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Several pulsar-timing array (PTA) collaborations are finding tantalizing hints for a stochastic
gravitational wave background signal in the nano-Hertz regime. So far, though, no convincing evidence
for the expected Hellings-Downs quadrupolar correlations has been found. While this issue might get fixed
at the light of more accurate, forthcoming data, it is important to keep an eye open on different possibilities
and explore scenarios able to produce different types of PTA angular correlations. We point out that a
stationary non-Gaussian component to the gravitational wave background can modulate the two-point PTA
overlap reduction function, adding contributions that can help in fitting the angular distribution of PTA
data. We discuss possible sources for such non-Gaussian signal in terms of cosmological processes
occurring after inflation ends, and we investigate further tests for this idea.
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I. MOTIVATIONS

Pulsar-timing arrays (PTA) offer a promising tool for
detecting gravitational waves (GW) in the nano-Hertz
regime. The concept was first proposed in [1–4] and much
developed thereafter, see, e.g., [5] for a review. Recently,
the NANOGrav Collaboration detected a signal compatible
with a stochastic gravitational wave background (SGWB)
[6]. Subsequently, the PPTA [7], EPTA [8], and IPTA [9]
Collaborations obtained preliminary results going in the
same direction. A natural astrophysical source for such a
SGWB is constituted by unresolved GW signals from
supermassive black hole mergers [10–12]. However, PTA
GW detections can also be explained by cosmological
sources as GW echoes from primordial black hole for-
mation [13–15], cosmic strings [16–19], phase transitions
[20–24], or primordial magnetic field production [25,26]. A
puzzling feature of PTA measurements so far is that the
constraints on spatial correlations seem to show some
deviations from the Hellings-Downs (HD) quadrupolar
angular distribution [27], which is a consequence of
Einstein general relativity, see, e.g., Fig. 7 in [6] for
NANOGrav, Fig. 3 in [7] for PPTA, and Fig. 2 in [8]
for EPTA. In case such behavior persists after more data are
collected, it will require some departure from the standard
approach. A possibility, considered, for example, in [28], is
that NANOGrav is detecting extra GW polarizations
besides Einstein’s spin-2 ones [29,30], since the inclusion
of non-Einsteinian polarizations modifies the HD
angular distribution [31–34]. A systematic analysis by
the NANOGrav Collaboration does not presently favor
this option [35], but it recommends one to study this topic
further at the light of forthcoming data. In this context,

however, we point out that a recent analysis from the
LIGO-Virgo-Kagra Collaboration does not provide evi-
dence for non-Einsteinian GW polarizations in the deci-
Hertz regime [36].
In this work, motivated from the aforementioned

preliminary results of PTA observations, we explore an
alternative mechanism for modifying the quadrupolar HD
angular distribution, using only the massless spin-2 degrees
of freedom of general relativity. We show that large tensor
non-Gaussianity can modulate the angular two-point PTA
overlap reduction function (ORF) and parametrically
change its profile as a function of the angle between
pulsars. The non-Gaussianity of the SGWB is an observ-
able not often considered in the GW literature. It has been
realized for a long time that, thanks to the central limit
theorem, astrophysical SGWB signals are expected to be
Gaussian, being the cumulative contribution of many
unresolved sources [37]. However, cosmological SGWB
sources—inflation, phase transitions, etc.—are coherent
and can be characterized by large tensor non-Gaussianity,
see, e.g., [38], Sec. V for a review. In general, tensor non-
Gaussianity from cosmological sources cannot be directly
measured with GW experiments, since it leads to nonsta-
tionary signals which lose their crucial phase correlations in
their way from emission to detection [39–41].1 A possible
way out is to focus on the specific momentum shape
corresponding to folded tensor non-Gaussianities, that in
real space leads to a stationary signal that does not

1Similar effects were previously studied in [42] in the context
of two-point functions from inflation. Notice that indirect effects
of tensor non-Gaussianities can be detected through correlators of
SGWB anisotropies [43–45].
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necessarily suffer from the aforementioned problems [46].
Folded non-Gaussianities can arise in scenarios where a
stochastic background is generated by causal sources [47].2

In fact, as described in [47], a folded non-Gaussian shape is
associated with poles at physical momenta in the connected
n-point functions and is a consequence of non-Gaussian
cosmological signals produced by mechanisms that
preserve locality and causality. Explicit computations of
tensor non-Gaussianities from postinflationary cosmologi-
cal sources are carried out in [48], including scenarios of
cosmological phase transitions capable to generate con-
nected n-point correlators (n > 2), with an amplitude
comparable to the one of two-point correlators. The work
[48] focussed on equilateral configurations for n-point
functions in momentum space, though without discussing
folded configurations that—as argued in [47]—can gen-
erally contribute to classical n-point functions in Fourier
space.
Our discussion proceeds as follows. In Sec. II, we show

how nonlinear effects associated with tensor non-
Gaussianity can modulate the angular distribution two-
point overlap reduction function. We compute how the
resulting ORF profile depends on quantities characterizing
the higher-order tensor correlation functions. In the hypoth-
esis that next releases of PTA data will show a significant
departure from HD angular correlations, it will be impor-
tant to design tests to distinguish among different explan-
ations for this phenomenon. For this reason, as a specific
prediction of the proposal elaborated in Sec. II, in Sec. III,
we analyze four-point connected correlation functions of
PTA signals, showing that their detection would indicate
the presence of tensor non-Gaussianities in the SGWB.
Section IV contains our conclusions, which are followed
by four technical Appendixes, elaborating the results
presented in the main text.

