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Intermediate redshifts between galaxy surveys and the cosmic microwave background (CMB) remain
unexplored territory. Line intensity mapping (LIM) offers a way to probe the z≳ 1 Universe, including the
epoch of reionization and the dark ages. Via exact nulling of the lensing kernel, we show that LIM lensing, in
combination with galaxy (and, respectively, CMB) lensing, can uniquely probe the z ≳ 1 (respectively, pre-
reionization) Universe. However, LIM foregrounds are a key hurdle to this futuristic technique. While
continuum foregrounds can be controlled by discarding modes perpendicular to the line of sight (low-kk
modes), interloper foregrounds have not been addressed in the context of LIM lensing. In this paper, we
quantify the interloper bias to LIM lensing for the first time and derive a “LIM pair” estimator which avoids it
exactly after cross-correlating with CMB lensing. This new quadratic lensing estimator works by combining
two intensity maps in different lines, from the same redshift, whose interlopers are uncorrelated. As a result,
this foreground avoidance method is robust to even large changes in the amplitude of the interloper power and
non-Gaussianity. The cross spectrum of the LIM-pair estimator with CMB lensing is thus robust to the
currently large theoretical uncertainties in LIM modeling at high redshift.
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I. INTRODUCTION

The properties of the observable Universe are precisely
constrained at redshift z ¼ 1100 by observations of the
cosmic microwave background (CMB) [1], and at z≲ 1 by
galaxy surveys. In between, line intensity mapping (LIM) is
a promising approach to fill the gap and study galaxy
evolution and cosmology [2]. Several promising lines like
HI (21 cm), Ly-α (121.6 nm), Hα (656.28 nm), [CII]
(158 μm), CO 1-0 (2.6 mm), etc., are being targeted by the
ongoing and upcoming LIM experiments to map out the 3D
large-scale structure (LSS) of the Universe at high redshift.
However, some periods of the Universe’s history, such as
the dark ages when it was mostly neutral, will remain very
challenging to probe. For instance, probing the dark ages
with 21 cm will require peering through overwhelmingly
large foregrounds [3–5].
The lensing of the CMB contains information about the

high-redshift Universe, including the epoch of reionization
and the dark ages [6], and will be measured to subpercent

precision by upcoming experiments [7,8]. However, the
contribution to CMB lensing from, e.g., the dark ages, is
dwarfed by that from the low-redshift (z≲ 1) Universe.
Subtracting this low-redshift contribution could in principle
be done with tracers of the matter density (galaxy surveys
and LIM surveys) [9]; however, these would need to overlap
on the sky and span the whole redshift range from z ¼ 0 to
the redshift of reionization, without any gap. This, therefore,
appears unfeasible in practice.
Instead, a futuristic approach could be to reconstruct

lensing from a LIM survey [10–17] at high redshift—e.g.,
z ¼ 5. Combining LIM lensing with galaxy shear at z ¼ 1,
such as from the Rubin Observatory1 [18], one can exactly
null the contribution of z ≤ 1 to the LIM lensing, thus
delivering a unique probe of the matter distribution at
z ¼ 1–5. This redshift range is extremely difficult to probe
any other way. Combining instead LIM lensing with CMB
lensing at z ¼ 1100, one can selectively extract the projected
matter density field at z ¼ 5–1100, covering the epoch of
reionization, cosmic dawn, and the dark ages. Again, this
redshift range is difficult to observe any other way, and doing
so with lensing would enable testing how much of the*abhishek.maniyar@nyu.edu
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fluctuations in future 21 cm maps during reionization/the
dark ages arises from density fluctuations as opposed to
ionization or spin-temperature variations (see Ref. [19] for an
analogous approach with CMB lensing and the Lyman-α
forest). To do this, we extend the so-called “nulling”method
from the galaxy lensing tomography literature [20–22], and
we generalize it to LIM lensing and CMB lensing below.
This method allows us to not only suppress, but instead
exactly null, the otherwise dominant low-redshift contribu-
tion to the lensing kernels.
LIM lensing has other applications, beyond enabling

lensing tomography at high redshift. For instance, con-
tinuum foregrounds typically render the modes perpen-
dicular to the line of sight (LOS)—i.e., with kk ≃ 0,
unusable for cosmology. This can prevent us from
measuring the cross-correlation of LIMs with 2D fields,
such as CMB lensing. However, by reconstructing the
lensing from LIMs, one obtains a field, κ̂LIM, where the
modes with kk ≃ 0 are present, enabling cross-correlations
with 2D fields like CMB lensing [14,15]. This therefore
offers an alternative to tidal reconstruction [15,23], in
order to enable these cross-correlations.
The prospect of measuring LIM lensing remains futur-

istic because of several challenges. Recent work (e.g.,
Refs. [14,15]) has shown that the non-Gaussian nature of
LIMs (due to nonlinear gravitational evolution at low
redshifts) biases LIM lensing. This bias can be avoided or
subtracted to some extent with “bias hardening” [15], a
method inspired from CMB lensing [24–27] which makes
use of our knowledge of the LIM non-Gaussianity.
Another major challenge to LIM lensing is the fact that the

observed LIMs are contaminated by foregrounds. Continuum
foregrounds like the cosmic infrared background (CIB) or
Milky Way emission can be highly dominant over the target
line signal. Thanks to their smooth spectral energy distribu-
tions, continuum foregrounds can typically be avoided by
discarding the 3D Fourier modes with low kk—i.e., those
almost perpendicular to the line of sight (LOS). Future
simulations of LIMs will make such techniques more reliable
and allow the clean removal of foregrounds. However, line
interlopers cannot be avoided in this way. These are galaxies
at a different redshift, emitting in a different line which
redshifts to the same observed frequency as the target line.
Methods exist to remove part of the interloper contamination,
or to quantify it (see Refs. [2,28] for a summary). Methods
like bright voxel masking [29–33], secondary line identi-
fication [34], spectral deconfusion [34], and cross-correlating
the LIM with a template of the contaminant [32] alleviate the
issue. Measuring the anisotropy in the 3D power spectrum,
analogous to the Alcock-Paczynski effect [35–39], allows us
to quantify the residual contamination. While these methods
reduce the amount of interloper emission, they do not
completely remove them.
In this paper, we quantify the bias to LIM lensing from

interlopers for the first time and propose a new method to

avoid them entirely, without any assumption other than their
redshifts. We derive a new “LIM pair” quadratic estimator
for LIM lensing, relying on a pair of LIMs, from two lines X
and Y emitted at the same redshift but with uncorrelated
interloper foregrounds. This method is analogous in spirit to
the gradient-cleaned estimators of CMB lensing [40,41].
We forecast the signal-to-noise ratio for this estimator for
one example line pair. We compute the various foreground
biases to its autospectrum, and we show that its cross
spectrum with CMB lensing is exactly free of LIM fore-
grounds. Furthermore, this cross-correlation of LIM line-pair
lensing with CMB lensing has higher SNR than the auto-
power spectrum of the LIM-line pair lensing, making it the
first one to be detectable in the future. This paper constitutes
a step towards bias-free lensing reconstruction from LIM.
The “nulling” method, applied to LIM-pair lensing, con-
stitutes a new potential probe of the dark ages in the future.

