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Recent measurements from the CMB and from high-redshift galaxy observations have placed rough
constraints on the midpoint and duration of the epoch of reionization. Detailed measurements of the
ionization history remain elusive, although two proposed probes show great promise for this purpose: the
21 cm global signal and the kinetic Sunyaev-Zel’dovich (kSZ) effect. We formally confirm the common
assumption that these two probes are highly complementary, with the kSZ being more sensitive to extended
ionization histories and the global signal to rapidly evolving ones. We do so by performing a Karhunen-
Loève (KL) transformation, which casts the data in a basis designed to emphasize the information content
of each probe. We find that reconstructing the ionization history using both probes gives significantly more
precise results than individual constraints, although carefully chosen, physically motivated priors play a
crucial part in obtaining a bias-free reconstruction. Additionally, in the KL basis, measurements from one
probe can be used to detect the presence of residual systematics in the other, providing a safeguard against
systematics that would go undetected when data from each probe is analyzed in isolation. Once detected,
the modes contaminated by systematics can be discarded from the data analysis to avoid biases in
reconstruction.
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I. INTRODUCTION

The cosmological and astrophysical processes that gov-
erned the transition of hydrogen from neutral to ionized
during cosmic reionization are poorly understood, and
explaining the formation of the first luminous sources as
well as their role in this large-scale phase transition remains
a crucial task in modern cosmology. Although we have a
qualitative understanding of the physics governing this
epoch of reionization (EoR), even basic quantitative con-
straints such as the ionized fraction of hydrogen as a
function of redshift have yet to be made with high
precision. Such constraints would serve as incisive tests
of EoR models.
As an example of the uncertainty in our theoretical

understanding, consider the beginning of reionization.
Recent large-scale observations of the CMB seem to favor
late reionization scenarios, starting at z≲ 15 [1–3], before
which the intergalactic medium (IGM) was fully neutral.
However, models including the effect of different star
populations and self-regulated feedback can result in long
tails with low ionized fraction extending to z ∼ 30 [4,5].
The end of reionization is more tightly constrained, for

example via observations of high-redshift quasars and their
spectra. Lyman-alpha absorption in quasar spectra due to

neutral hydrogen gives rise to the Gunn-Peterson trough,
which provides a convenient marker of the end of reioni-
zation [6]. From such observations, the nominal redshift for
the end of reionization is often taken to be z ∼ 6 [7] (see
Ref. [8] for a review), although recent studies have
questioned the robustness of this conclusion [9,10].
Another important property of reionization is the redshift

of its midpoint, when half the hydrogen in the IGM was
ionized. This quantity is often estimated by using the CMB
optical depth, τ. Since the optical depth is obtained by
integrating along the line of sight, it provides just one
number to characterize reionization. However, this can be
converted into a constraint for the midpoint under the
assumption of a parametric form for the ionization history.
For example, Planck 2015 data [11] constrain the midpoint
of reionization zre to be zre ¼ 8.8þ1.0

−1.1 under a redshift-
symmetric parametrization of the ionization history [12].
Moving beyond an optical depth measurement, another

CMB probe of reionization is the kinetic Sunyaev-
Zel’dovich (kSZ) effect [13,14]. The kSZ signal is sensitive
to reionization since it arises from interactions of CMB
photons with energetic free electrons produced during the
EoR; see Refs. [15–18] for examples on how the kSZ is
sensitive to and can be used as a probe for reionization. The
South Pole Telescope (SPT) collaboration has recently
reported the first ≥3σ measurement of the kSZ angular
power spectrum at an angular multipole of l ¼ 3000 [19].*joelle-marie.beginmiolan@mail.mcgill.ca
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From this measurement, the authors have reported a
constraint for the redshift interval between 25% and
75% ionization of Δz ¼ 1.1þ1.6

−0.7 . Such a measurement is
possible because the patchiness of reionization partially
sources the amplitude of the kSZ power spectrum, and so
more extended and patchy reionization scenarios will lead
to a larger contribution to the power. In this regard, the kSZ
will be most sensitive to the gradual evolution of the
ionization history over a long range of redshifts. Future kSZ
measurements utilizing the full shape of the power spec-
trum rather than just the amplitude at l ¼ 3000, enabled by
observatories such as the Simons Observatory [20] and the
CMB-Stage 4 experiments [21], will unlock crucial infor-
mation regarding the details of the ionization history
[17,22,23].
Perhaps a more direct tracer of the ionization history is

the global 21 cm signal. This sky-averaged brightness
temperature of neutral hydrogen’s hyperfine transition
closely tracks the state of hydrogen, and precision mea-
surements of the signal would allow for constraints of the
ionized fraction as a function of redshift [24–27]. There are
a number of experiments geared toward measuring the
global 21 cm signal such as the Experiment to Detect the
Global EoR Signature (EDGES, [28]), the Probing Radio
Intensity at High-Z from Marion (PRIZM, [29]) experi-
ment, the Large-aperture Experiment to Detect the Dark
Age (LEDA, [30]), the Radio Experiment for the Analysis
of Cosmic Hydrogen (REACH, [31]), and the Shaped
Antenna measurement of the background RAdio Spectrum
(SARAS, [32]), with the EDGES measurement at 78 MHz
being the only claimed detection of the cosmological signal
to date [28]. The amplitude of the global signal can be up to
four orders of magnitude dimmer than foreground emission
such as galactic synchrotron radiation or extragalactic point
sources [33]. Mitigating foregrounds is made particularly
difficult by the large dynamic range of the problem, which
requires exquisite control of instrumental systematics. Even
if instrumental systematics can be characterized and
removed, foreground emissions continue to pose a chal-
lenge to global 21 cm signal measurements because both
the foregrounds and the cosmological signal are expected to
be monotonically decreasing smooth functions of fre-
quency. Consequently, abrupt reionization scenarios which
give rise to sharp changes in the 21 cm spectrum are easier
to distinguish from smooth foreground contaminants and
will be more easily detected with the global 21 cm signal.
The global 21 cm signal and the kSZ effect are therefore

complementary probes of the EoR, with the former better at
detecting abrupt features in the ionization history and the
latter better at characterizing its smooth evolution. Previous
works have looked at the potential of cross-correlating the
kSZ signal with spatial 21 cm fluctuations stemming from
reionization [34–39]. In this paper, we instead focus on a
joint analysis with the global signal, which can lead to
improved constraints on the ionization history. We first

confirm the intuition that the 21 cm and kSZ are comple-
mentary by using the Karhunen-Loève (henceforth KL)
eigenvalue basis to describe the ionization history. This
basis decomposes reionization into modes that are ordered
by relative information content: the first few modes
correspond to shapes in the ionization history best mea-
sured by the 21 cm line, and the least well measured by the
kSZ; the last few modes correspond to the opposite.
Intermediate modes that are reasonably well measured
by both can then be used as a consistency check between
datasets and guard against systematics.
The rest of the paper is as follows: in Sec. II, we outline

the theoretical background behind the 21 cm global signal
and the kSZ, and specify the types of experiments we are
considering. In Sec. III, we introduce the mathematical
formalism for the KL transform in the context of jointly
constraining reionization with the 21 cm signal and the
kSZ, and use the KL transform to concretely illustrate the
complementarity of the two probes. In Sec. IV, we explore
how we can use the KL basis to combine data from 21 cm
and kSZ measurements into a single joint constraint of the
ionization history, assuming no experimental systematics.
This assumption is discarded in Sec. V, where we show how
our KL formalism can be wielded to detect the presence of
some common systematics. In Sec. VI we go beyond the
mere detection of these systematics and present methods
for their removal. We summarize our conclusions in
Sec. VII.

II. THEORETICAL BACKGROUND AND
EXPERIMENTAL ASSUMPTIONS

In this section, we provide the necessary theoretical
background for our two signals of interest. We first present
the relevant equations governing them, and outline how
each depends on the ionization history. We then present
what a typical experiment and error covariances might look
like for each of the probes.

