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The concordance model of cosmology predicts a universe which finishes in a finite amount of conformal
time at a future conformal boundary. We show that for particular cases we study, the background variables
and perturbations may be analytically continued beyond this boundary and that the “end of the universe” is
not necessarily the end of their physical development. Remarkably, these theoretical considerations of the
end of the universe might have observable consequences today: perturbation modes consistent with these
boundary conditions have a quantized power spectrum which may be relevant to features seen in the large
scale cosmic microwave background. Mathematically these cosmological models may either be interpreted
as a palindromic universe mirrored in time, a reflecting boundary condition, or a double cover, but are
identical with respect to their observational predictions and stand in contrast to the predictions of conformal
cyclic cosmologies.
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I. INTRODUCTION

Current observations [1,2] indicate that our Universe
[3–7] is heading for an “asymptotic de Sitter” state,
dominated dynamically by dark energy. An interesting
feature of such a state is that there is a “future conformal
boundary” (FCB) present in it. Measured in terms of
cosmic time, this boundary is an infinite time away from
us, and hence questions about the properties of this
boundary, and what happens to various physical quantities
when they reach it, are perhaps not very pressing, and may
seem academic or abstract at best.
However, in conformal time, which is the elapse rate

suitable for massless particles, the boundary lies only a
finite distance away, and will be reached in a fairly short
time compared to the elapse of conformal time that
has already occurred since the big bang. Hence for certain
types of physical quantities, such as perturbations [8–10]
in radiation or (massless) neutrinos, the question of what
happens to them at the FCB is not academic, but could even
matter in terms of whether the FCB sets any unexpected

boundary conditions on perturbations in the Universe. More
generally, since there certainly are massless particles in the
Universe (photons), it is of interest to consider what happens
to perturbations of massive particles as well, since these will
necessarily be living in the same Universe as the massless
particles for which the FCB is rapidly approaching.
These questions have a particular interest within the

conformal cyclic cosmology of Roger Penrose [11–13],
where the FCB is taken, via an infinite rescaling of the scale
factor a, to correspond to the big bang of a further “cycle” of
the Universe. Some of the work to be discussed here may
indeed be relevant to this model, but it turns out that the type
of development beyond the FCB that seems most natural in
the current approach does not correspond to a new big bang,
but to something different that we argue is the obvious
analytic extension of the scale factor evolution to that point.
Thus issues about the background development of the
Universe in relation to the FCB, and not just the evolution
of perturbations, are going to be relevant to what follows,
and form a theme of the paper (such analytic considerations
have been discussed since the release of a pre-print of this
paper, by Boyle and Turok [14] in the context of CPT
symmetries and the thermodynamic arrow of time).
In terms of which perturbations to consider, there is an

unfortunate tradeoff as regards massless particles between
the possibility of getting analytic results on the one hand,
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and having some degree of realism, on the other. Since
analytic solutions are very valuable for guiding intuition,
we will start with an unrealistic case for which we can work
out everything analytically, and then move on to include at
least an element of realism. Specifically, we will start by
considering a background universe that is composed of, in
stress-energy tensor terms, radiation and a cosmological
constant. This is not so unrealistic in itself, in that it is a
reasonable approximation to our actual Universe in its early
and late stages. The lack of realism applies to howwe initially
treat the perturbations in such a universe. Radiation in the
actual early Universe is in close contact with free electrons
which scatter it in such a way as to isotropize the radiation
in its rest frame. This results in being able to treat the
radiation, including its perturbations, as a perfect fluidwith an
equation of state parameter, w of 1=3. In this case analytic
solutions are available, and worked out here in Sec. II, for all
the perturbed fluid quantities, and we are able to discuss in
terms of analytic functions what happens to them later on in
their development, as the FCB is approached.
However, of course in reality, the availability of free

electrons to scatter off ceases once recombination is passed,
and though the Universe is reionized again at later times,
the mean free path of the photons means that at all stages
after recombination we should be treating photons not as a
perfect fluid, but, like neutrinos, via a distribution function
in photon momentum for which we develop and solve a
Boltzmann hierarchy. This adds considerably to the com-
plexity, and all hope of analytic solutions is lost. We are not
interested in very accurate calculations here, however, since
we are already taking the background evolution as that of
just radiation and Λ, with no matter present (the matter
necessary to isotropize at early epochs can be assumed to
be just trace amounts, with no dynamical effects). Thus
in Sec. III we take an indicative approach, in which we
truncate the Boltzmann hierarchy for l > 2. This enables
us to treat the radiation perturbations (or massless neutrino
perturbations, which would obey the same equations), as
those in an imperfect fluid in which anisotropic stress is
driven by the velocity perturbations. This gives a modicum
of realism, while allowing analytic power series expansions
to be carried out at the FCB, which aid greatly in under-
standing what is going on.
Prior to the discussion of cold dark matter (CDM)

perturbations, Sec. IV looks at the behavior of particles,
both massive and massless, near the FCB, and considers
their geodesic equations, showing that in conformal time
massive particles can be thought of as reflected, while
massless particles pass straight through. Also considered
are alternative interpretations of the Universe beyond the
FCB, which may be either thought of as a symmetrical
“palindromic” evolution of both background and perturba-
tions, or as a form of reflecting boundary conditions
generated by the double cover of the first epoch of cosmic
time that conformal time creates.

In Sec. V, we move on to consider perturbations to a
CDM component, and what happens as these approach
the FCB. Here, the background universe is taken to be
composed of CDM and dark energy, but without radiation.
The benefit is that fully analytic solutions are available for
all quantities, which again can guide our intuition in terms
of what happens at the FCB and may be of use even when
considering more realistic scenarios. The background
universe solutions for this case are also of interest, and
may be new as regards their expression in special functions.
In what follows we shall present the results for pertur-

bations and background solutions in an intertwined manner,
since how the perturbations behave as they approach the
FCB is a factor in the arguments for what happens to the
background scale factor evolution after the FCB. Also, as
regards radiation, we shall first describe in detail the results
for the unrealistic case where it is treated as a perfect fluid
throughout. After this, we show how this approach can be
repaired, and how the presence of anisotropic stress leads
to some interesting differences with the perfect fluid
case. Finally, we discuss the CDM perturbations, and their
analytic properties. A joint analysis of cold dark matter
and radiation perturbations, and the effect of the FCB in
this case, will be presented in a parallel paper [15], which
will also consider some observational consequences which
would follow if some of the ideas presented here were taken
as applying to the actual Universe.
As a final word of introduction, we want to offer some

words of reassurance to a perhaps sceptical reader, who
having reached this point, is feeling nervous about the
prospect of future boundary conditions being relevant to
processes which are presumably completely causal in
nature, and are set in train at the big bang or just afterwards.
Of course, this is a very reasonable objection, which stated
in this way we completely share. However, the point we are
making is that a treatment of perturbations needs to
consider modes which have periodicity in time not just
space, and in a linearized treatment we need to consider
modes which are finite everywhere, both in space, and
crucially, in time. If they were not, then a linear treatment
would not be valid. Thus on these grounds we feel that in
terms of boundary conditions the argument can be made
that the behavior of modes in the future should be
considered as well as their behavior in the past.

II. PERTURBATIONS IN A FLAT-Λ UNIVERSE
WITH PERFECT-FLUID RADIATION

For simplicity we will be working throughout in the
conformal Newtonian gauge, in which the metric (assum-
ing a flat universe) is

ds2¼ a2ðð1þ2ΨÞdη2− ð1−2ΦÞðdx2þdy2þdz2ÞÞ; ð1Þ

where η is conformal time.
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This means that we will only be considering scalar
perturbations, but this is enough for our purposes, and the
metric in Eq. (1) has the advantage that all the gauge
degrees of freedom in defining scalar perturbations are
already fixed.
We will consider the derivation of the fluid perturbation

equations for a more realistic radiation component, and
how to link with a Boltzmann hierarchy, in Sec. III below.
Here, as explained in the Introduction, we wish to consider
an unrealistic but nevertheless instructive case where
radiation is treated simply as a perfect fluid with equation
of state parameter w ¼ 1=3.
We follow the notation and approach to perturbations in

Chapter 8 of Ref. [9], and using either their equations, or
the general treatment to be given in Sec. III, we can easily
find the perturbation equations appropriate to the w ¼ 1=3
perfect fluid case. For this case it is well known (and we
discuss again in Sec. III), that the absence of anisotropic
stress means that the “potentials” Ψ and Φ are the same.
Thus for the remainder of this section only the Newtonian
potential Φ appears.
We can use the constraint equations to solve for the

velocity perturbation V and the density perturbation δ,
directly in terms of Φ, and the propagation equation is then
a second order equation in Φ alone. The background
quantities are the scale factor a and Hubble parameter
H. The equations for the perturbations are then

V ¼ 3kðaHΦþ _ΦÞ
2a2ð3H2 − ΛÞ ;

δ ¼ −
2ð3H2a2Φþ 3 _ΦaH þ k2ΦÞ

a2ð3H2 − ΛÞ ; ð2Þ

and

Φ̈þ 4aH _Φþ 1

3
ð4a2Λþ k2ÞΦ ¼ 0; ð3Þ

where an overdot denotes a derivative with respect to
conformal time η.
We can accompany these with the equations for the

background quantities. These are

_a¼ a2H; _H¼−
2

3
að3H2−ΛÞ; ρ¼ 1

8πG
ð3H2 −ΛÞ:

ð4Þ

Note that these entail the further (background) relations

_H ¼ −
16πG
3

ρ; ρ ¼ 3C
8πGa4

; ð5Þ

where C is a constant with dimensions L−2 which we will
discuss shortly. Note that using C we can rewrite the
expressions for V and δ as

V ¼ a2kðaHΦþ _ΦÞ
2C

;

δ ¼ −
2a2ð3H2a2Φþ 3 _ΦaH þ k2ΦÞ

3C
: ð6Þ

A further first order relation that follows is

_δ − 4 _Φ ¼ −
4

3
kV: ð7Þ

A. Features of the background solution

The solution we want for the background equations is
one which starts with a big bang, and ends with an
asymptotic de Sitter phase. Expressed as a derivative with
respect to cosmic time t, there is a first order equation
available in H alone, namely

dH
dt

¼ 2Λ
3

− 2H2; ð8Þ

[see Eq. (4) above]. To get one when working with
conformal time derivatives, we need to eliminate a, which
we do via the density, obtaining

_H ¼ −
2

3
ð3CÞ1=4ð3H2 − ΛÞ3=4: ð9Þ

In this form it is clear that there is a family of big bang
solutions, in which conformal time is scaled proportional to
C−1=4. Simultaneously, from the relation

η ¼
Z

dt
a
; ð10Þ

we see that the dimensionless scale factor a is scaled
by C1=4. All such solutions are effectively identical—they
just have a different “unit” for conformal time, which is
dimensionful.
We can settle on a convenient value of C to use, in the

following way. First we show that, quite generally, with
no assumption about C, equality of the energy densities
corresponding to radiation and Λ, happens halfway through
the conformal time development of the universe.
Then we fix a scale for a, and hence conformal time,

by setting a ¼ 1 at this halfway point. This has the
consequence that there is then a “reflection symmetry”
about this halfway point, with the development of the scale
factor after it being the reciprocal of the development
before it.
So we look first at where the energy densities are equal,

in terms of conformal time development. The equation for
conformal time in terms of a is

η ¼
Z

da
a2H

: ð11Þ
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To evaluate this, we need H as a function of a, which is
easy to obtain by eliminating ρ. This gives

H2 ¼ Λ
3
þ C
a4

: ð12Þ

We note that C controls the early universe behavior, while
Λ controls the late universe behavior. Using this in Eq. (11)
yields

η ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−i

ffiffiffiffiffiffiffi
3

ΛC

rs
F

0
B@ 1

31=4

ffiffiffiffiffiffiffiffiffiffi
i

ffiffiffiffi
Λ
C

rs
a; i

1
CA; ð13Þ

where F is the incomplete elliptic integral of the first kind.
This is interesting (and plotted in Fig. 1), but not so useful
for our immediate purpose. It is easier to use the integral for
η directly:

ηðaÞ ¼
ffiffiffiffi
3

Λ

r Z
a

0

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a04 þ 3C

Λ

q da0: ð14Þ

Taking the integral all the way to a ¼ ∞ to get the total
elapse of conformal time in a flat-Λ radiation-only uni-
verse, we get

ηtot ¼
�
ΛC
3

�
−1=4 Γð1

4
ÞΓð5

4
Þ

Γð1
2
Þ : ð15Þ

Now from the Friedmann equation (12), we see that the
energy densities of radiation and the vacuum are equal at

aeq ¼
�
3C
Λ

�
1=4

: ð16Þ

Also, by employing the transformation a ↦ a2eq=a, it is
easy to see that

ηðaeqÞ ¼
ffiffiffiffi
3

Λ

r Z
aeq

0

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a04 þ 3C

Λ

q da0

¼
ffiffiffiffi
3

Λ

r Z
∞

aeq

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a04 þ 3C

Λ

q da0 ¼ ηtot − ηðaeqÞ: ð17Þ

Hence, as stated, the energy densities are equal at the
point halfway through the conformal time development of
the universe, for any value of C, which means the statement
is true in any flat-Λ pure radiation universe.
A convenient way to fix the scaling of a, and hence also

determine the units of conformal time, is to require aeq ¼ 1.
This makes the development of a symmetric about the
conformal time midpoint. We can see this explicitly in
Fig. 1, generated using Eq. (13), which shows log10ðaÞ
versus η in this case. Choosing a different (constant) scaling
for a would just move this plot up and down by a constant
amount, and stretch the horizontal axis by a constant factor.
With aeq ¼ 1 we see that the curve for a is horizontally and
vertically antisymmetric, with these symmetries corre-
sponding to the transformations a ↦ 1=a and η ↦ ηtot − η
respectively. (Further discussion of these transformations
and their relation to inversion symmetry of the Friedmann
equation can be found in Ref. [16].)
The value of C which gives this behavior is C ¼ Λ=3,

and for this case

H2 ¼ Λ
3

�
1þ 1

a4

�
; ð18Þ

which exhibits a neat symmetry between early and late
epochs.
We note that the total conformal time elapsed for this

case is

ηtot ¼
ffiffiffiffi
3

Λ

r
Γð1

4
ÞΓð5

4
Þ

Γð1
2
Þ ≈ 3.21135

ffiffiffiffi
1

Λ

r
; ð19Þ

so that η inherits its units of time from 1=
ffiffiffiffi
Λ

p
.

