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The runaway collapse phase of a small dark matter cluster inside a white dwarf star encompasses a
reversible stage, where heat can be transferred back and forth between nuclear and dark matter. Induced
nuclear burning phases are stable and early carbon depletion undermines previous claims of type Ia
supernova ignition. Instead, mini black holes are formed at the center of the star that either evaporate or
accrete stellar material until a macroscopic sub-Chandrasekhar-mass black hole is formed. In the latter case,
a 0.1 to 1 second lasting electromagnetic transient signal can be detected upon ejection of the white dwarf’s
potential magnetic field. Binary systems that transmute to black holes and subsequently merge emit
gravitational waves. Advanced LIGO should detect one such sub-Chandrasekhar binary black hole inspiral
per year, while future Einstein telescope-like facilities will detect thousands per year. The effective spin
parameter distribution is peaked at 0.2 and permits future studies to disentangle from primordial sub-
Chandrasekhar black holes. Such signatures are compatible with current direct detection constraints, as
well as with neutron star constraints in the case of bosonic dark matter, even though they remain in conflict
with the fermionic case for part of the parameter space.
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I. INTRODUCTION

Dark matter (DM) collapse under self-gravity has first
been studied by [1] in the context of neutron stars (NSs).
The authors show that a critical number Nsg of particles
has to accumulate for collapse under self-gravity to
initiate. This criterion was thence popularized as the
“collapse criterion” and applied to explore DM phenom-
enology in NSs [2–5], white dwarf (WD) stars [2,6–9],
and main sequence stars [10,11]. Yet, little attention has
been devoted to the dynamics of collapse inside the star
itself.
The process is intrinsically iterative: scattering between

DM and stellar matter (SM) particles reduces the total
energy of DM particles, while gravitational self-attraction
and the resulting orbital hardening increases the DM kinetic
energy. The runaway nature of the process lasts as long as
heat imparted to the scattered SM particles is efficiently
evacuated to the rest of the star. The process is also
reversible, as long as scatterings are elastic. If SM particles

became more energetic, on average, than DM particles,
the process would reverse and the DM cluster would
expand.
The question of heat evacuation in the baryonic compo-

nent has been addressed for NSs [1], but so far, to our
knowledge, never in the context of nondegenerate stars
(includingWD stars, which are electron-degenerate, but not
nucleon-degenerate).
Here, we seek an answer by deriving a system of first-

order differential equations that permit us to follow DM and
nuclear macroscopic properties along the elastic collapse
phase. We are particularly interested in previously inves-
tigated astrophysical phenomenology, including claims of
type Ia supernova (SN Ia) ignition [6–9] and collapse to a
black hole (BH) [2,9].
The present-day understanding is that “normal” SNe

Ia originate either from deflagrations with transition
to detonation in Chandrasekhar-mass (∼1.4 M⊙) WDs
[12,13], or from pure detonations in sub-Chandrasekhar-
mass WDs [14–18]. While the former channel unlikely
produces all events [19], the latter is still lacking a
convincing ignition mechanism [20], see, however,
Ref. [21]. Additionally, pure deflagrations can reproduce
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certain types of “peculiar” SNe Ia [22–25], and their
ignition from DM collapse hasbeen studied from thermo-
nuclear ignition [6–9], pycnonuclear ignition [26], and
Hawking radiation ignition [7,9]. It has also been ques-
tioned if the observed correlation between SN Ia magni-
tudes and host galaxy masses has its origin in the local
DM environment [27].
The formation of a mini BH inside a WD can lead to the

implosion of the latter. In principle, this can generate BHs
of mass 0.3–1.4 M⊙, which may interact with other BHs,
NSs, or WDs, and generate detectable gravitational waves
(GWs) [5]. While generally, the observation of a BH with
mass < 1.4 M⊙ is considered a smoking gun of exotic
new physics [28], BHs in this mass range could be
attributed to either DM collapse inside a NS [4], to a
primordial BH from the QCD phase transition (produced
with 0.7 M⊙ and taking into account accretion of gas
[29–32]), to the capture of a primordial BH with asteroid
mass by a NS and subsequent transmutation to a macro-
scopic BH ([33], even though constraints on these
primordial BHs [34,35] were largely overestimated
[36,37]), or to BH formation through atomic DM [38].
As we shall see, given that WDs account for the
final evolutionary state of 97% of main sequence stars
[39], GWs from the coalescence of binary BHs from
transmuted binary WDs should already be observed with
the advanced Laser Interferometer Gravitational-Wave
Observatory (aLIGO) [40,41]. In addition, the effective
inspiral spin parameter distribution is inherited from the
progenitor WD angular momentum distribution and per-
mits to disentangle this sub-Chandrasekhar BH formation
channel from others.
The present work investigates collapse of nonself-

annihilating DM, such as, for example, asymmetric
DM [1,2,42–44]. Asymmetric DM is motivated as it can
explain the matter-antimatter asymmetry in the Universe
(see, e.g., Ref. [43], for a review). For the sake of generality,
we also include a Yukawa-type nongravitational attractive
self-interaction with potential VðrÞ ¼ α expð−μrÞ=r,
where μ is the mediator mass and α a coupling
constant.
We use natural units, c ¼ kB ¼ ℏ ¼ 1, while keeping G

explicit. Stellar quantities are indexed with an asterisk (*),
while DM quantities are left without. The infinity symbol
(∞) indicates stellar core quantities far from the DM
cluster. We use the term stellar matter (SM) to designate
initially ions, but later, as collapse proceeds and locally
heats the center of the star, these are crushed to nucleons
and then to partons (quarks and gluons). Therefore, we
stick to the generic term SM particles keeping its meaning
in mind.
The present paper is organized as follows. In Sec. II we

derive the general set of “elastic” collapse equations. In
Sec. III we explore phenomenology in WD stars. We
present our conclusions in Sec. IV.

II. GENERAL EQUATIONS

A. DM capture and accumulation

LetNðtÞ be the number of particles of a DM cluster at the
center of a star with age t. The number of captured particles
during an interval dt is dtΓcap, where Γcap is the capture
rate [45,46]1

Γcap ¼
ffiffiffiffiffiffi
6π

p
R2�v2escρgal
mvgal

×
X∞
j¼1

pjðτÞ½1þ δ − ðγj þ δÞe−ðγj−1Þ=δ�; ð1Þ

where vesc ≡ ð2GM�=R�Þ1=2 is the escape velocity of the
star, R� andM� are radius and mass of the star, respectively,
δ≡2v2gal=3v

2
esc, γj≡ð1−βþ=2Þ−j, β�≡4mm�=ðm�m�Þ2,

m and m� are DM and SM particle masses, ρgal and vgal are
the galactic DM density and velocity dispersion, respec-
tively, and

pjðτÞ ¼ 2

Z
1

0

ye−yτðyτÞjdy
j!

ð2Þ

is a Poisson weighting that gives the probability of j scatters
for the optical depth τ≡ 3σ�=2σsat, where y is a kinematical
quantity, σ� is the DM-SM scattering cross section
and σsat ¼ R2�=N� is the saturation cross section, where
N� ¼ M�=m� is the total number of SM particles. Once
captured, DM particles settle at the center of the star, where
they thermalize after a timescale (see the Appendix B for a
derivation)

tth ¼
3m

ρ�σ�v�

�
3

ffiffiffi
2

p
π

16

v�
vgal

þ 1

2
þ ln

�
m
m�

��
; ð3Þ

where ρ� is the central density of the star and v� the mean
velocity of SM particles. The number of captured and
thermalized particles during an interval dt is dN. Since
dtΓcap must be equal to ðdtþ dtthÞðdN=dtÞ, where dtth ≡
tthðtþ dtÞ − tthðtÞ is the increase of thermalization time
during dt, the number increase rate of DM particles is

dN
dt

¼ Γcap

�
1þ dtth

dt

�
−1
; ðt ≥ tth;0Þ ð4Þ

where tth;0 is the initial thermalization time, dN=dt ¼ 0 for
t < tth;0, and tth;0 is the larger solution of t ¼ tth½T�∞ðtÞ�.
The time derivative of the thermalization time is

1see also Refs. [47,48] for some improvements and Appen-
dix A of Ref. [49] for derivations of analytical approximations.

STEIGERWALD, MARRA, and PROFUMO PHYS. REV. D 105, 083507 (2022)

083507-2



dtth
dt

¼ −
3m

2ρ�σ�v�T�∞

�
1

2
þ ln

�
m
m�

��
dT�∞
dt

; ð5Þ

where T�∞ is the stellar core background temperature and
dT�∞=dt its time derivative. If the stellar core temperature
is constant, we have dN=dt ¼ Γcap and, integrating,
NðtÞ ¼ Γcapt.

