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Equations of motion of null cosmic strings near black holes, or other massive sources, are solved exactly
in the weak-field approximation. The stress-energy tensor of a null string in a curved spacetime is
introduced and used to show how scattering by black holes transforms linear and angular momenta of the
string. The corresponding recoil effect of a black hole and change of its angular momentum caused by a null
cosmic string are calculated. For a null string, its energy μ per unit length evolves along the null direction of
the string trajectory. The evolution of μ is connected with a string optical scalar Z. Optical properties of null
strings are that their energy is concentrated on caustics, where Z has poles. String parameters μ and Z
capture important features of the spacetime where strings move. Explicit dependence of μ and Z on the
strain and Bondi news tensors of gravitational wave background, mass and angular momentum aspects are
established, near the future-null infinity, up to the fourth order in expansion in an inverse null parameter in
asymptotically flat spacetimes.
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I. INTRODUCTION

Null strings are one-dimensional objects whose points
move along trajectories of light rays, orthogonally to
strings [1]. Null cosmic strings, if exist, generate a number
of physical effects in the surrounding matter [2,3], such as
mutual transformations of trajectories of massive bodies or
light rays,when the stringmoves in between two trajectories,
perturbations of the velocities of bodies resulting in over-
densities of matter, as well as shifts of energies of photons
and additional anisotropyof cosmicmicrowave background.
We mention equivalent names of null cosmic strings

which reflect their various properties: tensionless strings
(since they can be viewed as tensionless limit of tensile
cosmic strings [4,5]) or massless strings (since they have
zero rest mass per unit length). Note that physical effects of
null strings are determined by a backreaction of spacetime
geometry caused by nonzero energy of strings. Like tensile
strings null cosmic strings create holonomies of spacetime.
The holonomies are null rotations which belong to a
parabolic subgroup of the Lorentz group [2]. The group
parameter of the holonomies is determined by the energy of
the strings per unit length. We denote this energy by μ.
From the point of view of observable effects, a distinc-

tive feature of null cosmic strings is in their optical
properties. Indeed, the null strings are analogous to null
geodesic congruences which play an important role in
general relativity, see, e.g., [6]. This analogy has been
explored recently in [7]. The trajectories (world sheets) of

null strings possess two unique physical parameters:
θ, which measures the rate of expansion (contraction) of
a small segment of the string along the null direction of the
trajectory, and κ, which yields the rate of rotation of this
segment in an orthogonal 2-plane. The complex spin
coefficient Z ¼ θ þ iκ, called the string scalar, satisfies
[7] the following analog of Sachs’ optical equations:

∂λZ þ Z2 ¼ −Ψ0 −Φ00; ð1:1Þ
where λ is an affine null parameter on the string trajectory,
Ψ0, Φ00 are invariants constructed from components of
the Weyl and Ricci tensors, respectively. As is shown in
Sec. II B, evolution of μ is connected with (1.1):

∂λμþ θμ ¼ 0: ð1:2Þ
Equation (1.2) is another key feature of null cosmic strings.
It indicates, in particular, that energy of a null string can be
concentrated on certain domains of its world sheet, in
particular, on caustics, lightlike curves which trajectories of
string segments are tangent to.
The aim of the present paper is to further study “optical”

properties of null strings which may be important for their
experimental search. The first part of the paper is devoted
to the energy of strings and their interaction with black
holes, or other massive rotating sources, in the weak-field
approximation. A similar analysis for tensile cosmic strings
has been done in a number of publications, see, e.g., [8–
10]. In the second part we consider the evolution of string
parameters Z, μ in asymptotically flat spacetimes, along the
lines of [7], to understand better effects caused on strings by*davydov@theor.jinr.ru
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the spacetime content (matter distribution and gravitational
wave background).
The paper is organized as follows. We start in Sec. II

with a brief introduction to dynamics of null strings, then
suggest a definition of the stress-energy tensor (SET) of a
null string in an arbitrary gravitational background. SET is
a distribution with a support on the string world sheet.
Since the world sheet of a null string is degenerate, the
action of the string cannot be defined, say, in the Nambu-
Goto form which is used for tensile strings. Therefore, SET
cannot be derived from the action. Our definition of SET in
Sec. II B satisfies the covariant conservation law, which
implies important relation (1.2), and reduces to known SET
for a straight null string in Minkowsky spacetime [2]. Like
light rays in optics, string trajectories may have caustics,
where energy is concentrated. The behavior of Z and μ near
a caustic is discussed in Sec. II C. Based on SET, Sec. II D
introduces asymptotic Noether charges of a null string at
past, I−, and future, Iþ, null infinities.
Scattering of null strings on black holes is considered

in Sec. III. Explicit equations of string trajectories are
obtained in the weak-field approximation in Sec. III B, and
for rotating sources in Sec. III C. The scattering changes
linear momenta of string segments at Iþ with respect to I−.
Rotation of the source also generates variation of the
angular momentum of the string. By conservation laws,
these results imply that the black hole itself changes its
velocity and direction of the spin in the gravitational field of
the string. For a straight null string these effects are fairly
universal: they depend only on the parameter μG (where G
is the Newton coupling). As is shown in Sec. III D the
effects are due to the spacetime holonomy and are in
precise agreement with results of [2]. Section III E provides
the relation between optical parameters θin, κin at I− and
θout, κout at Iþ. The string evolution in the complex Z plane
is predictable during the scattering.
Our results show that Z and μ are sensitive to spacetime

content. In Sec. IV we derive asymptotic form of Zðλ; τÞ for
null strings in asymptotically flat spacetimes at large λ
(when Iþ is approached). We use the Bondi-Sachs for-
malism and optical equation (1.1) to find coefficients
in expansion of Zðλ; τÞ and string energy μðλ; τÞ up to
terms λ−4. The mass aspect, the angular momentum aspects
of the spacetime, as well as features of background
gravitational radiation are encoded in Z, μ and can be
recovered from physical effects produced by null strings.
These results extend the analysis of [7]. Short discussion of
our results can be found in Sec. V.