A. The global 21 cm signal

One of the most promising cosmological probes is
hydrogen, and characterizing it throughout cosmic time
can inform us about the large-scale processes of the
Universe. Hydrogen is a particularly good probe of the
Dark Ages (the period of time before the first stars and
galaxies formed) and the subsequent EoR due to its
hyperfine transition line with an emission wavelength of
21 cm. There are a number of review papers [40–42] which
comprehensively discuss the physics behind the cosmo-
logical 21 cm signal and how it can be used to constrain
reionization. Here, we will outline the basic relevant
concepts, as well as describe what a typical global signal
experiment might look like.
The 21 cm brightness temperature is seen in contrast to a

background radiation, usually (but not always) assumed to
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be the CMB. Thus we define the differential 21 cm
brightness temperature δTb, which is given by [42]:

δTb ¼ 27xHI

�
Ts − Tγ

Ts

��
1þ z
10

�
1=2

ð1þ δbÞ

×

� ∂vr=dr
ð1þ zÞHðzÞ

�
−1

mK; ð1Þ

where xHI is the fraction of neutral hydrogen, ranging
from 0 to 1, Ts is the 21 cm spin temperature, Tγ is the
CMB temperature, δb is the baryon overdensity, and HðzÞ
is the Hubble parameter. The last term tracks contributions
to the brightness temperature from peculiar velocities vr
along the line of sight, with r denoting the line of sight
distance. Here, we focus on the global signal, that is the
spatial average of the differential brightness temperature.
Since averaging the signal over the sky means the meas-
urement is not sensitive to fluctuations, the δb term as well
as the contribution from peculiar velocities are negligible.
Furthermore, we make the simplifying assumption [43,44]
that the 21 cm spin temperature is much larger than the
CMB temperature during reionization, so that the depend-
ence on Ts drops out. Therefore, in this scenario we may
approximate the sky-averaged differential brightness tem-
perature at redshift z by

δTbðzÞ ≈ 27x̄HIðzÞ
�
1þ z
10

�
1=2

mK; ð2Þ

where x̄HI is the mean fraction of neutral hydrogen.
An experiment aiming to measure the global signal during
reionization might target frequencies in the 100 to 200 MHz
range, since this corresponds to redshifted 21 cm signals
originating from z ∼ 13 to z ∼ 6, and current empirical
constraints suggest that reionization occurred roughly in
the z ∼ 5 to 15 range [2,12]. Suppose such an experiment
measures the sky at a number of frequency channels; the
variance σ2i in the ith frequency channel is given by

σ2i ¼
T2
skyðνiÞ
btint

; ð3Þ

assuming a sky noise dominated instrument, where b is the
channel width and tint is the integration time. The sky
temperature Tsky is in principle the sum of the cosmological
brightness temperature δTb and the brightness temperature of
the foregrounds Tfg. However, in practice the foregrounds are
somuchbrighter than the signal thatTsky ≈ Tfg.Wemodel the
foregrounds as a polynomial of degree N logarithmic in
frequency,

lnTfg ¼
XN
i

ai

�
ln

�
ν

ν�

��
i
; ð4Þ

where ν is the frequency, ν� ≡ 150 MHz is an arbitrary pivot
frequency, and following Ref. [26] we takeN ¼ 3 and adopt
their best fit ai values (which were based on data from
Ref. [45]). In order to construct a noise covariance Πnoise for
the experiment, we assume uncorrelated noise between
frequency bins:

ðΠnoiseÞij ¼ δijσ
2
i ; ð5Þ

where δij is the Kronecker delta function.
In this paper, we do not explicitly model the foreground

subtraction process. Instead, we include a foreground
contribution to the covariance. This will have the effect
of severely downweighting the foregrounds in one’s down-
stream analysis. In fact, this can be seen as a conservative
way to model the effect of foregrounds, since in practice
the covariance ought to represent foreground residuals after
one has subtracted off a best-guess estimate (rather than
that of the foregrounds themselves, which is presumably
larger) [46]. We assume that at the relevant frequencies,
Galactic synchrotron and free-free emission dominate.
Following Ref. [47], we compute the foreground covari-
ance Πfg between frequencies ν and ν0 for each of these
components as

ðΠfgÞνν0 ¼ A2

�
νν0

ν2�

�
−αþ1

2
Δα2 lnðνν0=ν2�Þ

−mðνÞmðν0Þ; ð6Þ

with1

mðνÞ ¼ A

�
ν

ν�

�
−αþ1

2
Δα2 lnðν=ν2�Þ

; ð7Þ

where A controls the foreground amplitude of the compo-
nent, α is its spectral index,Δα is the running of the spectral
index. The values we take for each of these parameters are
outlined in Table I for the two emission mechanisms, whose
covariance we sum to give a total foreground covariance.
We then take the total covariance of our hypothetical global
signal experiment to be the sum of the instrument and total
foreground covariances:

Π21 ¼ Πnoise þΠfg: ð8Þ

We will use this theoretical experiment and noise covari-
ance in order to compute the Fisher matrix for the global
21 cm signal, which we will then use to define the KL basis

1Note that although Eqs. (4) and (7) give roughly similar
results, they are in principle different models. We use Eq. (4)
for our mean sky temperature because it is based on fits to
empirical data. However, at the relevant frequencies the data are
generally not sensitive enough to produce empirical covariances
that are not artificially rank-deficient [46]. It is for this reason that
we adopt the semiempirical approach from Ref. [47] for the
covariance only.
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and explore the complementarity between the 21 cm signal
and the kSZ.

B. The kinetic Sunyaev-Zel’dovich effect

The scattering of CMB photons off inhomogeneities in
the electron density along the line of sight creates anisot-
ropies in the CMB temperature. One such anisotropy is the
kinetic Sunyaev-Zel’dovich effect (kSZ) [13,14], which
results from the interaction of low-energy CMB photons
with electrons that have a bulk velocity relative to the CMB
rest-frame. The temperature fluctuations sourced by the
kSZ effect can be written as

δTkSZðn̂Þ ¼
σT
c

Z
dη
dz

dz
ð1þ zÞ e

−τðzÞn̄eðzÞv · n̂; ð9Þ

where n̄eðzÞ is the free electron number density, τ the
CMB optical depth, both averaged over the sky, σT the
Thomson cross section, c the speed of light, η the comoving
distance to redshift z, and v · n̂ the component of the
peculiar velocity of the electrons along the line of sight.
Note that, in contrast to the 21 cm signal, the kSZ effect is
sensitive to the density of electrons along the line-of-sight,
whether they are coming from hydrogen or helium reio-
nization. It is comprised of two components: the patchy
kSZ, due to the scattering of CMB photons off ionized
bubbles during the EoR, and the late-time component,
sourced by the large-scale distribution of matter once the
IGM has been fully ionized. In this work, we will focus on
the former.
Similarly to the primary CMB temperature fluctuations,

the kSZ is currently measured in terms of its angular power
spectrum Ck SZ

l ≡ T2
CMBjfδTkSZðkÞj2 where k≡ l=η is the

Limber wave-vector and l is the multipole moment, which
can be related to an angular scale in the sky. In Ref. [23], we
introduced a way of deriving the Ck SZ

l in terms of a few
cosmological and physically motivated parameters, includ-
ing the reionization history xiðzÞ, which we will use to
derive the Fisher matrix of the kSZ signal in the next
section.
Foregrounds dominate the primary CMB signal on small

angular scales (smaller than 1 arcmin), making a meas-
urement of the kSZ power challenging [19]. However,
forecasts indicate that the new generation of CMB observa-
tories such as CMB-Stage 4 (CMB-S4) [20] will provide a

definite measurement of the signal [48]. Taking this
perspective, to derive the kSZ error covariance matrix
defined in Sec. III A we will assume the instrumental
specifications of CMB-S4. Since unlike any other fore-
ground, the kSZ signal is not frequency-dependent, we
can assume a perfect multi-frequency cleaning of CMB-S4
data from other foregrounds and use the noise power
spectrum from Ref. [22] as our diagonal noise covariance.
Additionally, we consider cosmic variance errors ΔCl as a
fraction of the observed Cl, including the primary and the
kSZ signal after foreground cleaning:

ΔCl

Cl
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

fskyð2lþ 1Þ

s
; ð10Þ

where fsky ¼ 0.45 is the effective fractional sky area
covered by CMB-S4 [22]. Our resulting error covariance
is a diagonal matrix2 made of noise and cosmic variance
contributions.
Of course, even with a proper assessment of errors,

some systematics will in practice affect measurements of
the kSZ signal. In this paper we will consider a potential
residual contribution from the primary CMB to the mea-
sured kSZ signal, which could arise from a biased cosmo-
logical model. In addition, despite plans for multifrequency
cleanings of foregrounds, some foregrounds will certainly
remain at a low level. For example, there exists the cross-
spectrum between the cosmic infrared background (CIB)
and the thermal SZ effect (tSZ) [49], whose improper
modeling has prevented a precise measurement of the kSZ
amplitude in the past [19,50–52].