Finally, we need to consider the conversion to cosmic
time t. This is given by

t ¼
Z

da
aH

: ð20Þ

We note that the absolute scale of a cancels in this
expression, so the units of t are determined simply by

FIG. 1. Scale factor a versus conformal time η for a flat-Λ
perfect fluid radiation dominated universe as defined in Eq. (13),
in the case where aeq ¼ 1.
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the units of the physical parameterH. Thus, unlike the case
with conformal time, there is not an extra scaling to be
fixed. Carrying out the integral for a general C and writing
H∞ ¼ ffiffiffiffiffiffiffiffiffi

Λ=3
p

for the value of the Hubble parameter at
infinite cosmic time, we obtain

t ¼ 1

2H∞
sinh−1

�
H∞a2ffiffiffiffi

C
p

�
; ð21Þ

which becomes

t ¼ 1

2H∞
sinh−1ða2Þ; ð22Þ

if the above value of C is used.

B. Solution for the Newtonian potential Φ
Away of solving for the development for the Newtonian

potential Φ, is to transform Eq. (3), in which both a and H
appear, and the derivatives are with respect to conformal
time, into an equation in which only a appears and the
derivatives are taken with respect to a. The complicated
dependence of a on η implied by Eq. (13) is then avoided.
We also make a further variable dimensionless by

writing the comoving wave number k as k ¼ K
ffiffiffiffi
Λ

p
.

These changes lead to

að1þa4ÞΦ00 þ2ð3a4þ2ÞΦ0 það4a2þK2ÞΦ¼0; ð23Þ

where a prime denotes derivatives with respect to a.
This can be solved in terms of a Heun function

ΦðaÞ¼ð1þa4Þ1=4exp
�
1

2
itan−1ða2Þ

�

×HeunG

�
−1;

1

4
ð5− iK2Þ;1;5

2
;
5

2
;
1

2
;a2i

�
; ð24Þ

where the particular combination of solutions which leads
to this form has been chosen so that Φ is real and tends to 1
as a → 0. Indeed, the series for Φ at small a given by this
expression is

ΦðaÞ ≈ 1 −
K2

10
a2 þ

�
K4

280
−
1

7

�
a4 −… ð25Þ

A plot of the Heun function expression in Eq. (24) for
K ¼ 10 is shown in Fig. 2. The plot is generated byMaple,
which, however, only seems to be able to evaluate the
function correctly out to a ≈ 2.5 for this case. Due to this,
plus the ability to calculate some asymptotic values
which we will need below, it is useful to develop an
alternative representation for Φ. A useful new expression
was found to be

ΦðaÞ ¼ 3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2K2 þ a4

p

a3K
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K4 − 4

p sin
�
K

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K4 − 4

p
ψðaÞ

�
; ð26Þ

where ψðaÞ is the integral

ψðaÞ ¼
Z

a

0

a02ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a04

p
ð1þ a02K2 þ a04Þ da

0: ð27Þ

(See Ref. [17] for some information on integral represen-
tations of Heun functions.) We can see straight away from
this integral expression that for small a, ψðaÞ will behave
like a3 and hence from Eq. (26) ΦðaÞ will behave like a
sinc function, which we can indeed see in Fig. 2.
The integral in Eq. (27) can be evaluated analytically,

and we find

ψðaÞ ¼ e−
iπ
4

�
Π
�
e
iπ
4a;

1

2
iðK2 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K4 − 4

p
Þ; i

�

− Π
�
e
iπ
4a;

1

2
iðK2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K4 − 4

p
Þ; i

��
; ð28Þ

where Π is the incomplete elliptic integral of the third
kind, and we are using Maple’s notation for the order and
meaning of the arguments. Inserting this ψðaÞ into Eq. (26)
then gives a fully analytic result for ΦðaÞ, and one that is
more convenient to use in practice than the Heun result
in Eq. (24). This is so since (a) Maple can evaluate this
function over the whole range of a without errors;
(b) asymptotic expressions are available as a → ∞; and
(c) derivatives with respect to a can be taken and the results
found are still in terms of elliptic functions, meaning that
the resulting expressions for the derived quantities δ and V
are also analytic.

FIG. 2. Plot of the Newtonian potential ΦðaÞ as a function of
scale factor a for normalized wave number K ¼ 10.
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C. Initial conditions for the perturbations

Above we have been working with a solution for the Φ
equation in a that tends to a constant (chosen as 1) as
a → 0. We now explore the initial conditions for ΦðaÞ
more generally to understand how the chosen form arises.
The Φ equation in a in the form we are using (with the

choice of Λ=3 for C and k ¼ K
ffiffiffiffi
Λ

p
) is given by Eq. (23).

Using the following trial form for Φ

Φ ¼ aνðc0 þ c1aþ c2a2 þ c3a3 þ…Þ; ð29Þ

we find that ν is constrained to either 0 or −3, and that the
accompanying series are

ΦðaÞ ¼ c0

�
1 −

K2

10
a2 þ

�
K4

280
−
1

7

�
a4 −…

�
; ð30Þ

or

ΦðaÞ ¼ d0
a3

�
1þ K2

2
a2 −

�
K4

8
−
1

2

�
a4 þ…

�
; ð31Þ

respectively. Since Eq. (23) is linear and second order, the
solutions of which these are the first terms of span the entire
space of solutions for ΦðaÞ—all other solutions are linear
combinations of these.
Now, self-evidently, Eq. (31) blows up as the origin is

approached, and hence it is not admissible as a solution
for our current setup. The reason for this, is not because
of its singularity per se—for example several other
quantities which we think are physical, such as the
density or Hubble parameter, blow up as the origin is
approached—but because we have used linearized equa-
tions for the perturbations, having Φ blow up means that
the conditions for linearization are not fulfilled. Hence
we need to restrict to Eq. (30) as the only possible
linear mode.
To clarify this point further, we examine the behavior of

δ and V as the origin is approached. Expressed in terms of
ΦðaÞ, we find the following general expressions for these
as a function of a:

δ ¼ −2ð1þ a2K2 þ a4ÞΦ − 2að1þ a4ÞΦ0; ð32Þ

and

V ¼
ffiffiffi
3

p

2
aK

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a4

p
ðΦþ aΦ0Þ: ð33Þ

These lead to the following series at the origin:

δnon-singular ¼ c0

�
−2 −

7K2

5
a2 þ

�
23K4

140
−
4

7

�
a4 þ…

�
;

ð34Þ

δsingular ¼ d0
a3

�
4 − 2K2a2 −

�
K4

2
− 2

�
a4 þ…

�
; ð35Þ

Vnon-singular ¼
ffiffiffi
3

p
Kc0
2

�
a −

3K2

10
a2 þ…

�
; ð36Þ

Vsingular ¼ −
ffiffiffi
3

p
Kd0

�
1

a2
−
K4

8
a2 þ…

�
: ð37Þ

δ ¼ δρ=ρ is a pure number which needs to be ≪ 1 in
order for the linearization to be valid, and the value of V
corresponds to the modulus of the (assumed nonrelativistic)
velocity perturbation v=c, and so again has to be small.
Thus the singular solution is not possible here (as already
said for Φ, which is also dimensionless). Note, however,
that the density itself tends to infinity as a → 0 is
approached, so since δ tends to a constant (−2c0), the
actual density perturbation, δρ, is infinite even in the
nonsingular case.
The fact that we eliminate one of the two possible modes

via this argument is part of the reason it was possible to
predict the sequence of peaks in the cosmic microwave
background power spectrum [18,19], even before the
theory of inflation was available. Effectively “starting from
rest,” which is what inflation achieves via the “coming over
the horizon” recipe, will be the same as using only a
nonsingular solution, if the cosmic epoch at which a given
perturbation comes over the horizon is sufficiently early.

D. General features of the results

To illustrate the general physical features of the results
for the perturbation quantities, we start with a specific case
as illustration. In Fig. 3 we show curves for Φ, δ and V
plotted as a function of conformal time for a normalized
wave number K near 10. We see that while Φ decays away,

FIG. 3. Evolution of perturbation quantities in conformal time
for K ≈ 9.58.
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δ and V soon settle down into very regular-looking sine
waves in conformal time, with no sign of decaying away.
The velocity V is 90° out of phase with the density
perturbation δ, as we expect from Eq. (7).
In Fig. 4 we show the evolution of δ and V again, but this

time with respect to cosmic time t. This is interesting in that
it appears to show the quantities “freezing out,” and if
plotted to higher t (which of course goes to þ∞), they
would not depart visibly from the values already reached by
about t ¼ 10 here. This is because we can see already in
Fig. 3 what values they will reach, since this latter plot is
for the full span of conformal time, which occurs as we
saw from Eq. (19) at η ≈ 3.21135

ffiffiffiffi
Λ

p
, corresponding to the

right-hand end of the plot.
The nature of this type of “freezing out” will be

discussed further below in Sec. IVA, in the context of
the behavior of matter versus photon geodesics at the future
conformal boundary. However, the main thing which
strikes one from the plot against conformal time in
Fig. 3, and we wish to draw attention to here, is that it
is clear that the perturbations in δ and V are marching
towards the right in a very regular fashion, and show no
signs that they are “noticing” the boundary at η ¼ ηtot. This
naturally raises the question of whether the perturbations
could pass “through” the FCB, and in this case, what space
they would emerge in.

E. The future conformal boundary

We now investigate in more detail what happens to both
the perturbations and background solution as the FCB is
approached.
To explain the background solution properly, we need

to introduce a version of general relativity (GR) in which
the sign of the scale factor has significance, and can be
monitored. In standard GR based solely on the metric, it is
only a2 that has significance in the metric, as can be seen
from Eq. (1).

This can be done using a tetrad approach to GR (see e.g.
Ref. [20]), but we are going to indicate the needed
relationship schematically here, using some notation from
gauge theory gravity (see Ref. [21]), which is particularly
convenient for conformal metrics. The notation is for a
vector-valued function of vectors, h̄, which is essentially
the square root of the metric, and arises as the local gauge
field corresponding to gauging translations. If the vector it
is operating on is b, then the h̄-function for the background
solution we are using has the simple expression

h̄ðbÞ ¼ 1

aðηÞ b; ð38Þ

so that (for this case), the “translation gauge field”
corresponds to just a scaling of input vectors by 1=aðηÞ.
At the FCB, the scale factor aðηÞ becomes infinite. This
suggests that a more sensible quantity in which to express
the h-function near this point is the reciprocal of a, which
we call s, so sðηÞ≡ 1=aðηÞ, and now

h̄ðbÞ ¼ sðηÞb; ð39Þ

which one might argue is a more natural way to express the
conformal scaling in any case.
The background equations (4) and (5) in the new variable

s ¼ 1=a are

3_s2¼8πGρþΛ; and 3_s2−2ss̈¼−
8πGρ
3

þΛ: ð40Þ

If we make the same choices as above without loss of
generality, and bring in the constant C, take this as Λ=3 as
before, and work in units of conformal time such that
Λ ¼ 1, we can rewrite these equations as

3_s2 ¼ 1þ s4; and 3_s2 − 2s̈s ¼ 1 −
1

3
s4: ð41Þ

It is easy to verify that the second of these equations is
compatible with the derivative of the first.
Taking the difference between the two equations enables

us to get an equation for which the solution is free of
potential square roots, namely

̈s ¼ 2

3
s3; ð42Þ

which is remarkably simple.
Again, in order to get things in the simplest form, we

note that η does not appear explicitly in either equation and
therefore we are free to shift the origin of η to wherever we
wish, and we now take this as happening at the FCB itself,
so that η ¼ 0 there.
Equation (42) can be solved in terms of a single Jacobi sn

function but this has a complex argument and imaginary

FIG. 4. Evolution of δ and V in cosmic time for K ≈ 9.58.
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parameter. An interesting expression in terms of real Jacobi
elliptic functions which one can find, and which solves the
first order equation as well, is

sðηÞ ¼ �
snð ηffiffi

3
p ; 1

2
Þ

cnð ηffiffi
3

p ; 1
2
Þ dn

�
ηffiffiffi
3

p ;
1

2

�
: ð43Þ

This appears to be the “elliptic” version of “tan,” though we
have not seen it called as such. It involves the “sin” over
“cos” ratio, but then corrected by the dn function. It has the
same property as “tan” that if we describe its “range” by the
distance in η between where it is zero and where it becomes
infinite, then its values in the second half of the range are
the reciprocals of those at the reflected position (about
the midpoint) in the first half of the range. [For “tan,” this is
the identity tanðπ