II. STESS-ENERGY TENSOR OF NULL STRINGS

A. Key elements of null string dynamics

A trajectory of a null string in a spacetime M with
coordinates xμ is defined as xμ ¼ xμðλ; τÞ, where λ and τ are
real parameters. The trajectory is fixed by equations [1]:

ðl · lÞ ¼ 0; ðη · ηÞ > 0; ð2:1Þ

ðl · ηÞ ¼ 0; ð2:2Þ

∇ll ¼ βl; ð2:3Þ

where lμ ≡ xμ;λ and ημ ≡ xμ;τ are the tangent vectors,
notation ðu · vÞ stands for the scalar product of vectors
u, v in the tangent space of M. λ is an affine parameter if
β ¼ 0. We assume that velocity of the string l is future
directed. η is called the connecting vector.
Since any point of the string moves as a light ray,

trajectories of null strings can be considered as a one-
dimensional analog of null geodesic congruences (NGC).
Although one cannot create a one-dimensional stringlike
congruence of light rays, the cross section of such NGC
cannot be constant as a result of expansion or contraction in
the gravitational field.
To define the string scalars θ, κ one sets at each point of

the string trajectory a tetrade l, n, p, q. Here p ¼ η=jηj,
jηj2 ¼ ðη · ηÞ, n is null, orthogonal to p and normalized as
ðn · lÞ ¼ −2, vector q is spacelike, unit, and orthogonal to
l, n, p. Condition jηj ≠ 0 is assumed.
The parameters θ and κ are introduced as the following

spin coefficients [7]:

θ ¼ ðp ·∇plÞ; κ ¼ ðq · ∇plÞ: ð2:4Þ

(Relation to notations of [7] is θ ¼ θs, κ ¼ κ2). Spin
coefficients (2.4) are invariant with respect to null rotations
of the tetrade:

l0 ¼ l; p0 ¼p; n¼n0 þ2ωq0 þω2l0; q¼q0 þωl0: ð2:5Þ

Rotations (2.5) and reparametrizations of λ, τ,

λ0 ¼ gðλ; τÞ; τ0 ¼ ϕðτÞ; ð2:6Þ

make a 2-parameter group of l-preserving null rotations of
n, p, q, accompanied with rescalings of l and n; see [7].
Parameters θ and κ transform as boost-weighted scalars,
Q ¼ ðg;λÞbQ0, with boost weight b ¼ 1.
We also use a pair of null complex vectors:

m ¼ 1ffiffiffi
2

p ðpþ iqÞ; m̄ ¼ 1ffiffiffi
2

p ðp − iqÞ: ð2:7Þ

Invariants in optical equation (1.1) are

Ψ0 ¼ −Cmlml; Φ00 ¼ −
1

2
Rll; ð2:8Þ

where Cabcd and Rab are components, respectively, of the
Weyl tensor Ricci tensor in the given basis; see [11,12].
Definitions (2.8) are introduced on the string trajectory.
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B. Stress-energy tensor and energy conservation

We start with the case of a straight string in Minkowsky
spacetime. If the string is parallel to the z axis and moves
along the x axis its stress-energy tensor is

TμνðxÞ ¼ μδðyÞδðuÞlμlν; ð2:9Þ

where u ¼ t − x, lμ∂μ ¼ ∂t þ ∂x. The parameter μ is the
energy of the string per unit length. Stress-tensor (2.9)
was found in [2] by applying the Aichelburg-Sexl boost
[13] to the stress-energy tensor of a straight massive
(tensile) cosmic string. The same boost applied to the
Riemann tensor results in a nontrivial component Ruyuy ¼
ωδðyÞδðuÞ, where ω ¼ 8πGμ. The null string leaves the
spacetime locally flat but creates a nontrivial holonomy at
the string world sheet: A parallel transport of a vector
around a point of the string trajectory results in a null
rotation defined by (2.5) with ω ¼ 8πGμ.
As it is easy to see, definition (2.9) implies a standard

covariant conservation law:

∇μTμνðxÞ ¼ 0; ð2:10Þ

for a constant parameter μ, or, in general, if

∂lμju¼y¼0 ¼ 0: ð2:11Þ

The last condition allows μ to vary along the string,
μ ¼ μðzÞ. Such a string creates a locally flat spacetime with
a nonconstant holonomy, where ω ¼ ωðzÞ ¼ 8πGμðzÞ.
Consider now a null string in an arbitrary spacetime M

with the trajectory xμ ¼ x̄μðλ; τÞ. A natural generalization
of (2.9) is the following stress-energy tensor of the string:

TμνðxÞ ¼
Z

dλdτ μ̄ðλ; τÞδ4ðx; x̄Þlμðx̄Þlνðx̄Þ; ð2:12Þ

where μ̄ðλ; τÞ is some density, δ4ðx; x̄Þ ¼ δ4ðx − x̄Þ= ffiffiffiffiffiffi−gp
is

an invariant delta function with the support on the string
trajectory, lμðx̄Þ ¼ dx̄μ=dλ. Note that μ̄ðλ; τÞ transforms as

μ̄ðλ; τÞ ¼ ϕ;τg−1;λ μ̄
0ðλ0; τ0Þ ð2:13Þ

under reparametrizations (2.6). After some algebra one
can check that covariant conservation law (2.10) holds for
SET (2.12) under the condition

∂λμ̄þ βμ̄ ¼ 0; ð2:14Þ

where β is defined in (2.3). In what follows we assume that
λ is affine parameter. In this case μ̄ does not depend on λ.
It is instructive to see how definition (2.12) reduces to

(2.9) in case of straight string in Minkowsky spacetime.
String trajectory is given by equations: t ¼ λ, x ¼ λ, z ¼ τ,

y ¼ 0. Integration over λ in (2.12) yields δðuÞ; integration
over τ results in (2.9) with μ ¼ μ̄ðzÞ.
One expects a null string creates a local holonomy around

each point xμ¼ x̄μðλ;τÞ with a parameter ω¼ωðλ;τÞ. By
using example of a straight string in Minkowsky spacetime,
the physical energy of the string μ ¼ μðλ; τÞ can be
introduced as a parameter which determines the local
holonomy by relation ωðλ; τÞ ¼ 8πGμðλ; τÞ. To understand
connection between μ̄ and μ we need to bring SET (2.12),
at a chosen point xμ� ¼ x̄μðλ�; τ�Þ, to “flat form” (2.9). This
can be done in local coordinates, where gμνðx�Þ ¼ ημν,
Γρ
μνðx�Þ ¼ 0, x� ¼ 0, and string equations (2.1)–(2.3) have

a simple solution near x�,

t≃λ−λ�; x≃λ−λ�; y¼0; z≃z;τðτ�Þðτ−τ�Þ: ð2:15Þ

Then TμνðxÞ near x� takes form (2.9) with the physical
energy

μðλ; τÞ ¼ μ̄ðτÞjηðλ; τÞj−1; ð2:16Þ

where factor jηðλ; τÞj ¼ jz;τðτ�Þj appears when integrating
over τ. The key difference between μ and μ̄ is that μ does not
depend on reparametrizations of τ; see (2.6). Stress-energy
tensor (2.12) in terms of the physical energy appears as

TμνðxÞ ¼
Z

dλ jηjdτμδ4ðx; x̄Þlμðx̄Þlνðx̄Þ: ð2:17Þ

Element jηjdτ is the physical length of a segment of the
string between x̄μðλ; τÞ and x̄μðλ; τ þ dτÞ.
Energy conservation law (1.2) follows from (2.16) and

definition (2.4) of θ.

