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The extraordinary neutrino flux produced in extreme astrophysical environments like the early Universe,
core-collapse supernovae and neutron star mergers may produce coherent quantum neutrino oscillations on
macroscopic length scales. The Hamiltonian describing this evolution can be mapped into quantum spin
models with all-to-all couplings arising from neutrino-neutrino forward scattering. To date many studies of
these oscillations have been performed in a mean-field limit where the neutrinos time evolve in a product
state. In this paper we examine a simple two-beam model evolving from an initial product state and
compare the mean-field and many-body evolution. The symmetries in this model allow us to solve the real-
time evolution for the quantum many-body system for hundreds or thousands of spins, far beyond what
would be possible in a more general case with an exponential number (2N) of quantum states. We compare
mean-field and many-body solutions for different initial product states and ratios of one- and two-body
couplings, and find that in all cases in the limit of infinite spins the mean-field (product state) and many-
body solutions coincide for simple observables. This agreement can be understood as a consequence of the
fact that the typical initial condition represents a very local but dense distribution about a mean energy in
the spectrum of the Hamiltonian. We explore quantum information measures like entanglement entropy and
purity of the many-body solutions, finding intriguing relationships between the quantum information
measures and the dynamical behavior of simple physical observables.
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I. INTRODUCTION

In core collapse supernovae and binary neutron star
mergers neutrinos are emitted in extremely high number
densities, and they can have a nontrivial impact on the
chemical and hydrodynamical evolution of these environ-
ments. Emitted neutrinos can affect the neutron-to-proton
ratio thereby impacting nucleosynthesis processes, and
they can likely transport energy and reheat the shock
formed during a core collapse supernova explosion
[1–4]. In such dense neutrino gases, the neutrinos can
experience coherent forward scattering with other local
neutrinos and thus generate a self-coupled evolution in the
flavor content of the gas [5–7].
Significant work has gone into the study of these dense

neutrino gases under a variety of simplifying assumptions

and imposed symmetries almost exclusively in the mean-
field approximation, which is equivalent to the time
evolution of the system within the space of product states
of single-neutrino spinors. These dense neutrino systems
exhibit a rich variety of phenomena in the evolution and
transport of their flavor content. Such phenomena include
swaps between the initial spectra of different neutrino
flavors [8–10], collective and synchronized evolution
[11,12], coherently transported flavor waves [13,14],
spontaneous symmetry breaking [15,16], and the gener-
ation of very fine scale spatial flavor structure analogous
to fluid turbulence [15,17].
Recent work has suggested however that in some cases

behavior which is observed in systems analyzed using the
mean-field approximation may deviate significantly from
that seen in equivalent many-body solutions which retain
all quantum correlations, requiring in general a basis size
growing exponentially with system size [18–20].
The dense neutrino Hamiltonian governing the neutrino

flavor evolution (in the two flavor approximation) is
equivalent to a Heisenberg-like spin model with long-
range (in flavor space) neutrino-neutrino flavor exchange
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interactions and spatially varying single-particle
“magnetic” fields. The time evolution of these systems
is of great interest in the condensed matter, quantum
computing, and atomic, molecular and optical communities
(see e.g. [21,22]). This Hamiltonian can be simply mapped
to qubits, though with the caveat that the two-body
interactions are long-ranged. Each spin represents the
neutrino field at a specific magnitude and direction of
momentum, with the spin degrees of freedom representing
the neutrino flavor.
We assume an initial product state of single-neutrino

spinors and study the evolution after a rapid quench to the
full Hamiltonian. An initial product state is appropriate if
one-body evolution dominates in the interior of the pro-
toneutron star where coherent forward scattering on the
dense background of charged leptons dominates. The rapid
quench is clearly an approximation but is very useful for
testing the resulting dynamics. In particular we are inter-
ested in studying the evolution of quantum information
measures in this system, including entanglement entropy
and purity. We also study simple one-body observables
including the time-dependent flavor expectation value as a
function of momentum direction and energy. The relation
between the full quantum dynamics and the product state
evolution can be examined using these observables and the
quantum information content of the evolved states. Gate-
based quantum computers can in principle solve for the
many-body dynamics, and emulators including trapped-ion
and Rydberg cold atom systems should be able to help
investigate closely related problems in quantum spin
dynamics [23,24].
In this work we investigate the simplest dense neutrino