4
þ θÞ ¼ cotðπ

4
− θÞ.] This also means it

reaches 1 at the midpoint. We can now understand the
properties we have been looking at so far for the scale factor
aðηÞ versus η in this pure radiation flat-Λ universe, as
arising from this elliptical “tan” function.
Figure 5 shows a plot of this function about η ¼ 0 and

where we have chosen the negative prefactor in Eq. (43).
The idea here is that the portion before η (the location of
the FCB) corresponds to the current epoch, which has a
positive and decreasing reciprocal scale factor. We can see
that the elliptical tan function smoothly extends this
through η ¼ 0, into a universe that is now antisymmetric
(in η) about the line η ¼ 0 (which remember now corre-
sponds to the FCB).
Where sðηÞ goes to plus infinity as η → −ηtot as given in

Eq. (19), corresponds to the “big bang,” and where sðηÞ
goes to negative infinity as η → þηtot, must correspond to a
reflection symmetric big bang in the future.
Interpreting a universe in which the conformal scale

factor (as described in h-function terms) is negative, is
challenging, but it is not clear that there could be any

fundamental objections to it. At the level of the metric, the
flip from s to −s is invisible, and the universe to the right
of η ¼ 0 in Fig. 5 looks like a “regular” big bang model
but playing out backwards in time. However, whether the
space and time parity inversions implied by a negative
factor s in

h̄ðbÞ ¼ sðηÞb; ð44Þ

mean that the universe might be “seen” as playing out
forwards in time is moot, since we cannot have any sensible
form of observer in a radiation-only universe.
What we can say is that we seem to find an unambiguous

result for how this type of universe extends through the
FCB, and it is not the extension which Penrose suggests in
his conformal cyclic cosmology proposal [11–13]. This
involves an infinite rescaling of the scale factor at the FCB,
so that what succeeds the decreasing segment of the lhs of
the plot in Fig. 5, is a repetition forwards in conformal time,
rather than backwards in conformal time, of the same
segment. In other words, the Penrose proposal is for an
evolution of the reciprocal scale factor of the kind shown
in Fig. 6, for which there is no evidence in terms of the
equations presented here.
We have followed here the route of an analytic extension

of the inverse scale factor s ¼ 1=a through the FCB, and
this has led to a region with negative s. As a final comment
on this aspect of the background solution in this section,
we note that several further consequences of having
negative a are discussed in Secs. IV and V below. In
Sec. IV, we consider both massless and massive particle
geodesics as they approach and cross the FCB, and also
discuss the relation

dη ¼ 1

a
dt ð45Þ

FIG. 5. Plot of the reciprocal scale factor sðηÞ versus η as given
by the function in Eq. (43).

FIG. 6. Plot of the reciprocal scale factor sðηÞ versus η
according to the Penrose conformal cyclic cosmology proposal.
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(from which the particle horizon is defined), and show how
this relation can remain true, and compatible with a positive
dη, even when a becomes negative. In Sec. V, which is
concerned with cold dark matter rather than radiation
fluctuations, we discuss how there are two alternative
approaches to continuation of the background solution
through the FCB: either an analytic continuation of the type
just described, which again leads to negative a, or the
imposition of a positive scale factor after the FCB. In the
CDM setting we in fact choose the latter in which to
consider fluctuations, since otherwise we are faced with an
issue of the background matter density apparently becom-
ing negative. However, here in the radiation case, there is
no such problem, since the density is positive in each
approach, and analytic continuation through the FCB is
therefore to be preferred, as this preserves continuity in all
derivatives.

F. Evolution of perturbations through the FCB

We now consider how the radiation perturbations behave
as the FCB is approached. This is facilitated by the
remarkable fact that, just like the background equations,
the perturbation equation can be put in a form that is
invariant under a ↦ 1=a, and so we can use the solutions
we have already found when expanding out of the big bang
to find solutions valid when expanding about the FCB.
The form in which the equation for the Newtonian

potential is invariant is where we work not with ΦðaÞ
but φðaÞ≡ a2ΦðaÞ. Then Eq. (23) above for Φ in terms of
a becomes

a2ð1þ a4Þ d2

da2
φþ 2a5

d
da

φþ ða2K2 − 2a4 − 2Þφ ¼ 0:

ð46Þ

If we now make the change of independent variable
a ↦ s ¼ 1=a, then the equation becomes

s2ð1þ s4Þ d2

ds2
φþ 2s5

d
ds

φþ ðs2K2 − 2s4 − 2Þφ ¼ 0;

ð47Þ

so we see that indeed the equation is invariant under using
the reciprocal of the scale factor.
This means that we do not have to do any additional

work to find the form of the Φ solutions near the FCB. We
can directly use the series for Φ coming out of the big bang
already found in Eqs. (30) and (31). The only change we
need to make is to replace a by s and then multiply by s4,
corresponding to the fact that it is a2Φ that is invariant,
not Φ. This results in the series

ΦðsÞ ¼ c0s4
�
1 −

K2

10
s2 þ

�
K4

280
−
1

7

�
s4 −…

�
; ð48Þ

and

ΦðsÞ ¼ d0s

�
1þ K2

2
s2 −

�
K4

8
−
1

2

�
s4 þ…

�
: ð49Þ

The dramatic thing here of course, is that both of these
series are nonsingular at s ¼ 0. Thus the FCB does not set
any further constraints, by itself, on the development of the
perturbations in Φ. Any “incoming” ΦðsÞ has two degrees
of freedom (Φ andΦ0), and will be able to match to a linear
combination of these two solutions. Of course we also need
to look at δ and V. The equations for these are not invariant
under a ↦ s ¼ 1=a, and so we must do some further work
to find the power series for these. Expressed as a function of
ΦðsÞ [i.e. the analogue of Eq. (32)], we find

δ ¼ 2

s4

�
sð1þ s4ÞΦ − ð1þ s4 þ K2s2Þ d

ds
Φ
�
: ð50Þ

From Eqs. (48) and (49), the lowest power contained in
ΦðsÞ in the neighborhood of the FCB is s1, and it is not
immediately evident this will be enough to make δ non-
singular, due to the overall 1=s4 factor in Eq. (50).
However, inserting Eqs. (48) and (49) into Eq. (50), some
cancellations occur, and we obtain

δðsÞ ¼ c0

�
6 − 3K2s2 þ K2

�
4þ K4

4

�
s4 þ…

�
; ð51Þ

and

δðsÞ ¼ d0s

�
4 − 2K4 þ K2

�
1þ K4

4

�
s2

þ ð4 − K4Þs4 þ…

�
; ð52Þ

respectively, which are both nonsingular at s ¼ 0. Perhaps
surprisingly, we see that the Φ series with the lowest
leading power in s leads to the δ series with the highest
leading power and vice versa.
We can do the same for the velocity perturbation V,

obtaining

V ¼
ffiffiffi
3

p

2s3
K

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ s4

p
ðΦ − sΦ0Þ; ð53Þ

as the analogue to Eq. (33), and

VðsÞ ¼ −
ffiffiffi
3

p
c0
2

s

�
3K −

K3

2
s2 þ K

�
1

2
þ K4

40
;

�
s4 þ…

�
ð54Þ

and
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VðsÞ ¼ −
ffiffiffi
3

p
d0
2

�
K3 þ K

�
2 −

K4

2

�
s2 þþK3

2
s4 þ…

�
;

ð55Þ

as the two series.
Since all of the series are nonsingular, this explains how

δ and V are able to approach the FCB “without noticing”—
there is no singularity there, and therefore they are able to
march straight through regardless of their phase and
magnitude. This is at a certain level comforting, since if
one of the available two modes at the FCB had been
singular, as at the big bang, then this would have set an
unexpected boundary condition, resulting presumably in a
restriction on the set of K values which could be used.
However, since we are able to continue both the back-

ground and perturbations unambiguously through the FCB,
we can ask of the perturbations: what happens to them to
the right of the boundary? Do they continue being non-
singular as they advance into this space? Since the FCB
is in fact a completely regular point of the system of
equations, the issue of whether a given mode is allowable
presumably needs to be settled by looking at what happens
as the perturbations approach the next genuine singularity.
This occurs as the density starts becoming infinite again, as
we approach the next (though time reversed) big bang,
which occurs at the right of the diagram in Fig. 5.
Figure 7 shows what happens if we extend the integra-

tion of the case shown in Fig. 3 through the FCB and
towards the next big bang. We see that δ and V continue to
oscillate regularly until we start approaching the right
boundary, where clearly they and Φ start diverging.
What is happening, of course, is that the solutions are

failing to match onto the regular series given earlier for
small a [e.g. in Eq. (30) for Φ]. By symmetry these must
still be valid at the right end of Fig. 3 where jaj is becoming

small. Clearly the functions δ, V and Φ, as they approach
η ¼ 2ηtot contain a nonzero component of the singular
series [e.g. Eq. (31)] for Φ, and this means they diverge.
Now, as argued earlier, it is simply not possible to use

mode functions which diverge when carrying out lineariza-
tion. Thus, if we believe the region to the right of the FCB has
some validity, then the case just discussed is not allowable,
and we are indeed faced with a nontrivial boundary condition,
but we have found it enters at η ¼ 2ηtot, not η ¼ ηtot.
The required boundary condition comes about from the

fact we need Φ, δ and V to be either symmetric or
antisymmetric about the FCB if they are to remain non-
singular as the right-hand boundary is approached. This
will mean they are recapitulating the modes in which they
left the first big bang, which we argued above had to be
nonsingular. Put differently, we can now realize that
boundary conditions are set at the two end points of the
range (first and second big bangs), and these will force a
discrete set of K to be used—those in which a suitable
number of cycles complete over the range.
We can derive this constraint on K analytically, by

considering the expression for Φ which we achieved in
Eqs. (26) and (28). It is not hard to show this leads to the
requirement

nπ
2

¼ ϑðKÞ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2 þ 2

K2 − 2

r
K

�
EllipticK

�
1ffiffiffi
2

p
�

− EllipticPi

�
1

2
−
K2

4
;
1ffiffiffi
2

p
��

; n ¼ 1; 2; 3;…

ð56Þ

where we are using the Maple notation for the elliptic
integrals, since otherwise there is a bad clash between
different types of K!
We plot in Fig. 8 the function defined on the rhs of Eq. (56),

whichwe have calledϑðKÞ. One can see that it starts from0 at
K ¼ ffiffiffi

2
p

, and then settles down fairly rapidly to a linear form.
Wemay express both the initial and largeK behavior in terms
of the ηtot parameter defined in Eq. (19), i.e. the elapse of
conformal timebetween the first bigbang and theFCB,which
may also be written as ηtot ¼

ffiffiffi
3

p
EllipticKð1= ffiffiffi

2
p Þ in units of

conformal time where Λ ¼ 1.
We find

ϑðKÞ ≈ 21=4
ffiffiffi
3

p ð2η2tot − 3πÞ
6ηtot

;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K −

ffiffiffi
2

pq
; ð57Þ

for small K >
ffiffiffi
2

p
and

ϑðKÞ ≈ ηtotffiffiffi
3

p K; ð58Þ

for large K. As already stated, the function fairly rapidly
settles down to this latter form, and so the intervals between

FIG. 7. Evolution of perturbation quantities in conformal time
for the case shown in Fig. 3 (K ≈ 9.58), extended through the
future conformal boundary to the full range of η.
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allowable K solutions soon become regular, and these
occur at an interval which tends rapidly to

ΔK ≈
ffiffiffi
3

p
π

2ηtot
≈ 0.847: ð59Þ

The K spectrum defined by our two boundary conditions is
therefore discretized, but fairly regularly spaced, except for
the first few values. These are given explicitly in Table I.
It will be observed that we are not allowing K ¼ ffiffiffi

2
p

as
a possibility, i.e. the solution for n ¼ 0. From Eqs. (26)
and (28) we see that K ¼ ffiffiffi

2
p

is effectively a “boundary”
between propagating and nonpropagating solutions and it
is interesting in itself that we get a lower limit on K values
even without appealing to future boundary conditions.
However, if we go ahead and integrate the perturbations
using this value for K we find that it is not symmetric (or
antisymmetric) about the midpoint, and we obtain the
results shown in Fig. 9 indicating clearly that this case
violates the boundary conditions.
In Fig. 10 we show the results for the smallest successful

value of K, K ≈ 2.1831…, as given in Table I. We see that
for this case Φ and δ are antisymmetric about the midpoint,
and V is symmetric.