III. MATHEMATICAL FORMALISM

Having established our model for 21 cm and kSZ
measurements in Sec. II, we now focus on how each probe
contains information about the ionization history. We will
first quantify their information content using their respec-
tive Fisher information matrices in Sec. III A before
illustrating their complementarity in Sec. III B with the
KL transform.

A. The Fisher information matrix

Our goal is to provide a set of basis modes that can be
used to delineate shapes in the ionization history that the
kSZ and global 21 cm signal are sensitive to. A natural
starting point is to use the Fisher information matrix to
quantify the information contained about the ionization
history in each of these probes. Recall that the Fisher matrix
F is defined as

TABLE I. Parameters used in the computation of the fore-
ground covariance.

Parameter Synchrotron emission Free-free emission

A 335.4 K 33.5 K
α 2.8 2.15
Δα 0.1 0.01

2The assumption of a diagonal error covariance matrix is
justified since we will employ rather large bins in l in Sec. III,
and in that limit, current experiments appear to be well-modeled
by diagonal covariance matrices [19].
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Fαβ ≡ −
�∂2 lnL
∂θα∂θβ

�
; ð11Þ

where L is the likelihood function and θ≡ ðθ1; θ2;…Þ are
parameters that we wish to constrain using our measure-
ments. The Fisher matrix characterizes the width of the
likelihood (as a function of the parameters) under the
approximation that it is close to Gaussian; intuitively, it
therefore characterizes the information content of a meas-
urement since narrower likelihoods are tantamount to
tighter constraints on parameters. For a measurement
consisting of observables that have a mean vector μ that
is measured with covarianceΠ, the Fisher matrix reduces to

Fαβ ¼
∂μT
∂θα Π

−1 ∂μ
∂θβ ; ð12Þ

which is the form that we use here. Under ideal conditions,
the covariance C of the final measured parameters stored in
θ is then given by F−1.
In this paper, our focus is on constraining the ionization

history, which we can parametrize by specifying the value
of the ionized fraction of hydrogen xi in a set of predefined
redshift bins. These values, which include hydrogen and
helium reionization, then form our parameter set, i.e.,
θα ¼ xiðzαÞ. We take 20 bins uniformly spaced in redshift,
between z ¼ 6 and z ¼ 13, although the formalism can be
generalized to any other choice of bins. For the global
21 cm signal, our observable is a series of 21 cm brightness
temperatures at different frequencies, Ti ≡ TðνiÞ. This
gives a Fisher matrix F21

αβ for the 21 cm global signal of
the form

F21
αβ ¼

∂TT

∂xiðzαÞΠ
−1
21

∂T
∂xiðzβÞ ; ð13Þ

where Π21 is the covariance matrix of our measurements
introduced in Sec. II A. For the kSZ, we consider measure-
ments of its dimensionless patchy angular power spectrum at
different angular multipoles l, i.e., Dp

l ¼ lðlþ 1ÞCp
l=2π,

gathered in a vector Dp, with covariance ΠkSZ, such that

FkSZ
αβ ¼ ∂ðDpÞT

∂xiðzαÞΠ
−1
kSZ

∂Dp

∂xiðzβÞ : ð14Þ

Here, we consider twenty-two multipole bins of identical
width ranging from l ¼ 690 to l ¼ 7900, similar to the
range of multipoles covered by the SPT [19,53].
The two Fisher matrices above then quantify the sensi-

tivity of the global 21 cm signal and the kSZ effect to
changes in the ionized fraction in a given redshift bin. The
fact that the former is most sensitive to rapidly evolving
ionization histories and the latter to extended histories is
thus a complementarity that should be reflected in their

Fisher matrices. If these matrices were diagonal, the
complementarity would be easy to see by simply taking
the ratio of their elements. Since this is generally not the
case, we can simultaneously diagonalize the two Fisher
matrices using a Karhunen-Loève (KL) transformation
which will cast our ionization history into a new basis
where the complementarity is clear.

B. The Karhunen-Loève transform

The KL transform casts a measurement of two signals
into a basis whose modes and eigenvalues effectively
describe the ratio between the two. This method is often
used to form a series of modes rank-ordered by their signal-
to-noise, which provides a convenient basis for data
compression (e.g., [54–56]). Here, we extend the formalism
beyond a signal-to-noise analysis and instead use the KL
transform to obtain kSZ-to-21 cm modes. In this case, the
eigenvalues of the transformation and their corresponding
eigenvectors inform us about which modes of the ionization
history have a higher kSZ-to-21 cm information content
and thus are better measured by the kSZ effect. Conversely,
modes with lower kSZ-to-21 cm information are those that
are better measured by the 21 cm signal. Therefore, as
intended, our KL basis will highlight the complementarity
between the two probes.
We begin by solving the generalized eigenvalue problem

FkSZv ¼ λF21v; ð15Þ

where FkSZ and F21 are the Fisher matrices of the kSZ and
21 cm global signal, respectively. Performing a Cholesky
decomposition on the 21 cm covariance C21 ¼ F−1

21 allows
us to write

F21 ¼ C−1
21 ¼ L−T

21 L
−1
21 ; ð16Þ

where L21 is a lower triangular matrix. Equation (15) then
becomes

LT
21FkSZL21L−1

21 v ¼ λL−1
21 v; ð17Þ

which reduces to an eigenvalue problem

Gw ¼ λw; ð18Þ

with G≡LT
21FkSZL21 and w≡L−1

21 v. With these defini-
tions, we define the KL transformation matrix as

R≡L21Ψ; ð19Þ

where the columns of Ψ are the eigenvectors w satisfying
Eq. (18). If we have a measurement of the ionization history
x ¼ ðxiðz1Þ; xiðz2Þ;…; xiðznÞÞ, its representation y in the
KL basis is given by
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y ¼ R−1x; ð20Þ

and the inverse relation is

x ¼ Ry: ð21Þ

In the KL basis, the information content (as expressed by
the Fisher information matrices) is diagonal for both global
21 cm and kSZ measurements. Transforming their respec-
tive Fisher matrices via appropriate Jacobian factors, we
obtain

F̄21 ¼ ΨTLT
21F21L21Ψ ¼ ΨTΨ ¼ I; ð22Þ

for the 21 cm Fisher matrix in the KL basis and

F̄kSZ ¼ ΨTLT
21FkSZL21Ψ ¼ ΨTGΨ ¼ Λ ð23Þ

for the kSZ Fisher matrix in the KL basis, where Λ is a
diagonal matrix where Λαα ¼ λα for λα satisfying Eq. (18).
Both Fisher matrices are diagonal.
Since the KL transformation defines a basis, it also

defines a set of basis vectors, or modes, which we can
linearly combine to reconstruct an ionization history. The
amplitudes of the linear combination are given by Eq. (20),
which we can write as

x ¼
X
α

φαyα; ð24Þ

where fφαg are the columns of R and the modes of our
transformation. If we order the elements of our matrices
and vectors such that the eigenvalues in Λ are ordered from
largest to smallest, then φ1 will be the mode that is
comparatively best constrained by kSZ measurements
and worst constrained by global 21 cm signal measure-
ments. On the other extreme, the final mode φn (where n is
the number of redshift bins used to describe the ionization
history) is best measured by the global 21 cm signal.

C. Worked examples of kSZ-to-21 cm modes

In the top panel Fig. 1, we plot the eigenvalues of the KL
transform for a fiducial ionization history (we take the
“asymmetric” reionization, shown in the top left panel of
Fig. 2), obtained with the parametrization presented in [57].
By construction, the transformation is such that the 21 cm
Fisher information is the identity matrix in the KL basis, so
these eigenvalues quantify the kSZ-to-21 cm information
ratio. The largest eigenvalues correspond to the modes best
measured by the kSZ, the highest three of which are plotted
in the middle panel of Fig. 1. The smallest eigenvalues
correspond to the modes best measured by the global
signal, the lowest of which are plotted in the bottom panel
of the figure. The shapes of these modes are consistent with
our intuition: since the kSZ will best constrain extended

ionization histories, the modes that correspond to the
highest kSZ-to-21 cm signal are relatively smooth and
extended. The 21 cm global signal, on the other hand, is
most sensitive to rapidly evolving ionization histories so the
modes with lowest kSZ-to-21 cm signal fluctuate more
rapidly with redshift.
Although we picked a fiducial asymmetric ionization

history for Fig. 1, the qualitative intuition remains similar
for other models. This is illustrated in Fig. 2. The left
column shows three example ionization histories and their
corresponding patchy kSZ power spectra: one is similar to
our fiducial reionization history, but presents an extended