model which includes neutrino-neutrino coherent forward
scattering. This model describes a dense gas of neutrinos
with only two momentum directions and energies. In Sec. II
we introduce the many-body Hamiltonian and in Sec. III
our simple initial condition. The initial state consists of a
product state of the two beams with fully aligned spins
within each beam. The initial-state and Hamiltonian sym-
metry with respect to the interchange of neutrinos within
each beam enables exact solutions for large numbers of
neutrinos since the number of quantum amplitudes grows
only polynomially with system size rather than the expo-
nential growth in the general case.
The initial state energy and higher moments of the

Hamiltonian play important roles in the full quantum
evolution. Employing our initial state, we calculate the
first four moments of the many-body Hamiltonian, and
we demonstrate that in the limit of a large number of spins
the initial product state has a Gaussian distribution in the
energy eigenspace of the Hamiltonian. We will use the
scaling properties of the variance to construct a heuristic
measure describing when mean-field-like behavior should
be expected to emerge in a many-body calculation.
In Sec. IV we compare the dynamical evolution of

both the many-body and mean-field evolution. Using our

proposed heuristic, we argue that the mean-field approxi-
mation correctly predicts the averages of simple one-body
operator expectation values in the large many-body system
limit except in the special case that the initial product state
is an eigenstate of the one-body Hamiltonian.
In Sec. V we investigate the full time evolution of this

system including two primary quantum information mea-
sures, the bipartite entanglement entropy of the two beams
and the purity of individual neutrino quantum states.
Finally, in Sec. VI we present our conclusions and thoughts
regarding future work.

II. NEUTRINO HAMILTONIAN AND
TWO-BEAM GEOMETRY

The Hamiltonian which governs the evolution of the
flavor content of the dense neutrino gas comes in three
pieces. First is due to the mismatch between the mass and
weak flavor states. The second is generated from the
coherent forward scattering of the neutrinos off of the
local charged leptons, which can result in the famous
Mikheyev-Smirnov-Wolfenstein resonance. Finally,
through the weak interaction, the neutrinos can experience
coherent forward scattering with other present neutrinos. In
the rest of this work, we will work in the two flavor
approximation, denoting the electron flavor neutrinos νe
and the second “x” flavor neutrinos as νx. We also note that
this x state should be understood to represent a linear
combination of the physical muon and τ neutrino flavor
states.
The Hamiltonian we will study has the form [25]

H ¼
X
i

�
ωi

2
B⃗ · σ⃗i

�
þ

ffiffiffi
2

p
GF

2V

X
i<j

ð1 − vi · vjÞσ⃗i · σ⃗j: ð1Þ

Here, the sums are over all of the flavor spins and the vector
operators σ⃗i ¼ ðσxi ; σyi ; σzi Þ are constructed with the usual
Pauli matrices acting on the ith neutrino amplitude. The
vacuum oscillation frequencies are ωi ¼ Δm2=2Ei where
Δm2 is the mass squared splitting, and Ei is the energy of
the ith neutrino. We choose to work in the mass basis, such
that B⃗ ¼ −ê3. GF is the usual Fermi coupling constant, and
the term proportional to GF is generated by the neutral
current coherent forward scattering between the neutrinos
along different trajectories (vi). We have not included the
usual electron coherent forward scattering term propor-
tional to GFne [where ne ¼ ðne− − neþÞ is the net electron
density]. We will mimic the inclusion of the term generated
by a dense background of electrons by assuming that its
effect is to reduce the effective vacuum mixing angle
between the mass and flavor states. A direct inclusion of
this term would be preferable since it is not possible in
general to properly quantify the amount of this suppression.
Due to the large magnitude of the matter term compared to
the other contributions, a naive implementation of the full
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time-evolution incurs a considerable increase of the sim-
ulation cost. This problem can be circumvented using
algorithms to perform simulations in the interaction picture
(see e.g. [26]) and we plan to leverage this technology in
future work. We assume that the presence of any other
charged leptons is negligible.
Determining the flavor evolution of the dense neutrino

