values can significantly improve the value of χ2, by up to
−8.55. As expected, this is driven by an improvement in
lowl, although there is also a noticeable improvement in the
high-l likelihoods. The best-fit point (A) resides at

k0 ¼ 3.225 × 10−4 Mpc−1; ð44Þ

Δk ¼ 2.257 × 10−4 Mpc−1: ð45Þ

The cosmological and nuisance parameters which pro-
vide this best fit are given in Table I, which are not
significantly changed from the ΛCDM baseline [3]. The
cosmological parameters are all consistent with those from
the ΛCDM case; however the nuisance parameters shift a
little more, but still at ≲2σ.
In Fig. 6 we plot the CMB TT power spectra for points

A–C. From this we identify the improvement as being due
to a reduced quadrupole compared to the ΛCDM case and a
dip following the Planck data at 20≲ l ≲ 30. The TE and
EE spectra are not shown as the differences between the
quantized andΛCDM cases are negligible for these spectra.
The best-fit cutoff corresponds to l0 ∼ 4.5, compared

to lðΛCDMÞ
1 ∼ 32 and lðΛRÞ

0 ∼ 9.7 for our FCB quantized
models. Since the spacing Δk is comparable for all our
quantizations, we see that the reason for the poor fit in the
future conformal boundary models is the large infrared
cutoff. This resulted in a decrease in CMB power at too

FIG. 7. CMB temperature residuals between the best-fit linearly quantized cosmology and the Planck baseline ΛCDM model, fitted
using just the lowl likelihood. Cosmological and nuisance parameters were fixed to the ΛCDM baseline. The best-fit k0 and Δk give
Δlowl ¼ −6.97. Without the influence of the high-l likelihood, linearly quantized cosmologies are able to more accurately fit the
20≲ l≲ 30 dip.
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high a multipole, but from Fig. 6 we see that a drop in
power at l ∼ 4.5 provides a far more reasonable spectrum.
Since lowl dominates the improvement in χ2, it is

informative to consider optimizing over just lowl, fixing
the remaining cosmological parameters to the Planck
baseline. In doing so we obtain the CMB TT power spectra
plotted in Fig. 7 and obtain a still stronger improvement
of Δlowl ¼ −6.97, with the improvement driven by an
enhanced 20≲ l ≲ 30 feature. We show how lowl varies
with k0 and Δk in Fig. 8.

V. CONCLUSIONS

In this paper, in Sec. II we extended the results of Ref. [5]
to account for universes which simultaneously include
radiation, cold dark matter and a cosmological constant,
showing that both models produce similar quantized
primordial power spectra. In Sec. III we examined the
observational implications of these models, and found them
to produce qualitatively interesting features in the cosmic

microwave background power spectrum, namely a sup-
pression of power at low l, a dip at 20≲ l≲ 30 and
oscillations at high l. Quantitatively however, these
models do not produce CMB power spectra consistent
with modern cosmological observations. Inspired by the
qualitatively interesting features generated by these quan-
tized power spectrum models, in Sec. IV we examined a
wider class of linearly quantized models with quantized
wave vectors fk0 þ nΔk∶n ¼ 0; 1;…g. In this case we
found that for values of ðk0;ΔkÞ ¼ ð3.225; 2.257Þ ×
10−4 Mpc−1 these quantized primordial power spectra
give markedly improved fits in comparison with the
baseline concordance cosmological model, with Δχ2 ¼
−8.55. To a large extent this improvement is driven by the
lowl likelihood, and when optimized only using lowl
without the influence of high-l likelihoods on the fit, one
can extract a Δlowl ¼ −6.97.
It should be noted that while the results for linearly

quantized primordial power spectra are interesting, far

FIG. 8. Difference of quality of fit Δlowl between linearly quantized and ΛCDM models as a function of the first allowed comoving
wave number k0 and spacing Δk, where the cosmological and nuisance parameters are fixed to the ΛCDM baseline. Negative Δlowl
indicates a better fit for the quantized model. The best-fit point (circled) has lowl ¼ 16.57 which corresponds to Δlowl ¼ −6.97.
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more work needs to be done before these can be
considered feasible cosmological models. The Δk param-
eter is highly fine-tuned, with the region of best-fit
occupying roughly one percent of any reasonable prior.
If these models were to be subject to a Bayesian analysis
with evidences and parameter estimation [18] there would
be a subsequent Occam penalty which would penalize the
quality of the fit. These results are also profiled, and
sampling over the full parameter space would also degrade
the quality of the fit. However, if there were models akin
to the future conformal boundary quantizations that
predicted a priori a quantized primordial power spectrum
with Δk ∼ 2.257 × 10−4 Mpc−1, then these likelihood
results suggest that these models would be candidates
for a new concordance cosmology. In future work
we will extend the future conformal boundary models
to include higher-order multipoles in the Boltzmann
hierarchy and a more sophisticated treatment of recombi-
nation to determine whether this class of models could
achieve this.
There is also no need for these quantizations to be

linearly spaced across the observable window. The fact
that one can extract better low-l fits by ignoring the
high-l likelihood suggests that if Δk varied with k still
better fits might be obtained. There is also potential for
using a free-form reconstruction approach [19] to deter-
mine the optimal locations and numbers of quantized
wave vectors.
It is clear that there are many theoretical, observational

and reconstructive investigations required into models with
quantized primordial power spectra, but this work shows
that there is compelling observational evidence for
increased research effort into these cosmologies.