II. LENSING TOMOGRAPHY AND “NULLING”

Similarly to galaxies and the CMB, LIMs constitute
source images, emitted at cosmological distances from us,
which are lensed by all the intervening matter distribution
in between. In the weak lensing regime and the Born
approximation, this lensing is entirely determined by one
scalar field for each source image (LIM or CMB), the
lensing convergence κ. In all cases, the lensing convergence
is a projection of the matter overdensity field along the line
of sight (LOS),

κðn⃗Þ ¼
Z

dχWκðχÞδðχn⃗; zðχÞÞ; ð1Þ

weighted by the lensing kernelWκ. For an image source at a
single redshift or distance χS, the lensing kernel is given by

Wκðχ; χSÞ ¼
3

2

�
H0

c

�
2Ω0

m

a
χ
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χ

χS

�
: ð2Þ

Here H0 and Ω0
m are the Hubble parameter and the matter

fraction today, c is the speed of light, a is the scale factor, χS
is the distance of the source (the image being lensed), and χ
is the distance of the lens (the mass between the source and
the observer (i.e., us) causing the lensing). This lensing
kernel is appropriate for CMB lensing, where the source
redshift is z ¼ 1100, and for a thin redshift slice of LIM.
For extended source redshift distributions dn=dzS—e.g.,
for a galaxy lensing tomographic bin or a LIM with a large
redshift coverage—the lensing kernel is simply the redshift
average of the single-source lensing kernel, weighted by
the source redshift distribution:

WκðχÞ ¼
Z

dzS
1

n
dn
dzS

Wκðχ; χðzSÞÞ; ð3Þ
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where n≡ R
dzSdn=dzS. In this paper, we consider LIMs

coming from a single redshift, or a thin redshift slice,
making this last integral unnecessary and giving WκðχÞ ¼
Wκðχ; χsÞ. In practice though, LIM lensing analyses will
likely be performed in 3D [15,16] in order to discard the low-
kk modes most affected by continuum foregrounds. In what
follows, we will therefore not address the question of
contamination from continuum foregrounds, and we will
assume that this problem is solved by the kk cuts applied to
the LIM. In what follows, we derive the new “LIM pair”
estimator in 2D rather than 3D, to avoid technical distrac-
tions. We also do not implement the bias-hardening weights.
Our 2D estimator generalizes trivially to 3D and to the bias-
hardening case, while keeping insensitivity to interloper
foregrounds, since it relies on using a pair of lines.
From Eq. (1), we infer all the auto- and cross spectra of

LIM lensing, galaxy lensing, and CMB lensing, in the flat
sky and in Limber approximations:

Cκκ0
l ¼

Z
dχ

WκðχÞWκ0 ðχÞ
χ2

Pm

�
k ¼ lþ 1=2

χ
; zðχÞ

�
: ð4Þ

As shown in Fig. 1 for CMB lensing and LIM lensing at
redshifts 5 and 6, these lensing kernels span the whole
redshift range between the source and the observer.
However, interestingly, Eq. (2) shows that the lensing
kernels have a very simple dependence on the lens distance
χ: apart from the common overall scale factor, they are
second-order polynomials in χ. Such a polynomial is only
determined by three coefficients. An appropriate linear
combination of three lensing kernels is therefore sufficient
to null these three coefficients, thereby exactly nulling the
combined lensing kernel out to the redshift of the closest
source [20–22]. More specifically, for three sources at
distances χ1 < χ2 < χ3, the linear combination

Wκðχ; χ3Þ þ αWκðχ; χ2Þ − ð1þ αÞWκðχ; χ1Þ ð5Þ

with

α ¼ 1=χ3 − 1=χ1
1=χ1 − 1=χ2

ð6Þ

is mathematically null for χ ≤ χ1. In other words, the linear
combination κ3 þ ακ2 − ð1þ αÞκ1 is only sensitive to the
matter distribution from χ > χ1. It should be noted that the
nulling procedure described here, as well as the lensing
kernel given in Eq. (2), is valid only for a geometrically flat
Universe, which we assume to be the case throughout
the paper.
Figure 1 illustrates two applications of the nulling method,

using LIMs at high redshift. First, we use one LIM at z ¼ 5
and two galaxy lensing tomographic bins at z ¼ 1; 1.5 from,
e.g., Rubin Observatory. The nulling combination of these

three allows us to exactly null any contribution to lensing
from z ≤ 1, providing a probe of the z ¼ 1–5 Universe. This
probe is valuable because of its redshift range, which is
difficult to access otherwise. Because this gives the projected
matter density field directly, it avoids the need to model the
galaxy-halo connection (e.g., galaxy bias).
The second application shown in Fig. 1 uses two LIMs

at z ¼ 5; 6 and CMB lensing. The nulling combination
allows us to extract selectively the z ¼ 5–1100 Universe,
exactly nulling any contribution from z ≤ 5. This disen-
tangles the contribution from the dark ages, cosmic dawn,

FIG. 1. While the Universe’s properties are very well con-
strained at low redshift from galaxy surveys and at high redshift
with the CMB, many parts of its history remain unexplored. Top:
by combining LIM lensing (dashed black curve) at z ¼ 5 with
galaxy lensing at z ¼ 1; 1.5 (dashed blue and green curves), we
construct a linear combination sensitive only to z ¼ 1–5. Bottom:
by combining CMB lensing (solid black curve) and lensing from
two LIMs (e.g., from z ¼ 5 in dashed green and z ¼ 6 in dashed
blue), one can construct a linear combination which exactly nulls
the signal from low redshift (κNull in red). This offers a potential
new probe of the dark ages, complementary to 21 cm. However,
achieving these futuristic goals requires controlling the fore-
grounds in LIM, which is the goal of this paper.
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and the epoch of reionization from the otherwise dominant
low-redshift Universe, yielding a unique probe of the pre-
reionization Universe.
In either case, whether we construct κNull from LIM and

galaxy lensing, or from LIM and CMB lensing, we will be
cross-correlating κNull with CMB lensing. Indeed, the CMB
lensing kernel fully overlaps with the nulled lensing kernel,
such that hκNullκCMBi is nonzero and probes the same exact
redshift range as κNull. Furthermore, we will show that this
combination is free of interloper bias, when LIM lensing is
measured with the LIM-pair estimator.
In the rest of this paper, we focus on a necessary step

towards this futuristic prospect: suppressing interloper con-
tamination in LIM. We show that the cross-power spectrum
of the form Cκ̂LIM κ̂CMB