II. MODULATION OF THE PTA TWO-POINT
OVERLAP REDUCTION FUNCTION

In this section, we show that stationary tensor non-
Gaussianity can affect the two-point function of PTA
signals and parametrically change the angular distribution
of the corresponding overlap reduction function (ORF),
with respect to the Hellings-Downs (HD) curve. In this
work, we take a phenomenological perspective, leaving a
more general treatment and a systematic investigation of
model building to future studies.
In order to describe a SGWB, we express the GWmodes

in terms of spin-2 fluctuations around flat space as

gμνdxμdxν ¼ −dt2 þ ðδij þ hijðt; x⃗ÞÞdxidxj; ð2:1Þ

with hijðt; x⃗Þ the tensor fluctuation satisfying the
transverse-traceless condition hii ¼ ∂ihij ¼ 0.
The presence of a GW deforms light geodesics and

induces a time delay ΔTα on the period Tα of a pulsar α,
located at a position x⃗α ¼ ταx̂α with respect to the Earth at
x⃗ ¼ 0. (We denote τα the travel time from source to
detection, and we set c ¼ 1 from now on.) Denoting with
n̂ the direction of the GW and introducing the convenient
combination

Eαðt; x⃗Þ≡ x̂iαx̂
j
αhijðt; x⃗Þ; ð2:2Þ

we find the following expression for the time delay zα
induced by the GW:

zα≡ΔTαðtÞ
Tα

¼ 1

2ð1þ x̂α · n̂Þ
�
Eαðt; x⃗¼0Þ−Eαðt−τα; x⃗¼ x⃗αÞ

−
3

4
ðE2

αðt; x⃗¼0Þ−E2
αðt−τα; x⃗¼ x⃗αÞÞ

þ 5

16
ðE3

αðt; x⃗¼0Þ−E3
αðt−τα; x⃗¼ x⃗αÞÞþ…

�
: ð2:3Þ

The first line of Eq. (2.3) is the classic result of [2] (see,
e.g., [49], chapter 23, for a textbook derivation). The
second and third lines are higher-order corrections asso-
ciated with nonlinearities in hij and are a new result of this
work. We present in Appendix A a derivation of Eq. (2.3),
including a generalization valid for any power in an
expansion in Eα.
We proceed analyzing here the two-point correlation

functions among pulsar time delays, given by hzαzβi (with
α, β denoting the two pulsars). Given the nonlinear
structure of Eq. (2.3), we expect that the PTA two-point
correlator is modulated by higher-order connected n-point
functions involving spin-2 fluctuations hij. This phenome-
non can change the angular dependence of the PTA overlap
function.
We expand the transverse-traceless GW gauge in Fourier

modes as

hijðt; x⃗Þ ¼
X
λ

Z
∞

−∞
df

Z
d2n̂e−2πifn̂ x⃗e2πifteðλÞij ðn̂Þhλðf; n̂Þ;

ð2:4Þ

where f is the GW frequency, and the unit vector n̂ controls
its direction. We formally integrate over positive as well as
negative frequencies, and the reality of hijðt; x⃗Þ imposes the
condition hλð−f; n̂Þ ¼ h�λðf; n̂Þ on the Fourier modes. The
polarization states for the spin-2 fields are λ ¼ ðþ;×Þ. Our
conventions for the polarization tensors eðλÞij ðn̂Þ, and some
of their properties, are spelled out in Appendix B.
We assume that the GW spectrum is unpolarized, with a

two-point function given by

2The work [47] specifically focusses on scalar fluctuations, but
its general arguments apply to tensor fluctuations as well (see also
Appendix C).

GIANMASSIMO TASINATO PHYS. REV. D 105, 083506 (2022)

083506-2



hhλ1ðf1;n̂1Þhλ2ðf2;n̂2Þi¼δλ1λ2δðf1þf2Þδð2Þðn̂1− n̂2ÞPðf1Þ;
ð2:5Þ

where the δ-function conditions are associated with
momentum conservation. Additionally, we assume that
the SGWB is non-Gaussian, and we parametrize its proper-
ties in terms of a nonvanishing four-point function in
momentum space,

hΠ4
i¼1hλiðfi; n̂iÞi ¼ Π3

i¼1δ
ð2Þðn̂4 − n̂iÞδðf4 þ 3fiÞ

×Hλ1…λ4ðf4ÞPðf4Þ: ð2:6Þ

The non-Gaussian shape associated with Eqs (2.6) corre-
sponds to a folded quadrangle, with three small sides of the
quadrangle of equal length and superimposed on the
fourth, longest one (see Fig. 1). We focus on the four-
point function as [50], being a convenient quantity in
treating the modulation effects of the ORF.3 The condition
that the short length sides of the folded quadrangle are
equal—as forced by the δðf4 þ 3fiÞ conditions in (2.6)—
is chosen for simplifying our arguments. The amplitude in
(2.6) is proportional to the power spectrum PðfÞ as
introduced in Eq. (2.5). We include as coefficient of
Eq. (2.6) a model-dependent tensor Hλ1…λ4ðfÞ, depending
on the polarization indexes and on frequency. A folded
tensor non-Gaussianity can arise in scenarios where a
cosmological SGWB is produced by cosmological sources
after inflation ends. In fact, interactions in such scenarios
preserve locality and causality and lead to characteristic
poles in higher-order correlation functions which amplify
non-Gaussian folded shapes. We refer to Appendix C for
additional explanations and an explicit example.
A folded non-Gaussianity in Fourier space leads to a

stationary four-point function in real space [46],

hΠ4
m¼1himjmðtm; x⃗mÞi ¼

X
λi

Z
dfd2n̂e2πif½ðt1−t4Þþðt2−t4Þþðt3−t4Þ�e−2πifn̂½ðx⃗1−x⃗4Þþðx⃗2−x⃗4Þþðx⃗3−x⃗4Þ�

PðfÞ½Hλ1λ2λ3λ4ðfÞeðλ1Þi1j1
ðn̂Þeðλ2Þi2j2

ðn̂Þeðλ3Þi3j3
ðn̂Þeðλ4Þi4j4

ðn̂Þ�; ð2:7Þ

which depends on time and on space differences only. As a
matter of principle, the stationarity condition in Eq. (2.7) can
allow us to circumvent the arguments developed in [39–41],
which finds that tensor non-Gaussianity cannot be directly
measuredwithGWexperiments.Along theirway fromsource
to detection, GW lose their phase correlations due to random
effects associated with Shapiro time delays induced by
cosmic fluctuations. However, if measurements depend on
time differences only—as in the stationary case of Eq. (2.7)—
cumulative disturbances cancel out, and the results depend
only on the relatively small time differences between suc-
cessive measurements of pulsar-timing periods. In fact, we
can assume that any further (nonfolded) contribution to the
four-point function leads to a nonstationary signal which is
not directly measurable in terms of correlators of PTA
measurements, and we focus on non-Gaussian contributions
associated with Eq. (2.6) only, see [46] for more details and
[42] for similar considerations for the case of (non)stationary
contributions to primordial two-point functions.