FIG. 1. Normalized eigenvalues of the KL transform for an
asymmetric reionization history (see text and Fig. 2). A larger
value corresponds to a mode best measured by the patchy kSZ
signal while a lower value corresponds to a mode best measured
by the global 21 cm signal. The KL modes associated with the
three largest and the three smallest eigenvalues are represented
as a function of redshift in, respectively, the middle and the
lower panel.
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high-redshift tail, corresponding to sources reionizing the
Universe as early as z ¼ 20. Another is the steplike
redshift-symmetric “instantaneous” reionization model
often considered in CMB data analyses [58]. We repeated
our analysis for a number of nonstandard ionization
histories resulting, for example, from simulations including
feedback in Pop III stars [4,5]. We find that for all these
models, results are qualitatively similar. Note that we omit
an explicit illustration of the global 21 cm signal since the
approximations in Sec. II A render it directly proportional
to the neutral fraction. The top-right panel shows the
ionization histories in the KL basis, while the bottom-right
panel gives the expected errors on the amplitude of each KL
mode. By construction, the 21 cm measurements have unit
errors in the KL basis. The errors on the kSZ measurements
are given by the inverse square root of eigenvalues in
Eq. (23). By comparing the errors of the global signal and
the kSZ measurements, we can determine which modes are

best measured by which signal. Note that although a
cursory glance at the errors suggests that there are vastly
more modes that can be measured using the 21 cm line
compared to kSZ, one can see that many of these modes
contribute very little to the typical ionization history. Thus,
in a practical scenario, one is likely to see a less lopsided
contribution of information, and indeed, in Sec. IV we will
see that both probes are necessary for accurate reconstruc-
tions of the ionization history.

IV. COMBINING PROBES WHEN THEY
ARE CONSISTENT

In an ideal situation, one might find that all datasets at
one’s disposal are free of systematic effects. Under such
circumstances, the next step in one’s analysis is to combine
data from our two probes into a single consistent ionization
history. In this section we establish a formalism for doing

FIG. 2. Models considered in the analysis and their KL counterparts. Left: evolution of the IGM ionized fraction with redshift for three
EoR models and their corresponding patchy kSZ angular power spectra, compared with the only measurement of the patchy kSZ
amplitude to date [19]. Our fiducial results are obtained with the orange (“asymmetric”) reionization history. Right: amplitude and
expected error bars on the KL modes associated with each model. Errors obtained with the 21 cm global signal are one by construction.
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so, deferring a discussion of potential systematics (and how
to detect them) to Sec. V.

A. A least squares approach

One method for combining data into a single ionization
history is to employ a least-squares estimator, where we
wish to construct an estimator x̂ for the true ionization
history x, given a collection of measurements y. In our case,
we take yconc ¼ ðy21; ykSZÞ to be a concatenation of the KL
coefficients. Relating the measurement to what we want to
constrain is the linear equation

yconc ¼ Axþ nconc; ð25Þ

where A is the design matrix (in this case is a vertical stack
of two R−1 matrices), and nconc is the concatenated noise
vector, i.e., nconc ¼ ðn21;nkSZÞ. Note that this noise is
not the instrumental noise contribution from the original
21 cm or kSZ measurements, but instead, the “noise” in our
determination of y21 and ykSZ. It therefore has a covariance
matrix N given by

N ¼
�
C̄21 0

0 C̄kSZ

�
: ð26Þ

With these definitions, the least squares estimator for the
ionization history takes the form3 [59]

x̂ ¼ ðATN−1AÞ−1ATN−1y

¼ RTðF̄21 þ F̄kSZÞ−1RR−TðF̄21y21 þ F̄kSZykSZÞ
¼ CtotR−TðF̄21y21 þ F̄kSZykSZÞ; ð27Þ

where we have defined

Ctot ≡ ðF21 þ FkSZÞ−1; ð28Þ

since this can be shown to be the covariance of our final
estimator x̂. Unsurprisingly, all traces of the KL transform
vanish from the final covariance. Moving to KL space is
simply a convenient intermediate step that elucidates
the complementarity of the global 21 cm signal and (as
we shall see in Sec. IV) allows for the detection of residual
systematics. The information content of the datasets is
unchanged by our choice of intermediate basis, and thus it
is expected that the final covariance in a joint determination

of the ionization history is the inverse of the sum of the
constituent Fisher matrices.
With Eq. (27), we see that the optimal way to constrain

the ionization history is to measure each KL coefficient
individually using each of our two probes, and then to
average the results together with weights given by each
Fisher information matrix. Since the Fisher information is
by construction diagonal in this basis for both types of
measurement, this is equivalent to an inverse variance
weighting. Essentially, we are taking advantage of the
complementarity of the global 21 cm signal and the kSZ
signal to rely on each probe to deliver the information for
each mode when it is available. This is illustrated in Fig. 3,
where we show an example reconstructed ionization history
with both probes in the bottom panel. Crucially, the top two
plots show that the reconstruction fails when we only have

FIG. 3. Simulated recoveries (black points with error bars) of
the ionization history (red curve) from kSZ measurements alone
(top panel), global 21 cm measurements alone (middle panel),
and combined constraints (bottom panel). One sees that combin-
ing kSZ and 21 cm measurements can significantly improve
constraints on the ionization history. However, the correlated
nature of the errors mean that the fits can be difficult to evaluate in
this space, as illustrated by the blue squares in the bottom panel,
where a particularly unlucky noise realization can give results that
appear to be egregiously inconsistent.

3Optionally, one may choose to group the constraints on the
ionization history into coarser bins than the native bin size used in
our Fisher matrices in Eqs. (13) and (14). In other words, there is
no requirement that x and yconc be of the same length; the former
can be shorter than the latter. To enable such a setup, one makes
the substitution A → AB, where B is a rectangular matrix of 1s
and 0s that duplicates entries in a shorter, binned version of x to
transform it into its original full-length equivalent.
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one out of our two probes. This establishes that it is fruitful
to combine global 21 cm and kSZ measurements directly to
constrain the ionization history, and move beyond previous
treatments in the literature such as those in Ref. [60]. In
those works, constraints were placed on model parameters
(such as the midpoint of reionization assuming some
parametrized form for the ionization history) rather than
on the ionization history itself.
One striking feature of Fig. 3 is the trend of smaller error

bars in the middle of the redshift range in the 21 cm
measurements. In general, this need not be the case, and
can be traced back to the specifics of our foreground model
from Sec. II A. A different foreground model may give
results that are quantitatively slight different, but we expect
the general qualitative complementarity of 21 cm and kSZ
to hold.
Although the black points in the bottom panel of Fig. 3

visually appear to track the true ionization history quite
well, it is important to recall the dangers of a chi-by-eye
approach in this space (as opposed to KL space). This is
because the errors in the different points are highly
correlated. For example, the middle panel does not indicate
that the 21 cm measurements favor an alternate ionization
history at high significance. Instead, it is simply indicative
that the 21 cm measurements are unable to measure
particular coherent modes (as emphasized by our KL
analysis). Similarly, a quick glance at the top panel gives
the impression that the kSZ measurements are so large that
they provide essentially no information. However, this is
again a matter of some crucial missing modes that can be
provided by the 21 cm measurements. Finally, we note that
while many noise realizations give similar results to the
black points shown in the combined constraints, some
unlucky draws of noise can occasionally yield ionization
histories that visually seem to be egregiously incorrect if
one forgets that the errors are correlated. The blue squares
in Fig. 3 give an example of such a draw, underscoring the
need to quote full covariance information when one
compares ionization history constraints to theory models.
Alternatively, we will see in Sec. IV B that the imposition
of suitable priors allows one to leverage the subtle
information present here in a faithful reconstruction of
the true ionization history.