In Fig. 11 we also show the results for the second
successful mode, K ≈ 3.1167. This time Φ and δ are
symmetric about the midpoint, and V is antisymmetric.
This behavior alternates as one might expect as one moves
up through the modes.
Finally, for completeness, we show in Fig. 12 a case for

higher K, in which K has the value for the tenth mode,
K ≈ 10.0765. We can now reveal that the case we used
several times earlier, K ≈ 9.58, was in fact chosen as
corresponding to the tenth mode minus one half, so as
to give a good example of something which fails to satisfy
the boundary conditions, as shown in Fig. 7. In Fig. 12,
instead of plotting Φ, we plot the function φðaÞ ¼ a2ΦðaÞ,
which we showed earlier in Eq. (47) is invariant under the
reciprocity transformation a ↦ s ¼ 1=a. It is interesting
that it is this version of Φ that has the same character as δ

TABLE I. The first few allowed K values.

n K

1 2.18312971295
2 3.11668865135
3 4.01862347595
4 4.90240252065

FIG. 9. Evolution of Φ, δ and V over the full range in η for
modes with K ¼ ffiffiffi

2
p

, which forms the boundary between
propagating and nonpropagating waves.

FIG. 10. Evolution of Φ, δ and V over the full range in η for
modes with the first value of K that successfully meets the
boundary conditions at each end, K ≈ 2.1831.

FIG. 8. Plot of the function ϑðKÞ defined in Eq. (56). This
function being equal to nπ=2 for positive integer n defines the
range of allowable values for the (normalized) comoving wave
number K. The first few values of nπ=2 and the wave numbers K
they thereby define, are also shown.
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and V, of propagating with effectively unchanged ampli-
tude over the whole range of η. If we had picked an odd
mode, however, φwould have diverged at the midpoint. We
can understand this in terms of Eqs. (48) and (49), which
express the behavior ofΦ in terms of s at the midpoint. The
first of these applies when Φ is even (such as for the tenth
mode), and since it goes like s4, is still nonsingular after
division by s4 to form φðsÞ. WhenΦ is odd, only Eq. (49) is
selected, and this then behaves like s−1 for φ and diverges
(since Φ ∝ sþ � � � for this case). The divergence of φ near
s ¼ 0 for odd modes is not a problem since it is onlyΦ that
we need to remain small compared to 1 to satisfy the
linearization conditions.
As a final point to discuss in this w ¼ 1=3 perfect fluid

case, we could put off for the moment the fact that our setup
does not correspond even approximately to physical reality

(as discussed in the Introduction) to ask what would be the
observational consequences if the above analysis needed to
be taken seriously, and the K spectrum is indeed discrete?
The first obvious consequence is that there would be no

primordial fluctuation power below a value of K given by
the first entry in Table I, K ≈ 2.1831, which we label Kmin.
We defined K via k ¼ K

ffiffiffiffi
Λ

p
, and the currently observed

value of Λ ≈ 1.21 × 10−7 Mpc−2, so Kmin corresponds to a
comoving wave number of

kmin ≈ 7.6 × 10−4 Mpc−1: ð60Þ
This is quite an interesting number in connection with
indications for a decrease in power in the primordial power
spectrum at large angular scales, which happens at around
this point in k. However, since our perfect fluid is not a
possible physical description of the radiation after it has lost
the frequent interaction with electrons by the end of
recombination, we now need to look at a more realistic
setup, and see if any of the above effects and considerations
come into play there.

III. DERIVATIONS AND RESULTS FOR A MORE
REALISTIC RADIATION COMPONENT

We now consider radiation perturbations and their
behavior as they approach the future conformal boundary
for the case where the radiation component is not treated
as a perfect fluid. We will do this via a Boltzmann
hierarchy approach, but where we truncate the hierarchy
at harmonics l > 2. This enables us to work in terms of a
fluid still, but now an imperfect one, with an anisotropic
stress that is driven by the velocity perturbations. This will
enable us to have at least an indication of the behavior in a
more realistic case, where the radiation is decoupled from
the matter.
We may follow the treatment in Chapters 8 and 11 of

Ref. [9], except that some of the expressions there are for
the zero Λ case, and also some relevant equations contain
misprints. Thus we give the full set of equations we need
here, and point out the differences from Ref. [9] where
appropriate. We shall give the equations first in a first order
propagation plus constraint format, and then consider other
versions later. Since there is now anisotropic stress, the
potential Ψ now features as well Φ in the quantities to be
propagated. We note that since the Boltzmann evolution
equations used are specific to the radiation case, we give all
results for w ¼ 1=3 only.
First of all, the relevant definition of the anisotropic

stress is

Π ¼ 3k2ðΦ −ΨÞ
a2ð3H2 − ΛÞ : ð61Þ

If we set Λ ¼ 0 and compare with the result (8.36) in
Ref. [9], we see this has the opposite sign. It is not quite
clear why this happens, since the signs associated with it in

FIG. 11. Same as for Fig. 10, but for the second mode,
K ≈ 3.1167.

FIG. 12. Evolution of φ, δ and V over the full range in η for the
tenth mode, K ≈ 10.0765. (φ ¼ a2Φ is shown multiplied by 100
so that it can be plotted on the same axis scale as the other
solutions.).
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the Boltzmann hierarchy in Section 11 of Ref. [9] agree
with what we find. In any case we believe Eq. (61) is correct
for our current purposes.
The expressions

Θ0 ¼
δ

4
; Θ1 ¼

V
3
; Θ2 ¼

Π
12

; ð62Þ

relate the spherical harmonicmodesΘi used in theBoltzmann
hierarchy equations, to the fluid quantities already defined
[see Eq. (11.10) in Ref. [9]]. The Boltzmann hierarchy can
then be written as

_δ ¼ −
4

3
kV þ 4 _Φ;

_V ¼ k

�
δ

4
−
1

6
ΠþΨ

�
;

_Π ¼ 12k
5

�
2

3
V − 3Θ3

�
: ð63Þ

In the third equation, we have brought in an “uninter-
preted” fourth Boltzmann mode, Θ3, which it is not
possible to relate to fluid quantities. However, this is where
truncation of the series for l > 2 comes in. We declare that
for our purposes this term can be ignored, and so can
“close” the Boltzmann series via the relation

_Π ¼ 8k
5
V: ð64Þ

Comparing our results so far with those in Ref. [9], we
note that in their Sec. 11.2, they say that neutrinos, if one
ignores their mass, should satisfy the same Boltzmann
hierarchy equations as photons when there are no colli-
sions, which is what we are assuming here. However, in the
case where the Θ3 mode is put to zero, they obtain

_Πν ¼
4k
5
Vν; ð65Þ

i.e. a coefficient of 4=5 instead of the 8=5, we have just
found in Eq. (64). We think that this is likely a misprint.
Similarly, although Ref. [9] agrees with our Eq. (63) for _V
as applied to the neutrino case [their Eq. (11.16)], they
instead give

_Vγ ¼ k

�
1

4
− 2Πγ þΨ

�
; ð66Þ

as applied to the radiation case [their Eq. (11.28) in the case
where there is no optical depth due to matter]. Again, we

think this just corresponds to misprints, and that the
equation for _V in Eq. (63) is correct.
Continuing now to give the first order propagation

equations for quantities, we find

_Ψ ¼ aHð2Φ − 3ΨÞ þ 2

15k
a2Vð3H2 − ΛÞ;

_Φ ¼ −aHΨþ 2

3k
a2Vð3H2 − ΛÞ: ð67Þ

Meanwhile, the nonderivative constraint equation is

a2ð3H2 − ΛÞð4aHV þ kδÞ þ 2k3Φ ¼ 0: ð68Þ

If we differentiate this with respect to conformal time,
and then use the above derivative relations, we obtain a
multiple of the constraint equation itself, showing that the
propagation equations and constraint are consistent. This is
not a full test of the relations, however, since neither the Ψ
potential nor Π appear in the constraint. We can, however,
go through all the Einstein equations and Bianchi identities
for the system explicitly, and one finds that everything is
properly satisfied given the above relations, so we take
them as a valid starting point for the perturbation analysis.
Note that if we wish to return to the previous perfect fluid

case, then this is equivalent to truncating the Boltzmann
hierarchy at l > 1, which meansΠ is set to 0 and we ignore
the _Π equation in Eq. (63). The only other change necessary
in the equations already given, is in the _Ψ equation in
Eq. (67), which becomes

_Ψ ¼ aHð2Φ − 3ΨÞ þ 2

3k
a2Vð3H2 − ΛÞ

¼ −aHΦþ 2

3k
a2Vð3H2 − ΛÞ; ð69Þ

in agreement with the _Φ equation, since of courseΨ ¼ Φ in
this case. We mention this to note that the _Ψ equation does
not go smoothly to the perfect fluid case when we switch
off the anisotropic stress, as we can see from the different
factors in front of the a2Vð3H2 − ΛÞ terms in Eqs. (67) and
(69), i.e. 2=ð15kÞ and 2=ð3kÞ respectively. This is a feature
of truncating the Boltzmann hierarchy at different points.
We will now derive a useful equation in Φ alone, which

can parallel the second order equation for Φ given in the
perfect fluid case in Eq. (3) and for which it was possible to
find analytic solutions.
We find

2aHð−60a2k2Λþ 2040H2a4Λþ 45k4−800Λ2a4 þ 648k2H2a2ÞΦ
þ ð45k4 þ 8568H4a4 − 720Λ2a4þ918k2H2a2 − 1416H2a4ΛÞ _Φþ 30aHð−68a2Λþ 15k2 þ 168a2H2ÞΦ̈
þ 15ð5k2 − 20a2Λþ 42a2H2ÞΦ… ¼ 0; ð70Þ
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which indeed parallels Eq. (3) in the perfect fluid case, but
is third rather than second order, and unlike the perfect fluid
case appears not to have analytic solutions. We will still
find it useful shortly, however, in finding the behavior of
series solutions at the big bang and the FCB.

A. Some series and numerical solutions

As an initial step in seeing what changes in behavior
the anisotropic stress causes, we consider the evolution
out of the big bang. The third order Eq. (70) just found is
useful for this, since given that we know a in terms of H,
via

a ¼ −
3

2

_H
3H2 − Λ

; ð71Þ

then we just need to set up series for H and Φ and we are
thus dealing with the complete problem, since Ψ, δ and V
can all be derived from Φ (see below).
The analogue of this for the perfect fluid case has already

been discussed in detail in Sec. II C, where we showed how
various possible solutions had to be eliminated on the
grounds that otherwise the linearization step is invalidated.
The same happens here, and the surviving solution for Φ is
now (written in terms of conformal time, rather than the a
used in Sec. II C)

Φ ¼ c0

�
1 −

K2Λ
21

η2 þ 17Λ2ð3K4 − 40Þ
54936

η4 −…

�
: ð72Þ

The accompanying series for Ψ is

Ψ ¼ c0

�
5

7
−
K2Λ
42

η2 þ Λ2ð3K4 − 40Þ
7848

η4 −…

�
; ð73Þ

and hence it is impossible to start the universe off with zero
anisotropic stress in this case—Ψ is forced to be different
from Φ.
Note, however, that at the start of the universe evolution,

the radiation component can be assumed to be a perfect
fluid, and hence we should start as before with zero
anisotropic stress, and only later move over to the regime
with nonzero Π. Given that we have first order equations for
all quantities (i.e. for Φ, Ψ, δ and V), this can be done easily
by just taking as the starting values for further evolution, the
values reached by the quantities at the point where matter/
radiation decoupling would have progressed sufficiently (if
wewere including baryonic matter as a fluid as well), that the
radiation was no longer being isotropized in the matter rest
frame. In other words, at that point we move to the equations
given in this section for further evolution, having to that
point used the equations of Sec. II instead.
To make these ideas concrete, we now give some

example numerical evolution curves for a case treated in
this way, and where the value of conformal time η at which

the transition to the new equations takes place is chosen to
give clear illustrations, rather than being “realistic”; we will
attempt something closer to the latter towards the end of
this section.
In Figs. 13–15 we show the evolution of the perturbed

quantities for the case K ¼ 10 where the integration starts
from the values reached for these quantities at η ¼ 1
(chosen just for illustrative purposes). It is then continued
through the future conformal boundary using the series
expansions we will derive below, and then allowed to carry
on its evolution numerically in the region beyond the FCB.
The figures are plotted in terms of s ¼ 1=a and hence the
evolution in conformal time is in fact from right to left.
Thus, for example, in Fig. 15, the anisotropic stress
evolution starts at s ≈ 1.713 at conformal time η ¼ 1 after

FIG. 13. Plot of density perturbation δ and velocity perturbation
V as a function of reciprocal scale factor s ¼ 1=a for normalized
wave number K ¼ 10 in the “Boltzmann hierarchy” model for
radiation perturbations. The conformal time evolution starts at the
right and progresses left, passing through the FCB at s ¼ 0.