As mentioned above, we are assuming that the amplitude
of the four-point function in Fourier space, Eq. (2.6), is
proportional to the power spectrum PðfÞ (times the model-
dependent function of frequency and polarization indexes,
Hλ1…λ4). Coherent cosmological sources, which are able to
amplify the GW spectrum by causal mechanisms, make use
of strong nonlinear interactions for the fields involved.
They are expected to enhance not only the two-point but
also the n-point GW correlation functions with n > 2; the
amplitude of n-point correlators can be of the same order of
the two-point one [48]. It would be interesting to study
more systematically at what extent these phenomena
enhance folded limits of n-point correlation functions,
depending on the scenarios considered. We discuss a
preliminary example in Appendix C, leaving more detailed
analysis to future studies.
The quantity Hλ1…λ4 describes the dependence of the

four-point function on the helicity indexes λi. We pheno-
menologically parametrize it as follows:

Hλ1λ2λ3λ4 ≡ κ1ðfÞδλ1λ2δλ3λ4 þ κ2ðfÞ
× ð1 − δλ1λ2Þð1 − δλ3λ4Þδλ1λ3δλ2λ4 ; ð2:8Þ

in terms of two frequency-dependent parameters κ1;2ðfÞ. It
is straightforward to consider more general forms for the

FIG. 1. A folded quadrangle configuration for momenta in
Fourier space, satisfying the δ-function conditions of Eq. (2.6).
The short sides of the quadrangle are superimposed on the
long one.

3In fact, applying the procedure of [50] to the PTA case, one
finds that contributions from the three-point function vanish,
while the four-point function is able to modulate the ORF, see
Appendix B.
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tensor Hλ1…λ4 as a function of the polarization indexes; we
explored other choices and found that the previous ansatz
describes well the possible angular dependencies of the
the-point overlap reduction functions. We stress that our
hypotheses are phenomenologically motivated by the aim
of making our considerations as transparent as possible.

They can be generalized to study more general cases, as
indicated by specific model building.
We make use of the results so far for computing the

equal-time two-point correlation functions of two pulsar
time delays, using formula Eq. (2.3). For the case of a
single GW propagating through the direction n̂, we find

hzαzβi≡
�
ΔTα

Tα

ΔTβ

Tβ

�
¼ hEαEβi þ 9=16ðhE2

αE2
βiÞ þ 5=4ðhE3

αEβi þ hEαE3
βiÞ

4ð1þ x̂α · n̂Þð1þ x̂β · n̂Þ
; ð2:9Þ

where the quantities in this expression are evaluated at the
Earth position Eα;β ¼ Eα;βðt; x⃗ ¼ 0Þ. The second and third
terms in the numerator of Eq. (2.9) are new parts—absent in
the Gaussian case—being associated with the higher-order
contributions in (2.3). These terms can modulate the
overlap reduction functions, as we learn. Contributions
of “pulsar terms” of Eα;β to the two-point functions, which
are evaluated at pulsar positions, are uncorrelated with the
Earth terms at x⃗ ¼ 0. They lead to rapidly oscillating pieces
when integrating over frequencies and can be neglected in
the present instance as in the standard Gaussian case, see,
e.g., the discussion in [49].
We explicitly carry on the calculation of the two-

point correlator hzαzβi in Appendix B; the result can be
expressed as

hzαzβi ¼
8π

3

Z
dfPðfÞΓαβðfÞ: ð2:10Þ

The overlap reduction function ΓαβðfÞ, for the case
κ2 ¼ −4κ1, results in

ΓαβðfÞ ¼
1

2
−
xαβ
4

�
1 −

54

5
κ1

�
−
171κ1x2αβ

10

þ 72κ1x3αβ
5

þ 3

2
xαβð1 − 9κ1x2αβÞ ln xαβ; ð2:11Þ

with

xαβ ≡ 1

2
ð1 − cos ζαβÞ; ð2:12Þ

and ζαβ the angle between the two vectors controlling the
pulsar positions x⃗α, x⃗β with respect to the Earth. We
understand the dependence on frequency of κ1, and the
more general case of arbitrary κ1;2 is discussed in
Appendix B. Notice that when κ1 ¼ κ2 ¼ 0, we recover
the standard HD curve. We plot the corresponding two-
point ORF in Fig. 2 for some representative choices of
constant parameters κ1;2.

The new ORF profiles shown in Fig. 2 have the tendency
to smooth the anticorrelations characterizing the HD curve
for angular separations ζαβ ≃ π=2. This reduction of anti-
correlations is a feature in common with other ORF
profiles, as the ones induced by a monopole or a scalar
contribution, see, e.g., [35]. In the present instance, we
refrain from pursuing a proper fit of our parametrization
(2.11) with existing PTA data and from performing a
dedicated statistical analysis. In fact, current results still
have systematic uncertainties (for example, in modeling
Solar System ephemeris, as explained in [35]) which will
be cured by more accurate, forthcoming data releases. But
above all, in our scenario, the time-residual correlators are
non-Gaussian; hence, we cannot use the statistical methods
based on Gaussian multidimensional likelihoods, see, e.g.,
[51,52]. We should elaborate a dedicated analysis to the
non-Gaussian context we are interested in, also including
the frequency dependence for the quantities κ1;2 appearing
in our ORF as motivated by specific models. This goes

4 2
3
4

– 0.2

– 0.1

0

0.1

0.2

0.3

0.4

0.5

ab

2p
tO

R
F

FIG. 2. The PTA two-point overlap reduction function of
Eq. (2.10). Solid line: κ1 ¼ κ2 ¼ 0 in Eq. (2.11) (HD curve).
Dotted-dashed line: κ1 ¼ 2, κ2 ¼ −8 in Eq. (2.11). Dashed line:
κ1 ¼ 10, κ2 ¼ 0 in Eq. (B13) [we normalize the curve in such a
way that its value matches 1=2 at ζαβ ¼ 0; as for the HD curve,
see the explanation after Eq. (B13)].
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beyond the scope of this theoretical work, and we postpone
it to future analysis,4 in the case that forthcoming PTA data
will not favor HD-type angular correlations.