B. A Bayesian approach

While intuitive to interpret, the least squares approach has
a shortcoming in that the incorporation of prior information is
more difficult thanwith a fully Bayesian approach. There are
avariety of sensible priors that onemight hope to incorporate.
Some of these are of the common sense variety, such as
requiring that xiðzÞ be between 0 and 1.08.4 Other priors

might be connected to complementary observations, such as
that CMB optical depth τ, given by

τ ¼ σT

Z
n̄eðzÞdl; ð29Þ

where σT is the Thomson cross section, n̄eðzÞ is the free
electron number density (with the overline denoting a global
sky average), and dl=dz is the line-of-sight proper distance
per unit redshift. Since n̄eðzÞ is proportional to the ionization
history,5 imposing a prior on τ from CMB experiments is
equivalent to imposing an integral constraint on our recov-
ered ionization histories. Phrased in the language of a
Bayesian analysis, our goal is to constrain the posterior
probability distribution pðxjy21; ykSZÞ for the ionization
history x given our global 21 cm and kSZ measurements,
y21 and ykSZ. Bayes’ theorem states that

pðxjy21; ykSZÞ ∝ Lðy21; ykSZjxÞpðxÞ; ð30Þ

where pðxÞ is the prior and Lðy21; ykSZjxÞ is the likelihood
function. The latter can be written as

Lðy21; ykSZjxÞ ¼
e−

1
2
ðy−AxÞTN−1ðy−AxÞ

det½ð2πÞ1=2N� ; ð31Þ

assumingGaussian-distributedmeasurement errors,whereas
the former might take the form

pðxÞ ∝ exp
�ðτpr − eTxÞ2

ε2τ

�Y
i

rectðxiÞ; ð32Þ

if we choose to impose a τ prior as well as a restriction on the
possible range of ionization history values. Here, rectð…Þ
denotes the rectangular function (which is unity between 0
and 1.08, and zero otherwise), τpr is one’s prior value on τ
(assumed to be measured with Gaussian errors to an
uncertainty of ετ), and e is a vector containing all constant
factors necessary to convert an ionization history into a τ
value using a discretized version of Eq. (29).
In Fig. 4 we show the result of some Bayesian recon-

structions of the ionization history. The left column uses the
same mock data that was used for the black data points in
Fig. 3. The top row places a prior on the range of possible
ionization levels. There, we see qualitatively similar results
to what we obtained with the least squares approach, except
here we have full posterior distribution information and the
prior cuts off some of the distributions at low and high

4Recall again that our convention for the ionization history
includes helium reionization, hence the upper limit at 1.08 rather
than 1.

5In principle, there is the subtlety that the optical depth is
proportional to integral of the ionization history multiplied by the
density, rather than just the ionization history alone. Since the
ionization field is correlated with the density field, neglecting this
can cause a roughly ∼10% shift in τ [46]. Here we neglect this
effect for simplicity, in light of the fact that our final errors on the
ionization history are rather large.
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ionization levels. The reconstruction is a reasonable one,
which again emphasizes the point that kSZ and 21 cm
measurements better work in concert to measure the
ionization history. The middle row shows the results of
additionally imposing a 10% prior on τ, i.e., using Eq. (32).
The τ prior does shrink the errors slightly, as expected, but
not to the extent that the constraints are qualitatively better.
Admittedly, in neither case is the reconstruction perfect,
and one might view some of the features in our reconstruc-
tion as undesirable ones. For instance, although models do
exist for nonmonotonic ionization histories [61–63], recent
theoretical preferences tend to favor monotonic histories.

The bottom row shows the result of adding a prior on
monotonicity to the constraint, which produces the best
reconstruction yet.
Imposing appropriate priors can be particularly powerful

when dealing with unlucky noise realizations. In the right
column of Fig. 4, we show the same sequence of Bayesian
inferences for the mock data used for the blue squares in
Fig. 3. With just the ionization range prior (top row), one
again sees a reconstruction that has a much lower ionization
level than the truth. The added τ prior (middle row)
improves the situation considerably, lifting overall ioniza-
tion levels so that the integral of the true ionization history

FIG. 4. Bayesian reconstructions of the ionization history (red curve) using both kSZ and global 21 cm measurements, imposing a
hard prior on the range on possible ionization values (top row), the hard prior plus a 10% prior on τ (middle row), and both priors plus a
monotonicity prior (bottom row). The left column shows the inferred ionization histories from the mock data that was used to generate
the black data points in Fig. 3, while the right column is the equivalent for the unlucky noise realization given by the blue squares in
Fig. 3. In each plot, the bulges show the marginalized posterior distribution in each redshift bin, the median value is denoted by a white
dot, and the thick black bars demarcate 68% credibility regions.
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(red curve) is approximately the same as the integral of the
reconstructed history. However, with τ being an overall
integral constraint, our inference machinery places some of
the extra ionization at unwanted redshifts (i.e., at high
redshifts). This is remedied by the addition of our monot-
onicity prior (bottom row), demonstrating the importance
of imposing appropriate (ideally physically motivated)
priors.
While in this case the monotonicity prior works quite

well, we caution against its use if one is parametrizing the
ionization history with a large number of redshift bins.
Dividing the redshift axis into a very fine set of bins means
that the constraint on each bin is a low signal-to-noise
constraint. In this regime, we find from our numerical
experiments using twenty bins (rather than the ten shown
in Fig. 3) that the monotonicity prior can make it difficult
to recover extremely rapid reionization histories where
reionization happens much more abruptly than the fiducial
histories we have shown. With the measurements being
relatively unconstraining when there are many redshift bins,
the large volume of accessible parameter space becomes
large. Over such a large prior volume, there are simply many
more possible ionization histories where ionization happens
very gradually over the entire redshift range. In contrast, a
model where the ionization remains very low for a long
period of time before increasing relatively rapidly is a
scenario that is represented by a fairly fine-tuned corner
of parameter space that will generally not be explored unless
it is strongly demanded by the data.
Imposing priors is necessary to include physicality in

one’s ionization histories when reconstructing it from
redshift bins [64–66]. An alternative method is to give
up on a model-independent bin-by-bin reconstruction in
favor of a model-dependent parametrization. Examples of
this might include the Weibull parametrization suggested in
Ref. [67], or the popular tanh parametrization [58] where

xiðzÞ ¼
1.08
2

�
1 − tanh

�
z − zr
Δz

��
; ð33Þ

with zr giving the midpoint of reionization and Δz
encoding the duration of reionization. Fits using the tanh
form are shown in Fig. 5, again using the mock data
corresponding to the black points in Fig. 3. Note that we
find qualitatively similar behavior with the Weibull para-
metrization. The top plot assumes that the true ionization
history is given by the asymmetric model (i.e., the same
fiducial model as we have used for all of our other inference
exercises). The dashed lines, solid lines, and peach shaded
region demarcate the 95% credibility regions for con-
straints from kSZ, global 21 cm, and the two probes
combined, respectively. All assume a 10% prior on τ.
Immediately striking is the fact that even the kSZ-only
constraints do reasonably well, in contrast to the more
model-independent, bin-by-bin inferences. This highlights

the fact that using a parametrized form that has just a few
parameters is equivalent to making rather strong prior
assumptions. Of course, the precise behavior will depend
on the true ionization model. Consider the bottom plot of
Fig. 5, where the true ionization history is given by a tanh
model with ðzr;ΔzÞ ¼ ð8; 1Þ. This is a more rapid reioni-
zation scenario than before, and here we see that while
kSZ constraints are still powerful, the improvement from
introducing 21 cm information is greater. This is in
accordance with our intuition from Sec. III, where we
argued that sudden changes in ionization are more easily
detected by the 21 cm line and less easily detected by kSZ
measurements.

V. KL MODES AS A DIAGNOSTIC FOR
SYSTEMATICS

Casting our data into the KL basis confirms our intuition:
there are modes of the ionization history that are best
measured by the 21 cm global signal and others by the kSZ.
In the previous section, we saw that this complementarity
enables improved constraints on the ionization history—
provided there are no residual systematics in either dataset.
In this section, we explore techniques for detecting

systematics by leveraging modes that are well measured

FIG. 5. Simulated recoveries of the ionization history (red
curve), assuming that the true ionization is given by our fiducial
asymmetric model (top plot) and a tanh model with zr ¼ 8 and
Δz ¼ 1 (bottom plot). The 95% credibility regions coming out of
tanh-parametrization fits to mock data are shown for kSZ
measurements alone (dashed lines), 21 cm alone (solid lines),
and a combined fit (peach region).
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by both probes. Consider, for example, the second-to-last
mode in the bottom-right panel of Fig. 2. This mode has
error bars of a similar order of magnitude for both the kSZ
and the 21 cm global signal, which means it can be
measured to a similar precision using either probe. Such
overlap modes can be useful for performing consistency
checks between data sets. In a scenario where we have a
measurement of the ionization history from both probes
and we think that there may be some residual systematics in
one of the two, we can decompose our data into the KL
basis and compare the overlap modes. If the same KL
expansion coefficients fyαg are not consistent between the
kSZ and 21 cm measurements at the level of expected
uncertainties, then we are forced to conclude that there exist
residual systematics in at least one of them.
In order to do this, we must first understand how the

presence of systematics change the KL coefficients of each
probe and whether we can distinguish residual systematics
in the data from perturbations due to noise. We first do this
qualitatively with a “chi-by-eye” test in Sec. VA, and then
formalize the procedure with a linear matched filter in
Sec. V B.