FIG. 14. Same as Fig. 13, but for the potentials Φ and Ψ.
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the big bang, with a value for Π of zero, since it is assumed
that up to this point there is some matter available to
isotropize the radiation in its rest frame. Thereafter the
evolution is leftwards towards the FCB at s ¼ 0 and then
into the region beyond the FCB with s < 0.
We have made use of series at the FCB which have yet

to be derived, but the clear implication of these plots is
that the perturbed quantities “do not see” the FCB, but
just go straight through it, in the same way as for the
treatment in Sec. II. (The potentials Φ and Ψ both go to
zero at the FCB, and in this sense “see” it, but as we
show below from the series, this does not set any
constraints.) Thus the issues as regards valid values of
K will be the same as before, i.e. we will want to choose
K so that the evolution after the FCB does not sub-
sequently “blow up,” and we expect a similar conclusion
in which we are forced to use a solution which is either
symmetric or antisymmetric (in the relevant quantities) at
the FCB itself.
We show in Figs. 16–18 the evolution of perturbations

for what appears to be the first “symmetric” mode, which
occurs atK ≈ 2.605. (“Symmetric” is in quotes since in fact
the V perturbation is antisymmetric in this case.) The
potentials retrace their values before the FCB in their
development afterwards, and hence can converge to the
same value at an η of −1, making Π zero there, and hence
(assuming the universe now has enough hot matter for the
isotropization to take over again), the development can now
be the usual perfect fluid one from this point onwards
towards the symmetric “big bang.”
Having established some examples, we now discuss the

series solutions at the FCB, which enable the numerical
integrations to be continued past this point.
A convenient way of establishing behaviors, is to use the

third order equation for Φ, given in Eq. (70), and to rewrite
this just as a function of s ¼ 1=a, which we can do by
eliminating H

FIG. 16. Plot of density perturbation δ and velocity perturbation
V as a function of reciprocal scale factor s ¼ 1=a for normalized
wave number K ≈ 2.605 in the “Boltzmann hierarchy” model for
radiation perturbations. The conformal time evolution starts at the
right and progresses left, passing through the FCB at s ¼ 0. This
value of K appears to correspond to the first allowed mode.

FIG. 17. Same as Fig. 16, but for the potentials Φ and Ψ.

FIG. 18. Same as Fig. 16, but for the anisotropic stress Π.

FIG. 15. Same as Fig. 13, but for the anisotropic stress Π.
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5s3ð1þ s4Þð14s4 þ 5K2s2 − 6Þ d3

ds3
Φ

− 10s2ð62s4 þ 15K2s2 þ 14s8 − 12Þ d2

ds2
Φ

þ sð156K2s6 þ 306K2s2 þ 45K4s4

− 240þ 1492s4 þ 252s8Þ d
ds

Φ − 312K2s2 − 1360s4

− 90K4s4 þ 240 − 432K2s6 ¼ 0: ð74Þ

We can now substitute a series of the form

Φ ¼ sνðc0 þ c1sþ c2s2 þ c3s3 þ…Þ; ð75Þ

for Φ in order to discover the “indicial indices” ν that are
possible for Φ at the FCB. This yields the indicial index
equation

ðν − 1Þðν − 2Þðν − 4Þ ¼ 0; ð76Þ

in other words, ν is restricted to be 1, 2 or 4. The ν ¼ 1 and
ν ¼ 4 results match the leading order behavior we found
previously [Eqs. (48) and (49)] in the perfect fluid case, but
we now have ν ¼ 2 as an extra possibility, corresponding to
the extra degree of freedom opened up by the equation for
Φ now being third order, rather than second. We can see
that in all three cases Φ is constrained to be 0 at the FCB,
but since we still have three d.o.f. there is no extra
constraint coming from this, as already mentioned above.
These results translate through to the other potential Ψ,

via an expression we can find for Ψ in terms of Φ alone.
This expression is

Ψ ¼ 1

14s4 þ 5K2s2 − 6
ð5s2ð1þ s4ÞΦ00

− 2sð3s4 þ 8ÞΦ0 þ 10ð1þ s4 þ K2s2ÞÞ: ð77Þ

Using this, and substituting the same series as above for
Φ, we find that the series for Ψ has the first term

Ψ ¼ −sν
c0
6
ð10 − 21νþ 5ν2Þ þ… ð78Þ

and hence for the above values of ν starts with the same
power of s as Φ.
We can go further and ask about the value of the

anisotropic stress Π at the FCB. Translating Eq. (61) in
terms of s, we find

Π ¼ 3ðΦ −ΨÞK2

s2
: ð79Þ

Using Eqs. (75) and (77) this yields the values

ΠðsÞ ¼
8<
:

−3K2c1 þ… for ν ¼ 1;

−3K2c0 þ… for ν ¼ 2;

6K2c0s2 þ… for ν ¼ 4;

ð80Þ

so we can see that despite the s2 in the denominator of
Eq. (79), Π is nonsingular at the FCB, in all cases.
We can put things into a useful form by rewriting the

series for Φ as

Φ ¼ sðc0 þ c1sþ c2s2 þ c3s3 þ…Þ; ð81Þ

where now c0 controls the ν ¼ 1 series, c1 controls the
ν ¼ 2 series and c3 controls the ν ¼ 4 series. (Any
contribution from c2 must be associated with the second
or third term of a ν ¼ 2 or ν ¼ 1 series.)
With c0, c1 and c3 controlling the degrees of freedom, we

now find the following series expansions for the remaining
perturbations at the FCB:

V ¼ −
1

2
K3

ffiffiffi
3

p
c0 −

5

2
K

ffiffiffi
3

p
c3sþ

1

20
Kc0ð9K4 − 20Þ

ffiffiffi
3

p
s2 þ 1

4

ffiffiffi
3

p
Kð3K2c3 − 4c1Þs3 þ…

δ ¼ ð−2K2c1 þ 10c3Þ − 2c0ðK4 − 2Þsþ ð−5K2c3 þ 4c1Þs2 þ
1

15
K2c0ð9K4 − 14Þs3 þ

�
4c3 þ

3

4
K4c3 − K2c1

�
s4 þ…

Ψ ¼ c0sþ 2c1s2 −
7

10
K2c0s3 − c3s4 þ

1

120
c0ð9K4 − 20Þs5 þ… ð82Þ

These results are what we need in order to understand the
symmetry properties at the FCB. Looking at what we have
called the first “symmetric” solution above, which was
shown in Figs. 16–18, we can see that this must correspond
to c0 ¼ 0, which makes Φ, Ψ and δ symmetric, and V
antisymmetric. In this process both c1 and c2 remain free.

In contrast solutions with the opposite symmetry require
both c1 and c3 to vanish, with only c0 allowed to be
nonzero. A solution of this type is shown in the previous
perfect fluid case in Fig. 10, in which V is symmetric, and δ
and Φ (¼ Ψ for this previous case) are antisymmetric. This
was the first mode available in the perfect fluid case, and we
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might expect the first mode to have that symmetry here.
However, this is prevented by what we have just seen about
the number of degrees of freedom available in this “anti-
symmetric” case, as we now explain.
The four functions Φ, Ψ, δ and V intrinsically have three

degrees of freedom available, due to the constraint (68).
This matches the three d.o.f. available at the FCB for Φ
alone, when it is treated via its third order equation (74). In
order to be able to reach a point after the FCBwhereΨ ¼ Φ
again, and such that we can continue evolution towards a
symmetric big bang in such a way that all perturbations
remain nonsingular, we are going to need three d.o.f. If we
use a “symmetric” solution at the FCB, we have seen that
this fixes c0, leaving two d.o.f. available in c1 and c3. The
remaining d.o.f. needed is of course provided by K, which
we adjust to get the desired overall evolution, thereby
discovering its eigenvalues.
On the other hand, if we take the “antisymmetric” case at

the FCB, we have only one d.o.f. left, corresponding to the
value of c0, and this combined with the freedom in K is not
enough to give us solutions—one more d.o.f. would be
needed for us to be able to advance towards a future big
bang in which the perturbations remain nonsingular.
This contrasts with the perfect fluid case, where only two

d.o.f. are needed for the functions in general, since the
equation for Φ alone is only second order, and in both the
symmetric and antisymmetric cases at the FCB we have
one d.o.f. left there [corresponding to the ν ¼ 1 and ν ¼ 4
solutions of Eqs. (48) and (49)]. This is then joined by K to
make up the total.
Thus on these grounds, we would predict that in the

imperfect fluid case now being treated, we will be able to
successfully find symmetric solutions (inΦ, Ψ and δ, but V
will be antisymmetric), but not antisymmetric solutions.
This indeed appears to be the case numerically. Searching

through the K values to find a mode that does not “blow up”
after the FCB, we find a first successful value at K ≈ 2.605,
as already shown, but this effectively corresponds to what
would have been the second mode of the perfect fluid case.
There is no analogue of the first mode of the latter.
Similarly, the next successful K value we find, is

K ≈ 3.89, and this behaves similarly to the fourth mode
of the perfect fluid case. For interest, the plot for anisotropic
stress Π in this case is shown in Fig. 19.
We thus believe that only “even”modes can be continued

through the FCB without becoming singular. It is of interest
to evaluate the K values of these modes for more “realistic”
values of the conformal time at which the isotropization of
the radiation finishes than we have so far used, just in case
this is of some relevance to the actual universe. So far we
have just used perfect fluid evolution up to an arbitrary
value of conformal time η ¼ 1, but we can improve on this
as follows.
By putting together the expression for ρ in Eq. (5) with

our value ofC ¼ Λ=3 and the fact that the energy density of

the radiation is aSBT4
rad, where aSB is the reduced Stefan-

Boltzmann constant, it is possible to show that the radiation
temperature satisfies

T4
rad ¼

Λc2s4

aSB8πG
; ð83Þ

where s is the inverse scale factor.
Putting in the numbers, and using an estimate of the

actual cosmological constant Λ from current observations,
yields

Trad ≈ 30s K: ð84Þ

Thus a sensible definition of the conformal time at which
to make the transition from perfect to imperfect fluid might
be the conformal time that corresponds to the s which
makes Trad ¼ 4000 K. This corresponds approximately to
the temperature at which decoupling takes place in our
actual universe. We thus need s ¼ 4000=30 and using our
various expressions above for s in terms of η, we find that
this occurs at a conformal time of η ≈ 0.013. This contrasts
with the η for switchover we have been using in the
examples until now, which was at η ¼ 1. We could have
carried out the previous examples using the new value of
η ¼ 0.013 instead, but this more realistic value leads to

FIG. 19. Plot of anisotropic stress as a function of reciprocal
scale factor s ¼ 1=a for normalized wave numberK ≈ 3.89 in the
“Boltzmann hierarchy” model for radiation perturbations. This
value of K appears to correspond to the second allowed mode.

TABLE II. The first two allowed K values in the cases with
imperfect fluid evolution occurring beyond η ¼ ηstart, for the two
values of ηstart considered in the text.

n K for ηstart ¼ 1 K for ηstart ¼ 0.013

1 2.605 2.476845
2 3.89 3.7196727

PERTURBATIONS AND THE FUTURE CONFORMAL BOUNDARY PHYS. REV. D 105, 083514 (2022)

083514-17



variations of the perturbed quantities with s that have a high
dynamic range near the FCB, and are thus unsuitable for
illustrating general features.
The important aspect of the new η starting value, of

course, is the effect that it has upon the allowed K values.
We have only computed the first two such values, and these
turn out to be decreased somewhat compared to the starting
η ¼ 1 case. We show the new values obtained in compari-
son with the previous ones, in Table II.
As an example of the actual evolution with the new

starting η, we show the development of the potentialsΦ and
Ψ for ηstart ¼ 0.013 and K ≈ 2.476845, which we believe
corresponds to the first allowed mode, in Fig. 20. The plot
is as usual in terms of s ¼ 1=a on the x axis, so reads from
right to left as the universe proceeds from “decoupling” at
the right-hand edge, through to the symmetrical point at
the left-hand edge. As mentioned, there are large variations
near the FCB itself (s ¼ 0), which is why we chose
ηstart ¼ 1 for the majority of the examples. Despite the
very different appearance, the structure of the variations in
perturbed quantities is qualitatively similar to that found
before for K ≈ 2.605, making us confident that this is
indeed the first allowed mode.

IV. GEODESICS AND INTERPRETATIONS OF
THE SYMMETRY CONDITIONS

Before moving on to consider the behavior of CDM
perturbations at the FCB, we will first clarify the behavior
of particles, both massive and massless, near the FCB, as a
guide to what we might expect in the way of differences
from the radiation case. Additionally we will use these
results to briefly discuss two different interpretations of the
nature of the space “after” the FCB.

A. Geodesics at the FCB

We aim to look at the behavior of geodesics as they
approach the FCB, and in particular whether they can go
through it. We will also discuss the issue of geodesic
completeness, which is a topic of interest for cyclic cosmol-
ogies [22]. Note that as in Sec. II E we will use gauge theory
gravity [21] notation to discuss evolution of the background
quantities through the FCB. This has the advantage of access
to a space of covariant vectors, such as the particle or photon
momentumand velocity, which is not readily available inGR,
even when using a tetrad approach, and is sensitive to issues
about the sign of quantities. As before the results will be
discussed in a way such that the reader can treat the notation
schematically, rather than needing to understand detailed
definitions. In addition, in Sec. IVA 3 we give a fully “GR-
only” derivation of the important result wewill find here, that
in contrast to photons, the motion of a material particle as a
function of conformal time, “turns around” at the FCB and
heads backwards in spatial terms, rather than passing through
the FCB. Note that in this section, we will temporarily reuse
the symbol Φ for parametrizing the particle and photon
momentum vectors, which since the Newtonian potential Φ
does not appear here, should not cause any confusion.