gas, even under the assumptions of homogeneity and
isotropy, is prohibitively difficult. For an arbitrary initial
condition describing the initial flavor states of N neutrinos,
the time evolution of 2N complex amplitudes must be
tracked consistently. In the following work we will study
the flavor dynamics of a system which is approximated as
two “beams” of neutrinos. In this approximation, there are
only two distinct velocities vA and vB, so we can extract the
geometric factor 1 − vi · vj from the neutrino-neutrino
coherent forward scattering potential. We also assume that
within each beam there are monochromatic neutrinos such
that we only retain two distinct vacuum oscillation frequen-
cies, ωA and ωB.
With the momentum geometry and energies specified,

we will work in the frame which rotates about the B⃗ axis
with frequency

ðωA þ ωBÞ
2

such that we drop the component of the vacuum oscillation
Hamiltonian which is common to both beams. The two
body Hamiltonian is characterized by the strength

μ ¼
ffiffiffi
2

p
GFN
V

ð1 − vA · vBÞ; ð2Þ

and we will measure all other energies and times in units
of μ. We thus define Ω ¼ ðωA − ωBÞ=μ and express the
two-beam Hamiltonian for the quantum many-body prob-
lem in units of μ as

H
μ
¼ Ω

2
B⃗ · ðJ⃗A − J⃗BÞ þ

2

N
J⃗A · J⃗B; ð3Þ

where J⃗A=B ¼ P
i∈A=B σ⃗i=2. We note that the Hamiltonian

in Eq. (3) is integrable and a complete solution could, in
principle, be obtained using the Bethe ansatz [18,25,27].
Having normalized all energies to the characteristic scale of
the neutrino-neutrino forward scattering term, we set μ ¼ 1
thereby suppressing explicit dependence on μ throughout
the rest of this work.

III. INITIAL PRODUCT STATES AND ENERGY
MOMENTS

The initial conditions we will study are product states of
the individual spins with aligned spins within each beam.
This is a highly simplified case of a more realistic initial

state in which, for example, oscillations are suppressed by
the large matter density near the surface of a protoneutron
star, but the decoupling regime at the surface will be energy
and flavor dependent. It has the advantage of making it easy
to compare the evolution of the mean-field and many-body
case starting from the same initial state. The symmetries in
this initial state can also be exploited to treat the many-body
dynamics very efficiently.
We write our initial state as

jΨi ¼ jn̂Ai⊗NA jn̂Bi⊗NB : ð4Þ
The unit vectors n̂A=B are parametrized by azimuthal and
polar angles θA=B and ϕA=B, and the individual single
particle states are written in terms of these angles as

jn̂A=Bi ¼ cos
�
θA=B
2

�
jν1i þ sin

�
θA=B
2

�
eiϕA=B jν2i; ð5Þ

where jν1i and jν2i are the mass eigenstates of the single
neutrino vacuum Hamiltonian.
This initial condition is highly symmetric, and as such it

accesses only a tiny fraction of the eigenstates of the total
many body Hamiltonian. We observe that the number of
energy states with nonzero overlap with this initial con-
dition scales at most as ∼N3=2 rather than exponentially in
N, which we will justify in the following paragraphs. We
will express the initial condition in the angular momentum
basis jJA;MAi of each block of spins such that