L can be measured without interloper
bias, thanks to the LIM-pair estimator. As a result, the cross
spectrum Cκ̂Null κ̂CMB

L can also be measured free of interloper
bias. These cross spectra probe exclusively the high-redshift
Universe. In what follows, we focus on CMB lensing rather
than galaxy lensing, but all the results apply identically.
While we will be working with the thin-shell approximation
here, Ref. [21] has shown that a slightly modified version of
the nulling technique described here can be used for galaxy
lensing analysis where the source distribution is rather broad
and the thin-shell approximation is not accurate.

III. INTERLOPER EMISSION AND LINE PAIRS

Throughout this paper, we consider two different lines
with widely separated rest-frame frequencies. We denote by
X and Y intensity maps in these two target lines, from
galaxies at the same redshift. Since X and Y trace the large-
scale structure distribution of matter at the same redshift,
they are correlated and have a nonzero cross spectrum CXY

l .
The two intensity maps X and Y are affected by interloper
foregrounds. However, we assume that the target lines and
redshift of X and Y have been selected such that their
interlopers do not originate from the same redshift, and
therefore statistically independent.
While our formalism applies identically to any pair of

such lines X and Y, we focus on a specific example below.
We consider intensity maps in [CII] and Ly-α at redshift
z ¼ 5 as our intensity maps X and Y. The [CII] LIM is
contaminated by CO and CI rotational lines from various
redshifts. Similarly, the Ly-α LIM is contaminated by Hα
and Hα interlopers at low redshift. Crucially, as illustrated in
Fig. 2, the interlopers for [CII] and Ly-α do not overlap in
redshift, such that they are indeed statistically independent.
For concreteness in what follows, we focus on CO
(J ¼ 4–3) and Hα lines as interlopers to the target [CII]
and Ly-α, lines respectively. Our analysis, however, is
equally applicable to all the interloper lines simultaneously,
since they do not overlap in redshift.
A key input to the LIM-pair lensing estimator below is

the auto- and cross spectra of the LIMs X and Y.

Computing the effect of interlopers on the bias and
variance of this estimator further requires modeling the
bispectra and trispectra of these LIMs. For all this, we use
the halo model formalism from Refs. [42,43], based on
conditional luminosity functions, and use the publicly
available code HALOGEN,2 as described in Appendix A.

IV. LINE-PAIR LENSING QUADRATIC
ESTIMATORS

To derive the LIM-pair lensing quadratic estimator, we
follow Ref. [44]. We seek an estimator of the form

κ̂XYðLÞ ¼
Z

d2l1
ð2πÞ2

d2l2
ð2πÞ2 δ

D
l1þl2

FXYðl1; l2ÞXl1YL−l1; ð7Þ

where L ¼ l1 þ l2, and the Dirac delta enforces the Fourier
mode constraint, and FXY is uniquely determined by
requiring κ̂XY to be unbiased (to first order in the true κ)
and to have minimum variance. As shown in Appendix B,
the solution is

FXYðl1; l2Þ

¼ λXYðLÞ
CYY
l1
CXX
l2

fXYðl1; l2Þ−CXY
l1
CXY
l2
fXYðl2; l1Þ

CXX
l1

CYY
l2
CYY
l1
CXX
l2

− ðCXY
l1
CXY
l2
Þ2 ; ð8Þ

where the Lagrange multiplier λXYðLÞ is given by
Eq. (B10). In what follows, we compare this estimator
to the ones built on LIM X (denoted κ̂XX) or Y (denoted
κ̂YY) alone, where FXX and FYY are given by Eq. (B11).

5.01.560.820.560.45
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2
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FIG. 2. We show the target lines in red and the redshifts
corresponding to their interlopers in blue. Although our formal-
ism applies to any pair of LIMs X and Y, we consider the specific
example of [CII] and Ly-α LIMs from redshift 5. Although each
LIM is contaminated by interlopers (CO and CI for [CII], and Hα
and Hβ for Ly-α), these interlopers do not overlap in redshift, and
are therefore uncorrelated. As a result, they do not bias the LIM-
pair lensing estimator, as we show below. Neither axis is to scale
in this schematic.

2https://github.com/EmmanuelSchaan/HaloGen/tree/LIM.
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V. GAUSSIAN NOISE BIAS Nð0Þ

Similarly to all quadratic lensing estimators, the LIM-pair
estimator is affected by the Gaussian lensing reconstruction
noise Nð0Þ, given in Eq. (B8). In particular, the lensing noise
for the LIM-pair estimator κ̂XY receives contribution not only
from the cross spectrum CXY

l , but also from the autospectra
CXX
l and CYY

l . Interloper foregrounds, which do not affect
the cross spectrum, do enhance the autospectra, thus
increasing the lensing noise. As a result, the lensing noise
for κ̂XY is not significantly reduced compared to those of κ̂XX
and κ̂YY . This makes sense intuitively: although the inter-
lopers are nulled in the cross spectrum, they are still present
in the LIMs, acting as a source of noise.
This lensing noise Nð0Þ receives contributions from the

power spectra of the target line itself, the detector noise, and
potential foregrounds. However, the Nð0Þ noise only takes
into account the Gaussian part of these components. If the
interloper foregrounds were Gaussian random fields, they
would be fully described by Nð0Þ, and would thus be
automatically subtracted by the standard Nð0Þ subtraction.
Thus, they would not be a concern. In the next subsection,
we therefore focus on the non-Gaussianity of interloper
foregrounds, to compute their bias to LIM lensing.