1. Photons

We start with photons, which are the simpler case. We
parametrize the photon 4-momentum as

p ¼ ΦðλÞðet þ erÞ; ð85Þ
where λ is the affine parameter along the path, et and er are
unit vectors in the time and radial directions respectively,
and we are assuming purely radial motion. In this case
(radial motion), there is a conserved quantity, p · gr ¼ pr,
where pr is the lower indexed radial momentum (in a GR
sense) and gr ¼ h−1ðerÞ.1 This means that the quantity

E ¼ aðηÞΦ; ð86Þ

which we can interpret as the downstairs component of the
photon energy, in a GR sense, is constant. This is just a
statement about photon redshift of course, but we are being
clear here, since it is related to the similar case for massive
particles, that where the constancy comes from is the
conservation of the (GR) radial momentum component,
which E happens to equal.
The geodesic equations for a radially outgoing photon

are found to be

Φ0 ¼ −
_a
a2

Φ2 ¼ −HΦ2; η0 ¼ Φ
a
; r0 ¼ Φ

a
; ð87Þ

FIG. 20. Plot of the potentialsΦ (red) andΨ (green) for the first
valid mode (K ≈ 2.476845) in the case where the imperfect fluid
development is started at a more realistic value of conformal time.
See text for further details.

1Here h−1ðbÞ for a vector b is the “inverse adjoint” of
the function h̄ðbÞ introduced in Sec. II E.
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where the dash temporarily indicates a derivative with
respect to the affine parameter λ, and the overdot still
indicates a derivative with respect to conformal time η.
Note that

a0Φþ aΦ0 ¼ _aη0Φþ aΦ0 ¼ _a
Φ2

a
−

_a
a
Φ2 ¼ 0; ð88Þ

confirms that Eq. (86) is compatible with Eq. (87).
Since we are interested in what happens close to the

FCB, we solve these equations in the case where we
approximate H as constant, writing

H ≈H∞ ¼
ffiffiffiffi
Λ
3

r
: ð89Þ

We also temporarily take the origin of conformal time
as being at the FCB itself, so that the period before the
FCB has negative η. With these assumptions, we find the
solution

s ¼ 1=a ¼ −H∞η; ð90Þ

for the inverse scale factor in terms of η, and

Φ ¼ 1

H∞λ
; η ¼ −

1

H2
∞Eλ

; ð91Þ

for the geodesic parameters in terms of λ, where we have
used Eq. (86) to provide a constant in the solution for η.
(It is worth noting that the dimensions of all these quantities
work out provided the affine parameter λ has dimensions
L2, which is correct for a photon.)
Since s tends to 0 at the FCB, and becomes negative on

the other side, this means that λ has to tend to infinity as the
FCB is approached, and then jump to minus infinity on the
other side. This is the same behavior as for the scale factor.
Meanwhile Φ goes down through 0 and becomes negative
on the other side, obeying

Φ ¼ −H∞Eη ¼ Es: ð92Þ

In this sense we have a negative energy photon after
the FCB.
For the radial position, r, its derivative is the same as for

η, and so if we denote by r1 the value of r when the FCB is
reached, we can write

r ¼ r1 −
1

H2
∞Eλ

¼ r1 þ η: ð93Þ

Viewed in conformal time, the photon propagates smoothly
through the FCB, which as a massless particle of course it

must. This is at the same time as the affine parameter along
the photon’s path is first reaching plus infinity, then
jumping to minus infinity at the boundary.
Now the definition of geodesic completeness is that the

affine parameter should be able to take an unrestricted set of
values along the particle geodesic. We see that on this basis
the photon geodesics are complete both as they approach
the FCB and as they move away from it. This is due to the
fact that λ is able to reach all the way to plus or minus
infinity. (Note we do not consider the other ends of each
worldline, which will have restrictions on λ due to either the
big bang or a mirror version in the future, and hence not be
complete at these boundaries.)
We mentioned just now that photons after the FCB

appear to have negative energy, since the locally observed
energy for an observer moving with the cosmic fluid would
normally be taken as p · et ¼ Φ, where et is the unit length
timelike frame vector of such an observer, and we have seen
that Φ definitely changes sign after the boundary.
However, for this argument we need to understand what

happens to observers themselves, and so need to consider
the geodesic equations of massive particles, to which we
now turn.

2. Massive particles

Here we parametrize the particle 4-momentum as

p ¼ mðcoshðΦðτÞÞet þ sinhðΦðτÞÞerÞ; ð94Þ

where Φ is now the rapidity parameter along the path,
which we parametrize with particle proper time, τ, and m is
the particle mass.
We are assuming purely radial motion, and again the

downstairs radial momentum, pr ¼ p · gr, will be con-
served for this motion, meaning

P ¼ maðηÞ sinhðΦÞ; ð95Þ

will be constant.
The geodesic equations for a radially outgoing massive

particle, are found to be

Φ0 ¼ −H sinhΦ; η0 ¼ coshΦ
a

; r0 ¼ sinhΦ
a

; ð96Þ

where the dash now indicates a derivative with respect to
the proper time τ.
Taking the derivative of Eq. (95), we find

a0 sinhΦþ a coshΦΦ0

¼ _aη0 sinhΦþ a coshΦΦ0

¼ _a
coshΦ sinhΦ

a
− aH coshΦ sinhΦ ¼ 0; ð97Þ

confirming Eq. (95) is compatible with Eq. (96).
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Again, since we are interested in what happens close
to the FCB, we solve these equations in the case where
we approximate H ≈H∞. We can express the results as
follows. Writing

XðτÞ ¼ H∞

2
ðτ − τ0Þ þ coth−1ðeΦ0Þ; ð98Þ

we find

Φ ¼ ln ðcothXÞ; a ¼ P sinhð2XÞ
m

η ¼ −
m

PH∞ sinhð2XÞ ; r ¼ r1 þ
mð1 − cothð2XÞÞ

PH∞
;

ð99Þ

for the background and geodesic parameters in terms of τ.
Here we have assumed Φ > 0 and that Φ goes through
the value Φ0 at τ ¼ τ0, while r reaches r1 at the FCB,
where τ → ∞.
We note that the ordinary velocity of the particle,

v ¼ tanhΦ can be written in terms of X as

v ¼ dr
dη

¼ tanhΦ ¼ 1

coshð2XÞ ; ð100Þ

meaning that the particle is coming to a halt as it
approaches the FCB, where X → ∞. We would again
say that the geodesic is complete since the affine parameter,
the proper time τ here, extends out all the way to þ∞ in
reaching the boundary. However, since there is an expo-
nential singularity (ether positive or negative) in the various
quantities when expressed in terms of proper time, as the
FCB is approached, it is not clear what should happen
beyond it.
We therefore find a situation analogous to the radiation

perturbation evolution seen in Figs. 3 and 4, in conformal
time and cosmic time respectively. Cosmic time is of course
just the proper time of a particle at rest with respect to the
Hubble flow, which massive particles better and better
approximate as the FCB is approached. We saw earlier
from these figures that cosmic time is an unfortunate
coordinate for considering the perturbation evolution, since
it rapidly “freezes out” and ceases to give information,
whereas conformal time gives a clear picture of the whole
development. This leads us to regard conformal time as the
driving independent variable in the evolution of quantities,
and we now show that it leads to a clearer picture not just
for radiation perturbations (where this could have been
expected) but for massive particle geodesics as well.
So we now give solutions for the geodesic parameters in

terms of conformal time, rather than proper time. We obtain

Φ ¼ −sinh−1
�
PH∞η

m

�
; s ¼ −H∞η

r ¼ r1 þ
mð1 − coshΦÞ

PH∞
¼ r1 þ

m
PH∞

−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η2 þ m2

P2H2
∞

s
:

ð101Þ

In terms of this parametrization, it is quite clear that
nothing is singular at the FCB, and that as η evolves from
negative before the FCB, through zero at the FCB, to
positive afterwards, everything behaves smoothly. The
surprise, however, is that we now see that the radial
coordinate r turns around at the FCB and evolves back-
wards after it. A schematic example of this is shown in
Fig. 21. This is in contrast to the photon case, where we had
r ¼ r1 þ η, i.e. it just continued monotonically as an
outgoing photon.
We can understand why this behavior is necessary at a

simple level by looking at the contrasting parametrizations
that are necessary for the particle momentum in the photon
and massive particles cases. In Eq. (85), for a photon the
4-momentum components in the t and r directions have to
have the same signs, so if η is continuing forwards, then so
must r. On the other hand, in the massive particle case,
Eq. (94), the t component is fixed in sign (beingm coshΦ),
while the r component (m sinhΦ) changes sign as Φ goes
through zero. This is the origin of the different behavior as
the FCB is crossed.
Our final task is to use this information to work out the

appropriate parametrization in terms of proper time after
the FCB. We see from the r0 result in Eq. (96), that since
both sinhΦ and a change sign at the FCB, then r has to
continue moving forward as a function of proper time.
Meanwhile the η derivative does change sign, so after the

FIG. 21. Plot of the radial coordinate r versus conformal time
for a massive particle initially moving radially outwards. It
reaches the future conformal boundary at an r of r1 ¼ 1 and
thereafter starts moving inwards.
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FCB proper time is a decreasing function of conformal
time. This parallels the decreasing behavior of r, since if
proper time is decreasing then r will do so as well. We can
regard this if we wish as the particle backtracking on its
previous worldline, and now playing it out in reverse.
Alternatively, it may be that if we investigate the quantum
mechanical equations satisfied by the massive particle at
the boundary, what we are seeing is that it has now become
an antiparticle. This will be explored elsewhere. For the
moment we content ourselves with giving the solutions for
the particle position etc. in terms of τ once η has become
> 0. Writing XðτÞ still as in Eq. (98), we find

Φ ¼ ln ðtanhXÞ; a ¼ −
P sinhð2XÞ

m
;

η ¼ m
PH∞ sinhð2XÞ ; r ¼ r1 þ

mð1 − cothð2XÞÞ
PH∞

;

ð102Þ

for the background and geodesic parameters in terms of τ.
Here we have assumed Φ < 0 and that Φ goes through the
value −Φ0 (with Φ0 still > 0) at τ ¼ τ0, while r reaches r1
at the FCB as before. Note that as the particle moves
forward in conformal time after the FCB is reached, the
proper time drops back down from þ∞, and retraces its
values, and those of r, before the FCB. We discuss some of
these features again, in relation to the different behavior of
matter and radiation perturbations, later.

3. GR translation

For those readers who would like to see the main results
of the previous two subsections verified using standard GR,
we show here how to recover the important aspects, at least
up to issues of sign, using a metric rather than “tetrad”
approach.
Let us consider wholly radial motion so that the portion

of the FRW metric we need to consider is just

ds2 ¼ a2ðηÞðdη2 − dr2Þ; ð103Þ

and for our model of the FCB we assume that

a ¼ −
1

H∞η
; ð104Þ

as above, in Eq. (90).
Since the metric in Eq. (103) is independent of space r,

the downstairs spatial component of the 4-velocity ur is
conserved. The relativistic invariant also holds

uμuμ ¼ a2ðuη2 − ur2Þ ¼ U2; ð105Þ

where U ¼ 1 for matter and U ¼ 0 for photons. The affine
parameter/proper time τ is implicitly defined by

uη ¼ dη
dτ

; ur ¼ dr
dτ

: ð106Þ

Combining the fact that ur ¼ a2ur is a constant of
the motion with Eqs. (106)–(104) gives the differential
equations �

dη
dτ

�
2

−
�
dr
dτ

�
2

¼ H2
∞η

2U2; ð107Þ

dr
dτ

¼ urH2
∞η

2: ð108Þ

For matter (U ¼ 1), Eqs. (107) and (108) can be solved
in terms of our existing solutions from Sec. IVA 2 as

η ¼ � 1

urH∞ sinhð2XÞ ;

r − r1 −
1

urH∞
¼ −

cothð2XÞ
urH∞

⇒ η2 ¼
�
r − r1 −

1

urH∞

�
2

−
1

u2rH2
; ð109Þ

where we identify ur ¼ P=m, X is as given in Eq. (98) and
r1 is the radial coordinate of the particle when it reaches
the FCB.
Equation (109) can also be recovered by combining

Eqs. (107) and (108) to give

�
dr
dη

�
2

¼ η2

η2 þ 1
u2rH2

: ð110Þ

These results are consistent with the observations in the
previous subsections, showing that in the massive particle
case, r is a hyperbola in conformal time η.
For photons (U ¼ 0), we take τ to be the same as the λ

in Eq. (91). This means ur should be identified with the
photon energy E, and we find Eqs. (107) and (108) are
solved by

η ¼ � 1

H2
∞urτ

; and r − r1 ¼ −
1

H2
∞urτ

: ð111Þ

We see that in all cases, η is only determined up to a sign, as
we might expect in this metric-based approach, which treats
both directions in time equally.