ACKNOWLEDGMENTS

We thank Metha Prathaban for useful discussions.
D. J. B. thanks the Cavendish Laboratory and Trinity
College, Cambridge for their support during a Part III
Project, is supported by STFC and Oriel College, Oxford,
and acknowledges financial support from ERC Grant
No. 693024. W. J. H. thanks Gonville & Caius College
for their support via a Research Fellowship and is sup-
ported by a Royal Society University Research Fellowship.
This work was performed using resources provided by the
Cambridge Service for Data Driven Discovery (CSD3)
operated by the University of Cambridge Research
Computing Service, provided by Dell EMC and Intel using
Tier-2 funding from the Engineering and Physical Sciences
Research Council (capital Grant No. EP/P020259/1), and
DiRAC funding from the Science and Technology
Facilities Council. This work was based on observations
obtained with Planck [20], an ESA science mission with
instruments and contributions directly funded by ESA
Member States, NASA, and Canada.

APPENDIX: POWER SPECTRA WITH
QUANTIZED k

In this Appendix we follow the derivations given in
Ref. [21], but adapted for a quantized spectrum.
Consider some function fðx⃗; n̂; ηÞ. Since a continuous

spectrum of comoving wave numbers k ¼ jk⃗j is usually
assumed in perturbation analysis, the canonical definitions
for various quantities of interest are defined in terms of
integrals. We must therefore rewrite our fields as Fourier
series, defined as

fðx⃗; n̂; ηÞ ¼
X
k

k2Δk
Z

dΩkeik⃗·x⃗fðk⃗; n̂; ηÞ; ðA1Þ

whereΩk denotes the solid angle in k space,we are looking in
the direction of the unit vector n̂ and where η is conformal
time dη≡ adt for scale factor aðηÞ with cosmic time t.
We introduced the spacing ΔkðkÞ between allowed wave

numbers k ¼ jk⃗j as a weighting to our Fourier coefficients
so that all variables have the same dimensions as in the
continuous case.
At the origin (x⃗ ¼ 0⃗),

fðn̂Þ ¼
X∞
l¼0

Xl
m¼−l

almYlmðn̂Þ; ðA2Þ

where, by orthogonality,

alm ¼
Z

dΩfðn̂ÞY�
lmðn̂Þ: ðA3Þ

Expanding in terms of Legendre polynomials,

fðx⃗; n̂; τÞ ¼
X
k

k2Δk
Z

dΩk

X∞
l¼0

ð−iÞlð2lþ 1Þeik⃗·x⃗

× flðk⃗; τÞPlðk̂ · n̂Þ; ðA4Þ

and using the identity

Pl0 ðk̂ · n̂Þ ¼
4π

2l0 þ 1

X
m0

Y�
l0m0 ðk̂ÞYl0m0 ðn̂Þ; ðA5Þ

we obtain

alm ¼ ð−iÞl 4π
X
k

k2Δk
Z

dΩkY�
lmðk̂Þflðk⃗; τÞ: ðA6Þ

We now define

flðk⃗; τÞ≡ ψ iðk⃗Þflðk; τÞ; ðA7Þ
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since the evolution equations are independent of k̂, where
ψ iðk⃗Þ is the initial perturbation and flðk; τÞ is the photon
transfer function in the case fðx⃗; n̂; τÞ ¼ Δðx⃗; n̂; τÞ.
We define

hψ iðk⃗Þψ iðk⃗0Þi≡ Pψ ðkÞ
δðKÞkk0

k2Δk
δðDÞðk̂þ k̂0Þ; ðA8Þ

where δðKÞab is the Kronecker delta, and δðDÞða⃗ − b⃗Þ is the
Dirac delta function. As before, the Δk is introduced in the
definition to be dimensionally consistent with the continu-
ous case. We also define the power spectrum to be

halma�l0m0 i≡ Clδ
ðKÞ
ll0 δ

ðKÞ
mm0 ; ðA9Þ

and therefore

Cl ¼ ð4πÞ2
X
k

k2ΔkPψ ðkÞ f2lðk; τÞ: ðA10Þ

Consequently, we can summarize the continuous to
quantized crossover as “replace by a sum,” where we mean

Z
ð� � �Þ dk →

X
k

ð� � �ÞΔk; ðA11Þ

when we wish to convert an expression defined with a
continuous k spectrum to one with a quantized spectrum.
As usual, Cl is related to Dl as

Dl ≡ lðlþ 1Þ
2π

Cl: ðA12Þ

Since the basis eik⃗·x⃗ is orthogonal irrespective of whether
we do an integral or sum, we solve the same equations for
perturbations as in the continuous case.
One caveat of introducing the summation instead of an

integral is that, when deriving the curvature perturbations
from inflation, we cannot use a completeness relation when
quantizing the inflaton. Instead of dwelling on this, we
assume an initially (nearly) scale-invariant power spectrum,

PRðkÞ ¼ Askns−1; ðA13Þ

without concern over its origin.
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