VI. NONGAUSSIAN INTERLOPER BIASES CAN
OVERWHELM THE STANDARD LENSING

ESTIMATOR

Similarly to CMB lensing, interloper foregrounds cause
a bias in LIM lensing because they are non-Gaussian and
correlated with the true lensing field we seek to reconstruct.
In this section, we follow the CMB lensing derivation from
Refs. [24,45–47] and adapt it to the case of LIM interlopers.
We leave the detailed derivation to Appendix C and instead
discuss the intuitive origin of the various terms, shown in
Fig. 3 for the standard (non-LIM-pair) lensing estima-
tor κ̂XX.
Because the lensing estimators κ̂ considered here are

quadratic in the LIMs, the estimated power spectrum Cκ̂ κ̂
L is

quartic in the LIMs. One therefore naturally expects a bias
coming from four powers of the interlopers. As we discussed
above, the Gaussian part of this term is already included in
the Nð0Þ term, and therefore automatically subtracted by
the Nð0Þ subtraction. Thus, the remaining bias comes
from the connected, non-Gaussian four-point function of
the interlopers—i.e., their trispectrum. This trispectrum bias
is shown with a dashed line in Fig. 3.
Not only are the interlopers non-Gaussian, leading to the

trispectrum bias above, they are also correlated with the true
lensing signal we seek to reconstruct. Indeed, the interlopers
trace the large-scale mass distribution, which contributes to
the true lensing of the target LIMs. In other words, the target
LIM is lensed in part by the interloper, which contaminates
the observed LIM. This effect, called “self-lensing” in

Ref. [14], originates from the bispectrum between two
powers of the interlopers and the true lensing potential. It
can be split into two terms, the so-called primary and
secondary bispectrum interloper biases. If the two target
lines contributing to the reconstructed κ which enters the
bispectrum with two interlopers belong to the pairs of
multipoles l1, l2 and l3, l4 for which the lensing weights
FXXðl1; l2Þ and FXXðl3; l4Þ optimize the quadratic estimator,
we get the primary bispectrum bias. If that is not the case—
e.g., if one target line comes from l1 and the other one from
l3 with lensing weights FXXðl1; l2Þ and FXXðl3; l4Þ—this
gives rise to an inefficient κ reconstruction which enters the
bispectrum and thus is called the secondary bispectrum. This
is discussed in detail in Appendix C. In this analysis, we
consider only the one-halo term of the trispectrum and
bispectrum biases, giving a lower bound to the total
interloper bias. We find the primary bispectrum to be smaller
than the lensing signal (dot-dashed line in Fig. 3), and we see
that the secondary bispectrum is negligible. However, the
trispectrum bias term (dotted line in Fig. 3) for κ̂XX is
comparable to the lensing signal for L≲ 200 and dominant
for higher lensing multipoles. In consequence, the standard
LIM lensing reconstruction method is highly biased by
interlopers, and another method is needed to control them.

VII. AVOIDING ALL BIASES WITH THE LIM-PAIR
× CMB LENSING CROSS SPECTRUM

A. Avoiding all interloper biases with LIM-only lensing

We have shown that the lensing power spectrum esti-
mated from κ̂XX κ̂XX is biased by the primary, secondary,
and trispectrum terms. We may instead try to use different

FIG. 3. For the standard LIM lensing estimator (here, κ̂XX with
X ¼ Ly-α at z ¼ 5), the lensing noise Nð0Þ (light blue) is
comparable to the lensing signal (solid black). However, the
interloper contamination (here, Hα at z ¼ 0.12) produces a
dominant bias to the lensing power spectrum. This non-Gaussian
bias is the sum of the primary bispectrum (blue dot-dashed) and the
trispectrum (blue dashed) terms. We do not show the secondary
bispectrum here, as it is negligible with respect to the primary
bispectrum and trispectrum biases. This motivates the need for the
new LIM lensing estimator we derive in this paper.
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combinations of the X and Y LIMs to reconstruct the
lensing power spectrum.
The combination κ̂XX κ̂YY avoids the interloper trispectrum,

since the interlopers in X and Y originate from different
redshifts and are therefore independent. This combination
also avoids the secondary bispectrum bias. However, it is not
free of primary bispectrum bias, making it still largely biased
by interlopers. The combination κ̂XX κ̂XY is free of trispectrum
bias, but not of primary or secondary bispectrum biases. For
this lensing cross spectrum, the interloper bias is dominant
and comes mostly from the secondary bispectrum. Finally,
the combination κ̂XY κ̂XY avoids the trispectrum and primary
bispectrum terms, but it still suffers from the secondary
bispectrum bias. However, we find that the secondary bias for
κ̂XY κ̂XY is small and can potentially be neglected. In short,
combinations from two LIMs X and Y cannot suppress all the
interloper bias terms, but the autospectrum of the “LIM pair”
lensing estimator appears to sufficiently reduce them. While
the bias to κ̂XY κ̂XY appears negligible (secondary bispectrum
only), our bispectrum calculation only includes the one-halo
term, such that it is only a lower limit. Furthermore, the
secondary bias may be larger when considering different
pairs of lines. The interloper biases for the various combi-
nations are shown in Fig. 4. Interestingly, in Fig. 4, the
interloper bias to lensing is very different for κ̂XX κ̂XY and
κ̂XY κ̂XY , even though they are both dominated by secondary
bispectrum-like terms. We explain this in Appendix C.
Using three LIMs X, Y, and Z from the same redshift,

with independent interlopers, still does not avoid all the
interloper biases. If four LIMs X, Y, Z, and W were

available from the same redshift, with independent inter-
lopers, the combination κ̂XY κ̂ZW would be entirely free of
interloper bias. Although one may hope to use CO, [CII],
Ly-α, and 21 cm LIMs from the same redshift, this prospect
remains futuristic.

B. Avoiding all the biases via CMB lensing
cross-correlation

In order to further suppress interloper biases, we now
turn to cross-correlations of LIM lensing with CMB
lensing. The combination κ̂XX κ̂CMB is free of trispectrum
and secondary bispectrum bias, but it still suffers from the
primary bispectrum. As a result, it does not reduce the
interloper bias, as illustrated in Fig. 4.
On the other hand, the combination κ̂XY κ̂CMB is entirely

free of interloper biases: it is not affected by the primary
and secondary bispectra, nor the trispectrum. This is the
main result of this paper: LIM lensing can be measured
without any interloper bias, when cross-correlating the
LIM-pair estimator with CMB lensing. Given the uncertain
and potentially large interloper biases for the standard LIM
lensing estimators, this constitutes a dramatic progress.