C. Caustics of null strings

Since the string energy μðλ; τÞ is determined with respect
to the physical length of a string segment, it develops
singularities at points where connecting vector η has
vanishing norm, η2 ¼ 0. These may be isolated points or
a one-parameter family λ ¼ λcðτÞ on the string trajectory
which makes a curve,

xμcðτÞ≡ xμðλcðτÞ; τÞ: ð2:18Þ

Condition η2 ¼ 0 implies that either η ¼ 0 or η is a null
vector at λ ¼ λcðτÞ. If η ¼ 0, the tangent vector ζ to curve
(2.18) is ζ ¼ _xc ¼ _λcl. That is, ζ is null and directed along
l. If η becomes null at λ ¼ λcðτÞ, it follows from (2.2) that η
should be directed along l. Then ζ ¼ _λclþ η is null and it is
again directed along l. Therefore, curve (2.18) is a lightlike
caustic where trajectories of different points of the string
are tangent to.
Optical equation (1.1) implies the following behavior of

the string scalar and string energy near a caustic:
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Zðλ; τÞ ∼ 1

λ − λcðτÞ
; ð2:19Þ

μðλ; τÞ ∼ μcðτÞ
jλ − λcðτÞj

; ð2:20Þ

where μcðτÞ is some function.
Caustics of null strings, like caustics in optics, are the

regions where energy is concentrated. For this reason
caustics are distinctive properties of null strings which
may result in important physical effects.

D. Noether charges of null strings

By using SET (2.12) one can define conserved chargesQ
of the null string. If a spacetime admits a Killing vector
field ζ,

QðζÞ ¼
Z
Σ
dΣμJμðζÞ; JμðζÞ ¼ Tμνζν: ð2:21Þ

Integration in (2.21) goes over a Cauchy hypersurface Σ.
We consider null strings in asymptotically flat space-

times and use (2.21) to define “in” and “out” linear and
angular momenta of the string at past-null infinity I− and
future-null infinity Iþ. Points of null strings near I� move
as almost radial light rays. The metric near I−, λ → −∞,
can be written as

ds2 ≃ −dv2 þ 2dvdrþ r2dΩ2: ð2:22Þ

The string trajectory is rin ≃ jλj, vin ¼ 0, θin ¼ θinðτÞ,
φin ¼ φinðτÞ. Near Iþ, λ → ∞,

ds2 ≃ −du2 − 2dudrþ r2dΩ2; ð2:23Þ

rout ≃ λ, uout ¼ 0, θout ¼ θoutðτÞ, φout ¼ φoutðτÞ. The cor-
responding conserved charges near I− and Iþ, respec-
tively, are

QinðζÞ ¼
Z
r¼R

ffiffiffiffiffiffi
−g

p
JrinðζÞdv dθdφ;

QoutðζÞ ¼
Z
r¼R

ffiffiffiffiffiffi
−g

p
JroutðζÞdu dθdφ: ð2:24Þ

Surfaces Σin and Σout in (2.24) are taken at r ¼ R. One finds
with the help of (2.12) and (2.21)

QinðζÞ ¼
Z

dτμ̄ðτÞðlin · ζÞ;

QoutðζÞ ¼
Z

dτμ̄ðτÞðlout · ζÞ: ð2:25Þ

The integration in (2.24) over u; v; θ;φ is performed by
using equations of radial trajectories.

III. SCATTERING OF NULL STRINGS
BY BLACK HOLES

A. Strings in Minkowsky spacetime

To give preliminary definitions we begin with null
strings in Minkowsky spacetime. If λ is an affine parameter,
general solution to (2.1)–(2.3) is

xμðλ; τÞ ¼ λbμðτÞ þ aμðτÞ; ð3:1Þ

where bμ is an arbitrary null vector, b2 ¼ 0. Restrictions on
aμ are ðb · _aÞ ¼ 0; see (2.2), and _a2 > 0, _a≡ a;τ. One finds

jηj2 ¼ λ2 _b2 þ 2λð _b · _aÞ þ _a2: ð3:2Þ

A residual freedom, λ → λþ gðτÞ, can be fixed by
additional physical conditions, for example, ðl ·uoÞ¼−1,
ðη · uoÞ ¼ 0, where uo is the 4-velocity of observers; see
[7]. In Minkowsky coordinates, where velocity of observers
is uμo ¼ δμ0, these conditions are ensured if tðλ; τÞ ¼ λ,
that is _a and _b have only spatial components. Let j _bj ≠ 0,
then [7]

Zðλ; τÞ ¼ 1

λþ z0ðτÞ
; z0ðτÞ ¼ rðτÞeiφðτÞ: ð3:3Þ

cosφ≡ ð _b · _aÞ
j _ajj _bj ; r≡ j _aj

j _bj ; ð3:4Þ

Zðλ; τÞ is a solution to (1.1) with Ψ0 ¼ Φ00 ¼ 0.
It is easy to see from (3.2) that caustics of null strings

discussed in Sec. II C appear when _aðτÞ ¼ −λcðτÞ _bðτÞ,
η ¼ 0. In this case Zðλ; τÞ ¼ 1=ðλ − λcðτÞÞ, in agreement
with (2.19).
One can represent Zðλ; τÞ in another form. For example,

if θ̄ðτÞ and κ̄ðτÞ are expansion and rotation of the string, say,
at λ ¼ 0, then

Zðλ; τÞ ¼ θ̄ðτÞ þ iκ̄ðτÞ
λðθ̄ðτÞ þ iκ̄ðτÞÞ þ 1

: ð3:5Þ

Caustics in (3.5) appear when κ̄ðτÞ ¼ 0, λ ¼ λcðτÞ ¼
−1=θ̄ðτÞ.
As for θ̄ðτÞ and κ̄ðτÞ, these parameters can be expressed

in terms of more convenient characteristics of a “snapshot”
of the string at λ ¼ 0. One can use the Frenet frame,