Nevertheless, for visual aid only, we represent in
Fig. 3 in red color our ORF profile of Eq. (2.11) against
binned NANOGrav 12.5 data [6], choosing κ1 ¼ 2,
κ2 ¼ −8. We also include the HD, the monopole, and
dipole ORF profiles. This figure is obtained starting
from the content in the NANOGrav tutorial website
https://data.nanograv.org/, based on [51,54–56], which
explains how to obtain Fig. 5 of [6]. Suggestively, the
red line corresponding to our ORF apparently fits the
data well.

III. A TEST: FOUR-POINT CORRELATON
FUNCTIONS OF PTA SIGNALS

In case future PTA data will provide support for a
two-point ORF different from the Hellings-Downs curve,
it will be crucial to design methods for distinguishing
among different explanations for this phenomenon.
We propose a smoking gun test for the non-Gaussian
mechanism we outlined in the previous section, extending
to the PTA case the idea developed in [50] in the context of
ground-based GW detectors. We consider the following
connected four-point correlation function among PTA
time-delay signals5 zα;β induced by GW:

Kαβðt1; t2Þ≡ hzαðt1Þzαðt2Þzβðt1Þzβðt2Þi − hzαðt1Þzαðt2Þihzβðt1Þzβðt2Þi
− hzαðt1Þzβðt1Þihzαðt2Þzβðt2Þi − hzαðt1Þzβðt2Þihzαðt2Þzβðt1Þi; ð3:1Þ

¼ 8π

3

Z
dfe4πifðt1−t2ÞPðfÞRαβðfÞ: ð3:2Þ

The combination of the last three terms in Eq. (3.1) is
included in order to isolate the connected contribution to
the PTA four-point function, depending on the tensor
four-point function of Eq. (2.6). In passing from
Eq. (3.1) to Eq. (3.2), we make use of Eq. (2.7). The
quantity Kαβðt1; t2Þ is stationary, since it depends on time
differences only. We learn that it is nonvanishing only in the
presence of four-point tensor non-Gaussianity, being it
proportional to the quantities κ1;2 entering in the four-point
correlator of Eqs. (2.6) and (2.8). We build Kαβðt1; t2Þ in
terms of signals from two pulsars only, α and β (instead of
four distinct pulsars), for handling more easily the ex-
pressions involved and for being able to represent the
corresponding ORF in terms of a single angle ζαβ.

The quantity RαβðfÞ is the PTA four-point ORF and can
be expressed in terms of the quantity xαβ as defined in
Eq. (2.12) and of the quantities κ1;2 which characterize the
polarization tensor Hλi given in Eq. (2.8). We find (see
Appendix B),

Rαβ¼
3

40
ð4κ1þκ2Þ−

xαβ
40

ð12κ1−137κ2Þ

þx2αβ
80

ð4κ1−279κ2Þþ
3xαβκ2

2

�
1þ3

2
xαβ

�
lnxαβ: ð3:3Þ

In computing Eq. (3.3), we make use use only of the
linear terms in the numerator of Eq. (2.9), and neglect
modulations induced by higher-order, non-Gaussian ones
[since Eq. (3.3) is already proportional to non-Gaussian
contributions].
The corresponding ORF is represented in Fig. 4 for a

representative choice of parameters. Notice that, depending
on the relative size of κ1;2, the amplitude of the ORF Rαβ

can differ by around 1 order of magnitude for different
choices of parameters. In fact, the angular dependence of
the four-point ORF is apparently more sensitive to the

FIG. 3. Visual representation of how the modulated ORF of
Eq. (2.11) with κ1 ¼ 2, κ2 ¼ −8, shown as continuous red line,
compares against binned NANOGrav 12.5 data [6]. We include
additional ORF profiles, as [6]: dashed blue line, Hellings-Down
curve; dashed orange line, monopole ORF; dashed green line,
dipole ORF. Figure obtained starting from the content in [57]. To
allow for a more direct visual comparison, we use the same
conventions and notation of [6] (see their Fig. 5).

5It is also possible to consider four-point functions between
four pulsars, but for simplicity, we consider only two pulsars, α
and β.

4See, for example, [53] for interesting attempts to include non-
Gaussian statistics in the modeling of uncorrelated noise sources
affecting PTA GW detections.
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helicity structure of the tensor Hλi with respect to its two-
point counterpart of Sec. II. It would then be interesting to
consider more general forms of Hλi than our ansatz of
Eq. (2.8) and study their consequences for the four-
point ORF.
Let us quantify more the helicity dependence of the four-

point PTA overlap functions, with some simple statistical
considerations. In Appendix D, we compute the optimal
value of the signal-to-noise ratio (SNR) associated with a
measurement of the four-point function of Eq. (3.1), as
summed over all the available pulsar pairs. We find the
general expression

SNRopt ¼
ffiffiffiffiffiffi
2T

p �
1

S4n

Z
dfjPðfÞRtotðfÞj2

�
1=2

; ð3:4Þ

where T is the total duration of measurements, while
the pulsar noise Sn is parametrized as in Eq. (D8). Rtot
is given in Eq. (D10) by the sum of the four-point ORF
Rαβ of Eq. (3.3) when evaluated over all distinct pulsar
pairs,

RtotðfÞ ¼
8π

3

X
αβ

Rαβ: ð3:5Þ

The quantity Rtot can enhance the SNR, if we have several
pulsars to sum over; the result will also depend on the
specific helicity structure of the quantity Hλi, in particular,
on the values of the parameters κ1;2 when using ansatz
(2.8). For the case of the NANOGrav pulsars, using their
angular position that can be extracted from Table 1 of [58],
we find the expression

RNANOGrav
tot ¼ 158.5κ1 þ 0.2κ2; ð3:6Þ

showing that a NANOGrav measurement of four-point PTA
correlations would be more sensitive to the parameter κ1
with respect to κ2.