C. Detectability: Signal-to-noise ratio

In this section, we answer the question of the detectability
of the Cκ̂LIMκ̂CMB

L and Cκ̂null κ̂CMB
L —i.e., the cross spectrum of the

CMB lensing with LIM-pair estimator and the “nulled”
estimator, respectively—by computing its expected SNR.
We consider an idealized and futuristic experiment, signal-
dominated in the LIMs out to lmaxLIM ¼ 300–1500. Our
SNR calculation is described in detail in Appendix D. While
it is technically an upper limit, we expect it to also be a good
approximation to the truth. In short, we adopt the Gaussian
SNR formula, including the lensing noise Nð0Þ as well as the
non-Gaussian terms Bp, Bs, and T from interlopers in the
noise for Cκ̂LIM κ̂LIM

L . As κ̂Null is constructed through a
combination of κ̂XY and κ̂CMB, the XY part adds a secondary
bispectrum bias, which as we show in Fig. 4, is quite small
and can be neglected here. Thus, we consider only the Nð0Þ

terms for Cκ̂Null κ̂CMB
L SNR calculation. The various angular

resolutions assumed are conservative for the lines we
consider (Ly-α and [CII]). For instance, an experiment like
CONCERTO [48] should measure the [CII] line at z ¼ 5
with 0.240 resolution, significantly higher than assumed
here. SPHEREx [49,50] is expected to produce a Ly-α LIM
at z ¼ 5 with 600 resolution, even higher still. As Fig. 5
shows, the SNR on Cκ̂LIMκ̂CMB

L may reach several tens of σ,
allowing for a significant detection of the LIM × CMB
lensing cross-power spectrum. At the same time, the SNR
for Cκ̂Nullκ̂CMB

L is slightly lower, which is expected, but it may
still be significantly detected with an experiment like we
have considered here. For the detector noise, an experiment
with sensitivity like CONCERTO over a large sky fraction
will be required for such a detection, whereas the sensitivity

FIG. 4. Even with two LIMs X ¼ Ly-α and Y ¼ ½CII� at z ¼ 5,
whose interlopers are independent, one cannot avoid all the
interloper biases. The combinations κ̂XX κ̂XX (green), κ̂XX κ̂XY
(red), and κ̂XY κ̂XY (cyan) are dominated by the residual secondary
bispectrum term. The combinations κ̂XX κ̂YY (blue) and κ̂XX κ̂CMB
(gray) are dominated by the residual primary bias. However, the
cross-correlation of the LIM-pair estimator and CMB lensing—
i.e., κ̂XY κ̂CMB (purple)—is entirely free of interloper bias. This is
the main result of this paper.
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of a SPHEREx-like experiment may not be sufficient. As for
any LIM forecast, the theoretical uncertainty on the LIM
power spectra at high redshift is very large, which may affect
our conclusions. We relied on the halo model predictions
from Refs. [42,43], whose LIM power spectra were found in
agreement with the literature.
While upcoming experiments may be limited by sensi-

tivity and sky coverage, a futuristic experiment such as the
one we considered here can thus detect LIM lensing with
the LIM-pair lensing and the null combination, in cross-
correlation with CMB lensing. This therefore offers a
powerful way to probe the high-redshift Universe.
It has to be noted that although the “LIM pair” estimator

gets rid of the interloper biases, cross-correlation of CMB
lensing with another large-scale structure tracer can induce
higher-order biases (called Nð3=2Þ), as shown in Ref. [52].
This bias will be noticeable if the future more sensitive data
allows us to perform lensing analyses at percent-level
precision. We provide details on the source of this bias
and ways to minimize its impact in Appendix E.

VIII. CONCLUSION

Lensing from LIMs has the potential to allow lensing
tomography at higher redshift than galaxy surveys, and to
provide a new probe of the high-redshift Universe. We

show that the nulling technique allows us to selectively
extract the matter density field at z ¼ 1–5 in combination
with galaxy lensing, and at z > 5 in combination with
CMB lensing.
However, interloper foregrounds contaminating LIMs

are a major hurdle to LIM lensing. In this paper, we
quantified the lensing bias from interlopers for the first
time, showing it to be very significant for the standard LIM
lensing estimators. We derived a new LIM-pair lensing
estimator, based on two LIMs in different lines, from the
same redshift, with independent interlopers. In cross-
correlation with CMB lensing, it exactly nulls all the
interloper bias terms, which would otherwise dominate.
When using the standard lensing estimator, the non-

Gaussian interlopers can also largely enhance the lensing
noise. This enhancement is uncertain, because it depends on
our modeling of LIM bispectra and trispectra. In contrast, the
LIM-pair lensing estimator, in cross-correlation with CMB
lensing, is exactly free of interloper bias, insensitive to these
modeling uncertainties, making it dramatically more reliable.
We have shown that a simple, idealized LIM experiment

can detect LIM lensing at z ¼ 5, provided that the detector
noise is subdominant to the target lines lines in the pair
estimator (here, Ly-α and [CII]).
We have not addressed the biases to LIM lensing from the

non-Gaussianity of the target lines, rather than their inter-
lopers. These were studied in Refs. [14,15], and a bias-
hardened estimator was derived to control these biases [15].
We have also not addressed the LIM lensing biases from
continuum foregrounds, and have assumed that they can be
controlled by discarding the low-kk modes in the LIMs.
Finally, we have not quantified the bias due to the fact that
the interlopers are themselves lensed. Similarly to the case of
CMB lensing [53], we expect this bias to be small.
Combining the interloper removal techniques like voxel
masking [2,28] with the LIM-pair estimator will further help,
and we leave this study for future work. If the future studies
improve upon the interloper cleaning in the LIMs, the
quadratic estimator which we propose here could potentially
detect Cκ̂LIM κ̂CMB

L with even higher SNRs.
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FIG. 5. Including Gaussian noise and the noise from the non-
Gaussian interlopers, cumulative SNR for the LIM × CMB lensing
cross-power spectrum, where X ¼ Ly-α and Y ¼ ½CII� LIM are
shown in dashed lines for different lmax LIM. Solid lines show the
corresponding cumulative SNR for the “nulled” κ̂Null × CMB
lensing power spectrum having contributions only from z > 5.
Both the power spectra are detectable for a simple idealized
experiment, where the LIMs are signal dominated over detector
noise out to lmax LIM ∼ 1000 at z ¼ 5. The SNR is calculated with
fsky ¼ 0.4, and the CMB lensing is assumed to be noiseless out to
L ¼ 1500, as is appropriate for a CMB-S4-like experiment [51].
For different lmax LIM values, we provide the minimum angular
scale the beam will have to resolve (calculated simply as
180°=lmax LIM) in arc minutes.
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APPENDIX A: HALO MODELS FOR THE
LINES CONSIDERED

Throughout the paper, the LIM auto- and cross spectra
are computed following Refs. [42,43], using the public
code HALOGEN.3 We take the Fourier space 3D power
spectra, bispectra, and trispectra from HALOGEN and
convert them into their respective angular space 2D forms
using the thin-shell approximation. Working within the
Limber approximation, for the power spectrum this con-
version is done as

Cl ≈ V−1Pðk ¼ l=χ0; zÞ; ðA1Þ

where V ¼ χ20Δχ is the volume per steradian.
To compute the higher-point functions, specifically

bispectra and trispectra, we extend this code as follows.
For the bispectrum between interloper lines and the CMB
lensing convergence, we only evaluate the one-halo term:

BκII;1hðl1; l2; l3; zÞ ¼
Z

dχ
χ4

WκðχÞWIðχÞ2
�

c
4πν0gHðzÞ

�
2

×
Z

dmnðmÞm
ρ̄
LgðmÞ2um

�
l1

χ
; m

�

× ug

�
l2

χ
; m

�
ug

�
l3

χ
; m

�
; ðA2Þ

where Wκ is the lensing kernel of interest (e.g., CMB
or LIM lensing), and WIðχÞ simply describes the
redshift distribution of the interloper line emitters—
i.e., WIðχÞ ¼ Iχ∈½χ0;χ0þΔχ�=Δχ. To speed up the multiple
integrals, we shall further approximate umðk1; mÞ ∼
uAðk2; mÞ ∼ uBðk3; mÞ ∼ 1 (which are the Fourier trans-
forms of the galaxy density profiles inside the dark matter
halos, which we assume to follow the NFW profile) on
the scales considered, such that BκAB;1hðzÞ only needs to
be evaluated once per redshift. For the trispectrum, we
only evaluate the one-halo term, resulting in a lower limit
to the trispectrum:

T g shotðzÞ ¼
Z

dχ
χ6

WgðχÞ4
�

c
4πν0gHðzÞ

�
4
Z

dmnðmÞ

×
Z

dLgκ ðLgjmÞL4
g: ðA3Þ

It has to be noted that for the Ly-α line we consider at
z ¼ 5, the Hα line at z ≈ 0.12 acts as an interloper. Thus,
the power spectrum, bispectrum, and trispectrum corre-
sponding to the Hα line all have to be evaluated at z ¼ 0.12.
The HALOGEN code we use for this purpose relies on the
observed luminosity functions of the galaxies, which are
only available in certain redshift ranges. In case of the Hα

line, it is unfortunately not available at z ≈ 0.1. In this case,
we calculate the approximated power spectra and other
moments by assuming that the ratio of these moments at
two different redshifts where the luminosity functions are
available varies linearly with the ratio of the two redshifts.
For example, we first calculate the power spectrum of the
Hα line at z ¼ 0.8 and z ¼ 0.4, assume that the change in
power spectrum at these two redshifts scales the same way
to z ¼ 0.12, and then obtain the power spectrum at
z ¼ 0.12. This procedure will not give us the true power
spectrum or other moments; however, that does not affect
the results of our work.

APPENDIX B: LIM-PAIR LENSING QUADRATIC
ESTIMATOR: EXTENDING HO02

Reference [54] presents a discussion on the HO02 and
slightly modified versions of HO02 quadratic estimators
used in various CMB lensing analysis to date. We will build
upon the HO02 estimator. Here, we will work in the flat-sky
approximation. l are the two-dimensional Fourier wave
numbers for LIM, using L for the lensing potential.
The power spectra of the observed LIM fields are defined

as

hXðlÞYðl0Þi ¼ ð2πÞ2δðl þ l0ÞCXY
l ; ðB1Þ

where CXY
l is the total cross-power spectrum between the

Gaussian lensed fields. It can also include contributions
from other sources of variance, such as residual foreground
contamination or interlopers from different redshifts. The
angular brackets here denote taking ensemble averages
over the primordial CMB, along with the underlying large-
scale structure.
The observed LIMs are lensed due to the matter

distribution between the redshift at which the target line
was emitted and us. This lensing of the LIM results in
different Fourier modes of a given map being correlated
with each other, which would not be the case for a Gaussian
unlensed field. Using these correlations, if we can model
the power spectrum of the unlensed LIM, we can recon-
struct the lensing potential κ:

�
δ

δκðLÞ ðXðlÞYðl
0ÞÞ

�
¼ δðl þ l0 − LÞfXYðl; l0Þ; ðB2Þ

where fXYðl; l0Þ is the coupling coefficient given as

fXYðl; l0Þ ¼ −
2

L2
½C̃XY

l1
ðL · l1Þ þ C̃XY

l2
ðL · l2Þ�; ðB3Þ

where C̃XY
l is the unlensed cross-power spectrum. It is to be

noted that Eq. (B1)–(B3) are applicable for a single LIM as
well, i.e., if X ¼ Y.3https://github.com/EmmanuelSchaan/HaloGen/tree/LIM.
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For brevity, we introduce the compact notationZ
l1þl2¼L

� � �≡
ZZ

d2l1d2l2
ð2πÞ2 δðl1 þ l2 − LÞ…: ðB4Þ

From Eq. (B3), we can see that by using suitable weights
over pairs of Fourier modes, it is possible to reconstruct the
κ field:

κ̂XYðLÞ ¼
Z

l1þl2¼L

Xðl1ÞYðl2ÞFXYðl1; l2Þ; ðB5Þ

where the weights FXYðl1; l2Þ have to be determined to
minimize the variance of the estimator under the constraint

Z
l1þl2¼L

fXYðl1; l2ÞFXYðl1; l2Þ ¼ 1; ðB6Þ

which ensures that the estimator is unbiased, to first order
in κ.
The variance (or reconstruction noise) NXY is given as

hκ̂XYðLÞκ̂XYðL0Þi ¼ ð2πÞ2δðLþ L0ÞNXYðLÞ: ðB7Þ

In general, Eq. (B7) becomes

NXYðLÞ ¼
Z

l1þl2¼L

FXYðl1; l2ÞðFXYðl1; l2ÞCXX
l1

CYY
l2

þ FXYðl2; l1ÞCXY
l1
CXY
l2
Þ: ðB8Þ

Minimizing this variance under the constraint in Eq. (B6)
results in

FXYðl1; l2Þ ¼ λXYðLÞ
CYY
l1
CXX
l2

fXYðl1; l2Þ − CXY
l1
CXY
l2
fXYðl2; l1Þ

CXX
l1

CYY
l2
CYY
l1
CXX
l2

− ðCXY
l1
CXY
l2
Þ2 ; ðB9Þ

λXYðLÞ≡
�Z

l1þl2¼L

fXYðl1; l2Þ
CYY
l1
CXX
l2

fXYðl1; l2Þ − CXY
l1
CXY
l2
fXYðl2; l1Þ

CXX
l1

CYY
l2
CYY
l1
CXX
l2

− ðCXY
l1
CXY
l2
Þ2

�
−1
: ðB10Þ

This estimator is similar to the Hu and Okamoto [44]
(HO02) estimator for CMB lensing.
Applying this estimator on LIM X alone, we get