B. Self-attraction and collapse

The mean potential energy per DM particle at the center
of a star at r ¼ 0 is (see, e.g., Ref. [4] and Appendix A)

U ¼ −
4πGρ�mR2

5
−
3GNm2

5R

−
3αNe−μR0

2μ2R3
ð3þ 3μR0 þ μ2R0

2Þ; ð6Þ

where R is the radius of the DM cluster and R0 ¼
Rð4π=3NÞ1=3 is the mean interparticle distance. The terms
on the right-hand side of Eq. (6) account for contributions
coming from (1) gravitational attraction due to the density
of the star, (2) gravitational self-attraction, and potentially
(3) nongravitational self-attraction.2 It is easy to verify that
the accumulation timescale ðdN=dtÞ−1 is much longer than
the orbital timescale of DM particles ðR3=GMÞ1=2, where
M ¼ Nm is the total thermalized DM mass, hence the DM
cluster energy repartition is given by the virial theorem,
with the mean kinetic energy per particle K ¼ −U=2, and
the mean total energy per particle is E ¼ K þ U ¼
U=2 ¼ −K.
Despite the sporadic nature of individual scatterings, the

average per particle energies can be treated as differential
functions, and we can write, for example, E as a total
differential of N and R,

dE ¼ ∂E
∂N dN þ ∂E

∂RdR; ð7Þ

where from Eq. (6) and using the virial theorem,

∂E
∂R ¼ −

4πGρ�mR
5

þ 3GNm2

10R2
þ 3αN
4R4μ2

fðμR0Þ; ð8Þ

∂E
∂N ¼ −

3Gm2

10R
−

α

4R3μ2
fðμR0Þ; ð9Þ

where we have defined fðyÞ≡ e−yð9þ 9yþ 4y2 þ y3Þ.
As long as ∂E=∂R > 0, DM particles stay in thermal

equilibrium with the star (K ¼ K�) and settle roughly
inside the “thermal radius” [1]3

Rth ¼
�

15T�∞
4πGρ�m

�
1=2

: ð10Þ

The actual radius during the adiabatic phase decreases
slightly over time and has to be computed numerically in
the general case, but in the absence of nongravitational self-
attraction (i.e., α ¼ 0), it is the larger positive solution of
the cubic equation (6)

R
Rth

¼
�
−
η

2
þ
�
η2

2
−

1

27

�
1=2

�
1=3

þ 1

3

�
−
η

2
þ
�
η2

2
−

1

27

�
1=2

�−1=3
; ð11Þ

where η≡ N=Nsg, and where Nsg ≡ 4πρ�Rth
3=3m is the

critical number for self-gravitation of Ref. [1]. From
Eq. (11), it is evident that the exact collapse criterion
for the case of vanishing nongravitation attraction is
N=Nsg ≥ 2=ð3 ffiffiffi

3
p Þ ≈ 0.3849, which is slightly lower than

the criterion N=Nsg ≥ 1 of Ref. [1]. In the general case, the
runaway collapse criterion is

∂E
∂R ≤ 0: ð12Þ

When this condition is satisfied, not only the DM cluster
but also the SM enclosed by the DM cluster drop out of
local thermodynamic equilibrium.

C. From kinematics to dynamics

Assuming elastic scatterings with nondegenerate SM,
the mean variation of the total DM energy per DM-SM
scatter is

ΔE ¼ 1

ð2πÞ2
Z

2π

0

Z
2π

0

ΔEðθ; θ�Þdθdθ� ð13Þ

where the integrals are taken over the incidental angles θ
and θ� with respect to the line of centers and where (see
Appendix C 1 for a derivation)

ΔEðθ;θ�Þ¼2½Ep2�cos2θ�−E�p2cos2θ

þðE−E�Þpp�cosθcosθ��
× ½ðEþE�Þ2−ðpcosθþp�cosθ�Þ2�−1 ð14Þ

is the energy gain of DM particles colliding with nuclei
for given initial total relativistic energies E ¼ K þm and2For simplicity, we have assumed a constant distribution of

DM particles inside R (a step function), the differences with a
Maxwell-Boltzmann distribution are minor (see Appendix A).
In Ref. [4], the numerical factor in term (1) is 8π instead
of 4π.

3Note that the numerical factor on the right-hand side of
Eq. (10) is 9=8π in Ref. [1], 15=8π in Ref. [4], while it is 9=4π in
Ref. [6].
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E� ¼K�þm� (including rest mass but not potential energy),
and momenta p¼ðE2−m2Þ1=2 and p� ¼ðE�2−m�2Þ1=2.
In the nonrelativistic limit, Eq. (13) reduces to

ΔE ¼ −
βþ
2
ðK − K�Þ ð15Þ

whereβþ ≡ 4mm�=ðmþm�Þ2. Equation (15) reduces to the
usual formulaΔE ¼ βþK=2 [e.g., [50]], valid whenever the
temperature of the star can be neglected, e.g., during capture
and the initial phase of thermalization. Note that in stars
with degenerate nuclear matter (e.g., NSs), considerations
are fundamentally different, because postcollision energy
states < EF are Fermi blocked for nuclear particles [1].
The mean timescale between DM-SM scatters is

Δt ¼ 1

n�σ�vrel
; ð16Þ

where n� ¼ ρ�=m� is the number density of SM, as seen by
a nonrelativistic observer, and vrel is the mean relative
velocity. For the present purpose, DM particles can be
considered as nonrelativistic. The mean relative velocity in
Eq. (16) can be shown to be (see, e.g., Ref. [51], and
Appendix D)

vrel ¼
2½ð1þ ζÞ2K3ðξÞ − ðζ2 − 1ÞK1ðξÞ�

ξK2ðxÞK2ðx�Þ
; ð17Þ

where ξ≡ xþ x� and ζ ≡ ðx2 þ x2�Þ=2xx� are auxiliary
variables and x≡m=T and x� ≡m�=T� are the standard
thermal variables, KiðxÞ is the modified (or hyperbolic)
Bessel function of the second kind (not to confuse with the
kinetic energy that we denote K as well). In the non-
relativistic limit, vrel ¼ ½8ðmT� þm�TÞ=πmm��1=2.
Assembling the pieces, we obtain the time variation of

the total DM mean per particle energy from the ratio of
Eqs. (13) and (16)

dE
dt

¼ ΔE
Δt

: ð18Þ

On the other hand, dividing Eq. (7) by dt, we obtain the
time derivative of the collapse scale (for ∂E=∂R ≠ 0)

dR
dt

¼
�∂E
∂R

�
−1
�
dE
dt

−
∂E
∂N

dN
dt

�
; ð19Þ

where the terms on the right-hand side are given by
Eqs. (8), (18), (9) and (4), respectively.

D. Heat diffusion

Starting from the diffusion equation of stellar specific
thermal energy e� ¼ K�=m� (Fick’s second law)

∂e�
∂t −D∇2e� ¼ ½heat sources�; ð20Þ

where D ¼ κ=cpρ� is the thermal diffusivity, where κ is the
thermal conductivity and cp is the specific heat capacity at
constant pressure. On the right-hand side of Eq. (20) we
have heat release from DM-SM scattering and, potentially,
nuclear reactions’ heat release. DM-SM scatterings liberate
N times the energy rate −dE=dt, given by Eq. (18), per
stellar mass 4πρ�R3=3.
Using the finite difference approximation, the Laplacian

at r ¼ 0 can be written as ∇2e�jr¼0 ≃ −6ðe� − e�∞Þ=R2

[52] [p. 149].4 With this approximation, we obtain a closed
form for the time derivative at r ¼ 0 of the stellar specific
energy

∂e�
∂t ¼ −

6Dðe� − e�∞Þ
R2

−
3N

4πρ�R3

dE
dt

þ
X
i

_qi; ð21Þ

where the terms on the right-hand side account for con-
tributions from (1) diffusion cooling, (2) DM scattering
heating remembering that dE=dt < 0 during runaway
collapse, and (3) nuclear reactions’ heating, where _qi is
the specific energy generation rate due to nuclear reactions
of species i.
The system is closed with the specification of an

adequate equation of state fðρ�; T�; P�; e�Þ ¼ 0. Thus,
equations (4), (19), and (21) constitute a closed set of first
order differential equations, that determine the evolution of
DM collapse in the elastic regime, i.e., the cluster particle
number NðtÞ and its radius RðtÞ, as well as the evolution of
specific energy of nondegenerate SM at finite heat diffu-
sion e�ðtÞ.
In this analysis, we have neglected the effect of pressure

increase due to heating of stellar matter. This assumption is
valid for WD stars where pressure is dominated by electron
degeneracy, but might not be valid in main sequence stars,
and density modifications can be computed with the help
of TOV equation (see, e.g., Ref. [10] for a study of DM
collapse in main sequence stars).
We note that it is also possible to determine the nuclear

specific energy at each integration step using Fick’s first
law (see, e.g., Ref. [53]), however, with the cost of solving,
at each integration step, a nonlinear find root procedure
which can be quite time consuming, specially in the
relativistic regime where find root coefficients (ΔE) are
numerical integrals.