E⃗1¼
_⃗a

j _⃗aj
; _⃗E1¼k1E⃗2;

_⃗E2¼−k1E⃗1þk2E⃗3;
_⃗E3¼−k2E⃗2;

ð3:6Þ

to define curvature k1ðτÞ and torsion k2ðτÞ of curve
x⃗ð0; τÞ ¼ a⃗ðτÞ. Vector b⃗ can be chosen as
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b⃗ðτÞ ¼ cos αðτÞE⃗2 þ sin αðτÞE⃗3: ð3:7Þ

It can be shown that

θ̄ ¼ −
k1 cos α

j _a⃗j
; κ̄ ¼ _αþ k2

j _a⃗j
: ð3:8Þ

Thus, the curvature of x⃗ð0; τÞ determines expansion of the
string, while its rotation depends on the torsion of x⃗ð0; τÞ.
There is a particular class of strings with _b≡ 0. For such

a class Z≡ 0. From (3.5) one concludes that in this case
θ̄ðτÞ ¼ κ̄ðτÞ ¼ 0, and _α ¼ 0; see (3.7). Equation (3.8)
imply that k2 ¼ 0, and k1 ¼ 0 or cos α ¼ 0. This means
that the string is a straight line, or the curve x⃗ð0; τÞ ¼ a⃗ðτÞ
lies in a plane, and b⃗ is orthogonal to the plane,
ðb · _aÞ ¼ ðb · äÞ ¼ 0.
We call strings with Z≡ 0 frozen strings, since they

preserve their form during the evolution. A simple example
of the frozen string is a straight string.

B. Scattering by nonrotating black holes

The aim of this section is to study scattering of a null
string by a black hole, or a gravitating source, in general.
Analysis of string equations (2.1)–(2.3) for null strings near
massive sources can be quite complicated [14–19]. We do
calculations in the weak-field approximation for strings
which move far from the sources, that is, with large impact
parameters. Our aim is to understand some universal
features of the string dynamics. Analogous scattering
problems for tensile strings have been studied in [8–10].
Scattering on nonrotating black holes can be found in [20].
Suppose a black hole is located at the center of

coordinates x ¼ y ¼ z ¼ 0. The mass of the black hole
and its angular momentum are, respectively, M, Ji. In the
weak-field approximation the flat metric

ds2 ¼ −dt2 þ dx2 þ dy2 þ dz2 ð3:9Þ

acquires corrections

δgμν ¼ hMμν þ hJμν ð3:10Þ

with the following nonzero components:

hM00 ¼
rg
r
; hMij ¼ rgxixj

r3
; ð3:11Þ

hJ0i ¼ 2Gεijk
xjJk

r3
; ð3:12Þ

where rg ¼ 2MG, r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
. We denote coor-

dinates of the string trajectory at I− by xin,

xðλ; τÞλ→−∞ → xinðλ; τÞ ¼ λbinðτÞ þ ainðτÞ; ð3:13Þ

and by xout at Iþ, after the scattering on the source,

xðλ; τÞλ→∞ → xoutðλ; τÞ ¼ λboutðτÞ þ aoutðτÞ: ð3:14Þ

Velocities of the string are lin ¼ bin, at I−, and lout ¼ bout,
at Iþ.
For further use it is convenient to introduce a minimal

distance r0ðτÞ between the center of coordinates and a
segment of the string with parameter τ. In the absence of the
source, r2 ¼ λ2 þ 2λðbin · ainÞ þ a2in has a minimum at
λ ¼ λ0 ¼ −ðbin · ainÞ. One can define

x⃗0ðτÞ ¼ x⃗inðλ0; τÞ ¼ a⃗in − b⃗inðbin · ainÞ;
r0ðτÞ ¼ jx⃗0ðτÞj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2in − ðbin · ainÞ2

q
: ð3:15Þ

We are looking for effects of metric perturbations (3.11)
and (3.12) in the linear approximation in M and J,
x ¼ xin þ δMxþ δJx, when change of the string trajectory
is determined by linearized version of (2.3) (with β ¼ 0)

∂2
λδx

μ þ δΓμ
αβðxinÞlαinlβin ¼ 0: ð3:16Þ

Here δΓμ
αβðxinÞ are calculated on xin with the help of (3.11)

and (3.12). This is the scattering with large impact
parameter, r0ðτÞ ≫ rg.
In this section we assume that the black hole is non-

rotating, Ji ¼ 0. At large r the effects of the nonzero
angular momentum are weaker than effects caused by the
mass. They are considered in Sec. III C.
It is clear that solutions to (3.16) differ by additions

of the form λcμðτÞ þ dμðτÞ, where cμðτÞ and dμðτÞ are
arbitrary 4-vectors. The solution is uniquely fixed by
requiring conditions (2.1), (2.2), and l2 ¼ 0. We also
require that ðl · uoÞ → −1, ðη · uoÞ → 0 at Iþ, where
uμo ¼ δμ0 is 4-velocity of the chosen set of observers.
The solution to (3.15) which satisfies these conditions in

the linear approximation in rg is

tðλ; τÞ ¼ λ − rg ln

�
rin − λ − ðain · binÞ

ϱ

�
; ð3:17Þ

x⃗ðλ; τÞ ¼ x⃗inðλ; τÞ − rg
x⃗0ðτÞ

rin − λ − ðain · binÞ
; ð3:18Þ

where ϱ is some dimensional parameter.
We need scattering data at Iþ, where (3.17) and (3.18)

become

tðλ; τÞ ≃ λ − rg ln
r20
λϱ

; ð3:19Þ

x⃗ðλ; τÞ ≃ λb⃗out þ a⃗out ¼ x⃗outðλ; τÞ; ð3:20Þ
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b⃗out ¼ b⃗in −Φn⃗; Φ ¼ 2rg
r0