B. Interpretation of the symmetry conditions

So far we have not been very clear about the nature of the
universe beyond the future conformal boundary. In par-
ticular we have not been clear as to whether it is some new
“aeon,” of the type discussed by Penrose, or perhaps instead
a retracing of the evolution of our actual Universe, but in a
time-reversed direction. Some support for the latter (less
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radical) viewpoint comes from the fact that it is natural to
take the relation

dη ¼ 1

a
dt; ð112Þ

to operate on both sides of the FCB, although this is not
essential, since the defining relation in the metric is the
squared one dt2 ¼ a2dη2. In this case, since a flips sign
after the FCB, and we are considering conformal time to be
marching straight through the FCB; then the proper time of
freely falling observers, t, will start going backwards from
this point. In this view, therefore, conformal time provides a
“double cover” of the universe’s evolution over the period
between the big bang and the FCB, rather than exploring
some genuinely new period beyond it. Equivalently, one
could consider the properties of the future conformal
boundary to impose reflecting boundary conditions.
This is a very different philosophical picture, but

adopting one or another picture does not change our
conclusions as regards the symmetry requirements we need
to place on the perturbations. The important point is that
since the perturbations pass through the FCB with no
apparent effects this means we have to make sure they
remain finite at all times, including in the “double cover”
region of the conformal time/cosmic time evolution. As we
have seen this then requires either symmetry or antisym-
metry at the FCB itself, and hence leads to the requirements
on K we have been discussing.
This picture potentially changes a bit when one considers

perturbations in a matter dominated universe, which we
turn to next. This is because, as we will see, in some
circumstances it is possible to discuss a genuinely different
time evolution history beyond the FCB than before it in this
case. However, this hinges on questions about the positivity
of the matter energy density, and in the simplest version
of this, for which we work out the results in detail, the
background time evolution after the FCB is the time reverse
of that before, and so a simple picture in terms of a “double
cover,” as just described, is sufficient.

V. SOME RESULTS FOR CDM PERTURBATIONS

We assume a simple pressureless fluid, and repeat the
analysis for this. Our first job is to find the analytic solution
for the background equations. We substitute

ρ ¼ 3Cs3

8πG
; ð113Þ

in the Einstein equations this time, and put C ¼ Λ=3 so that
a ¼ 1 at matter/vacuum energy density equality (although
this presumably does not happen halfway through the
conformal time development this time). We also have a
time unit choice corresponding to Λ ¼ 1. These choices
yield the equations

3_s2 ¼ 1þ s3; and 3_s2 − 2s̈s ¼ 1: ð114Þ

Again one can verify that the derivative for the first
equation is compatible with the second. The difference
of the two yields the simple equation

̈s ¼ 1

2
s2: ð115Þ

We can solve these equations via a Weierstrass elliptic
function as follows:

s ¼ 12℘

�
η; 0;−

1

432

�
; ð116Þ

where in the notation ℘ðz; g1; g2Þ, g1 and g2 are the
invariants being used, and we have chosen a possible
offset in η so that the double pole of the Weierstrass elliptic
function occurs at the big bang.
The Φ equation in conformal time for this case is

Φ̈þ 3aH _Φþ Λa2Φ ¼ 0: ð117Þ

We note that unlike the equivalent equation in the
radiation case, Eq. (3), there is no dependence on k, which
is due to the lack of pressure support for this type of
matter. The analogue of Eq. (2) which gives V and δ in
terms of Φ, is

V ¼ 2kðaHΦþ _ΦÞ
a2ð3H2 − ΛÞ ;

δ ¼ −
2ð3H2a2Φþ 3 _ΦaH þ k2ΦÞ

a2ð3H2 − ΛÞ : ð118Þ

In particular we see that the δ equation is identical to the
radiation case.
Some plots of these quantities in an example case are

given in Figs. 22–24. The normalization of these is based
on Φ starting with a value of 1. (Of course the starting Φ
would in general be much smaller, and hence e.g. the
density perturbation would have values much less than 1 in
practice.)
Now the essential thing we want to understand is what

happens to these perturbations as the FCB is approached,
and in particular whether the perturbations can “go
through” the FCB in a similar way to the radiation
perturbations (which as we saw above, pass through
without noticing it). We note that in our current treatment,
we are only working with one type of cosmic fluid at a
time, and hence the question we are posing is not really the
full story—one would need to be considering a universe
with both radiation and CDM simultaneously, and with
perturbations present in each, to get something which we
can map onto our current universe. However, the simplified
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treatment here at least provides a start and may reveal
problems that would still be present in a full treatment.
The first aspect to consider in relation to the behavior at

the FCB, is what happens to the evolution of the back-
ground a itself. We have given an analytic solution above
for s ¼ 1=a, in Eq. (116). A plot of this function versus
conformal time is given in Fig. 25. The plot may look
surprising, but we have plotted it for a full range of
conformal time η. The future conformal boundary is where
s first becomes 0, around η ≈ 4.8 (we will give an exact
value of this shortly), and then s continues becoming more
negative until it flattens off around η ≈ 7.3, then heads back
towards 0, becoming positive again around η ≈ 9.7 and then
heads towards þ∞ in what looks like a “big crunch.”
Perhaps the most surprising thing is that the solution is not
symmetric about the point where it first becomes 0, but

about a midpoint where there is a “bounce,” at which jaj ¼
1=jsj reaches a (local) minimum.
We put modulus signs when describing s and a in this

region, since of course they are negative. This raises a
problem with the interpretation of this solution that was not
present for the radiation case. If we look at Eq. (113) for ρ,
we see that since ρ is proportional to s3, then it switches
sign according to the sign of s, and ifC stays positive then ρ
is negative when s is. On the other hand, in the radiation
case, ρ is a fixed constant times s4, and the latter does not
change sign as s goes through 0, meaning that ρ stays
positive after the FCB is reached.
The interpretation of a negative ρ is unclear. A possible

solution comes from scale-invariant gravity theory, where a
so-called “compensator field” ϕ is introduced in the Dirac
Lagrangian to give the mass term the correct weight to be

FIG. 22. Plot of Newtonian potential Φ as a function of
conformal time for normalized wave number K ¼ 10 for
CDM fluctuations.

FIG. 23. Plot of velocity perturbation V as a function of
conformal time for normalized wave number K ¼ 10 for
CDM fluctuations.

FIG. 24. Plot of density perturbation δ as a function of
conformal time for normalized wave number K ¼ 10 for
CDM fluctuations.

FIG. 25. Plot of the inverse scale factor s ¼ 1=a for a flat-Λ
universe with cold dark matter, showing the analytic solution
given in Eq. (116).
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used in the theory. This was first introduced by Dirac
himself [23] and was discussed further in Ref. [24] in the
context of extended Weyl gauge theory (eWGT). A
solution within eWGT leading to a standard flat-Λ cosmol-
ogy is possible, in which the ϕ field goes to 0 at the FCB
and becomes negative afterwards. This means the effective
“energy density” due to matter remains non-negative
despite s being negative. This idea is beyond the remit
of the present paper, which uses only standard general
relativity, so for the present we look at two possible
approaches to the ρ problem which can be implemented
just in a GR context.
First we can assume that something else, perhaps a

reinterpretation of what a negative scale factor itself means,
comes in to mean that a negative ρ is not a problem for us,
so that here we just extend analytically through the FCB,
making no attempt to prevent ρ < 0 from occurring.2

The second approach will be to take active steps to force
ρ to be positive after the FCB. Two obvious ways, which
are equivalent in terms of their effect in the equations, are to
(i) switch the sign of the constant C in Eq. (113) after the
FCB or (ii), to change this equation instead to

ρ ¼ 3Cjsj3
8πG

ð119Þ

while maintaining C positive throughout. One can consider
this as the second branch of the conservation of the stress-
energy equation for matter dρ=ρ ¼ −3da=a, which has
both Eqs. (113) and (119) as solutions.
Conceptually, we will implement this by seeking to join

as best we can the time development of the background,
and other quantities, before the FCB using a positive C,
with time developments after the FCB corresponding to a
negativeC. We say “as best we can” since as wewill shortly
see it is not possible to carry this out while preserving
continuity of all derivatives, or indeed, in the cases of Φ
and δ, any derivatives. We take the continuity of the
functions themselves as being the overriding aim, however,
and will see that at least we can achieve this.
For the other approach mentioned above, where we do

not seek to prevent ρ from becoming negative, the essence
of what we do will be to preserve analyticity throughout,
for all quantities, and to rely on this to discover how they in
fact develop. It is in this spirit that Fig. 25 has been plotted.
This is for a single branch of the Weierstrass elliptic
function and is completely analytic except at the two ends,
which correspond to the big bang and the big crunch. We
thus now seek to find analytic solutions for the Newtonian
potential Φ, and thence V and δ, which cover this same

region, and then after this we will look at the other case,
where C is chosen to change sign to ensure the density
remains positive.

A. Analytic results for the CDM perturbations

We can seek to solve Eq. (117) for Φ in conformal time
by substituting for a ¼ 1=s using s from Eq. (116) and for
H using the useful and simple relation

H ¼ −
ds
dη

: ð120Þ

This yields the following solution for Φ, where we have
adjusted constants so thatΦ comes out of the big bang with
a value of 1, as previously:

ΦðηÞ ¼ −1440
�
2℘2

�
η;0;−

1

432

�

þ℘0
�
η;0;−

1

432

�
ζ

�
η;0;−

1

432

��
℘

�
η;0;−

1

432

�
:

ð121Þ

Here ζ denotes the Weierstrass zeta elliptic function, whose
derivative is −℘.
The resulting Φ plotted for the full range in conformal

time is shown in Fig. 26. We can see that Φ is not
symmetric about the midpoint at η ≈ 7.25 in this approach,
and veers off towards being singular at the “big crunch.”
In fact there is good reason to believe, that the real limit

in conformal time for this system is not at a big crunch, but
before this at the second crossing of zero by s, at η ≈ 9.7. In
the eWGT setup with a compensator field ϕ mentioned
above, this is the point where the combination of ϕ and ρ
finally becomes negative, meaning we would have genuine

FIG. 26. Plot of the Newtonian potential Φ for CDM fluctua-
tions over the full range of conformal time η showing the analytic
solution given in Eq. (121).

2Within this approach we might take comfort in the fact that we
eventually reemerge into a universe with positive ρ and a, which
seems easy to interpret, before heading for a big crunch, but we
will see below that it is this latter period where in fact the
problems lie, and which a full eWGT treatment might remove.
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negative energy density beyond this point. Furthermore, it
turns out to be the point of infinite redshift compared to the
universe today. Hence for both these reasons, it is probably
the limit to which η should be taken, and we see that Φ
tends to 0 there, rather than becoming singular. Since there
are no changes we can make to the wave number k to affect
Φ, this is fortunate. If we accept this interpretation, despite
Φ becoming singular if we did indeed go further to the right
in η, in fact this does not set any constraint on acceptable
values of k or the general admissibility of CDM fluctuation
modes if we limit the physical range to before the point at
which a becomes positive again.
We now consider the equivalent plots for δ and V, which

are shown in Figs. 27 and 28. All of s, Φ and V go to 0 at
the same point around η ¼ 9.7, while δ appears visually to
have zero gradient near here, but more a detailed inves-
tigation shows that the point where locally _δ goes to zero
only coincides with the other zeros in the high frequency

limit, i.e. k → ∞. We can see why this occurs via looking at
a general constraint on CDM fluctuations which we can
derive by combining the derivative of the expression for δ
given in Eq. (118) with Eq. (117) for the second derivative
of Φ. This yields

_δ − 3 _Φþ kV ¼ 0: ð122Þ

Both δ and V get larger (in absolute terms) as k gets larger,
with V including terms proportional to k and δ terms
proportional to k2, while Φ remains fixed. Thus in the
high frequency limit we can ignore the _Φ term in Eq. (122),
and therefore indeed find that _δ and V go to zero at the
same point.

B. Results for the approach where density
is kept positive

We now consider results for the other approach men-
tioned above, where a positive density is maintained
beyond the FCB via forcibly taking the modulus of the
rhs of Eq. (113) when s is negative, which is equivalent to
flipping the sign of C there.
We will aim to do this while maintaining continuity in as

many derivatives as possible in the functions we are dealing
with. The first function to consider is s itself. With C
flipped to −Λ=3, the equations it previously had to satisfy,
Eq. (114), are replaced by

3_s2 ¼ 1 − s3; and 3_s2 − 2s̈s;¼ 1 ð123Þ

i.e. just the first order equation changes. Fairly naturally,
minus the previous solution from Eq. (116) satisfies this,
i.e. we could try

s ¼ −12℘
�
η; 0;−

1

432

�
: ð124Þ

However, as one can see from Fig. 25, switching to
this solution at the first zero crossing of s will lead to
a jump in the first derivative of s. This is in fact not
compatible with ρ being continuous as we can see by
writing out the Einstein equations for the CDM case
explicitly. These are

3_s2 − 8πGρ − Λ ¼ 0;

3_s2 − 2s̈s − Λ ¼ 0: ð125Þ

The first of these tells us that if ρ is continuous, then _smust
be as well, and the second then tells us that if this is so then
̈s in fact has to be continuous as well, i.e. going down the
list of derivatives the first that can be discontinuous is the
third one.
Examining Fig. 25, then suggests that since η does not

appear explicitly in the equations, we could use the

FIG. 27. Plot of velocity potential V over the full range of
conformal time η, for CDM fluctuations with normalized wave
number K ¼ 10, as derived from Eqs. (118) and (121).