FXXðl1; l2Þ ¼ λXXðLÞ
fXXðl1; l2Þ
CXX
l1

CXX
l2

; ðB11Þ

λXXðLÞ≡
�Z

l1þl2¼L

½fXXðl1; l2Þ�2
CXX
l1

CXX
l2

�−1
: ðB12Þ

APPENDIX C: NON-GAUSSIAN
INTERLOPER BIASES

Let us calculate the primary and secondary bispectrum
bias terms for the lensing power spectrum. Here, we will
present the calculation for the XX quadratic estimator,

Xðl1Þ ¼ tðl1Þ þ gðl1Þ; ðC1Þ

where t and g denote the target line and the corresponding
interloper line, respectively, in the map X. With this, we have

hκ̂XXðLÞκ̂XXðL0Þi¼
Z

l1þl2¼L

Z
l3þl4
¼L0

FXXðl1;l2ÞFXXðl3;l4Þ

×hXðl1ÞXðl2ÞXðl3ÞXðl4Þið2πÞ2δðLþL0Þ:
ðC2Þ

The ensemble average in Eq. (C2) hXðl1ÞXðl2ÞXðl3ÞXðl4Þi
can be decomposed and summarized as follows.
After combining factors outside of the ensemble average

in Eq. (C2) with terms in Table I, we get
(1) Target signal: The first term gives the desired κ

power spectrum Cκ̂ κ̂
L after removing the Gaussian

noise bias.
(2) Primary bispectrum bias to Cκ̂ κ̂

L : This bispectrum
comes from the correlation between the κ and
foreground interloper g at the same redshift. This
term becomes

hκ̂XXðLÞκ̂XXðL0ÞiB ¼
�Z

l3þl4
¼L0

FXXðl3; l4ÞBκgg
L;l3;l4

þ
Z

l1þl2¼L

FXXðl1; l2ÞBκgg
L0;l1;l2

�
ð2πÞ2δðLþ L0Þ

¼ 2

Z
l1þl2¼L

FXXðl1; l2ÞBκgg
−L;l1;l2 ; ðC3Þ
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since the two integrals are equal.
Cross-correlating XX and XY pairs is equivalent to

replacing one of the X legs in the XX-XX cross-correlation
with Y. This results in one of the terms in the bracket above
disappearing, and thus the result is exactly half of Eq. (C3).
Cross-correlating the XX and YY estimator, we get the
same terms as we do as in Eq. (C3). However, in this case,
the two integrals are not equal, and thus we have to keep
them both:

hκ̂XXðLÞκ̂YYðL0ÞiB ¼
�Z

l3þl4
¼L0

FYYðl3; l4ÞBκgYgY

L;l3;l4

þ
Z

l1þl2¼L

FXXðl1; l2ÞBκgXgX

L0;l1;l2

�

× ð2πÞ2δðLþ L0Þ; ðC4Þ

where gX and gY represent the foreground interlopers for
lines X and Y, respectively. XY-XY estimator cross-corre-
lation does not produce this term.
(3) Secondary bispectrum bias to Cκ̂ κ̂

L : This term has
four components, one of which has been shown in
Table I. This is equivalent to applying the lensing
quadratic estimator with one leg coming from tðl1Þ
and the other one from tðl3Þ. The lensing weights
FXXðl1; l2Þ and FXXðl3; l4Þ, however, have been
determined to optimize the quadratic estimator for
the l1, l2 and l3, l4 pairs, respectively. Thus, the κ
reconstructed this way with inefficient weights is
suboptimal. Similar to primary bispectrum bias, this
κ is correlated with the low-redshift interloper line,
and this gives rise to the bispectrum. As the lensing
reconstruction is not the optimal one, this bispec-
trum is called the secondary bispectrum, given as

hκ̂XXðLÞκ̂XXðL0ÞiC ¼
Z

l1þl2¼L

Z
l3þl4
¼L0

FXXðl1; l2ÞFXXðl3; l4Þhðtðl1Þtðl3ÞÞðgðl2Þgðl4ÞÞicð2πÞ2δðLþ L0Þ

¼
Z

l1þl2¼L

Z
l3þl4
¼L0

FXXðl1; l2ÞFXXðl3;−L − l3Þ½fXXðl1; l3ÞBκgg
l1þl3;l2;−L−l3

þ fXXðl1; l4ÞBκgg
l1þl4;l2;−L−l4 þ fXXðl2; l3ÞBκgg

l2þl3;l2;−L−l3 þ fXXðl2; l4ÞBκgg
l2þl4;l1;−L−l4 �; ðC5Þ

where we make use of Eq. (B2). This term does not arise for XX-YY cross-correlation. For the XX-XY case,
we have

hκ̂XXðLÞκ̂XYðL0ÞiC ¼
Z

l1þl2¼L

Z
l3þl4
¼L0

FXXðl1; l2ÞFXYðl3;−L − l3Þ½fXYðl1;−L − l3ÞBκgXgX

l1−L−l3;l2;l3

þ fXYðl2;−L − l3ÞBκgXgX

l2−L−l3;l1;l3 �; ðC6Þ

and for the XY-XY case, this simply changes to

hκ̂XYðLÞκ̂XYðL0ÞiC ¼
Z

l1þl2¼L

Z
l3þl4
¼L0

FXYðl1; l2ÞFXYðl3;−L − l3Þ½fXXðl1; l3ÞBκgYgY

l1þl3;l2;−L−l3

þ fYYðl2;−L − l3ÞBκgXgX

l2−L−l3;l1;l3 �: ðC7Þ

TABLE I. Different terms in the expansion of the ensemble average of Eq. (C2). A detailed
description of each term is given in the text.