; ð3:21Þ

a⃗out ¼ a⃗in −Φðain · binÞn⃗; n⃗ ¼ x⃗0
r0

: ð3:22Þ

One can check that jb⃗outj ¼ 1 up to terms OðΦ2Þ. Thus,
scattering results in rotation of the string velocity lin ¼ bin
in the plane bin, ain by angle Φ,

liout ¼ Mijl
j
in; ð3:23Þ

Mij ≃ δij þΦωij; ωij ¼ r−10 ðbiinajin − bjina
i
inÞ: ð3:24Þ

This effect is similar to deflection of light rays by massive
bodies in general relativity.
It should be pointed out that even in the weak-field

approximation evolution of a null string described by
(3.17) and (3.18) may be nontrivial due to creation of
loops and caustics. The simplest illustration how null
strings form loops is the scattering of a straight string.
The world sheet of the string is shown in Fig. 1. The
string equation at I− is taken as t ¼ x ¼ λ, z ¼ τ, y ¼ ρ,
where ρ is an impact parameter. The black hole is
located at the center of coordinates. The results are
obtained for the ratio 2MG=ρ ¼ 0.1. Figure 2 demon-
strates scattering of a finite segment of the same string
and creation of a caustic at an isolated point. Figure 3
depicts the norm jηj of the connecting vector. The caustic
appears when jηj ¼ 0.
It is instructive to compare these results with scattering

of tensile cosmic strings [8–10,20]. Astrophysical tensile
cosmic strings are expected to move with the velocity

v ≃ 0; 7c. At such velocities straight tensile strings, as a
result of scattering by a black hole, are displaced in the
direction perpendicular to their motion [20]. At velocities
0; 9c < v < 1c scattering of ultrarelativistic tensile cosmic
strings reveals formation of loops which is similar to the
case of null strings [20]. As has been pointed out in [10], in
the ultrarelativistic limit of a string moving very near the
speed of light in a direction perpendicular to the string, the
propagation of disturbances along the string suffers a large
time dilation, so that each piece of the string is effectively
decoupled and moves very nearly along a null geodesic.
As a next step, we use Sec. II D to analyze how energy,

linear momentum and angular momentum of the string are
changed during the scattering. The energy corresponds to
the Killing vector ζ ¼ ∂t and it conserves,

FIG. 1. World sheet of a straight cosmic string moving near a
nonrotating black hole located at the center of coordinates. The
ratio of the gravitational radius to the impact parameter is 0.1. The
grid is made of lines λ ¼ const, τ ¼ const.

FIG. 2. Scattering of a finite segment of a straight cosmic string
by a nonrotating black hole. The parameters are the same as for
Fig. 1. Before the string forms a loop a pointlike caustic appears
at the distance of 5 impact parameters behind the black hole.

FIG. 3. Norm jηj of the connecting vector of the straight
string during the scattering on the black hole. The parameters
are the same as for Figs. 1 and 2. The caustic forms at a point
where jηj ¼ 0.
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Ein ¼
Z

dτμ̄ðτÞ ¼ Eout: ð3:25Þ

For linear momenta (ζ ¼ ∂i) one has

P⃗in ¼
Z

dτμ̄ðτÞ⃗lin; P⃗out ¼
Z

dτμ̄ðτÞ⃗lout; ð3:26Þ

P⃗out ¼ P⃗in −
Z

dτμ̄ðτÞΦðτÞn⃗ðτÞ: ð3:27Þ

Consider an axis which goes through the center of
coordinates and is directed along a unit vector Z⃗. The
angular momentum jðZÞ of the string related to rotations
around the given axis is a charge for the Killing field
ζi ¼ −εijkxjZk. The angular momentum at I− is

jinðZÞ ¼ −
Z

dτμ̄ðτÞð⃗lin · ½x⃗in × Z⃗�Þ

¼ −
Z

dτμ̄ðτÞð⃗lin · ½a⃗in × Z⃗�Þ: ð3:28Þ

Change of the angular momentum at Iþ depends on
variations of lin and ain,

δjðZÞ ¼ −
Z

dτμ̄ðτÞððδ⃗l · ½a⃗in × Z⃗�Þ þ ð⃗lin · ½δa⃗ × Z⃗�ÞÞ:

ð3:29Þ

However, if (3.21) and (3.22) are used in (3.29), the
variation vanishes,

δjðZÞ ¼ −
Z

dτμ̄ðτÞΦðx⃗0 · ½n⃗ × Z⃗�Þ ¼ 0: ð3:30Þ

The string does not change its angular momentum.
By the conservation laws the black hole after interaction

with the string receives a nonzero linear momentum:

P⃗body ¼ P⃗in − P⃗out ¼
Z

dτμ̄ðτÞΦðτÞn⃗ðτÞ; ð3:31Þ

see (3.27).This is the gravitational recoil effect.
To give an example of the recoil effect consider again the

scattering of the straight string. Suppose that string energy
μ is constant. Calculation of the recoil momentum yields
the only nonzero component, along the y axis,

Py
body ¼ 2πrgμ: ð3:32Þ

The corresponding change of the energy of the body,
δE ∼MG2μ2, can be neglected in the linear approximation.
The momentum may be different if string energy depends
on z. For example, another component of the momentum,
Pz
body, may be nontrivial.

C. Scattering by rotating black holes

We focus now on physical effects related to angular
momenta of black holes. Scattering of tensile cosmic strings
on rotating black holes can be found in [21–23]. Angular
momentum transfer from rotating black holes to tensile
strings may result in interesting effects. For example, a
tensile cosmic string piercing a rotating black hole may spin
down the black hole [24] such that the angular momentum
vector of the black hole aligns with the string [25].
To proceed we put hMμν ¼ 0 in (3.10). The solution to

(3.16) with the same choice of asymptotic conditions which
lead to (3.17) and (3.18) is the following:

tðλ; τÞ ¼ λ −
2Gr0

rinðrin − λ − ðain · binÞÞ
ðJ · cÞ; ð3:33Þ

x⃗ðλ; τÞ ¼ x⃗inðλ; τÞ þ 2G
2ðJ · cÞ½b⃗in × c⃗� þ ½J⃗ × d⃗�

rin − λ − ðain · binÞ

− 2G
ðJ · cÞ
r0

ðd⃗þ b⃗inÞ; ð3:34Þ

where

c⃗ ¼ ½a⃗in × b⃗in�
r0

; d⃗ ¼ λb⃗in þ a⃗in
rin

: ð3:35Þ

With the help of (3.33) and (3.34) one finds that the angular
momentum results in rotation of initial vectors ain, bin
which determine trajectory of the string at I−,

biout ¼ biin þ
4G
r20

εijkb
j
inð2ðJ · cÞck − JkÞ; ð3:36Þ

aiout ¼ aiin þ
4GðJ · binÞ

r20
εijka

j
inb

k
in

þ 4GðJ · cÞ
r20

ð2ðain · binÞni − r0biinÞ: ð3:37Þ

Variation of the angular momentum of the string can be
computed with the help of (2.25), (3.36), and (3.37):