jΨi ¼
X

MA;MB

cMA;MB
jJA;MAi ⊗ jJB;MBi: ð6Þ

We also see that the Hamiltonian keeps invariant the
individual squared angular momentum of each block,
J2A=B, and the total ê3 projection J3 ¼ MA þMB (i.e. the

projection into B⃗ ¼ −ê3 in the mass basis) and that in this
choice of basis the many-body Hamiltonian is tridiagonal.
The initial condition is a state with maximal J2A and J2B, so
we therefore only need to determine with which total
angular momentum projection J3 subspaces our initial state
has appreciable nonzero overlap, and we can then effi-
ciently diagonalize those subspaces due to their tridiagonal
structure using the subroutine eigh_tridiagonal
provided by SciPy [28] (see also [29]). Furthermore, from
the conserved quantities of the Hamiltonian and the
structure of the general form of our initial condition
[Eq. (6)] we observe that the dimensionality of the
accessible Hilbert space scales at most as N2. In Fig. 1
we show the total distribution of energy eigenstates as a
histogram for all possible J3 subspaces of the Hamiltonian
with JA=B ¼ NA=B=2.
In this subsection, we compute the energy distribution of

the initial product state in terms of moments of the
Hamiltonian calculated with respect to our initial state.
For our time-independent Hamiltonian, energy conservation
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plays an important role in the evolution of the system. For
specific initial states near the extremes of the spectra,
phenomena such as dynamical phase transitions may be
present [30]. For this all-to-all Hamiltonian interaction, as
we show below, the full spectrum has a range that is
proportional to N while the width of the energy distribution
of an initial product state is proportional to

ffiffiffiffi
N

p
while the

energy level spacing for a given total J3 is approximately
constant for largeN. The energy level spacing summed over
all J3 is proportional to 1=N. This behavior is also seen in a
typical spin models with short-range interactions. In this
subsection we discuss the moments of the two-beammodel,
but these can be easily computed for more general cases.
We will proceed by calculating the expectation values of

the first two moments, and the third and fourth central
moments, of the initial condition in the spectrum of the
Hamiltonian. The expectation value of the Hamiltonian is

hHi ¼ N
4

�
ΩB⃗ ·

�
n̂A

NA

N
− n̂B

NB

N

�
þ 2n̂A · n̂B

NANB

N2

�
:

ð7Þ

The expectation value of hH2i can be computed by
expanding the terms in the square of the Hamiltonian, and
the surviving terms in the variance arise only from terms
with repeated spin indices; for operator products applied on

different spin components of the state the expectation value
of the product is the same as the product of the expectation
values. In general terms with more repeated spin indices
will produce lower powers of N in the nth central moment
of the Hamiltonian. The variance can be written in the form

ΔH2 ¼ c1N þ c0: ð8Þ

The term c0 has the form

c0 ¼
NANB

4N2
ð1 − ðn̂A · n̂BÞÞ2; ð9Þ

which vanishes when n̂A ¼ n̂B since this state is an
eigenstate of total spin. We also note that it contains no
term proportional to Ω, therefore it stems only from the
ν − ν interaction term in the Hamiltonian. As the one body
term alone cannot generate interparticle correlation effects,
if c0 dominates the variance for some finite value of N, we
expect to be in the regime in which many-body effects will
be significant due to the finite size. It is therefore important
to study the ratio c0=ðc1NÞ as this will control the size of N
where mean-field-like behavior (which works directly in
the N → ∞ limit) can possibly emerge. Critically, if c1
vanishes for some choice of parameters, we expect that
there exists no value of N such that the many-body and
mean field solutions will agree.
Next we find that c1 is a second order polynomial in Ω.