Target signal hκκi hðtðl1Þtðl2ÞÞðtðl3Þtðl4ÞÞic
Primary bispectrum Bκgg hðtðl1Þtðl2ÞÞðgðl3Þgðl4ÞÞic þ hðgðl1Þgðl2ÞÞðtðl3Þtðl4ÞÞic
Secondary bispectrum Bκgg hðtðl1Þgðl2ÞÞðtðl3Þgðl4ÞÞic þ 3 permutations
Trispectrum T gggg hðgðl1Þgðl2ÞÞðgðl3Þgðl4ÞÞic
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Figure 4 shows that the secondary bispectrum term is much
larger for κ̂XX κ̂XY than for κ̂XX κ̂XX and κ̂XY κ̂XY . This can be
understood as follows: Intuitively, one would expect the
primary and secondary bispectrum terms to have similar
orders of magnitude. However, the secondary bispectrum
turns out to be much smaller than the primary for κ̂XX κ̂XX,
because the four terms inside the secondary bispectrum turn

out to cancel two-by-two almost exactly. When considering
instead κ̂XX κ̂XY or κ̂XY κ̂XY, only two of the four terms are
present, which breaks the cancellation only for κ̂XXκ̂XY.
(4) Trispectrum bias to Cκ̂ κ̂

L : Since the density field is
non-Gaussian, the foreground interlopers have a
nonzero trispectrum which gives rise to a bias to
Cκ̂ κ̂
L . This term’s contribution to Eq. (C2) becomes

hκ̂XXðLÞκ̂XXðL0ÞiD ¼
Z

l1þl2¼L

Z
l3þl4
¼L0

FXXðl1; l2ÞFXXðl3; l4ÞT gggg
l1;l2;l3;l4

ð2πÞ2δðLþ L0Þ; ðC8Þ

where hðgðl1Þgðl2ÞÞðgðl3Þgðl4ÞÞic ¼ T gggg
l1;l2;l3;l4

is the trispec-
trum of the interloper line. We do not have this term for the
XX-YY, XX-XY, and XY-XY estimator cross-correlations,
as the foregrounds for line X and Y do not lie at the same
redshift.

APPENDIX D: SIGNAL-TO-NOISE RATIO FOR
THE LENSING POWER SPECTRUM

We have shown that the cross-correlation Cκ̂XY κ̂CMB
l is

immune to interloper biases. Here, we describe the procedure
and assumptions we follow to calculate the signal-to-noise
ratio (SNR) on Cκ̂XY κ̂CMB

l . If the fields κ̂XY and κ̂CMB were
Gaussian, the standard formula for the SNR of a cross
spectrum would apply:

�
S
N

�
2

¼
Xlbmax
lbmin

ð2lb þ 1ÞfskyΔl
ðCκ̂XY κ̂CMB

lb
Þ2

ðCκ̂XY κ̂CMB
lb

Þ2 þ Cκ̂XY
lb

Cκ̂CMB
lb

;

ðD1Þ

with

Clb ¼
1

Δl

X
l∈½l1;l2�

Cl; ðD2Þ

where Δl is the bin width and fsky is the sky fraction

observed. The autospectraCκ̂XY
lb

andCκ̂CMB
lb

include the lensing
signals, their noise biases, and any potential additional biases.
In other words,

Cκ̂XY
l ¼ CκXY

l þ N0
LIM þ Bp þ Bs þ T

Cκ̂CMB
l ¼ CκCMB

l þ N0
CMB; ðD3Þ

where N0 is the Gaussian reconstruction noise given by
Eq. (B8), and Bp, Bs, and T are the primary and secondary
bispectrum biases and the trispectrum bias, respectively, as
shown in Appendix C. In practice, CMB lensing from
Simons Observatory and CMB-S4 will be signal-dominated

on the scales we consider here (L≲ 1500), such that the
reconstruction noise N0

CMB is negligible. Here are the
assumptions we make while calculating the SNR this way:
(1) We follow Eq. (D1) to compute the SNR, implicitly

assuming that the reconstructed lensing fields κ̂XY
and κ̂CMB are Gaussian. In reality, this is not the case,
since they are quadratic in the data (CMB or LIM),
and in the case of the LIM, the data itself is non-
Gaussian. This should lead to mode coupling be-
tween the various L-bins, whereas Eq. (D1) only
includes the diagonal elements of the covariance
matrix. However, we do include some of these terms,
as we explain now.

(2) The interloper foregrounds present in LIM X and Y
do not bias the cross spectrum with CMB lensing;
however, they do bias the autospectrum of κ̂XY,
which contributes to the covariance matrix in
Eq. (D1) via the terms Bp, Bs, and T in Eq. (D3).
In other words, the LIM-pair estimator successfully
nulls the interloper lensing bias, but not the inter-
loper lensing noise. We do include these terms in the
calculation.

(3) As described in Refs. [14,15], the fact that the target
lines X and Y themselves are non-Gaussian causes
additional bias and noise, similar to the terms Bp, Bs,
and T . We neglect these terms here and throughout
the paper, assuming that the bias-hardening method
of Ref. [15] allows one to reduce them.

(4) Like the target lines, the interloper foregrounds are
lensed as well, giving rise to a lensed foreground
term [14,53]. This term does not bias the measured
cross spectrum but acts as an additional source of
noise. We neglect this term here.

(5) Finally, like in CMB lensing, higher-order noise
biases NðiÞ contribute to the noise on the cross
spectrum, potentially lowering its SNR [52]. Evalu-
ating these terms is beyond the scope of this paper,
and we therefore neglect them.

Therefore, with all these assumptions, the SNR we calculate
can be considered an upper limit within the configuration we
have considered.
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APPENDIX E: Nð3=2Þ BIAS IN CMB LENSING
CROSS-CORRELATION

As shown by Ref. [52], the cross-power spectrum
between quadratic-estimator-based CMB lensing recon-
struction and a large-scale structure tracer suffers from a
bias term called Nð3=2Þ bias. The CMB lensing autospec-
trum suffers from this bias as well [55]. This bias arises
due to the matter bispectrum induced by nonlinear large-
scale structure growth and post-Born lensing corrections.
Thus, although cross-correlation of κ̂XY (or κ̂Null) and
κ̂CMB avoids the bias due to interlopers, it will suffer from
Nð3=2Þ bias. Here, the kernel for κ̂Null is constructed out of
a combination of LIM lensing and CMB lensing kernels.
Thus, the cross-correlation of CMB lensing with κ̂Null
involves the autopower spectrum of CMB lensing and the
cross-power spectrum between CMB lensing and LIM
lensing.

This bias can be ∼2% (∼5%) of the cross-power spectrum
of the lensing field reconstructed with the TT estimator for a
SO-like (or CMB-S4-like) experiment and galaxy lensing at
z ∼ 2 [52] at L < 1000. Here, T denotes the temperature
modes of the CMB map. Thus, even with a CMB-S4 like
experiment, this bias will be of the order of a few percent,
and thus small. One way to get rid of this bias is to model it
analytically, as done by Ref. [52]. However, the modeling
uncertainties on the LIM power spectra might make it
difficult to accurately estimate this bias. The value of the
Nð3=2Þ bias, however, falls down to <0.5% when the lensing
field is reconstructed with the EB estimator—i.e., using only
the polarization data (E and B modes of CMB polarization)
[52]. Both SO and CMB-S4 will successfully measure the
lensing field using the sensitive polarization data. Therefore,
using the lensing field reconstructed with the EB estimator to
cross-correlate with κ̂XY (or κ̂Null) will significantly suppress
this bias.
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