δjðZÞ ¼ 4G
Z

dτ
μ̄

r20
ðZ · ½J⃗ × ½a⃗in × b⃗in��Þ: ð3:38Þ

Equation (3.38) can be interpreted as a spin-spin inter-
action. Variation of the angular momentum due to the mass
of the source vanishes, see (3.29) and (3.30), while the
spin-spin interaction is a nontrivial effect.
The simplest example is a straight string considered in

Sec. III B. In this case ðain · binÞ ¼ 0, and variation (3.38)
can be written as

δj⃗ ¼ −4πμG½J⃗ × p⃗�signðayinÞ; ð3:39Þ
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where pi ¼ δiz is the unit vector along the string (directed
along the z axis).
If the conservation of the total angular momentum is

taken into account one comes to the following variation of
the angular momentum of the black hole:

δJ⃗ ¼ 4πμG½J⃗ × p⃗�signðayinÞ: ð3:40Þ

The momentum rotates around the string axis, the rotation
angle being determined by the string energy only. The sign
of rotation in (3.40) depends on the position of the black
hole with respect to the world sheet of the string. If the
string moves between two rotating black holes it causes a
nontrivial relative rotation of their angular momenta by the
angle 8πμG.

D. Scattering and holonomy of the string spacetime

Results of Secs. III B and III C can be interpreted as
change of the velocity and angular momentum of a
black hole in the gravitational field of a null string.
Transformations of trajectories of massive particles and
light rays in the gravitational field of the string have been
studied in [2,3] by using holonomy of spacetime created by
a null string. It is instructive to see that Secs. III B and III C
reproduce results of [2] for the case of a straight null string.
Transformation of a vector Vμ under a parallel transport
around the string is

ðV 0Þ0 ¼
�
1þ ω2

2

�
V0 −

ω2

2
Vx þ ωVy; ð3:41Þ

ðV 0Þx ¼
�
1 −

ω2

2

�
Vx þ ω2

2
V0 þ ωVy; ð3:42Þ

ðV 0Þy ¼ Vy þ ωðV0 − VxÞ; ðV 0Þz ¼ Vz; ð3:43Þ

where ω ¼ 8πμG. As before, the string is assumed to be
directed along the z axis and move in the x direction.
Equations (3.41)–(3.43) are null transformations which are
reduced to (2.5) in the case of the tetrade l, n, p, q.
If the string moves between two massive bodies which

are initially at rest, (3.41)–(3.43) imply that the bodies
acquire a relative coordinate velocity toward each other, in
the direction orthogonal to the string,

vy ≃ ω ¼ 8πμG ð3:44Þ

(in the limit when ω ≪ 1). This result is in agreement
with (3.32) which yields coordinate velocity of each body
jvybodyj ≃ 4πμG.
According to (3.41)–(3.43), in the linear in ω approxi-

mation, a parallel transport of a spin 4-vector with
components J0 ¼ 0; Ji generates the rotation

δJ⃗ ¼ ω½J⃗ × p⃗�: ð3:45Þ

The parameter ω is the angle of relative rotation of two
spins when the string moves between them. Equation (3.45)
coincides with (3.40).
Therefore “holonomy variations” of velocities and spins

of test bodies caused by gravitational field of a null cosmic
string are in complete agreement with their “scattering
variations.” Note that the scattering data are Noether
charges (2.21) defined by the stress-energy tensor of null
strings. The above analysis yields a check of introduced
SET (2.12). The check is nontrivial since scattering
variations (3.32) and (3.40) are determined by independent
contributions from all segments of the string.

E. Scattering and null string optics

One can also use solution (3.21) and (3.22) to see how
expansion and rotation parameters of the string at I− and
Iþ are related. For simplicity we assume that the strings
are “unfrozen” at I−. For such strings the asymptotics of
optical scalars at I− and Iþ are, respectively,

Zinðλ; τÞ ¼
1

λ
þ zin

λ2
þOðλ−3Þ; ð3:46Þ

Zoutðλ; τÞ ¼
1

λ
þ zout

λ2
þOðλ−3Þ: ð3:47Þ

Expansion is θ ¼ 1=λþℜz=λ2 þ…; the rotation is
κ ¼ ℑz=λþ…. After some algebra one gets

ℜzout ¼ ℜzin þ
2rg
r40

�
r40 ln

ϱ

r0
þ r20ðð _ain · _ainÞ − ðain · binÞ2Þ

þ ð _bin · ainÞ2ððain · binÞ2 þ a2inÞ − 2ð _ain · ainÞ2
�
;

ð3:48Þ

ðℑzoutÞ2 ¼ ðℑzinÞ2 −
4rg
r40

½r20ðð _ain · ainÞðain · binÞ

þ ð _ain · _ainÞℜzinÞ þ ð _bin · ainÞðð _ain · ainÞ
þ ð _bin · ainÞ2ℜzinÞða2in þ ðain · binÞ2Þ
− 2ð _ain · ainÞ2ððain · binÞ þℜzinÞ�; ð3:49Þ

where r0 ¼ r0ðτÞ.
Equations (3.48) and (3.49) demonstrate that the string

evolution in the space of optical parameters ðθ; κÞ is
predictable in the following sense: given the initial data,
one can determine a final state of the string.
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IV. NULL STRINGS IN ASYMPTOTICALLY
FLAT SPACETIMES