The second order term comes from the square of the one-
body term, the zeroth order from the square of the two-body
term, and the first order from the product of the two. We
write the variance as

c1 ¼ c1;2Ω2 þ c1;1Ωþ c1;0: ð10Þ

For arbitrary initial polarizations we find that the coeffi-
cients are

c1;2 ¼
1

16

�
NA

N
jB⃗ × n̂Aj2 þ

NB

N
jB⃗ × n̂Bj2

�
; ð11Þ

c1;1 ¼
NANB

4N2
B⃗ · ðn̂B − n̂AÞð1þ n̂A · n̂BÞ; ð12Þ

and c1;0 ¼
NANB

4N2
ð1 − ðn̂A · n̂BÞ2Þ: ð13Þ

If c1 is to vanish identically, then it must be the case that
either each of the c1;i coefficients must equal zero inde-
pendently, or Ω must take some special value such that the
Ω polynomial vanishes. The zeros of the c1 polynomial in
Ω are found with a straightforward application of the
quadratic formula, and we find that the discriminant
(c21;1 − 4c1;2c1;0) is always negative for any choice of
polarizations (n̂A=B) or population fraction NA=N. This

FIG. 1. Histogram of the number of energy states of the many-
body Hamiltonian (blue) in the JA ¼ NA=2, JB ¼ NB=2 sub-
space forN ¼ 3600 spins. Energy bins have a width of 10 in units
of μ. The energy distribution corresponds to the choice of energy
asymmetry (Ω) and population fraction for case 2 the bipolar
mode solution as specified in Table I. Also shown are three initial
conditions projected over the energy spectrum (red, pink, and
cyan histograms). The red histogram corresponds to an initial
polarization in energy space which results in bipolar oscillations
in the large N limit (case 2 in Table I). Similarly, the pink
corresponds to an initial polarization which results in collective
precession of the flavor polarization vectors in the large N limit
(case 2 in Table II). Finally, the cyan represents randomly chosen
polarizations for the n̂A=B unit vectors (case 6 in Table III).
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implies that there exists no real value of Ω such that the
coefficient c1 ¼ 0.
Finally, we note that if c1;2 vanishes, then both n̂A and n̂B

must be parallel to �B⃗. The coefficients c1;1 and c1;0 also
vanish in this case, as they are both identically zero if
n̂A ¼ �n̂B. We thus conclude that c1 only vanishes when
the initial polarization states are eigenstates of the one-body
Hamiltonian. This is exactly the situation for all models
studied in Refs. [30,31] where important deviations from
mean-field behavior were shown to persist up to macro-
scopic system sizes.
We also calculate the skewness (denotedM3 below) and

kurtosis (denoted M4 below) of the Hamiltonian with
respect to this initial condition. Both of these moments
involve a large amount of algebra, and displaying the exact
analytic expressions is prohibitively difficult. While we are
able to calculate these moments using exact analytic
expressions, their asymptotic behavior in the N → ∞ limit
is all that is necessary for obtaining some insight in the
subsequent discussion. We find that

lim
N→∞

M3 ≡ hðH − hHiÞ3i
ΔH3

¼ 0; ð14Þ

lim
N→∞

M4 ≡ hðH − hHiÞ4i
ΔH4

¼ 3: ð15Þ

These limits are only violated when c1 in ΔH2 is identi-
cally zero.
The moment structure of the Hamiltonian when calcu-

lated with respect to our prototypical initial condition
suggests that the probability density associated with
measuring a given energy eigenstate with some nonzero
overlap with our initial condition in the spectrum of the
Hamiltonian is approximately a Gaussian distribution
centered on hHi in the large N limit. The width of the
total energy spectrum of the Hamiltonian (Emax − Emin)
scales proportionally with N, but the width of the initial
condition in energy space scales like

ffiffiffiffi
N

p
. As N becomes

large, the Gaussian becomes (relatively) more localized in
energy space. Thus our prototypical initial condition only
accesses a fraction of the total spectrum of the Hamiltonian.
As the energy spacing is δE ∝ 1=N, the approximate
number of energy states which may (potentially) be
accessed by the initial condition (N ðΨÞ) is