IV. CONCLUSIONS

Several PTA collaborations are finding tantalizing hints
for a SGWB signal in the nano-Hertz regime. So far, though,
no convincing evidence for Hellings-Downs quadrupolar
correlations has been found. While this issue can change at
the light of more accurate, forthcoming data, it is meanwhile
important to explore scenarios able to produce different
types of PTA angular correlations. We pointed out that a
stationary non-Gaussian component to the gravitational
wave background can modulate the two-point PTA overlap
reduction function, modifying its angular dependence with
additional parameters that might help in fitting data. We
discussed possible sources for such non-Gaussian signals, as
well as additional tests of this possibility.
Many questions are left open in order to further elaborate

on this idea. It would be interesting to study in detail the
shape and amplitude of GW non-Gaussianities in cosmo-
logical processes producing a large amplitude of SGWB
after inflation ends, since these sources are able to produce
the stationary non-Gaussianity we considered in this work.
Pursuing a complete analysis in realistic models would be
helpful to determine the frequency dependence and helicity
structure of the n-point GW correlators that cause the
modulation of the PTA overlap functions. In order to
perform proper fits with data, it would also be necessary
to elaborate on dedicated statistical analysis of signalþ
noise in the presence of large non-Gaussianities in the
signal.
Answering these questions will be interesting and

compelling if future PTA data will show evidence for a
SGWB but with significant deviations from Hellings-
Downs angular correlations.
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APPENDIX A: COMPUTATION OF THE PTA
TIME DELAY, INLCUDING NONLINEARITIES

We extend the classic results of [2] for the computation
of PTA time delays in the presence of GW, including effects
of GW nonlinearities. We express the space-time metric as
(we set c ¼ 1),

ds2 ¼ −dt2 þ ðδij þ hijÞdxidxj; ðA1Þ

with hij the tensor fluctuation in transverse-traceless gauge.
We compute the time delay in the pulsar period due to the

FIG. 4. The PTA four-point overlap reduction function. Solid
line: κ1 ¼ 10, κ2 ¼ 0. Dashed line: κ1 ¼ 2, κ2 ¼ −8.
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presence of a GW. We closely follow the textbook
discussion of [49], chapter 23, extending it to the more
general, nonlinear case we are interested in.
We evaluate the distance covered by photons traveling

towards the Earth, starting from pulsar α at spatial position
xiα ¼ xαx̂iα, with x̂iα fixed unit vector controlling the pulsar
direction. With the Earth at x⃗ ¼ 0, we get the relation

dx2α ¼
dt2

1þ hijx̂iαx̂
j
α

; ðA2Þ

controlling the infinitesimal geometrical distance covered
by light during an interval dt in its way from source to
detection. For convenience, in what follows, we assemble
the combination hijx̂iαx̂

j
α of Eq. (A2) into the quantity

Eα ≡ hijx̂iαx̂
j
α; ðA3Þ

which depends on time and space. We assume that the GW,
controlled by hij, moves along a null-like geodesics and
has a characteristic frequency ωGW of the order of the
inverse of time it takes for light to arrive from source to
detection.
Photons emitted at time tem are detected by an observer at

time tobs after covering a comoving distance,

dα ¼
Z

tobs

tem

dt

½1þ Eα�1=2
ðA4Þ

¼ tobs− temþ
Z

temþdαþδto

tem

dt0
	

1

½1þEα�1=2
−1




× ½t0;ðtemþdαþδto− t0Þx̂α�: ðA5Þ

Within the squared parentheses, we have the coordinate
dependence of the integrand function, which is inside
the curly brackets. We use the fact that at time t in the
interval between tem and tobs photons lie at position
x⃗ðtÞ ¼ ðtobs − tÞx̂α. Moreover, since hij is small, in first
approximation, we write tobs ¼ tem þ dα þ δto in the inte-
gral, with δto a small quantity depending on Eα. In the limit
of vanishing hij, we have δto ¼ 0.
Suppose a second train of photons emitted at a later time

tem þ Tα, with Tα the pulsar period. We can then express
the same quantity dα of Eq. (A4) as

dα ¼ t0obs − tem − Tα þ
Z

temþdαþδt0o

tem

dt0
	

1

½1þ Eα�1=2
− 1




× ½t0 þ Tα; ðtem þ dα þ δt0o − t0Þx̂α�; ðA6Þ

with t0obs the new time of detection, and δt0o controls the
difference, in the limit of small hij, between t0obs and
tem þ dα.

Taking the difference between (A6) and (A5), we find

t0obs − tobs ¼ Tα þ ΔTα; ðA7Þ

with ΔTα given by the difference among the integrals
appearing in Eqs. (A6) and (A5). We know that the pulsar
period is much smaller than the time travel of light from
source to detection. This implies that the product ωGWTα,
which enters in the arguments of the time-dependent
function Eα in Eq. (A6), is small. We can expand at first
order in Tα, finding the following expression for ΔTα:

ΔTα¼
Tα

2

Z
temþdαþδto

tem

dt0
� ∂t0Eαðt0; x⃗Þ
ð1þEαðt0; x⃗ÞÞ3=2

�
x⃗¼x⃗0ðt0Þ

; ðA8Þ

with x⃗0ðtÞ ¼ tem þ dα þ δto − t.
We assume that Eα can be modeled in terms of a

monochromatic plane wave propagating in a null-like
geodesics along the n̂ direction,

Eαðt; x⃗Þ ¼ EαðωGWðt − n̂ x⃗ÞÞ: ðA9Þ

We can plug this expression in the integral of Eq. (A8) and
compute the time-delay signal as

zα ≡ ΔTα

Tα
;

¼ −
1

1þ x̂α · n̂

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ Eαðt; x⃗ ¼ 0Þp

−
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ Eαðt − τα; x⃗ ¼ x⃗αÞ
p

�
; ðA10Þ

with τα ¼ tem þ dα þ δto the time travel from source to
detection. This expression generalizes the classic results of
[2] including nonlinearities in Eα. Expanding up to third
order in Eα, we obtain Eq. (2.3) in the main text.