A. Formulation of the problem
and the Bondi-Sachs formalism

Consider a behavior of the string scalar in asymptotically
flat spacetimes near Iþ. Our aim is to see, by using string
optical equation (1.1), how the spacetime content is
encoded in Z. From now on we denote Zout ¼ Z; subscripts
“in” and “out” will be omitted since we focus on effects
related to features of gravitational fields rather than on
transformations of the trajectories.
It is convenient to use the Bondi-Sachs coordinates

xμ ¼ ðu; r; xAÞ, A ¼ 1, 2, based on a family of outgoing
null hypersurafces; see e.g., [26]. The corresponding metric
is a generalization of (2.23):

ds2 ¼ −
V
r
e2βdu2 − 2e2βdudr

þ hABðdxA −UAduÞðdxB −UBduÞ: ð4:1Þ

The null hypersurfaces in question are u ¼ c, where c is a
constant. Coordinate r which varies along null rays is
chosen to be areal coordinate. The future-null infinity is
at r → þ∞.
Metric (4.1) is flat when V ¼ r, β ¼ UA ¼ 0,

hAB ¼ r2γAB, with γAB being a metric on a unit 2-sphere.
In an asymptotically flat spacetime at large r (we set
Newton constant G ¼ 1)

V
r
¼ 1 −

2M
r

þOðr−2Þ; ð4:2Þ

hAB ¼ γAB þ CAB

r
þDAB

r2
þOðr−3Þ; ð4:3Þ

β ¼ −
1

32

CABCAB

r2
þOðr−3Þ; ð4:4Þ

UA¼−
ðBCAB

2r2
þ 1

r3

�
2JAþ1

3
CAEðFCEF

�
þOðr−4Þ; ð4:5Þ

e2β ¼ 1 −
1

16

CABCAB

r2
þOðr−4Þ: ð4:6Þ

Here γAB ¼ diagð1; sin2 θÞ is the metric on unit sphere S2,
ðA is a covariant derivative on S2. Indices A, B in
(4.4)–(4.6) are raised and lowered with the help of γAB.
One can show that [26]

DAB ¼ 1

4
γABCDECDE: ð4:7Þ

We denote the set of coordinates xA on S2 by Ω. Quantities
M ¼ Mðu;ΩÞ and JA ¼ JAðu;ΩÞ are the mass and the
angular momentum aspects, respectively. CAB ¼ CABðu;ΩÞ

is a traceless tensor (the strain) on a tangent space to S2.
The term CAB=r in (4.3) is a perturbation of the metric
caused by the outgoing gravitational radiation. One also
defines Bondi news tensor NAB ¼ ∂uCAB. If the vacuum
Einstein equations are satisfied,

2∂uM ¼ ðAðBNAB − NABNAB: ð4:8Þ

A similar relation can found for ∂uJA.
The optical scalar of a string in a flat spacetime has the

following asymptotic; see (3.3):

Zðλ; τÞ ∼
X
k¼1

ð−1ÞkzkðτÞλ−k: ð4:9Þ

In arbitrary spacetime near Iþ, according to the peeling
theorem [6],

Ψ0jλ→∞ ¼ ψ0
0ðτÞλ−5 þOðλ−6Þ; ð4:10Þ

Φ00jλ→∞ ¼ ϕ0
00ðτÞλ−6 þOðλ−7Þ: ð4:11Þ

Therefore we look for asymptotic solution to (1.1) as a
series:

Zðλ; τÞ ∼
X
k¼1

zkðτÞλ−k: ð4:12Þ

The structure of the first coefficients in (4.12) follows
from (1.1), (4.10)

z1 ¼ 1; z2ðτÞ ¼ −zðτÞ; z3ðτÞ ¼ z2ðτÞ;

z4ðτÞ ¼ −z3ðτÞ þ 1

2
ψ0
0ðτÞ: ð4:13Þ

Our aim in next sections is to understand how zkðτÞ
depends on spacetime characteristics C, M, and J.

B. Leading terms in Z

We begin with the string equations (3.1) in flat spacetime
in Bondi-Sachs coordinates (2.23) u, r, Ω. When Iþ is
approached, points of string move as almost radial
light rays,

u ¼ t − r ¼ 0; r ¼ λ; xA ¼ xAðτÞ: ð4:14Þ

This approximation is enough to calculate zðτÞ in (4.13),
and, therefore, first coefficients z2ðτÞ, z3ðτÞ in asymptotic
(4.12). On the string trajectory we define functions

MðτÞ ¼ Mð0;ΩðτÞÞ; JðτÞ ¼ Jð0;ΩðτÞÞ;
CABðτÞ ¼ CABð0;ΩðτÞÞ: ð4:15Þ

The connecting vector is η ¼ ηA∂A, where ηA ¼ _xA.
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We note that for (4.14) the nonvanishing components of
p, q, m are

pA ¼ pA=λþOðλ−2Þ; qA ¼ q̄A=λþOðλ−2Þ;

mA ¼ 1ffiffiffi
2

p ðpA þ iqAÞ ¼ m̂A=λþOðλ−2Þ:

Vectors p̄A, q̄A are unit tangent vectors on S2. Therefore,
one can use decompositions

γAB ¼ m̂A ˆ̄mB þ ˆ̄mAm̂B; ð4:16Þ

CAB ¼ m̂Am̂BC̄þ ˆ̄mA ˆ̄mBC; ð4:17Þ

CðτÞ ¼ C⊕ðτÞ þ iC⊗ðτÞ: ð4:18Þ

Unkown function zðτÞ can be found by calculating the
corresponding spin coefficients:

zðτÞ ¼ z0ðτÞ þ
1

2
CðτÞ þMðτÞ: ð4:19Þ

Quantity z0ðτÞ is determined by the string trajectory in flat
spacetime. To calculate z0ðτÞ one would need to go beyond
approximation (4.14), but the result is already known from
(3.3). Coefficients C⊕ and C⊗ correspond to “⊕” and “⊗”
polarizations of gravity waves in the given basis. Their
contribution to (4.19) has been found in [7].