4To convince oneself, one can naturally assume that the
specific energy profile is e� ∝ expð−r2=2R2Þ for a Gaussian
source, then the Laplacian at r ¼ 0 is ∇2e�jr¼0 ¼ −e�=R2.
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E. Final stages

1. Fireball evolution

The reversible collapse process presented so far is valid
as long as scatterings are predominantly elastic. Once the
post-collision energy of stellar particles exceeds 200 MeV
(Hagedorn limit, TH ∼ 1.7 × 1012 K), baryonic particle
creation is favored over further heating of stellar matter,
and a region of quark-gluon plasma (QGP), also called
fireball, is created [54].
We expect that collapse then enters an irreversible

(“inelastic”) stage that quickly leads to the formation of
a BH. This assumption is justified unless partons (quarks
and gluons) become degenerate and their Fermi sea filled
up to mean DM kinetic energy. Since at fireball formation,
DM particles are already extremely energetic, we argue that
this situation does not occur, though care should be taken.
A thorough investigation of the fireball regime exceeds by
far the scope of the present article and should be treated in a
dedicated study.
We caution again that DM collapse might follow very

different rules in the centers of NSs where matter is
expected to be in a degenerate QGP state from the
beginning (see, e.g., [48]).

2. BH evolution

A BH is formed when R=N < 2Gm and N > NCh,
where NCh ≃ ðMPl=mÞd is the Chandrasekhar number
where d ¼ 2 for bosons [55] and d ¼ 3 for fermions [2],
respectively, and where MPl ¼ 1=

ffiffiffiffi
G

p
is the Planck mass

[56]. For all considered DM models (see Sec. III) and
assuming no substructure (see, e.g., Ref. [38] for a
counterexample), we find that the DM cluster does not
become degenerate.
The BH’s initial mass is M ¼ Nm (neglecting the tiny

amount of stellar matter engulfed in the process), and its
temporal evolution is given by

dM
dt

¼ 4πρ�G2M2

c3�
−

1

15360πG2M2
þm

dN
dt

; ð22Þ

where the terms on the right-hand side account for con-
tributions from (1) Bondi accretion, where c� is the local
sound speed of the star, (2) Hawking radiation, and (3) DM
capture and thermalization, where dN=dt is given by
equation (4). If the second term dominates, the BH
evaporates (M → 0) and a new DM collapse cycle begins.
Otherwise, the star is swallowed by the BH (M → M�).
We anticipate here noting that in WD stars, for

m≳1011GeV, the mean free path between ions,
ðρ�=m�Þ−1=3, exceeds the BH’s sound horizon, 2GNm=c2s ,
and Bondi accretion in Eq. (22) is no longer valid. In this
regime, accretion is either nearly collisionless or quantum
(see, e.g., Ref. [57], and references therein). However, we

have checked that these effects have little impact on the
implosion/evaporation limit in Fig. 2.

III. PHENOMENOLOGY WITH WD STARS

A. Input physics

1. Nuclear structure

We assume WDs composed of equal parts of carbon and
oxygen, with mean mass number A ¼ 14. The cross-section
between DM and SM particles, σ�, depends on the
scattering momentum transfer, Δp, and the de Broglie
wavelength of nuclei, Δr ¼ A1=3rn, where rn ¼ 1.25 fm is
mean separation between nucleons (protons or neutrons) in
the nucleus. If ΔpΔr ≥ 1=2, scattering is coherently
enhanced, σA ≃ A2½3j1ðyÞ=y�2 expð−y2=3Þσn, where σn is
the DM-nucleon cross-section, y≡ 2ΔpΔr and j1 is the
Bessel function of the first kind [58,59]. Otherwise,
σA ¼ Aσn. We neglect additional form factors (see, e.g.,
Ref. [9], for a very detailed discussion).

2. Nuclear reactions

At the time of collapse, WDs have cooled down and
crystallization has started from the center [60]. We model
the background core temperature by a simple fitting
formula T�∞ ≃min½108; 3 × 106ðt=GyrÞ−1� K (see, for
example, [61]). The radial temperature profile of the heated
WD material drops quickly to the background core temper-
ature T�∞ on a scale of the characteristic radius R, such that
elemental diffusion is negligible between the heated region
and the outside.5 Therefore, the concentration Xi of species
i drops with time according to

dXi

dt
¼ −ρ�

λi
M̄i

; ð23Þ

where λi and M̄i are reaction rate and mean molar mass of
species i, respectively.
In the present analysis, we limit our investigation to the

12Cðγ; αÞ12C reaction, since it is the most interesting for SN
Ia phenomenology. We use the reaction rate of Ref. [62],
and assume initially XC ¼ 0.5. The specific nuclear energy
generation rate can be written as [62]

_qi ¼ fiρ�
NAQ̄i

2

X2
i

M̄2
i
λi; ð24Þ

where NA is Avogadro’s constant, Q̄i is the mean
energy liberated per reaction, and fi is a factor
accounting for electron screening. For carbon fusion,

5It is easy to show that the temperature profile drops with
∝ 1=r outside the region where heat is released. Also, if the star is
at a temperature ∼107, nuclei are stuck in a crystal lattice.
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Q̄C ≃ 3 MeV, M̄C ¼ 12 gmol−1 and fC ≃ exp½3.5ðρ�=
109 g cm−3Þ1=3ðT�=109 KÞ−1� [14].

3. Heat diffusion

WDs have thermal diffusion dominated by relativistic
electronswhenρ� ≳ 106 g cm3 [63].Weuse an interpolation
of the results of [64]6 for the thermal conductivity, finding
that κ ≃ 2.4 × 1017 erg cm−1 s−1K−1ðρ�=108 g cm−3Þ1=2
ðT�=107 KÞ1=2, strictly valid for T� ∈ ½103; 109� K and
ρ� ∈ ½10−6; 109� g cm−3. In the absence of predictions for
higher temperatures, we extrapolate their results, finding,
reassuringly, agreement with κQGP ≃ 1020 erg cm−1 s−1K−1

[e.g., [65]] at the Hagedorn temperature. The equation
of state of ideal gas ions is simply e� ¼ 3T�=2m�
while the specific heat capacity at constant pressure is
cp ¼ 5=2A [63].

4. Numerical integration

We integrate the system (N, R, e� and XC) according to
the previously derived equations (4), (19), (21) and (23)
using a 4th order Runge-Kutta method with adaptive time
step. Initial conditions are ð0; Rth; e�∞; 0.5Þ. We investigate
three WD masses: 0.6, 1.0 and 1.4 solar masses.
In Fig. 1, we illustrate the time evolution of the collapse

scale for some selected DM models highlighting the
previously debated collapse phases. In Fig. 2, we show
the parameter regions where collapse leads to runaway
(black), WD implosion (purple) and Hawking evaporation
(orange) in less in less than 0.1 Gyr (dotted), 1.0 Gyr
(dashed) and 10 Gyr (full) for a 1.4 M⊙ WD (top panel)
and a 1.0 M⊙. Evidently, the most stringent constraints can
be obtained with heavy and old WDs.

B. Observational signatures

1. Thermonuclear SN Ia ignition?

According to Ref. [67], thermonuclear runaway fusion
(deflagration) can proceed if a mass of carbon

FIG. 1. Radius R of the collapsing DM sphere versus age t of the host star, a 1 M⊙ WD, for various DM masses log10ðm=GeVÞ as
indicated by numbers and DM-nucleon cross section σn ¼ 10−40 cm2. Lines represent adiabatic contraction (cyan), runaway elastic
(green) and inelastic (pink) collapse, and BH evolution (black dashed). Carbon depletion and the critical temperature 4.3 × 109 K are
shown as red diamond and red plus sign, respectively. The destiny of the system is either WD implosion (purple disk) or BH evaporation
(yellow star). In the latter case, the process is cyclic (omitted for clarity).