APPENDIX B: COMPUTATION OF THE PTA
OVERLAP REDUCTION FUNCTIONS

We denote with n̂ the GW direction along the spatial
coordinates in a Cartesian system as ðx̂; ŷ; ẑÞ. We introduce
two unit spatial vectors û and v̂ orthogonal to n̂,

û ¼ n̂ × ẑ
jn̂ × ẑj ; ðB1Þ

v̂ ¼ n̂ × û
jn̂ × ûj : ðB2Þ

We can also express these quantities in spherical coordi-
nates as
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n̂ ¼ ðsin θ cosϕ; sin θ sinϕ; cos θÞ; ðB3Þ

û ¼ ðcos θ cosϕ; cos θ sinϕ;− sin θÞ; ðB4Þ

v̂ ¼ ðsinϕ;− cosϕ; 0Þ: ðB5Þ

The symmetric ðþ;×Þ polarization tensors first intro-
duced in Eq. (2.4) are defined as

eðþÞ
ij ¼ uiuj − vivj; ðB6Þ

eð×Þij ¼ uivj þ viuj; ðB7Þ

and satisfy the normalization condition

eðλ1Þij eðλ2Þij ¼ 2δλ1λ2 : ðB8Þ

The two vectors û and v̂ introduced in Eqs. (B1) and
(B2) are not the only unit vectors orthogonal to n̂; more
generally, we can rotate û and v̂ around n̂ by an angle ψ ,

û0 ¼ cosψ ûþ sinψ v̂; ðB9Þ

v̂0 ¼ − sinψ ûþ cosψ v̂: ðB10Þ

Observables should not depend on ψ , as in [50], we average
over this angle to determine two-point and four-point
overlap functions used in the main text.
For computing the two-point function, we introduce the

quantities

ĒðλÞ
α ¼ eðλÞij x̂

i
αx̂

j
α: ðB11Þ

The pulsar positions are parametrized with x̂α ¼ ð0; 0; 1Þ,
x̂β ¼ ðcos ζαβ; 0; sin ζαβÞ. The correlators of Eq. (2.10),
once integrated over all GW directions, read

hzαðt; x⃗αÞzβðt; x⃗βÞi ¼
8π

3

Z
dfPðfÞΓαβðfÞ: ðB12Þ

The two-point overlap reduction function is (as explained
above, we average over the angle ψ)

ΓαβðfÞ ¼
3

32π2
X
λi

Z
π

0

dψ
Z

2π

0

dϕ
Z

π

0

sin θdθ
1

ð1þ x̂α · n̂Þ
1

ð1þ x̂β · n̂Þ

×

�
δλ1λ2Ē

λ1
α Ē

λ2
β þHλ1λ2λ3λ4

�
9

8
Ēλ1
α Ē

λ2
α Ē

λ3
β Ē

λ4
β þ 5

4
Eλ1
α E

λ2
α Ē

λ3
α Ē

λ4
β þ ðα ↔ βÞ

��
;

¼
�
1þ 29ðκ2 þ 4κ1Þ

140

��
140þ 116κ1 þ 29κ2

280
−
ð140þ 988κ1 þ 625κ2Þ

560
xαβ þ

9

280
ð8κ1 þ 135κ2Þx2αβ

þ ð5492κ1 − 2659κ2Þ
1120

x3αβ þ
5ð4κ1 þ κ2Þ

4
x4αβ þ

3ð4κ1 þ κ2Þ
8

x5αβ þ
3

2
xαβð1 − 9κ1x2Þ ln xαβ

�
; ðB13Þ

where we used the tensor Hλ1…λ4 of Eq. (2.8), and xαβ is
defined in Eq. (2.12). When setting κ1 ¼ κ2 ¼ 0, we get the
standard HD overlap reduction function. For κ2 þ 4κ1 ¼ 0,
we get the function in Eq. (2.11) of the main draft.
The angular integral can be done straightforwardly, for
example, using the methods of [51]. In this instance, we
used the residue theorem approach of [59]. The overall
coefficient of Eq. (B13) has been chosen such that the
squared parenthesis approaches the value 1=2 at small
values of ζαβ, as the HD curve; we plot the part inside the
squared parenthesis in Fig. 2. The angular integration along
ψ plays an important role in the computation; we checked
that only by using tensor four-point functions one gets a
nonvanishing result, while using three-point functions one
gets zero [50].
Avery similar computation can be done for computing the

four-point overlap reduction function discussed in Sec. III.
This quantity is given by (we sum over repeated indexes)

RαβðfÞ ¼
3

128π2

Z
π

0

dψ
Z

2π

0

dϕ

×
Z

π

0

sin θdθ
Hλ1λ2λ3λ4ðfÞĒλ1

α Ē
λ2
α Ē

λ3
β Ē

λ4
β

ð1þ x̂α · n̂Þ2ð1þ x̂β · n̂Þ2
; ðB14Þ

and performing the angular integrations as above we get
Eq. (3.3) in the main text. In computing RαβðfÞ as in
Eq. (B14), we make use use only of the linear terms in
the numerator of Eq. (2.9) and neglect modulations induced
by higher-order, non-Gaussian ones.

APPENDIX C: FOLDED TENSOR
NON-GAUSSIANITY FROM CASUAL SOURCES

The aim of this Appendix, following [47], is to show
through an explicit example that tensor non-Gaussianities
from causal, classical sources can have enhanced support in
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a folded shape. With “causal sources”, we refer to con-
tributions from causal mechanisms active after inflation
ends, for example, associated with the decay of particles in
their physical, initial state, due to nonlinear interactions that
respect locality and causality. As we see, the corresponding
n-point functions have poles at physical momenta, enhanc-
ing folded non-Gaussian shapes.
The physically more interesting realizations of these

considerations are associated with strong GW sources
which become active at subhorizon scales after inflation
ends, i.e., during radiation and matter domination. In such
systems, the aforementioned locality and causality con-
ditions are met. Examples include phase transitions or
secondary sources of GWs associated with phenomena of
PBH production. But, for ensuring that our arguments are
as transparent as possible, we focus in this Appendix on a
system in pure de Sitter space and select a specific local
interaction for the tensor modes; essentially, we apply the
arguments of [47] to the tensor case.
We start with an explicit computation of connected four-

point function of tensor modes using as [47] the method of
Green functions to then discuss its physical consequences.
Besides the usual free quadratic action for spin-2 tensor
fluctuations in de Sitter space, we consider a representative
local quartic interaction described by the Hamiltonian
density,

Hint ¼ −
q0
4!