A. Chi-by-eye

Let us first introduce some notation. We define x0 to be
the true ionization history, with a corresponding set of KL
amplitudes y0 given by Eq. (20), i.e.,

y0 ¼ R−1x0: ð34Þ

Throughout this section, we take x0 to be the “asymmetric”
ionization history shown in the top-left panel of Fig. 2 in
orange, although the analysis framework that we develop
does not rely on a specific model. A measurement of the
KL modes using our two probes can be written as

y21 ¼ y0 þ n21 þ y21;sys ð35Þ

ykSZ ¼ y0 þ nkSZ þ ykSZ;sys; ð36Þ

where n21 and nkSZ are instrumental noise contributions for
the global 21 cm signal and kSZ measurements, respec-
tively, while y21;sys and ykSZ;sys are corresponding system-
atic contributions. To hunt for systematics, one can imagine
differencing y21 and ykSZ to form

z≡ ykSZ − y21 ð37Þ

¼ ykSZ;sys − y21;sys þ nz; ð38Þ

where nz is a noise contribution to z with covariance
given by

Σ̄≡ C̄kSZ þ C̄21; ð39Þ

where C̄kSZ ¼ F̄−1
kSZ and C̄21 ¼ F̄−1

21 are the noise cova-
riances for the kSZ and 21 cm measurements in the KL
basis. Looking for the presence of systematics is then
equivalent to asking whether z is consistent with noise that
has a covariance matrix given by Σ̄, since a measurement
free of systematics would have z ¼ nz.
In principle, one could perform the same analysis with

recovered ionization histories rather than KL amplitudes.
However, working in KL space has several advantages.
First, it highlights which modes of the ionization history are
suitable for this type of consistency analysis. From the
bottom right panel of Fig. 2 we see that the vast majority
modes are much better measured by the global 21 cm
signal. We thus effectively only have one measurement of
these, disallowing the possibility of consistency checks.
Only the overlap modes are useful in this regard. The
second advantage of working in KL space is that Σ̄ is
diagonal in this space, since Eqs. (22) and (23) demonstrate
that both F̄kSZ and F̄21 are diagonal. Each KL mode thus
allows an independent consistency check that can be easily
visualized.
As an illustration, we first consider cable reflections due

to impedance mismatches in transmission lines, which are a
common systematic present in 21 cm datasets. A cable
reflection might imprint a copy of an original signal at some
time delay τ, which in turn results in a sinusoidal pertur-
bation in the measured spectrum of the form

TðνÞ ¼ Ac sinðντ þ ϕÞ: ð40Þ

Dividing by the appropriate prefactors from Eq. (2) then
converts this into a perturbation on the ionization history,
which can in turn be cast in the KL basis using Eq. (20).
In the top left panel of Fig. 6 we plot in color z as defined

in Eq. (37), where y21;sys are the KL amplitudes for a cable
reflection with different values of Ac. In black, we plot z
when both measurements are free of systematics, identi-
cally equal to zero, with the error bars given by Σ̄. We plot
only the last few modes, since these correspond to modes
that are well measured by both probes. If perturbations to z
due to the presence of systematics fall within the error bars
for a given mode, then this deviation is consistent with a
noise fluctuation. This is the case for example for the
second to last mode plotted. In this scenario, we could not
use this mode to perform a consistency check between the
two datasets. In contrast, the last and third-to-last modes do
exhibit deviations that fall outside of the error bars for large
enough cable reflection amplitudes, and we would con-
clude that one measurement contains residual systematics.
Another example of a common systematic in a 21 cm

measurement is foreground contamination. Although mea-
sures can be taken to model and remove contaminants
[46,68–84], it is likely that some residuals will remain.
Consider a scenario where the residual foreground spec-
trum Tfg takes the form of a power law
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FIG. 6. KL modes as a diagnostic for different systematics. From top to bottom: Amplitude of cable reflections and foreground
residuals in the global 21 cm signal, level of primary CMB and tSZxCIB cross-spectrum leakage in the measured patchy kSZ signal.
Left: difference between the KL amplitudes obtained with a patchy kSZ and a 21 cm global measurement. When both probes are free of
systematics, there is no difference (in black). Right: statistical significance of a systematic detection using KL modes, given in terms of
the number of sigmas ν.
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TfgðνÞ ¼ Afg

�
ν

ν�

�
α

; ð41Þ

where Afg is an amplitude parameter for the residuals, α is a
power law index, and ν⋆ is a frequency pivot scale. As we
did for the cable reflections, we divide out the relevant
conversion factors to cast this into an ionization history,
which we then transform into KL space for adding to our
fiducial measurement. The results are in the second panel
from the top in Fig. 6, where we keep α and ν⋆ fixed at
150MHz, but vary Afg to explore the sensitivity of our tests.
For both the 21 cm systematics we consider residual
amplitudes up to 20 mK since this is comparable in
magnitude to the expected differential brightness temper-
ature [26]. We find that the inclusion of either of these
systematics perturbs the KL amplitudes for some of the last
few modes beyond what might be due to noise fluctuations.
Since our tests rely on self-consistency, they can equally

well be used to detect systematics in a kSZ measurement.
Consider, for example, the possibility that, because of an
imperfect cosmological model, the kSZ measurement is
contaminated by power from the primary CMB anisotro-
pies. The precise way in which such a systematic would
affect the ionization history is less straightforward than in
the 21 cm case because the mapping from the ionization
history to the observable (the kSZ contribution to the
angular power spectrum) is more complicated. Following
Refs. [68,85], we can obtain an expression for how some
residuals δD in the power spectrum affect the ionization
history by computing

ðδxkSZÞα ¼
X
β

ðF−1
kSZÞαβ

∂DT

∂xiðzβÞΠ
−1
kSZδD; ð42Þ

where δxkSZ is the systematic-induced perturbation to the
kSZ-derived ionization history, D is the fiducial patchy kSZ
angular power spectrum, ΠkSZ is the kSZ measurement
covariance as defined in Sec. III A, and FkSZ is the kSZ
Fisher matrix from Eq. (14). Since the Fisher matrices are
diagonal, it can be computationally convenient to compute
the perturbation directly in KL space. This has the added
bonus that it avoids having to invert FkSZ, which can be
singular depending on how finely the redshift axis is binned.6

The equivalent expression to Eq. (42) in KL space is

ðδykSZÞα ¼
X
γ

ðF̄−1
kSZR

TÞαγ
∂DT

∂xiðzβÞΠ
−1
kSZδD: ð43Þ

To simulate the CMB primary contaminating our
kSZ measurement, we take δD to be a scaled primary

CMB power spectrum. We allow the residual primary CMB
temperature at l ¼ 3000, δDCMB

l¼3000, to range up to 0.3 μK2

and find that even for small primary CMB residuals, z is
perturbed well outside the error bars for the overlap modes.
This is unsurprising due to the large dynamic range of the
CMB power spectrum over the range of l that we are
considering. Although a CMB temperature of 1 μK2 at l ¼
3000 is of the same order as the kSZ signal at this l, the
CMB can be up to two orders of magnitude brighter on the
lower end of our l range.
Another potential systematic corresponds to the tSZ ×

CIB cross-spectrum contaminating our measured kSZ
spectrum. There is a long list of other high-multipole
foregrounds to the primary CMB which could be consid-
ered, including the second, late-time component of the kSZ
power itself. However, we limit our analysis to the tSZ ×
CIB power, since it has similar amplitude and shape as the
kSZ power and other potential contaminants, such as
the thermal SZ spectrum. Using the same method as for
the contamination from the CMB primary power, we
see the same behavior for this systematic. Small residual
amplitudes cause large changes in the last few KL modes,
implying that even small residual tSZ × CIB systematics
will lead to discrepancies between the two datasets that can
be immediately spotted.