C. Subleading term in Z

According to (4.13) the first four coefficients zk are
known if ψ0

0ðτÞ in expansion (4.10) of the Weyl tensor is
known. To calculate ψ0

0ðτÞ we need Bondi-Sachs asymp-
totic (4.2)–(4.6) for the metric (which yields components
Cμνλρ). The basis vectors, l and m, in the given approxi-
mation can be taken as in flat spacetime. However, to
calculate the components of l, m one should go beyond
radial string approximation (4.14). Let us introduce a unit

vector N⃗, orthogonal to S2, which sets spherical coordinates
on S2∶

N1ðΩÞ¼ sinθcosφ; N2ðΩÞ¼ sinθsinφ; N3ðΩÞ¼ cosθ:

ð4:20Þ

We also use three unit orthonormalized vectors:

e⃗1 ¼
_b⃗

j _bj ; e⃗3 ¼ b⃗; e⃗2 ¼ ½e⃗3 × e⃗1�; ð4:21Þ

and define complex scalars

N ¼ N1 þ iN2ffiffiffi
2

p ; A ¼ a1 þ ia2ffiffiffi
2

p ; ð4:22Þ

where Ni ¼ ðN · eiÞ, ai ¼ ða · eiÞ. With the help of (4.22)
the leading terms in asymptotics of the l, m for a generic
trajectory of a null string in flat spacetime in Bondi-Sachs
coordinates can be written as

lν¼ l̂ν

λ2
þOðλ−3Þ; ν¼u;θ;φ; lr¼1−

l̂r

λ2
þOðλ−3Þ; ð4:23Þ

l̂u ¼ l̂r ¼ jAj2; l̂θ ¼ 1

sinθ
2ℜðNĀÞ; l̂φ ¼ 1

sin2 θ
2ℑðN̄AÞ;

ð4:24Þ

mν ¼ m̂ν

λ
þOðλ−2Þ; ð4:25Þ

m̂u¼−A; m̂r¼A; m̂θ¼−
N
sinθ

; m̂φ¼−i
N

sin2θ
: ð4:26Þ

The computation of the leading asymptotic of the Weyl
tensor (4.10) is rather lengthy. It yields

ψ0
0 ¼ 12Am̂BJB þ 6A2M þ 1

2
A4 ˆ̄mA ˆ̄mB∂uNAB − 2A3 ˆ̄mBðANAB þ 3

2
A2ðm̂A ˆ̄mBγEFCAENBF þ ðAðBCAB − 2 ˆ̄mBm̂EðBðACAEÞ

− A

�
m̂ACABðECEB þ 3

8
m̂AðAðCBDCBDÞ

�
−
3

8
m̂Am̂BCAECBFCEF: ð4:27Þ

Indices in (4.27) are raised and lowered with the help
of γAB.
The first two terms in the right-hand side (rhs.) of

(4.27) represent the mass and angular aspects of the
spacetime. They yield contribution both to parameters
of asymptotic expansion θ ¼ ℜZ and asymptotic
rotation κ ¼ ℑZ of the string; see (4.12) and (4.13).
The angular momentum aspect JA appears only at the

order λ−4. According to (4.13), (4.19) the mass
aspect M appears at the order λ−2, where it contributes
only to θ.
The terms in (4.13) and (4.27) which depend on the

strain CAB and its covariant derivatives describe contribu-
tions to Z from the gravitational background. The Bondi
news tensor NAB which determines the energy flux across
Iþ, see (4.8), appears at the order λ−4.
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Some comments on special cases are in order.
Section IV B describes null strings which move to Iþ
along radial light rays. For such strings, vector mμ has
vanishing components mu ¼ mr ¼ 0; see equations of
motion (4.14). Equations (4.26) imply that A ¼ 0, and a⃗
is directed along b⃗. Then ψ0

0 is reduced to the last term in the
rhs. Therefore, radial strings are not sensitive, at the order
λ−4, to the mass and angular aspects, as well as to the
energy flux.
Another case are null strings which are “asymptotically

frozen,” that is _b ¼ 0, see Sec. III A, and a2 ¼ ℑA ¼ 0.
According to (4.27) mass and angular aspects do not
contribute to the rotation parameter κ of such strings at
the order λ−4.

D. Asymptotics of string energy

Energy evolution equation (1.2) and Eqs. (4.12) and
(4.27) allow one to find important asymptotics of the string
energy at Iþ:

μðλ; τÞ ∼ μðτÞ
X
k¼1

fkðτÞλ−k; ð4:28Þ

f1¼1; f2¼−ℜz; f3¼
1

2
½ℜz2þðℜzÞ2�; ð4:29Þ

f4 ¼ −
1

6
½ðℜzÞ3 þ 3ℜzðℜzÞ2 þ 2ℜz3 −ℜψ0

0�: ð4:30Þ

Here μðτÞ is a coefficient which cannot be determined by
(1.2). Parameters zðτÞ, ψ0

0 are given by (4.19) and (4.27),
respectively.
Equations (4.28)–(4.30) demonstrate optical properties of

null strings when spacetime content determines the evolution
of their physical energy μðλ; τÞ. In the cosmological context,
null strings are similar to relic photons whose energy
encodes properties of the Universe they travel.

V. DISCUSSION

The origin of null strings may be related to physics
of fundamental strings at Planckian energies [27–30]. If
fundamental null strings were produced in the early
Universe they might be stretched to cosmological scales
and become cosmic strings; see [31,32] for discussion of
such scenario for fundamental tensile strings.

If null cosmic strings exist, it is important to describe
observable physical effects they may produce. It is also
important to understand specific features of null cosmic
strings which distinguish them from the tensile cosmic
strings. Since velocities of astrophysical tensile cosmic
strings are expected to be below 0.7 of the speed of light,
interactions of null and tensile cosmic strings with black
holes look different; see discussion in Sec. III B. As a next
step, it would be interesting to compare interactions of null
and tensile strings with black holes in the regime of the
strong gravity where tensile cosmic strings exhibit specific
chaotic behavior; see e.g., [33,34].
World sheets of tensile cosmic strings may have some

luminal points which can be located, for example, at cusps
developed by oscillating loops [5]. The cusps are known to
emit strong beams of high-frequency gravitational waves
[35]. These gravitational waves produced at different epochs
form a stochastic gravitational background. Experimental
evidence of the background is being actively searched for by
the Advanced LIGO and Virgo Collaborations [36].
The key feature of null strings is that they behave as one-

dimensional null geodesic congruences and are character-
ized by optical parameters θ and κ. In the present paper we
extended the optical analogy of null strings. We introduced
the stress-energy tensor of a null string and, with its help,
gave the definition of the physical energy μ of the string per
unit length. As was shown, null strings develop caustics
which accumulate large amounts of energy. We expect that
caustics of null strings, similar to cusps, may emit gravi-
tational waves which contribute to the gravitational back-
ground. Studying these effects is in progress.
Null cosmic strings may carry important information

about the spacetime content and the physical processes in
the early Universe. The explicit dependence of μ on the
strain and Bondi news tensors of gravitational wave
background, mass and angular momentum aspects has
been obtained near the future-null infinity in an analytic
form in asymptotically flat spacetimes. An intriguing
property of null cosmic strings is that they, like relic
photons, may encode the story of their propagation in
the Universe.
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