_h4ij; ðC1Þ

with q0 a constant, and for simplicity, we neglect cubic
interactions, since we focus on four-point correlators. The
interaction (C1) allows for tensor fluctuations in their physical
state to decay (or annihilate) on shell through a nonlinear
1 ↔ 3 process, leading—as we see—to a characteristic pole
structure in the four-point correlation functions.
To make more direct connection with standard compu-

tations of four-point correlation functions in field theory, in
this Appendix, we Fourier expand the spin-2 field imple-
menting a slightly different notation with respect to the
main text. We work in conformal time, ∂t ¼ a−1ðτÞ∂τ, and
write

hijðτ; x⃗Þ ¼
X
λ

Z
d3k
ð2πÞ3 e

ik⃗ x⃗eðλÞij ðk̂Þh̃λðτ; k⃗Þ; ðC2Þ

where the Fourier mode is decomposed in terms of classical
stochastic quantities as

h̃λðτ; k⃗Þ ¼ â†λðk⃗Þh̄kðτÞ þ âλð−k⃗Þh̄�kðτÞ; ðC3Þ

and we denote k̂≡ k⃗=jk⃗j, and k≡ jk⃗j. The stochastic
parameters â†λ , âλ are classical, commuting quantities
satisfying the statistical conditions

hâ†λ1ðk⃗1Þâλ2ðk⃗2Þi¼
1

2
δðk⃗1− k⃗2Þδλ1λ2 ¼hâλ1ðk⃗2Þâ†λ2ðk⃗1Þi;

ðC4Þ

as ensemble averages, see [47]. The solution for the
linearized mode function h̄λ;kðτÞ in de Sitter space is

h̄kðτÞ ¼
Δh

k3=2
eikτð1 − ikτÞ; ðC5Þ

with Δh a constant quantity controlling the spin-2 normali-
zation. These results imply that, working at the linearized
level, the equal-time spin-2 correlation functions satisfy

hh̃ð1Þλ1
ðτ;k⃗1Þh̃ð1Þλ2

ðτ;k⃗2Þi¼δðk⃗1þ k⃗2Þδλ1λ2
Δ2

h

k31
ð1þk21τ

2Þ: ðC6Þ

We now proceed including the effects of interactions. We
start from the evolution equations for tensor modes includ-
ing the quartic interaction (C1) (primes denote derivatives
along time),

h00ij þ 2Hh0ij −∇2hij ¼
q0
12a2

∂τð∂τhijÞ3: ðC7Þ

Using the properties of the polarization tensors, we can
rewrite Eq. (C7) in Fourier space as

h̃00λðτ; k⃗Þ þ 2Hh̃0λðτ; k⃗Þ þ k2h̃λðτ; k⃗Þ

¼ q0
24a2

∂τ

�Z
d3q1
ð2πÞ3

d3q2
ð2πÞ3 H

λaλbλc
λ h̃0λaðτ; q⃗1Þ

× h̃0λbðτ; q⃗2Þh̃0λcðτ; k⃗ − q⃗1 − q⃗2Þ
�
; ðC8Þ

with

Hλλaλbλc ¼eðλÞij ðk̂ÞeðλaÞim ðq̂1ÞeðλbÞmn ðq̂2ÞeðλcÞnj ðk̂− q̂1− q̂2Þ: ðC9Þ

Following [47]. we can use the Green function method
for studying the effects of classical nonlinearities and how
they source connected n-point correlation functions. The
Green function Gkðτ; τ0Þ relative to the spin-2 evolution
Eq. (C7) in pure de Sitter can be expressed as

Gkðτ; τ0Þ ¼
2Δ2

h

k3
fsin ½kðτ − τ0Þ�ð1þ k2ττ0Þ

− kðτ − τ0Þ cos ½kðτ − τ0Þ�g: ðC10Þ

We can decompose the tensor fluctuation in a linear and

cubic term in momentum space (h̃λðτ; k⃗Þ ¼ h̃ð1Þλ ðτ; k⃗Þþ
h̃ð3Þλ ðτ; k⃗Þ). By using the Green function of Eq. (C10),
the formal expression for the spin-2 solution at third order
is (the sum over repeated indexes is understood)
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h̃ð3Þλ ðτ; k⃗Þ ¼ q0
24

Z
dτ0

d3q1
ð2πÞ3

d3q2
ð2πÞ3H

λaλbλc
λ ∂τ0Gkðτ; τ0Þ∂τ0 h̃

ð1Þ
λa
ðτ0; q⃗1Þ∂τ0 h̃

ð1Þ
λb
ðτ0; q⃗2Þ∂τ0 h̃

ð1Þ
λc
ðτ0; k⃗ − q⃗1 − q⃗2Þ: ðC11Þ

This expression can be used to compute the connected part of the equal-time four-point correlation function of h̃λðτ; k⃗Þ at
leading order in q0. We find (understanding the equal-time dependence)

hh̃λ1ðk⃗1Þh̃λ2ðk⃗2Þh̃λ3ðk⃗3Þh̃λ4ðk⃗4Þi

¼ q0
4

Z
dτ0

d3q1
ð2πÞ3

d3q2
ð2πÞ3H

λ4
λaλbλc

ð∂τ0Gk4Þhh̃λ1ðk⃗1Þh̃λaðq⃗1Þihh̃λ2ðk⃗2Þh̃λbÞðq⃗2Þihh̃λ3ðk⃗3Þh̃λcðk⃗4 − q⃗1 − q⃗2Þi