B. The linear matched filter

With the chi-by-eye test we can qualitatively predict
whether it is appropriate to use the overlap modes to perform
consistency checks. One limitation of this approach is that
althoughwe can assert the presence of residual systematics in
one of our datasets, we cannot say what type of systematic
might be causing the discrepancy.As a next step,we can use a
linearmatched filter (LMF) to search for a specific systematic
within our dataset, as well as formalize the chi-by-eye results
and quantify the statistical significance with which we can
detect systematics.
To employ the LMF, one supplies the filter with a

template shape that is expected to be present in the data.
Matched filtering has been used for example in gravita-
tional wave astronomy to determine whether a character-
istic gravitational wave signature is present in a signal [86].
In our case, we define our LMF template s to be a vector
containing the KL coefficients of some systematic that we
suspect is contaminating our data. Then, the “number of
sigmas” ν by which the LMF is able to detect the template
is given by

ν≡ jsTΣ−1zjffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sTΣ−1s

p : ð44Þ

Before proceeding with the results, we note a key pro-
perty of this statistic: rescaling the amplitude of s leaves ν
unchanged. This is particularly convenient as one often has

6Notice from Eq. (23) that F̄kSZ can be formed without
inverting FkSZ. Because F̄kSZ is diagonal, singular modes can
simply be discarded without affecting the numerical stability of
other modes.
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reasonable priors on the shapes of various systematics
without knowing the precise amplitude of the residuals.7

In the right column of Fig. 6 we plot ν for the same four
representative systematics that we studied in Sec. VA. The
LMF can detect the presence of CMB and tSZ × CIB
residuals remarkably well, which agrees with the chi-by-
eye result in the left column. We see that for the residual
CMB and tSZxCIB amplitudes considered, z is perturbed
well outside of the error bars. For residual spectra temper-
atures of ∼0.3 μK2 at l ¼ 3000, the LMF can detect CMB
residuals with a significance of 4000σ, and 600σ for the
tSZ × CIB. These high significance detections are, as we
discussed previously, in part due to the large variations in
amplitude of the CMB and tSZxCIB spectra over the range
of l we consider. To illustrate this, in the bottom two LMF
panels we include a secondary axis displaying the average
of the spectra over the whole range of l. Indeed, although
we have δDCMB

l¼3000 ¼ 0.3 μK2, the average of the CMB
spectrum is 40 μK2.
In general, we find that 21 cm systematics are more

challenging to detect. For residual amplitudes of 20 mK,
the LMF can detect cable reflections and foregrounds to
30σ and 40σ, respectively. We emphasize that these
detections are not the generic detection of outliers, but
that of a specific template. As an illustration of this,
consider the scenario where our LMF template for cable
reflections differs from the true systematic by a phase. This
is in fact a realistic situation, since in general one does not
know the phase of one’s reflections a priori. Figure 7 shows

the number of sigma with which a simulated cable
reflection with ϕ ¼ 0 is detected for various phase choices
in one’s LMF template. As expected, ν peaks when the
template’s phase matches that of the true systematic, and
drops on either side until one goes beyond �π=2. At that
point ν increases again because our statistic is insensitive to
the overall sign of our template.

VI. WHAT TO DO IF THERE ARE SIGNS
OF SYSTEMATICS IN A PROBE

Ideally, upon identification of a systematic effect (for
instance, using the techniques described in Sec. V), one
ought to track down their physical origin and simply
eliminate them from future measurements. Failing that,
we might choose to combine our datasets in a way that
minimizes the influence of systematics. In this section, we
introduce two methods for doing so: mode projection and
automatic outlier detection.

A. Mode projection

Suppose we suspect that our concatenated data vector
yconc contains some residual systematic effect of the form s.
A straightforward way to eliminate this mode from our data
would be to assign infinite error to anything with the shape
of s in the noise covariance matrix. To do this, one can
make the substitution

N → Nþ ϵssT: ð45Þ

where ϵ is a free parameter that we will eventually send to
infinity to signify that s is not a mode to be trusted. If we
wish to do so in the context of our least-squares estimator of
Sec. IVA, the key quantity is N−1, since this is what enters
the expression for x̂. As ϵ → ∞, an application of the
Woodbury identity reveals that N−1 is replaced by N−1P,
where we have defined the projection matrix

P ¼ I −
ssTN−1

sTN−1s
: ð46Þ

Replacing all copies of N−1 with N−1P in Eq. (27) then
gives

x̂ → ðATN−1PAÞ−1ATN−1Pyconc; ð47Þ

with a correspondingly modified covariance for the esti-
mator taking the form

ðATN−1PAÞ−1ATN−1PNPTN−1AðATPN−1AÞ−1: ð48Þ

Figure 8 illustrates the change in the error of our
recovered ionization history after projecting out each of
the systematics considered in Sec. V. Regardless of which
systematic is projected out, we see that the errors increase

FIG. 7. The number of sigma with which the LMF statistic can
detect cable reflection systematics, where our systematic template
differs from the true cable reflections by a phase. As expected, ν
peaks when the template matches the true phase of the simulated
systematic (ϕ ¼ 0) and falls off as the phases differ. For very
large phase differences, the statistical significance rises again
because ν is insensitive to the overall sign of our templates.

7Indeed, if we knew both the shape and amplitude of a
systematic precisely, we would simply subtract it out.
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compared to the scenario where there are no systematic, in
which case the errors are given by the inverse of the sum of
the Fisher matrices as in Eq. (28). We limit the range of our
plot to be between 0 and 1, since errors in a measurement of
xi that are larger than order unity effectively give us no
information about reionization. Projecting out any of the
systematics we consider increases the errors on xi signifi-
cantly, rendering most of the redshift bins we consider
unmeasurable. This is to be expected, since the projecting
out of a systematic mode removes information from the
data. Ultimately, the complete projecting out of a mode is a
rather drastic and heavy-handed way to remove a system-
atic, and one pays a steep price in the quality of one’s
ionization history reconstruction.

B. Automatic outlier detection

The projecting out of a suspicious mode is in some ways
a rather arbitrary exercise that is appropriate under a fairly
narrow set of circumstances. On one hand, one must not
have precise knowledge of the exact form and amplitude of
the systematic (otherwise, it would be simpler just to
subtract out the systematic). On the other hand, one must
have at least some vague knowledge of the shapes of the
systematics in the data, and to have good reasons to suspect
that the relevant systematics are present. Often this suspi-
cion simply comes from seeing large amplitude signals in
one’s data, and thus the projecting out of systematics is a

modified version of sigma clipping. This practice can be
one of concern, as the data analyst is essentially placing
artificial constraints on the probability distributions that the
data are expected to follow, whether or not the real data
actually obey these constraints.8

An alternative to mode projection is to use better, more
expressive models for the likelihood that are able to account
for outliers due to systematics. Different KL modes are
statistically independent (i.e., N is diagonal), so our like-
lihood L factorizes into a product of constituent likelihood
functions for the two different probes and the different KL
modes, such that L ¼ Q

i L
21
i LkSZ

i . If our proposed model
has the value ymodel

i for the ith mode, then our previous
likelihood for this mode is given by

Lin
i ¼ 1ffiffiffiffiffiffiffiffiffiffi

2πσ2i
p exp

�
−
ðyi − ymodel

i Þ2
2σ2i

�
; ð49Þ

where σ2i is the ith entry on the diagonal of N. This
likelihood applies equally well to a 21 cm or a kSZ
measurements, provided neither is an outlier. In contrast,
saying that a particular measurement is an outlier is
equivalent to saying that it is drawn from a different—
much broader—distribution instead, such as

Lout
i ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2πγ2σ2i
p exp

�
−
ðyi − ymodel

i Þ2
2γ2σ2i

�
; ð50Þ

where γ > 1 is an error multiplier that makes this Gaussian
broader than the previous one. Of course, in practice we
will not know ahead of time whether a data point is an
outlier or not. To get around this, one can introduce a
nuisance parameter gi that enters into a more general
likelihood Li that is a mixture of the standard likelihood
and the outlier likelihood, such that

Li ¼ giLin
i þ ð1 − giÞLout

i ; ð51Þ

which follows the suggestion in Ref. [87]. With such a
likelihood, outliers can be identified in a data-driven way:
the extra gi parameters (one for each mode and one for each
probe) are parameters that can be fit from the data, under
the restriction that they must lie between 0 and 1. If the
posterior for a particular gi tends toward 1, it is not an
outlier; if it tends toward 0, it is likely an outlier. Final
constraints on the ionization history can then be obtained
by marginalizing over fgig (and also γ, since we do not

FIG. 8. The errors on each redshift bin after projecting out
systematics, computed with the covariance given in Eq. (48).
When projecting out modes corresponding to any of our
representative systematics, the errors on xi for the majority of
the redshift bins we consider are increased significantly, so that
most bins cannot be used to place constraints on the ionization
history.