6http://www.ioffe.ru/astro/conduct/.
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mC ≃
4

3
π R3ρ�XC ∈ ½10−5; 1015� g ð25Þ

is heated to the critical temperature

�
T�

4.3 × 109 K

�
70=3 ≳

�
ρ�

108 g cm−3

�
1=2

�
mC

1 g

�
−1
; ð26Þ

where in the first equality of Eq. (25) we have assumed that
the whole region enclosing the DM cluster is heated to
temperature T�. Checking the runaway criteria of Eqs. (25)
and (26) at each integration step, we find that for all
investigated WD masses and DM models (including a
Yukawa type self-interacting), stable nuclear burning
exhausts the combustible before runaway criteria can be
met. The explanation resides in the reversible nature of DM
collapse based on elastic scatterings, mathematically best
appreciable in Eq. (15): if K� > K, then ΔE > 0, and DM
particles gain energy. In practice, from our numerical
simulations, we find that once nuclei become almost as

hot as DM particles, the collapse process slows down or
interrupts momentarily until exothermic nuclear reactions
are over.

2. Pycnonuclear SN Ia ignition?

Pycnonuclear (density driven) carbon reactions start if
the nuclear density exceeds ρ� ≳ 3 × 109 g cm−3. Solving
the TOVequation with the addition of a top hat DM density
profile and assuming zero temperature equation of state,
we find that sizable density increase never occurs before
thermonuclear reactions. However, after the passage of
the thermonuclear flame, the central region of the WD is
carbon depleted, while the outer shells of the core are
crystallized and elemental diffusion suppressed. Since
density increase at later stages encloses a smaller region
than the carbon depleted one, pycnonuclear ignition
remains illusive. This is a conservative estimate, since
assuming the hot equation of state, additional ideal gas
pressure counters the gravitational pull, and it is question-
able if density is increased at all.

3. Constraints from existing WDs

With current telescopes, WDs can only be observed
directly in the neighborhood of the Sun. These experience
a DM density ρgal;0 ≃ 0.4 GeV=cm−3 and a velocity
dispersion vgal;0 ≃ 200 km s−1. The best constraints come
from heavy and old observed WDs (see Table I).
Interpolating the previously obtained results, we show in

Fig. 3 the DM models that are excluded simply because
these WDs did not implode to a BH. As can be seen, these
constraints are competitive with current direct detection
experiments in the mass range 109–1012 GeV where they
roughly exclude DM models with DM-nucleon cross
section σn ≳ 10−40 cm2.
SDSS J2322þ 25328 is the most constraining. Heavier

and, at the same time, older have not been found so far, but
are expected to exist, especially in the thick disc and stellar
halo components of the Galaxy which were formed before
approximately 11 Gyr. It is possible that these have
imploded under the pull of DM in the green parameter
region (Fig. 3).

FIG. 2. Top panel: parameter regions where DM collapse leads
to a mini BH (black) inside a WD with M� ¼ 1.4 M⊙, α ¼ 0,
μ ¼ 0, and either evaporates (orange) or causes the star to
implode (purple) in less than 0.1 Gyr (dotted), 1.0 Gyr (dashed)
and 10 Gyr (full). Including a self-interaction with amplitude
α ¼ 10−3 and range μ ¼ 1 MeV, does not change these param-
eter regions. The region above the gray dot-dashed line is
excluded from XENON1T spin-independent 2σ bound on
DM-nucleon scattering [66]. Bottom panel: same as top panel
but for M� ¼ 1.0 M⊙. The small “x” s correspond to the
evolutionary paths traced in Fig. 1.

TABLE I. Solar neighborhood WDs that constrain asymmetric
DM models, see Fig. 3 (only the two most constraining are
shown).

Name Mass Cooling age Reference

WD 0346 0.77 M⊙ 11.0 Gyr [68]
WD 1832þ 089 1.33 M⊙ 330 Myr [69]
SDSS J2322þ 2528 1.13 M⊙ 4.58 Gyr [70–72]
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4. Electromagnetic bursts

The recent 20 pc volume-limited survey has revealed a
high incidence (22%) of magneticWDs [73]. Most (85%) of
these concern singleWDs, and the field strength distribution
is logarithmically uniform in the range∼4 × 104 G − 109 G
[73]. Besides, no evidence for a correlation between field
strength and WD mass, neither any sign for field strength
decay with time have been found [73].
According to the no-hair theorem, which prevents

magnetic field lines from puncturing the event horizon,
the newly formed BH must expel its magnetic field [74],
liberating the energy contained in the magnetosphere, at
least [e.g., [75]]

EB ∼
B2

8π

4π

3
R3� ≃ 6 × 1044 erg

�
B

108 G

�
2
�

R�
4 × 108 cm

�
3

;

ð27Þ

where B is the surface magnetic dipole field strength of the
WD and R� its radius (in Eq. (27), the radius of a 1.2-M⊙
WD is shown). The relevant timescale of the final stage of
implosion is the free-fall time [75,76]

Δtff ∼
�

R3�
8GM�

�
1=2

≃ 225 ms

�
M�

1.2 M⊙

�
−1=2

�
R�

4 × 108 cm

�
3=2

; ð28Þ

and we assume that this sets the duration of the energy
emission. Magnetohydrodynamics simulations of nonrotat-
ing magnetic NSs show that about 5% of the available
energy is emitted in the main burst [74]. We assume that a
similar fraction is emitted in the case of WDs, leading to a
luminosity of

LB ∼ η
EB

Δtff
≃ 1.3 × 1044 erg s−1

�
η

0.05

��
B

108 G

�
2

×

�
M�

1.2 M⊙

�
1=2

�
R�

4 × 108 cm

�
3=2

; ð29Þ

where η is an efficiency factor.
According to Eq. (27), the most energetic bursts disrupt

in WDs with the strongest magnetic fields. Assuming 1010

WDs in the Galaxy [77], we estimate that 6 × 106 single
WDs have masses heavier than 1.2 M⊙ and magnetic
dipole fields stronger than 108 G [73,78]. Adopting the
Galactic stellar structure model of Ref. [79], the fraction of
WDs exposed to a DM density larger than the local
DM density and taking into account only thick disc and
stellar halo WDs (which are 10 Gyr old) is 52%. Assuming
that the initial star burst lasted ∼1 Gyr [80], and
considering that the number density of MW-like galaxies
is 10−2 Mpc−3, we find a volumetric burst rate of
1.3 × 10−4 Mpc−3 yr−3.
The details of how this energy is converted into radiation

is uncertain (see, for example, Refs. [75,81] for options
ranging from gamma-ray to radio bursts). For instance, the
bulk of fast radio bursts (FRBs) emit a luminosity in the
range 1041 − 1044 erg s−1 [e.g., [82]] and their volumetric
rate is 10−4 Mpc yr−3 [83]. Thus, the rate of the most
energetic (> 108 G) bursts from WD implosions alone
equals the total rate of all known FRBs taken together.
Clearly, these WD implosions should have been noticed.
When it comes to durations, typical FRBs last 1–10 ms
with none longer than 100 ms detected so far, and non-
repeating are typically shorter than repeating [84].
According to Eq. (28), WD implosions expedite longer
(50–1000 ms) lasting bursts, roughly 2 orders of magnitude
longer. If their emission occurs in radio wave lengths, then
the nondetection of long FRBs stringently constrains
asymmetric DM models (see Fig. 3).
Gamma ray bursts (GRBs) have much wider spread

durations ranging from 10 ms to several hours. The
particular class of short (< 2 s) GRBs accounts for 30%
of the total rate, and is associated with regions of little or no
star formation, such as large elliptical galaxies and the
central regions of galaxy clusters [85]. This rules out a link