FIG. 28. Same as for Fig. 27 but for density perturbations δ.
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negative of the s curve shown there for what happens after
the FCB, but using the part starting after the second zero
crossing, not the first (the FCB corresponds to the first
crossing of course). This will be compatible with the
Einstein equations in terms of jump conditions provided
the derivatives match at the FCB up to at least the second
derivative.
So we must now examine if this is the case. To do this we

need an explicit expression for where the FCB occurs in η
as well as expressions for the derivatives of the solutions
(116) and (124) at the appropriate positions.
The relevant η where the first zero crossing occurs is

η0 ¼
4π222=3

ffiffiffi
3

p

9Γ3ð2
3
Þ ≈ 4.8573; ð126Þ

and we can understand the derivatives of the two functions
at the FCB by shifting to a new conformal time coordinate

Δη ¼ η − η0; ð127Þ

and expressing the functions in terms of this. This leads to
the following explicit forms:

s1 ¼
ffiffiffi
3

p

216

ð ffiffiffi
3

p þ 36℘0ðΔη; 0;− 1
432

ÞÞ
℘2ðΔη; 0;− 1

432
Þ ;

s2 ¼ −
ffiffiffi
3

p

216

ð ffiffiffi
3

p
− 36℘0ðΔη; 0;− 1

432
ÞÞ

℘2ðΔη; 0;− 1
432

Þ ; ð128Þ

where s1 applies for Δη < 0, i.e. before the FCB, and s2
applies for Δη > 0, i.e. after the FCB.
We can check what we need to about the derivatives at

the FCB by carrying out power series expansions at
Δη ¼ 0. This yields

s1 ≈ −1=3
ffiffiffi
3

p
Δηþ 1

72
Δη4 −

1

9072

ffiffiffi
3

p
Δη7 þ 1

435456
Δη10;

s2 ≈ −1=3
ffiffiffi
3

p
Δη −

1

72
Δη4 −

1

9072

ffiffiffi
3

p
Δη7 −

1

435456
Δη10:

ð129Þ

We can see that our requirement is satisfied, since the first
disagreement is at the Δη4 term, meaning that first and
second derivatives will match.
Our plot for s under these assumptions, is thus as given

in Fig. 29. It is interesting how the development after the
FCB is very different from that shown in Fig. 25 (which is
for the case where we allow ρ to become negative), despite
the fact the derivatives agree up to order three at the FCB.
Having decided how to continue s, we now consider Φ,

V and δ. The important point will be their power series
about η ¼ η0 and how well they match each side. We start

with Φ, since δ and V can continue to be derived from this,
using Eq. (118).
We could find the appropriate Φ for η < η0 if we could

shift the point of evaluation of each of the different types of
Weierstrass functions in Eq. (121) through an amount η0.
(This works since the only dependence on η is through
these functions.) We can do this using the addition
theorems for Weierstrass functions as given e.g. on page
635 of Ref. [25]. For example for the Weierstrass function
℘ we have

℘ðz1þz2Þ¼
1

4

�
℘0ðz1Þ−℘0ðz2Þ
℘ðz1Þ−℘ðz2Þ

�
2

−℘ðz1Þ−℘ðz2Þ: ð130Þ

Using z1 ¼ η and z2 ¼ η0, and provided we know the
values of ℘ and ℘0 at η0, then we can transfer the evaluation
point so that η becomes the Δη ¼ η − η0 defined above.
This is in fact how we achieved the expression for s1 given
in Eq. (128). In the current case, forΦ, we need to apply the
equivalent process to ℘0ðη; 0;− 1

432
Þ and ζðη; 0;− 1

432
Þ as

well. This requires knowing ζ at η0 as well as ℘ and ℘0
there. Fortunately, since η0 corresponds to a third of the
total period of these elliptic functions, together with the fact
that we can bring our particular problem into what is called
“equianharmonic” form (see page 652 of Ref. [25]) we are
able to use the one-third period relations (page 634 of
Ref. [25]) and the results for ζ at half periods in the
equianharmonic case (page 653 of Ref. [25]) to deduce the
value of ζ at η0 which is

ζ

�
η0; 0;−

1

432

�
¼ 2π

3
ffiffiffi
3

p 1

η0
; ð131Þ

with η0 being given as in Eq. (126).

FIG. 29. Plot of inverse scale factor s ¼ 1=a versus conformal
time measured from the FCB, using the functions defined in
Eq. (128).
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Inserting the shifted functions into Eq. (121) then gives
us the new Φ we require. This is quite complicated, so
we do not give the explicit expression here. However, the
important aspect is the power series at η0, for which we find

ΦðΔη < 0Þ ¼ −
5

6

ffiffiffi
23

p
Γð2

3
Þ3

π
Δηþ 5

ffiffiffi
3

p

36
Δη3

þ 25

432

ffiffiffi
23

p
Γð2

3
Þ3 ffiffiffi

3
p

π
Δη4 þ… ð132Þ

We now need to considerΦ for Δη > 0. For this we need
to use Eq. (117) with the aðηÞ and HðηÞ corresponding to
the chosen s solution after η0, i.e. the s2 of Eq. (128).
Furthermore, to give us the best set of opportunities in
carrying out matching for Φ (and the derived δ and V) we
should use the most general possible solution of Eq. (117)
in this region. (We did not need to do this for the Φ to the
left of η0, since a particular solution with no free constants
was picked out by the requirement that Φ → 1 as the big
bang is approached.)
The needed general solution can be found as follows.

First, we note that the general solution for which Eq. (121)
corresponds to a particular choice of constants, is

ΦgenðηÞ ¼ c1℘℘0 þ c2
9
ð2℘2 þ ℘0ζÞ℘; ð133Þ

in an abbreviated notation where we have omitted the
ðη; 0;− 1

432
Þ on each function, and where c1 and c2 are

constants.
We then use the method just discussed to translate this

function through η0, so that it becomes a function of Δη.
Finally, we need to make it work for the s2 form of s we are
using beyond η0. By examining the form of the funda-
mental equation for Φ, Eq. (117), and by noting that in
Eq. (128) we can obtain s2 from s1, via

s2ðΔηÞ ¼ −s1ð−ΔηÞ; ð134Þ

we can show that the general Φ solution after η0 can be
found from the general solution before η0 by flipping the
sign of Δη within each Weierstrass function. As with
ΦðΔη < 0Þ the translation leads to quite a complicated
function, so we just give here the result for the power series
at η0, which is

ΦgenðΔη > 0Þ ¼ −
1

15552

c2
ffiffiffi
23

p
Γð2

3
Þ3 þ 36c1π

π
Δη

þ c2
ffiffiffi
3

p

93312
Δη3

−
5

1119744

ðc2
ffiffiffi
23

p
Γð2

3
Þ3 þ 36c1πÞ

ffiffiffi
3

p

π
Δη4

þ… ð135Þ

Now comparing with Eq. (132) it may seem obvious that
we should match by taking c1 ¼ 0 and c2 ¼ 12960, since
then Eq. (135) becomes

ΦðΔη > 0Þ ¼ −
5

6

ffiffiffi
23

p
Γð2

3
Þ3

π
Δηþ 5

ffiffiffi
3

p

36
Δη3

−
25

432

ffiffiffi
23

p
Γð2

3
Þ3 ffiffiffi

3
p

π
Δη4 þ 11

864
Δη6 þ…

ð136Þ

and we have successfully matched up to third order.
However, this ignores what happens with δ, which we will
shortly show would be discontinuous with this choice of
constants, and in fact what we need here is c1 ¼ 0 and
c2 ¼ −12960, leading to

ΦðΔη > 0Þ ¼ 5

6

ffiffiffi
23

p
Γð2

3
Þ3

π
Δη −

5
ffiffiffi
3

p

36
Δη3

þ 25

432

ffiffiffi
23

p
Γð2

3
Þ3 ffiffiffi

3
p

π
Δη4 þ… ð137Þ

This means that whileΦ is continuous at η0, with a value of
0, even the first derivatives do not match there.
So we now need to look at δ and V to understand the

necessity of the conclusion we have just reached. We can
form these directly from Φ using Eq. (118), noting of
course that we need to use the appropriate a and H in the
different regimes. This leads to large expressions, but again
the important things for us currently are the power series
either side of η0. We obtain

δðΔη < 0Þ ¼ −
15π þ 5

ffiffiffi
23
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and

δðΔη > 0Þ

¼ ð36πk2c1 þ c2
ffiffiffi
23
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while for V we get

VðΔη < 0Þ ¼ −5=3kΔη − 5=6
k

ffiffiffi
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and

VðΔη> 0Þ

¼ kc2Δη
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Now it is not obvious a priori that we have to require δ to
be continuous at η0, since the actual density perturbation is
δ × ρ, and of course ρ tends to 0 like s3 (which is ∝ Δη3), at
η0. However, we need to bring in Eq. (122) which links the
derivatives of δ and Φ with V. We have not shown it here,
but in fact this relation is the time component of the
conservation relation for the fluid stress-energy tensor, and
therefore has to be strictly obeyed. Suppose that δ was
discontinuous at η0. We know from the above series that Φ
and V are continuous there, since both have the value 0.
Hence Eq. (122) would contain an unbalanced Dirac δ
function from the derivative of (the density perturbation) δ.
We thus know δ must be continuous.
Since V is continuous, jumps in the derivatives of δ and

Φ must balance in this equation. This is automatic given
our setup, however, since V is 0 at η0. In particular it can be
verified that

_δjΔη¼0þ − _δjΔη¼0−
¼ 3ð _ΦjΔη¼0þ − _ΦjΔη¼0−

Þ; ð142Þ

for all values of c1 and c2.
However, we can get an extra condition from the

following observation. As we have seen, the Newtonian
potential is independent of wave number k, and we would
certainly expect that this independence should persist after
η0. In fact it is easy to show that the only values of c1 and c2
compatible with both this requirement and δ being con-
tinuous, are c1 ¼ 0 and c2 ¼ −12960, as anticipated above.
This also has the benefit of making the first derivative of V
match as well.
It may be worrying that this choice results in the first

derivative of Φ not matching, but as we have seen the
important thing is that jumps in this and the δ first
derivative must cancel, and this is automatic. Moreover,
the actual metric perturbation, at linear order, is not Φ

but sΦ, and the first derivative of this will match by virtue
of being 0 on both sides.
We thus declare that we have found the unique continu-

ation of all three quantities past η0, compatible with stress-
energy tensor conservation and the requirement that the
matching for Φ is not dependent on k. Plots of what these
extended functions look like are shown in Figs. 30–32.
We can see that what we have achieved here is a time
symmetric (or in the case of V time antisymmetric),
continuation of the three quantities, in which the develop-
ment from the big bang to the FCB is recapitulated in
reverse. In retrospect this is a fairly obvious outcome, given
that we have treated the reciprocal scale factor s in the same
way, but it has been interesting to see how we have been
forced to this conclusion by the logic of what needs to
happen at the matching point, rather than by desiring that

FIG. 30. Plot of the Newtonian potential Φ for CDM fluctua-
tions corresponding to the extension of the reciprocal scale factor
s through the FCB as shown in Fig. 29.

FIG. 31. Plot of velocity potential V for K ¼ 10 corresponding
to the extension of the reciprocal scale factor s through the FCB
as shown in Fig. 29.
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the functions should return to nonsingular values over
their whole ranges after the FCB. This means we can be
confident that no new boundary conditions are set by the
FCB on CDM fluctuations—just the boundary conditions
set at the big bang, plus the requirements of stress-energy
tensor conservation and the lack of k dependence ofΦ after
the FCB, are enough to guarantee the reverse time develop-
ment found here.
Also, we have demonstrated that the method we have

used for extending s beyond the FCB in the case where we
want to maintain the density as positive, is compatible with
the boundary conditions set by the background Einstein
equations, which is a useful check. Of course, the fully
analytic extension carried out in the first parts of Sec. Vand
based upon the extension for s shown in Fig. 25, looks
more mathematically natural, and has no discontinuities for
any of the quantities, at any order of derivative. However, in
order for the matter density to still be counted as corre-
sponding to positive energy density we would probably
need to introduce the compensator scalar field ϕ discussed
briefly above. We believe this works, but requires the

underlying gravitational theory to be extended beyond
standard GR. This will be discussed in future work.

VI. CONCLUSIONS

The ultimate fate of the Universe suggested in this paper
is of a profoundly different quality to conclusions that have
been proposed historically. Rather than a “big freeze” [26],
“big rip” [27], “big crunch” [28], “big bounce” [29] or
conformal cycling [11], the equations of our current
concordance model show that our Universe palindromes
after infinite cosmic (but finite conformal) time. This new
approach has, or can incorporate, elements of all of the
above, and the double cover or reflecting boundary con-
dition interpretations have an analogous quality to the
Hartle-Hawking proposal for the start of the Universe [30],
where there is no initial boundary.
The next step in researching these cosmologies is to go

beyond the analytic examples presented here, and to
numerically synthesize the analysis presented in Secs. III
and V into a cosmology that more accurately corresponds to
the Universe we see today. This can then be compared
against modern observational data from the cosmic micro-
wave background [2] or supernovae [31]. An analysis in
this regard can be found in our follow-up paper [15]. Given
such a profound modification to the underlying cosmology,
cosmologies such as these may have implications for the
tensions between measurements of cosmological parame-
ters at early and late times, such as those discussed in
Ref. [32], and for which the Hubble constant is an example
of great current interest.
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