8To be fair, the methods proposed in Sec. VI A do have some
safeguards against this. In particular, we note that we are
discarding the relevant systematic modes in only one out of
our two probes, and the projection only occurs for specific
shapes. Our methods therefore do not constitute a literal sigma
clipping process, but it is still incumbent on a data analyst to be
cognizant of possible biases.
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know a priori how much of an outlier our outliers are). This
will have the effect automatically discarding outliers in a
statistically disciplined fashion.
With the large number of extra parameters, our inference

problem is not well-defined unless we make further assump-
tions. To see this, suppose we were to parametrize the
problem by specifying the ionization history redshift bin
by redshift bin, as we did in Sec. IVA. Constraining the
ionizationhistory inn redshift bins requiresnKLcoefficients
to be measured. Here, each KL mode independent and is
measured by two probes. However, with just two measure-
ments of each mode, outlier detection is impossible. Two
measurements enables one to detect inconsistency, as we did
in Sec. V. However, with just two measurements per mode,
there is simply not enough information to determine which
measurement is the outlier that is causing the inconsistency,
and which is the accurate measurement.
To make our inference of the ionization history a well-

defined problem, it is necessary to make some assumptions.

Here we recommend two. First, we can reduce the number
of extra nuisance parameter that are introduced into the
problem by only performing outlier detection for the
overlap modes. Essentially, one is acknowledging that
for a mode that is well-measured by only one probe, we
have no choice but to accept a measurement even if it is an
outlier, since we have no other way to obtain information
about the mode. Second, rather than having the parameters
in our inference problem be the bin-by-bin ionization
history values, we might use a parametric form such as
a tanh model. This effectively allows one to take advantage
of a form of self-consistency between different KL modes
for automatic outlier detection—one cannot arbitrarily
adjust a single KL mode without deviating from the
assumed parametric form. In principle, tying together
different KL modes in this way allows one to perform
outlier detection over more modes than just the overlap
modes, but in practice we recommend enacting both of the
aforementioned measures for best results.
In Fig. 9 we show the results of fitting a tanh model to

data that has a 20σ outlier in the 19th KL mode of the 21 cm
measurement. The true ionization history is shown in red,
and two 95% credibility regions are shown: the gray bands
show the recovered constraint using the automatic outlier
detection likelihood given by Eq. (51) and the dashed lines
show the results of analyzing data with the incorrect
assumption that there are no outliers. Although the con-
straints of the tanh parametrization mean that neither gives
appallingly inaccurate results, the latter clearly gives a
biased result. In contrast, the former is able to identify—
and effectively discard—the outlier in the 21 cm measure-
ment of the KL mode in question and to rely instead on the
kSZ data point. This can be seen in Fig. 10, where one sees
that the marginalized posteriors in the nuisance parameters
of our fit. The parameter g1921 is skewed toward 0, thus
correctly identifying the 19th KL coefficient derived from
the 21 cm data as coming from an outlier distribution

FIG. 9. Inference of the fiducial asymmetric ionization history
by fitting to a tanh parametrization assuming no outliers (dashed
lines) or using automatic outlier detection (gray band), using
mock data that has a 20σ outlier in the 19th KL mode of the 21 cm
measurement. In each case the 95% credibility interval is shown.

FIG. 10. Marginalized posterior distributions for nuisance parameters in the fitting of a tanh ionization history model using a
likelihood function that incorporates automatic outlier detection, i.e., Eq. (51). Left: distribution for g19kSZ, the nuisance parameter that
indicates whether the kSZ measurement of the 19th KL mode is an outlier or not. Middle: distribution for g1921, the equivalent quantity on
the 21 cm. Right: distribution for γ, the error multiplication factor controlling the width of a hypothetical distribution from which outliers
are drawn. The automatic outlier detection successfully identifies the 21 cm measurement as being the outlier in our simulation, with
γ > 1 to indicate that it is in fact more aptly described by a wider distribution than one consistent with theoretically expected errors.
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with γ > 1. In contrast, g19kSZ is skewed toward 1, suggesting
that the corresponding data point from the kSZ side is
not an outlier. Ultimately, the best course of action in
any measurement process is of course to identify and
eliminate experimental systematics. However, as another
demonstration of the complementarity between 21 cm and
kSZ measurements, automatic outlier detection can be
employed in the overlap modes as an additional safeguard.

VII. CONCLUSIONS

The global 21 cm signal and the kinetic Sunyaev-
Zel’dovich effect power spectrum are two promising probes
in the study of cosmic reionization, but each is limited in
constraining power. Indeed, the global 21 cm signal is an
average over the whole sky, while the kSZ effect is
integrated over time. Additionally, because of the bright-
ness of spectrally smooth foregrounds, the former is
expected to be most sensitive to rapidly evolving ionization
histories, whereas the amplitude of the kSZ power increases
with the duration of reionization, making this probe more
sensitive to extended ionization histories.
In this work, we have quantitatively confirmed this

intuitive complementarity and demonstrated that it can be
used to give tight constraints on the ionization history of our
Universe. This was done by establishing a framework, based
on an application of the Karhunen-Loève (KL) transforma-
tion, which decomposes the data into a basis whose eigen-
values andmodes describe the relative information content of
each probe (Fig. 1). Moreover, the qualitative aspects of this
formalism are robust to different models of reionization, as
illustrated in Fig. 2. With this basis as a guide, we found that
joint measurements of the global 21 cm signal and the kSZ
effect can considerably reduce errors and biases in recovered
ionization histories, especially when physically motivated
priors are imposed (Fig. 4).
The complementarity between the global 21 cm and the

kSZ can also be wielded to determine whether systematics
are present in data, as well as to mitigate their effects. A
wide range of potential systematics were considered, such
as foreground leakage and cable reflections in the global
21 cm signal, or leakage from various primary or secondary
CMB anisotropies into the kSZ data. Exploiting the KL
modes that are well measured by both probes enables
consistency checks between datasets. Using a linear
matched filter technique, we were able detect the presence
of foreground residuals with an amplitude about four times
smaller than the cosmological signal (∼20 mK) at 10σ
(Fig. 6). The detection significance is even better for kSZ
systematics, with a 0.05 μK2 residual amplitude of the
tSZxCIB cross-spectrum—about half of the error bars on
current kSZ measurements [19]—being picked up at 100σ.
However, systematics detection alone is not sufficient, and

one would ideally like to remove systematics from one’s
analysis in order to avoid biased constraints. We found that
the wholesale projecting out of systematic modes is not a

viable option, as it results in a significant increase in errors
and relies on good prior knowledge of the nature of the
systematic projected out (Fig. 8). Exploiting the fact that the
KL basis diagonalizes measurement covariance matrices, we
included outlier modelling in a fully Bayesian treatment of
the data. In a proof-of-concept example, we were able to
automatically identify and discard an injected outlier in the
21 cmmeasurement of a KLmode, effectively relying on the
information provided by the kSZ measurement of this mode
alone to provide an unbiased constraint on the ionization
history. Conversely, in the case where automatic outlier
detection was not employed, the resulting ionization history
was biased (Fig. 9).
Having illustrated the complementarity between the

global 21 cm signal and the patchy kSZ angular power
spectrum, future work should further examine the power of
connecting the two probes in a realistic end-to-end simu-
lation framework. With self-consistent sky realizations, one
could capture correlated cosmic variance effects. Indeed,
cosmic variance errors may be an obstacle to measurements
of the global 21 cm signal from reionization [88], and being
a cosmological-signal sourced uncertainty, it would pre-
sumably correlate with a kSZ measurement, leading to off-
diagonal covariance terms which we have not included in
this analysis. End-to-end simulations also enable a more
realistic quantification of systematic uncertainties, e.g.,
from foreground cleaning. On one hand, foreground
component separation from sky models could lead to a
degradation of our results, by increasing the error terms in
the kSZ covariance [22]. End-to-end foreground simula-
tions also help to guard against any quantitative peculiar-
ities of the specific foreground model used in this paper on
the 21 cm side. On the other hand, with realistic full sky
maps there is the potential to leverage more advanced (and
speculative) foreground mitigation techniques such as those
based on detecting violations of statistical isotropy [89–91].
Moreover, the techniques proposed in Sec. V will allow for
the detection of unexpected systematics and are therefore
especially useful if the instrument is not perfectly known.
Finally, one could also include other probes of reionization
(e.g., from CMB polarization) in a more self-consistent
way [92], going beyond a simple τ prior.
Providing precision constraints on the ionization history is

a challenging problem. As an essential step toward over-
coming this crucial obstacle (and in order to prepare for
upcoming precision measurements of the kSZ power spec-
trum [22,48]) in this paper we have established a framework
for combining a particularly complementary pair of probes—
the global 21 cm signal and the kSZ effect—which together
will serve to exemplify the power of a multipronged program
to unlock the mysteries of the epoch of reionization.
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