FIG. 3. Constraints on asymmetric DM. The gray shaded
regions are excluded from nondetections with the XENON1T
experiment (dot-dashed contour; [66]), from the existence of
various old WDs in the solar neighborhood (dashed contour, see
Table I for details). The diagonal (antidiagonal) hatched region is
excluded from the existence of pulsar PSR J0437-4715 in case of
bosonic (fermionic) DM [5]. The purple shaded region is
marginally excluded from the nondetection of binary BHs by
aLIGO, originating from DM collapse-induced implosion of
binary WDs with component masses as indicated by numbers
and ∼10 Gyr merger delay times; future facilities like the
Einstein telescope (ET) can confirm these constraints, see
Table II. The parameter region above the white full line is
excluded due to the nonobservation of specific electromagnetic
(EM) bursts following the implosion of magnetic WDs (see
Sec. III B 4 for details). Mean Galactic DM parameters
(ρgal ∼ 0.4 GeV=cm3 and vgal ∼ 200 km=s) have been assumed.
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to massive stars, but makes them eligible for emission from
the transmutation of old magnetic WDs. The commonly
accepted mechanism of short GRBs is the merger of two
NS [86] or the merger of a NS with a BH, which is
consistent with minutes to hours lasting afterglows, caused
by fragments of tidally disrupted material remaining in
orbit while inspiraling into the BH over a longer period of
time. On the other hand, these afterglows are difficult to
explain with WD implosions.
In sum, neither FRBs nor GRBs match with the expected

properties of DM collapse induced WD implosions. We
note that the field energy estimation in Eq. (27) is an
absolute lower bound, because in ideal magnetohydrody-
namics, the field is “frozen-in” with the fluid and increases
linearly with density (while Eq. (27) assumes constant
field strength); analytical and numerical calculations in
Newtonian gravity and general relativity show that internal
magnetic field strengths of up to 1012−16 G are possible
(see [87] and references therein). However, these simple
energy arguments should be tested in magnetohydrody-
namics simulations of imploding WDs.

5. Detection of GWs from sub-Chandrasekhar BHs

The GW signature of binary WD mergers is very
different from that of binary BH mergers with the same
mass. Typically, the secondary (lighter and larger) is
spaguetified by tidal forces of the primary (heavier and
more compact) prior to coalescence. The orbital motion is
expected to be observed at sub-Hz frequencies by future
space-born laser interferometric detectors of gravitational
waves [88], while super-Hz emission of binary BH mergers
is already detectable by aLIGO [40].
In Table II, we compare the detection rates per year of

current and future GW detectors for different combinations
of component masses. In order to obtain strong constraints
(Fig. 3), both components must be heavy and have long
(∼10 Gyr) formation-to-merger delays to allow for DM
accumulation and subsequent transmutation of both WDs
to BHs. Since heavier WDs are also rarer we consider two
mass bins, ½1.0; 1.2�M⊙ and ½1.2; 1.4�M⊙ (Table II).

We estimate the rates as follows. The total number of
WDs in a MW-like galaxy is 1010 [77], and the Galactic
merger rate per WD is 10−11yr−1 [90]. Assuming the 100 pc
volume-limited mass function in the SDSS footprint [78],
the fraction of WDs with mass greater than 1.0 M⊙ is
4.4%; since both binary companions must satisfy this, we
have a fraction ð0.044Þ2. Since 30–50% of high-mass WDs
have a merger history [91], we have to multiply by an
additional factor of ∼ð1 − 0.4Þ2 (neglecting systems of
higher multiplicity than 2). Results an expected binary WD
merger rate of 7 × 10−5 yr−1 for component masses in
½1.0; 1.4�M⊙ per MW-like galaxy.
This rough estimate is consistent with detailed binary

population synthesis calculations of Ref. [92], who com-
pute the rate of binary mergers with primary mass between
0.85 and 1.05 M⊙ and a mass ratio 0.9 ≤ M2=M1 ≤ 1.0 to
be 2–11% of the type Ia supernova rate (see supplementary
information of [92]). For the type Ia supernova rate from
the LOSS survey, ð5.4� 0.1Þ × 10−3 [93], the resulting
double WD merger rate is ð3.5� 2.4Þ × 10−4 yr−1, while
our crude estimate for this mass range yields 7 × 10−4 yr−1.
The remaining discrepancy of a factor of 2 could be due to
the adopted mass function; if we assume the binary
population synthesis mass function of Ref. [91], we find
a rate 3 × 10−4 yr−1.
Adopting the Galactic stellar structure model of

Ref. [79], we estimate the fraction of WDs exposed to a
DM density larger than the local DM density and taking
only into account thick disc and stellar halo WDs (which
are 10 Gyr old), to 52%. Since the main channel for high-
mass double degenerates is a single common envelope
phase, we estimate that 60% of these have long formation-
to-merger delay times (∼10 Gyr, see Appendix E for
details). Taking into these cuts, and considering that the
number density of MW-like galaxies is 10−2 Mpc−3, we
finally find the detection rates specified in Table II. The
nonobservation of sub-Chandrasekhar binary BH mergers
over a period of time δt would bound their rate to ≤ 2.3=δt
at 90% confidence level.
The constraints on DM models from capture in binary

systems are slightly more stringent than those from single
WDs, due to enhanced DM capture rates in binary systems
[94]. A maximum enhancement factor of ∼4.3 has been
found for orbital periods of 8 h [94], attributed to the energy
loss by DM particles resulting from their gravitational
scattering off moving companions. Binary WDs that merge
in a Hubble time due to gravitational radiation have initial
orbital periods of at most 13.5 h [95]. Based on the results
in Table 1 of Ref. [94], and since the binary spends most
of its evolution at large orbital periods, we estimate that
the integrated amplification factor is ∼3–4. This means
3–4 times earlier collapse and the parameter region of
constraints from binary systems is correspondingly larger
than it would be from single stellar systems (see Fig. 3).

TABLE II. GW detection rates per year (columns 3 to 5) from
transmuted binary BHmergerswith component masses comprised
in the specified bins (columns 1 and 2). The last line is the total rate.
These rates assume the following detector ranges for Oð1ÞM⊙
binary BHmergers: 110Mpc for aLIGO [40], 330Mpc for aLIGO
at design sensitivity (DS; [41]), and 1.9 Gpc for ET [89].

M1 M2 aLIGO aLIGO-DS ET

½M⊙� ½M⊙� [yr−1] [yr−1] [yr−1]

[1.0, 1.2] [1.0, 1.2] 0.6 16 3025
[1.2, 1.4] [1.0, 1.2] 0.3 7 1323
[1.2, 1.4] [1.2, 1.4] 0.1 3 579
[1.0, 1.4] [1.0, 1.4] 1.2 33 6250
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6. Disentangling transmuted from
primordial BH inspirals

As the two BHs merge, the morphology of the resulting
gravitational waveform depends on the phenomenological
effective inspiral spin parameter [96]

χeff ≡M1χ1 cos θ1 þM2χ2 cos θ2
M1 þM2

; ð30Þ

where θ1 and θ2 are the misalignment angles between the
component spins and the orbital angular momentum, M1

and M2 are the component masses, and χ1 and χ2 are the
dimensionless component spins, defined by χ ≡ J=M2 and
limited to values ∈ ½0; 1�, where J ¼ 2πI=P is the angular
momentum, I the moment of inertia and P the rotation
period. Since the angular momentum J is conserved during
WD transmutation to a BH, we can estimate χ from typical
values of the progenitor WD star.
The primary mechanism for producing tight binary

systems is a common-envelope evolution [97,98], where
each component results from single stellar evolution. The
rotation periods of typical low mass WDs originating from
single stellar evolution are of the order of 1 d, as inferred
from rotational broadening of spectral lines [99] and
asteroseismology [100,101]. For high mass WDs, the
rotation periods tend to be much shorter [101], consistent
with the tendency for faster rotating stellar progenitors to
produce heavier cores [102]. Lacking number statistics for
heavy WDs, we assume here a representative value for the
rotation period of 1 h (roughly extrapolating data in the
right panel of fig. 8 of Ref. [101]), yielding dimensionless
spin values

χ ≃ 0.2

�
P
1h

�
−1
�

M�
1 M⊙

�
−2
; ð31Þ

where we have assumed conservatively the moment of
inertia of nonrotating WDs, I ¼ 1050 g cm2, which has
little dependence on mass [103].
Binary WDs formed via “isolated” evolution (the dom-

inant formation channel) have spin vectors which are likely
to be closely aligned with the orbital angular momentum,
hence θ1 ≃ θ2 ≃ 0. We assume χ1 ≃ χ2 and M1 ≃M2 for
simplicity. Then, Eq. (30) reduces to χeff ≃ χ. Using
Eq. (31), we find a representative value χeff ≃ 0.2, a value
that is already measurable with current 90% credible
intervals, ≃0.15, for the default model [e.g., [104]].
In particular, transmuted binary BH inspirals can be

disentangled from primordial binary BH binary inspirals. In
standard cosmology, the QCD phase transition is expected
during a radiation-dominated cosmological epoch and
hence these primordial BHs are expected to have very
low intrinsic spin magnitude, roughly distributed as a
Gaussian peaked at χeff ¼ 0 and with variance σχeff ≃
0.35 [31]. We note that while current sensitivity is sufficient

to discriminate between these peak values, a certain number
of events must be observed to overcome the intrinsic
dispersion of χeff to disentangle between the different solar
mass BH production channels. This further motivates
upcoming GW detectors like the Einstein telescope.