N ðΨÞ ∝
ffiffiffiffiffiffiffiffiffiffi
ΔH2

p

δE
∼ N3=2: ð16Þ

The structure of the variance of the Hamiltonian, Eq. (8),
suggests a natural criterion for approximating the total
number of neutrino flavor spins which must be included in
a large scale many body simulation of a given system in
order to isolate what features of the determined solution
might persist in the large N limit, and what features are

finite size effects which will diminish with sufficiently
large N. We find that in cases such that c1N ≫ c0 the
evolution of simple one-body observables follows closely
the one predicted by the mean field equations of motion on
natural timescales predicted from the system parameters for
several categories of initial conditions. Interestingly, for the
cases investigated in this work, this convergence to the
mean field evolution of one-body properties occurs despite
the presence of a substantial fraction of the maximum
entanglement [which is proportional to logðNÞ due to the
size of the accessible Hilbert space] in the evolved many-
body state (see Sec. V). This suggests that many-body
quantum correlations generated by the time evolution are
highly nonlocal in nature and might not be important to
describe some aspects of the flavor dynamics in the system.

IV. MANY-BODY AND MEAN-FIELD DYNAMICS

In order to assess the impact of coherent neutrino flavor
oscillations on the relevant astrophysical systems, we are
interested in the expectation values of the one body
operators hJ⃗A=Bi which tell us about the average flavor
content of the individual neutrino beams. The time behav-
ior of these systems can be calculated in both the full
quantum evolution and in a mean-field (product state)
approximation. For the problem under our consideration
the symmetries enable us to calculate the full quantum
evolution for thousands of spins through the time evolution
of the individual eigenstates obtained as above.
Another method for following the evolution of the

expectation values is through an application of the
Ehrenfest theorem. When applied we recover an equation
of motion for the one body operators in terms of expect-
ation values of two body operators. Unfortunately, there
exists no exact closure of this relationship, as the equations
of motion (EOMs) for the two body expectation values are
functions of three body expectation values, and so on
[32–36].
In the mean-field approach, we approximate the two

body expectation value as a product of one body expect-
ation values with the goal of constructing a closed set of
equations for the EOMs of the one body operator expect-
ation values. We therefore make the substitution

hJ⃗A × J⃗Bi ≈ hJ⃗Ai × hJ⃗Bi: ð17Þ

By defining polarization vectors as

P⃗A=B ¼ 2

NA=B
hJ⃗A=Bi; ð18Þ

we recover the mean-field equations of motion:

dP⃗A

dt
¼ Ω

2
B⃗ × P⃗A þ NB

N
P⃗B × P⃗A; ð19aÞ
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dP⃗B

dt
¼ −

Ω
2
B⃗ × P⃗B þ NA

N
P⃗A × P⃗B: ð19bÞ

Naturally we are interested in whether or not these mean-
field equations of motion are a reasonably accurate repre-
sentation of the dynamics of the expectation values of the
true spin-block-averaged one-body operators. If we were
able to show that is the case, then Eq. (19) would represent
a more efficient means of determining the expectation
values of average one body operators despite its inherent
nonlinearity.
The mean-field equations of motion above have been

thoroughly studied, and we now present two primary
categories of initial condition which we will utilize in
our comparison between the mean-field and many-body
results. These solutions are compared with the full quantum
many-body evolution below. These collective solutions,
since they can be obtained exactly in the full many-body
system for hundreds or thousands of spins, can also serve as
tests and demonstrations for quantum simulators including
cold Rydberg atom arrays and trapped ion systems.

A. Mean-field collective oscillations

In order to directly compare the many-body and mean-
field results, it is useful to have some qualitative insight into
the behavior of the mean-field collective oscillations. To
this end, in this section we will present two primary
categories of initial condition which have well understood
dynamical evolution. The first are bipolar initial conditions,
characterized by the two polarization vectors initially in
neutrino flavor states, thus begin antiparallel and nearly
aligned with B⃗. The second are collective precession modes
in which the two polarization vectors begin coplanar but not
necessarily parallel. These modes evolve by simply pre-
cessing about the B⃗ vector, and do not dynamically evolve
along B⃗.