¼ 9q0
4

δðk⃗1 þ k⃗2 þ k⃗3 þ k⃗4Þ
Δ8

h

k1k2k3k4
Hλ4λ1λ2λ3

×

�
1

ðk1 þ k2 þ k3 þ k4Þ5
þ 1

ðk4 − k1 − k2 − k3Þ5
þ 1

ðk1 þ k2 − k3 þ k4Þ5
þ 1

ðk2 þ k3 þ k4 − k1Þ5

þ 1

ðk1 þ k3 þ k4 − k2Þ5
þ 1

ðk3 þ k4 − k1 − k2Þ5
þ 1

ðk1 þ k3 − k4 − k2Þ5
þ 1

ðk1 þ k4 − k3 − k2Þ5
�
þ perms; ðC12Þ

where

Hλ4λ1λ2λ3 ¼eðλ4Þij ðk̂4Þeðλ1Þim ð−k̂1Þeðλ2Þmn ð−k̂2Þeðλ3Þnj ð−k̂1− k̂2− k̂4Þ:
ðC13Þ

The tensor four-point function (C12) contains poles at
physical momenta, which enhance a folded shape of tensor
non-Gaussianity, corresponding to a quadrangle with super-
imposed sides in Fourier space. This example shows that
classical correlators from causal sources provide the shape
of non-Gaussian signals we are after and which can source
the effects discussed in Sec. II. Notice that the divergences
at the poles can be smoothed by effects as classical
dissipation [47]; nevertheless, the corresponding correla-
tion functions have most of their support in folded shapes.

APPENDIX D: THE OPTIMAL
SIGNAL-TO-NOISE RATION FOR THE

PTA FOUR-POINT FUNCTION

We determine the optimal signal-to-noise ratio (SNR) for
estimating the stationary four-point function considered in
Sec. III. We generalize the arguments of [46], which uses
methods developed in [51,60] and reviewed in [61]. We
assume that the time-delay signal sα measured with pulsar
experiments can be separated in a “true” GW signal zα [as
given in Eq. (3.1)] and uncorrelated noise nα,

sα ¼ zα þ nα: ðD1Þ

We then integrate the stationary four-point correlator among
signals from two pulsars α and β over the temporal duration
T of the experiment, and we define the quantity Yαβ,

Yαβ ¼
Z

T=2

−T=2
dt1dt2Kαβðt1; t2ÞF ðt2 − t1Þ; ðD2Þ

whereKαβðt1; t2Þ, as in Eq. (3.1), is a product of four signals
evaluated at two different times, as measured at the Earth,

Kαβðt1; t2Þ ¼ sαðt1Þsαðt2Þsβðt1Þsβðt2Þ: ðD3Þ

The function F in Eq. (D2) is a yet-to-be-determined filter
function which decays rapidly with increasing the size of its
argument jti − tjj.
In defining the SNR ¼ S=N, the quantity S corresponds

to the connected part of the ensemble average value of Yαβ

in the presence of the GW signal, see Eq. (3.1); the noise N
is the root mean square value of Yαβ when the signal is
absent. We determine the filter function F that maximizes
the corresponding SNR. We Fourier transform (D2),
finding

Yαβ ¼
Z

∞

−∞
dfAdfBdfCδTðfA þ fCÞ

× δTðfC − fBÞF̃ ðfCÞK̃αβðfA; fBÞ; ðD4Þ

and we introduce δTðfÞ≡
R
T
−T exp ½2πift�dt, a function

with the property δTð0Þ ¼ T. Equation (D4) is the starting
point for our computations of S and N.
For the signal S, we use the stationary property (3.1)

characterizing the connected GW four-point functions,
which implies6

6The factors of 1=2 in the arguments of the functions are due to
the e4πifðt1−t2Þ factor in Eq. (3.1).
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K̃αβðfA; fBÞ ¼
8π

3
δðfA þ fBÞPðfA=2ÞRαβðfA=2Þ; ðD5Þ

with Rαβ given in Eq. (3.3). Plugging this expression in
Eq. (D4), we find that the “signal” contribution is

S ¼ 8π

3

Z
∞

−∞
dfAdfBdfCδTðfA þ fCÞδTðfC − fBÞ

× F̃ ðfCÞδðfA þ fBÞPðfA=2ÞRαβðfA=2Þ

¼ 8πT
3

Z
∞

−∞
dfF̃ ðfÞPðf=2ÞRαβðf=2Þ: ðD6Þ

We now consider the noise part. We assume the noise
has a Gaussian distribution, with two-point correlation
function,

hnαðt1Þnβðt2Þi ¼ Snδðt1 − t2Þδαβ: ðD7Þ

For simplicity, we assume a common Sn for all pulsars, that
as [60] we parametrize as

Sn ¼ 2Δtσ2; ðD8Þ

with 1=Δt the typical measurement cadence, and σ2 the rms
of the noise timing. The noise results

N2 ¼ hYαβYαβi ¼ TS4n

Z
dfjF̃ ðfÞj2: ðD9Þ

We can then build the total SNR assembling the results of
Eqs. (D6) and (D9), summing over all the pulsar pairs, and
denoting for brevity

RtotðfÞ≡ 8π

3

X
αβ

RαβðfÞ: ðD10Þ

We find

SNR ¼
ffiffiffiffi
T

p R
dfF̃ ðfÞPðf=2ÞRtotðf=2Þ
S2n½

R
dfjF̃ ðfÞj2�1=2 : ðD11Þ

It is easy to determine the filter function F̃ that maximizes
the previous expression. We introduce a positive definite
scalar product between two arbitrary quantities AiðfÞ,

½A1ðfÞ; A2ðfÞ�≡
Z

dfA1ðfÞA⋆
2ðfÞS4n: ðD12Þ

Then, the SNR of Eq. (D11) can be schematically
expressed as

SNR ¼
ffiffiffiffi
T

p ½F̃ ðfÞ; Pðf=2ÞRtotðf=2Þ=S4n�
½F̃ ðfÞ; F̃ ðfÞ�1=2 ; ðD13Þ

and it is maximized by choosing an optimal filter function
such that

F̃ ðfÞ ¼ Pðf=2ÞRtotðf=2Þ=S4n: ðD14Þ

Plugging this result in Eq. (D11), we find that the optimal
SNR results,

SNRopt ¼
ffiffiffiffiffiffi
2T

p �
1

S4n

Z
dfjPðfÞRtotðfÞj2

�
1=2

: ðD15Þ

The result depends both on the values of the four-point
correlation of the GW signal and on the location of pulsars
entering in the quantity Rtot.
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