IV. SUMMARY AND DISCUSSION

Runaway collapse of a DM cluster at the center of a star
at finite temperature is governed by a system of differential
equations. We have derived these equations for the rela-
tively simple situation where nuclei are nondegenerate,
pressure feedback is small, and DM-nuclear collisions are
elastic. Nevertheless, these “elastic” collapse equations,
i.e., Eq. (4), Eq. (19) and Eq. (21), are valid for most of the
collapse evolution in WD stars (see Fig. 1). In the presence
of nuclear reactions, the system can be coupled with a
set of equations governing elemental concentrations,
i.e., Eq. (23).
Local heating of nuclear matter from scattering with DM

is controlled by finite heat diffusion. When carbon reac-
tions dominate the heat release, further collapse is inter-
rupted until reactions are over. Consequently, when the
critical temperature for thermonuclear runaway is reached,
carbon is already depleted (Fig. 1). Thus, in crystallized
WDs where elemental diffusion is suppressed, type Ia
supernova ignition from DM collapse remains illusive.
Subsequent ignition mechanisms, i.e., when the DM cluster
has collapsed to a smaller radius, face a situation where heat
release occurs in a region much smaller than the previously
carbon depleted.
Instead, a mini BH is formed at the center of the star, and

the stellar matter is accreted leaving behind a macroscopic
BH. In case of total accretion of the star onto the mini BH,
several observational signals are detectable with current
technology. First, the mere existence of old and heavy WDs
in the solar neighborhood imposes weak but solid con-
straints on asymmetric DM (see Fig. 3). Second, the
nondetection of 50–1000 ms lasting electromagnetic bursts
from the ejection of the WD magnetic field upon trans-
mutation to a BH places stringent constraints (see Fig. 3);
these restrictions are uncertain as the exact details of the
burst are model dependent (with possibilities ranging from
FRBs to GRBs).
Third, the most stringent and solid constraints result

from the nondetection of GW signals from binary BH
coalescences with sub-Chandrasekhar component mass.
We find that aLIGO should detect ∼1 event per year
(∼30 per year at design sensitivity), while future gravita-
tional wave facilities like the Einstein telescope [89] would
detect ∼6000 per year. Their exclusion limits are competi-
tive with current direct detection experiments [66] and
pulsar constraints [5] in case of bosonic DM; in case of
fermionic DM, pulsar constraints are currently more
stringent for part of the parameter space (see Fig. 3).
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GWs emitted by transmuted BH mergers can be disen-
tangled from those of primordial BHs with the same mass
due to different effective inspiral spin parameter distribu-
tions. We have predicted a peak value of χeff ≃ 0.2 for
transmuted origin, while for primordial origin χeff ≃ 0 is
expected. We note that our prediction depends on the
relatively uncertain rotation periods of solar mass WDs that
originate from single stellar evolution. Ongoing space-
based short-cadence photometric missions like TESS and
CHEOPS will greatly improve asteroseismic studies [105].

ACKNOWLEDGMENTS

We thank the anonymous referee for useful comments
and suggestions that led to significant improvements,
mainly concerning the section on detections of GWs from
binary BHs coalescences. We also thank Davi Rodrigues
for useful comments on the manuscript. H. S. is thankful for
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APPENDIX A: POTENTIAL ENERGY

Consider a system composed of N particles with mass m
arranged in a spherically symmetric mass distribution ρðrÞ.
The total potential energy due to its own gravity is

U ¼ −4πG
Z

∞

r¼0

MðrÞρðrÞrdr; ðA1Þ

where MðrÞ is the integrated mass (mass inside r) is

MðrÞ ¼ 4π

Z
r

r0¼0

ρðr0Þr02dr0: ðA2Þ

For a top hat distribution (ρðrÞ ¼ ρ for r ≤ R and ρðrÞ ¼ 0
for r > R), we have

U ¼ −
3GM2

5R
: ðA3Þ

For a Maxwell-Boltzmann mass distribution, with

ρðrÞ ¼ ρ0 exp
�
−

r2

2R2

�
¼

ffiffiffi
2

π

r
M

4πR3
exp

�
−

r2

2R2

�
; ðA4Þ

the total potential energy due to its own gravity is

U ¼ −
GM2

2
ffiffiffi
π

p
R
: ðA5Þ

Now consider the gravitational potential of the system
due to an external mass distribution ρ�ðrÞ,

U� ¼ −4πG
Z

∞

r¼0

M�ðrÞρðrÞrdr; ðA6Þ

where M�ðrÞ is given by Eq. (A2) with stars added
to M and ρ. If the external mass density is constant
ρ�ðrÞ ¼ ρ� (which is a good approximation for the center
of a star), and the system has a top-hat distribution
(unrealistic), we have

U� ¼ −
4πGρ�MR2

5
: ðA7Þ

If the system has a Maxwell-Boltzmann density distribution
(and ρ�ðrÞ still constant), we have

U� ¼ −4πGρ�MR2: ðA8Þ

The mean potential energy per particle of a system
composed by N particles with mass m and a top-hat mass
distribution ρ in an external constant distribution ρ� is
(dividing by N and replacing M ¼ Nm)

1

N
ðU þ U�Þ ¼ −

3GNm2

5R
−
4πGρ�mR2

5
: ðA9Þ

The mean potential energy per particle of a Maxwell-
Boltzmann mass distribution in an external constant dis-
tribution ρ� is

1

N
ðU þ U�Þ ¼ −

GNm2

2
ffiffiffi
π

p
R
− 4πGρ�mR2: ðA10Þ

In the main article we use the letter U for the total mean
potential energy per particle.

APPENDIX B: THERMALIZATION TIMESCALE

In this Section, we derive the formula (3). A derivation of
part of the formula has been given previously by [2]. The
total thermalization time can be divided into three stages
(1) orbital decrease crossing the star twice every orbital
period, (2) orbital decrease completely inside the star with
v > v�, and (3) orbital decrease completely inside the WD
with v < v�.

1. First stage

During the first stage, the DM particle has a chance
to loose kinetic energy twice each orbital period
P ¼ 2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a3=ðGMÞ

p
, where a is the semimajor axis and

M the mass of the star, such that the timescale between
collisions is

hΔti ¼ 1

2
P
σsat
σχA

¼ π

�
a3

GM

�
1=2 σsat

σχA
ðB1Þ
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where σsat ¼ R2m=M is the saturation cross section. The
total energy of the DM particle with semimajor axis a is

E ¼ −
GMm
a

: ðB2Þ

Assuming radial orbits and constant density star, the
potential energy at a radial position r inside the star is

U ¼ −
GMm
R

�
3

2
−

r2

2R2

�
; ðr < RÞ ðB3Þ

where R is the radius of the star. The (instantaneous) kinetic
energy is

K ¼ E −U ¼ GMm
R

�
3

2
−

r2

2R2
−
R
a

�
; ðr < RÞ ðB4Þ

Averaging over radial positions, the mean kinetic energy is

hKi ¼ 1

R

Z
R

0

Kdr ¼ GMm
R

�
4

3
−
R
a

�
: ðB5Þ

The mean variation per scatter is (assuming the non-
relativistic limit, Eq. (15), and neglecting K�)

hΔEi ¼ −
βþ
2

GMm
R

�
4

3
−
R
a

�
ðB6Þ

and, treating scattering as a continuous process, combining
Eq. (B1) and Eq. (B6), we have

dE
dt

¼ hΔEi
hΔti ðB7Þ

and, from (B2) we have

da
dE

¼ GMm
E2

¼ a2

GMm
ðB8Þ

Assembling these equations

da
dt

¼ da
dE

dE
dt

¼ −
A1ffiffiffi
a

p ðB1a − 1Þ ðB9Þ

where

A1 ¼
βþ

ffiffiffiffiffiffiffiffi
GM

p
σA

2πσsat
; ðB10Þ

B1 ¼
4

3R
ðB11Þ

Integrating, we have

t1 ¼
Z

dt ¼ 1

A1

Z
R

a0

ffiffiffi
a

p
da

ðB1a − 1Þ : ðB12Þ

Using aB1 ¼ cosh2 x, we obtain

t1 ¼
2

A1B
3=2
1

� ffiffiffiffiffiffiffiffiffiffi
B1a0

p
−

ffiffiffiffiffiffiffiffiffi
B1R

p
þ 1

2
ln

�
RðB1a0 − 1Þ
a0ðB1R − 1Þ

��

ðB13Þ

neglecting the logarithm which is ln 2, and assuming
m ≪ m�, we have βþ ≃ 4m�=m, and

t1 ≃
3πRσsatm
4σAm�

�
a0
GM

�
1=2

: ðB14Þ

Assuming a0 ¼ Rv2e=v2gal, and using σsat ¼ πR2m�=M≃
3m�=ð4Rρ�Þ, we have

t1 ≃
9

ffiffiffi
2

p
πm

16ρ�σAvgal
: ðB15Þ

2. Second stage

For orbits totally inside the star (a < R), and assuming
constant density, the total energy for a DM particle with
semimajor axis a is

E ¼ −
GMm
R

�
3

2
−

a2

2R2

�
ða ≤ RÞ: ðB16Þ

The (instantaneous) potential energy at a radial position
r ≤ a is

U ¼ −
GMm
R

�
3

2
−

r2

2R2

�
; ðr ≤ aÞ ðB17Þ

and the (instantaneous) kinetic energy at a radial position
r ≤ a is

K ¼ E −U ¼ GMm
2R3

ða2 − r2Þ: ðr ≤ aÞ: ðB18Þ

Averaging over radial positions, the mean kinetic energy is

hKi ¼ 1

a

Z
a

0

Kdr ¼ GMma2

3R3
: ðB19Þ

As long as v ≥ v�, DM-nuclear encounters are dominated
by DM movements, thus the mean scattering timescale is

hΔti ¼ ðn�σAvÞ−1 ðB20Þ

where v ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2hKi=mp

. From Eq. (B16) we have
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da
dE

¼ R3

GMma
ðB21Þ

and using treating scattering again as a continuous process

da
dt

¼ da
dE

dE
dt

¼ −A2ðB2a2 − 1Þ ðB22Þ

with

A2 ¼
ffiffiffiffiffiffiffiffiffiffiffi
2R3

3GM

r
n�σAβþhK�i

4m
; ðB23Þ

B2 ¼
GMm

3R3hK�i
ðB24Þ

Integrating, we have

t2 ¼
Z

dt ¼ −
1

A2

Z
R2

R

da
B2a2 − 1

ðB25Þ

where R2 is given by v ¼ v�, or
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2hKi=mp ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2hK�i=m�
p

. Using Eq. (B19) with a ¼ R2 and solving
for R2, we have

R2 ¼
�
9kBT�∞R3

2GMm�

�
1=2

ðB26Þ

If we pose x ¼ ffiffiffiffiffiffi
B2

p
a, then x ∈

ffiffiffiffiffiffiffiffiffiffiffiffi
m=m�

p ½1; R=R2� is larger
than 1 and we have

Z
dx

1 − x2
¼ 1

2
ln

				 1þ x
1 − x

				 ¼ arcoth x; ðx > 1Þ ðB27Þ

and

t2 ¼
Z

dt ¼ 1

A2

ffiffiffiffiffiffi
B2

p ½arcoth x�
ffiffiffiffi
B2

p
R2ffiffiffiffi

B2

p
R ðB28Þ

We have

t2 ¼
1

2A2

ffiffiffiffiffiffi
B2

p ln

�ð ffiffiffiffiffiffi
B2

p
R2 þ 1Þð ffiffiffiffiffiffi

B2

p
R − 1Þ

ð ffiffiffiffiffiffi
B2

p
R2 − 1Þð ffiffiffiffiffiffi

B2

p
Rþ 1Þ

�
ðB29Þ

Using lnð1þ xÞ ≃ x − x2 and lnð1 − xÞ ≃ −x − x2 where
x ≃ 0,

t2 ¼
�

18m
n2�σ2Aβ

2þhK�i
�

1=2
�
2

ffiffiffiffiffiffi
m�
m

r
− 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3RhK�i
GMm

r �
ðB30Þ

or, assuming m� ≪ m,

t2 ≃
3m

2ρ�σAv�

�
1 −

ffiffiffi
3

p v�
ve

�
ðB31Þ

where ve ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2GM=R

p
.

3. Third stage

During this stage, scatterings are dominated by ion
movements. Therefore, the mean scattering timescale is

hΔti ¼ ðn�σAv�Þ−1; ðB32Þ

And we have

t3 ¼
Z

dt ¼ 1

A3

Z
Rth

R2

ada
1 − B3a2

: ðB33Þ

The limits are
ffiffiffiffiffiffi
B3

p
Rth ¼ 1 and

ffiffiffiffiffiffi
B3

p
R2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
m=m�

p
and the

time is parametrically infinite

t3 ¼
1

A3B3

Z ffiffiffiffiffiffiffiffiffi
m=m�

p

1

xdx
x2 − 1

¼ 1

A3B3

½lnðx2 − 1Þ�
ffiffiffiffiffiffiffiffiffi
m=m�

p
1

ðB34Þ

However, we can consider that the DM particle is ther-
malized when it reaches the thermal energy of stellar
particles within hδΔEi, where δE is the root mean square
energy transfer,

hδΔEi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hΔE2i − hΔEi2

q
¼ βþ

4
ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2 þ K2�

q
ðB35Þ

Then we integrate t3 to the radius R3, defined by
K ¼ K� þ δΔK, solving for K, we find

K ¼ K�
h
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ð1 − βþ=16

ffiffiffi
2

p
Þ2

q
ð1 − β2þ=16

ffiffiffi
2

p
Þ−1=2

i

ðB36Þ

For βþ ≪ 1,

K ≃ K�

�
1þ 25=4

m�
m

�
ðB37Þ

Then we have

R2
3 ¼

3R3hK�i
GMm

�
1þ 25=4

m�
m

�
ðB38Þ

and

ffiffiffiffiffiffi
B3

p
R3 ≃ 1þ 21=4

m�
m

ðB39Þ

and the integral is finite
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t3 ¼
1

A3B3

�
ln

�
m
m�

− 1

�
− ln

�
1þ 21=4

m�
m

− 1

��

≃
2

A3B3

ln

�
m
m�

�
: ðB40Þ

Introducing the values of A3 and B3,

t3 ¼
3m

n�σAv�m�
ln

m
m�

: ðB41Þ

Finally, summing up, the total thermalization timescale is

tth ¼ t1 þ t2 þ t3 ¼
3m

ρ�σAv�

�
3

ffiffiffi
2

p
π

16

v�
vgal

þ 1

2
þ ln

�
m
m�

��
:

ðB42Þ

APPENDIX C: SCATTERING ENERGY
TRANSFER

1. Classical regime

Consider scattering of two rigid body spheres with mass
m andm� and initial scalar velocitiesv andv� respectively.A
general scattering event occurs in a plane. In full generality,
we can choose a coordinate system such that the line of
centers coincides with the x axis (in other words, the contact
angle is zero). Momentum conservation along the line of
centers and kinetic energy conservation imply

mv cos θ þm�v� cos θ� ¼ mv0x þm�v0�x; ðC1Þ

mv2 þm�v2� ¼ mv02 þm�v0�2 ðC2Þ

where θ and θ� are the precollision movement angles (with
respect to the x axis) of m and m�, respectively, and primes
indicate post-collision quantities. Momentum perpendi-
cular to the line of centers is conserved for each mass, so
we obtain immediately,

v0y ¼ v sin θ; ðC3Þ

v0�y ¼ v� sin θ�; ðC4Þ

With four unknowns (v0x; v0y; v0�x; v0�y) and four equations, the
system has a unique nontrivial solution,

v0x ¼
m −m�
mþm�

v cos θ þ 2m�
mþm�

v� cos θ�; ðC5Þ

Using ðm −m�Þ2=ðmþm�Þ2 ¼ 1– 4mm�=ðmþm�Þ2 and
defining βþ ≡ 4mm�=ðmþm�Þ2, we can express the total
post-shock velocity squared as

v02 ¼ v2 þ βþ

�
m�
m

v�2cos2θ� − v2cos2θ

þm −m�
m

vv� cos θ cos θ�

�
: ðC6Þ

In terms of energy (for E ¼ K)

ΔE ¼ E0 − E ¼ βþ½E� cos2 θ� − E cos2 θ

þ ðm −m�Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EE�=mm�

p
cos θ cos θ��: ðC7Þ

Since all precollision movement angles are equally likely,
the average energy transfer is

hΔKi ¼ 1

ð2πÞ2
Z

2π

0

Z
2π

0

ΔEdθdθ� ¼
βþ
2
ðK� − KÞ: ðC8Þ

In the main text, we omit the brackets and average addi-
tionally over velocity distribution. Note that, whenever both
species are at thermal equilibrium, (C8) implies that the
energy transfer is zero.

2. Relativistic regime

In the relativistic case, we have momentum conservation
along the line of centers

p cos θ þ p� cos θ� ¼ p0
x þ p0�x ðC9Þ

and energy conservation

Eþ E� ¼ E0 þ E0�: ðC10Þ

Momentum conservation perpendicular to the line of
centers for each mass

p0
y ¼ p sin θ; ðC11Þ

p0�y ¼ p� sin θ�: ðC12Þ

First, we eliminate p0�. On the one hand, we isolate the x
and y components using Eqs. (C9) and (C12) and writing
the sum of squares

p0�2 ¼ p0�x2 þ p0�y2 ¼ p2 cos2 θ þ 2pp� cos θ cos θ� þ p2�
þ p0

x
2 − 2ðp cos θ þ p� cos θ�Þp0

x: ðC13Þ

On the other hand, from Eq. (C10) we have

p0�2 ¼ E0�2 −m2� ¼ ðEþ E� − E0Þ2 −m2�E2

þ p2� þ E02 þ 2EE� − 2ðEþ E�ÞE0: ðC14Þ

Equating (C13) and (C14) and using Eq. (C11) in the form
p0
x
2 ¼ p02 − p0

y
2 ¼ p02 − p2 sin2 θ, we obtain after some

algebra
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½ðEþ E�Þ2 − C2�E02 − 2BðEþ E�ÞE0

þ ½B2 þ C2ðm2 þ p2 sin2 θÞ� ¼ 0 ðC15Þ

where we have defined

B≡m2 þ EE� þ p2 sin2 θ − pp� cos θ cos θ�; ðC16Þ

C≡ p cos θ þ p� cos θ�: ðC17Þ

Solving for E0, we have

ðE0Þ� ¼ BðEþ E�Þ � C
ffiffiffiffiffiffiffijΔjp

ðEþ E�Þ2 − C2
ðC18Þ

where the discriminant is

Δ ¼ B2 − ðm2 þ p2 sin2 θÞ½ðEþ E�Þ2 − C2�: ðC19Þ

The difference is

ðΔEÞ� ¼E0−E

¼BðEþE�Þ−E½ðEþE�Þ2−C2��C
ffiffiffiffiffiffiffijΔjp

ðEþE�Þ2−C2
: ðC20Þ

It can be shown, after long algebra, that

C
ffiffiffiffiffiffiffi
jΔj

p
¼ BðEþ E�Þ − E½ðEþ E�Þ2 − C2�: ðC21Þ

Therefore, the nontrivial solution is the plus solution. After
some simplification, we obtain

ΔE ¼ 2½Ep2� cos2 θ� þ ðE − E�Þpp� cos θ cos θ� − E�p2 cos2 θ�
ðEþ E�Þ2 − ðp cos θ þ p� cos θ�Þ2

: ðC22Þ

It is easy to verify that for m ≫ p and m� ≫ p�, Eq. (C22)
reduces to the nonrelativistic equation (C7).

APPENDIX D: COLLISION RATE

Here we assume that the cross section does not vary with
the relative velocity. The characteristic collision time is

Δt ¼ 1

n�σhvreli
ðD1Þ

where vrel is the relative velocity between colliding par-
ticles [106]

vrel¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðv−v�Þ2−ðv×v�Þ2

p
1−v ·v�

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp ·p�Þ2−m2m�2

p
p ·p�

ðD2Þ

and the mean h…i is taken over the Jüttlich distribution
(relativistic generalization of Maxwell distribution)

fJðpÞ ¼ ð4πm2TK2ðxÞÞ−1 exp
h
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

q
=T

i
: ðD3Þ

The mean can be shown to be (see, for example, [51])

hvreli ¼
2½ð1þ ζÞ2K3ðξÞ − ðζ2 − 1ÞK1ðξÞ�

ξK2ðxÞK2ðx�Þ
ðD4Þ

where ξ ¼ xþ x�, ζ ¼ ðx2 þ x2�Þ=2xx� are auxiliary vari-
ables and x ¼ mc2=kBT and x� ¼ m�c2=kBT� are standard
thermal variables, KiðxÞ is the modified (or hyperbolic)
Bessel function of the second kind (not to confuse with the
kinetic energy that we denote K as well).

For n an integer, the modified Bessel functions of the
first and second kind are

InðxÞ ¼ KnðxÞ ¼ lim
α→n

π

2

I−αðxÞ − IαðxÞ
sin απ

ðD5Þ

where α is a noninteger.
The following asymptotic formula for large arguments is

useful

KνðxÞ ¼

 π

2x

�
1=2

e−x
�
1þ 1 − 4ν2

8x
þ 9 − 40ν2 þ 16ν4

128x2

þOðx−3Þ
�

ðD6Þ

For numerical purposes, it is useful to rewrite the following
form

hvreli ¼
�
8xx�
πξ

�
1=2 ð1þ ζÞ2K̃3ðξÞ − ðζ2 − 1ÞK̃1ðξÞ

ξK̃2ðxÞK̃2ðx�Þ
ðD7Þ

where we have defined

K̃iðyÞ ¼ KiðyÞ
ffiffiffiffiffi
2y
π

r
ey: ðD8Þ

The advantage is that this has a simple expansion in the
nonrelativistic limit, y → ∞ (which we use as soon as
y > 100)

K̃iðyÞ ¼ 1þ 4i2 − 1

8y
þ 16i4 − 40i2 þ 9

128y2
þOðy−3Þ: ðD9Þ
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Another useful limit is when ζ ≫ 1 (typically ζ > 1012, or
machine precision), corresponding to either x ≫ x� or
x ≪ x�. Then we have

lim
ζ→∞

hvreli ≃
�
8xx�
πξ

�
1=2 2ζK̃3ðξÞ þ ζ2ΔK̃31ðξÞ

ξK̃2ðxÞK̃2ðx�Þ
ðD10Þ

where

ΔK̃ijðyÞ¼
4ði2−j2Þ

8y
þ16ði4−j4Þ−40ði2−j2Þ

128y2
þOðy−3Þ:

ðD11Þ

Note that in Eq. (D1) assumes DM particles remain
nonrelativistic. Comparing Eqs. (D7) and (D9), it is easy
to verify that for both x → ∞ and x� → ∞, the well-known
nonrelativistic expression is recovered

hvreli ¼
�
8ðxþ x�Þ
πxx�

�
1=2

: ðD12Þ

APPENDIX E: DETAILS ON THE MERGER
DELAY

Using the binary population synthesis code STARTRACK,
Ref. [92] computes the rate of double degenerate mergers
with primary mass between 0.85 and 1.05 M⊙ and
secondary with mass ratio 0.9 < M2=M1 < 1.0. These
systems count on contributions from three distinct evolu-
tionary channels:

(a) Prompt (< 0.1 Gyr) delay times originate from
6.0–7.5 M⊙ zero-age main sequence masses (rare)
and close initial orbits (a0 < 200R⊙),

7 undergo two
common envelopes, and comprise 25% of the channels
(a) and (b) together.

(b) Intermediate (1–3 Gyr) delay times originate from
4.8–5.8 M⊙ zero-age main sequence masses and
wider initial separations (a0 ∼ 80–1000R⊙), undergo
only one common envelope, and comprise 75% of
channels (a) and (b) together.

(c) Very long (∼10 Gyr) delay times consist of binaries
with zero-age main sequence component masses in the
range 3.8–4.5 M⊙ and large spread in initial separa-
tions a0 ∼ 100–2000R⊙. These experience only one
common envelope (when the primary has already
evolved into a WD), and the mass-losing star is a
bloated late-AGB star. The orbital separation upon
ejection of the common envelope is a ∼ 3R⊙ implying
a multi-Gyr delay time.

For our purpose only in channel (c) is of interest but its
incidence has not been specified by Ref. [92]. Assuming a
[107] initial mass function, NðMÞdM ∝ M−2.35dM, and
logarithmically uniform initial period distribution [e.g.,
[108]], We find that the respective fractions of the channels
(a), (b), and (c) are 10%, 30%, and 60%. We assume that
these respective fractions persist the same when consider-
ing slightly higher component masses.
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