1. Bipolar oscillations

In the mass basis, B⃗ ¼ −ê3, and we will choose P⃗B in the
νe state, and P⃗A in the νx state. These initial conditions
result in the famous “bipolar” solutions to the mean-field
EOMs. It is well known that this category of solutions is
isomorphic to a pendulum with a bob which itself has
some internal angular momentum (known as a gyroscopic
pendulum) [12]. The initial polarization vectors corre-
sponding to neutrino flavor states take the form

P⃗B=Aðt ¼ 0Þ → P⃗e=xðt ¼ 0Þ ¼ �ðsinð2θÞê1 þ cosð2θÞê3Þ
ð20Þ

where θ represents the mixing angle between neutrino
flavor and mass eigenstates, and þð−Þ is chosen for the
initially νeðνxÞ flavor beam.

This system of equations experiences significant excur-
sions away from the initial condition only for certain values
of the population fractions (Ne=x=N) and the vacuum
oscillation frequency Ω. To see this, we assume that
sinð2θÞ ≪ 1 due to suppression from the large local matter
density, and we then linearize the equations of motion in
terms of the small (complex) variable

P⃗e=x · ðê1 − iê2Þ ¼ ϵe=x: ð21Þ

If the system is to experience significant flavor conversion,
it must be true that jϵe=xj grows significantly. As long as
jϵe=xj is small, we can find the eigenvalues of the linearized
EOMs, and when these eigenvalues become complex for
some choice of Ω and Ne=N the system will experience
exponential growth in jϵe=xj. It can be shown that the range
of parameters for which significant flavor oscillations can
occur is given by the inequality

ð ffiffiffi
η

p
−

ffiffiffiffiffiffiffiffiffiffiffi
1 − η

p
Þ2 < Ω < ð ffiffiffi

η
p þ

ffiffiffiffiffiffiffiffiffiffiffi
1 − η

p
Þ2; ð22Þ

where we have defined η ¼ Ne=N as the fraction of the
total spins initially in the (e)lectron neutrino flavor state.
(See [37] for a more comprehensive discussion of the
stability of dense neutrino gases.)
We can compute the variance of the many-body

Hamiltonian with respect to the bipolar-type initial polar-
izations and we find that

ΔH2 ¼
�
Ω sinð2θÞ

4

�
2

N þ ηð1 − ηÞ: ð23Þ

Our hypothesis is that when c1N ≫ c0, we should expect to
see behavior emerge in the many-body system which will
persist in the large N limit, and which may correspond
to solutions found using the mean-field equations of
motion. We observe that there is a tension which occurs
between these two formalisms. The mean-field equations
of motion predict that significant excursions from the
initial condition are only possible for some range of Ω
given in the inequalitities of Eq. (22), and for Ω outside
this interval flavor excursions can occur on finite time-
scales for finite values of N in the many-body formalism
[31]. This inequality pins Ω to be of OðηÞ (except in the
case that η ¼ 0.5 in which case Ω → 0 is also predicted to
be unstable). Given that sinð2θÞ ≪ 1, we generically
expect that c0=c1 ≫ 1 which subsequently implies N
must be such that N ≫ 1= sinð2θÞ2 to see the emergence
of mean-field-like behavior in a full many-body
calculation.
We present an example of the dynamic behavior of

bipolar mode oscillations in Fig. 2 for two choices of the
mixing angle θ, equal numbers of initially νe and νx flavor
neutrinos, and Ω ¼ 0.5. (This choice of parameters corre-
sponds to cases 3 and 7 in Table I of the next subsection.)
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We find that in the case θ ≪ 0.1, the evolution of the
many-body solution departs quickly and significantly from
the behavior of the mean-field. In this case, increasing N
lengthens the time at which a significant difference accu-
mulates in the polarization vectors calculated in the two
formalisms. When θ is Oð:1Þ we find that for N ¼ 128
there is already significant disagreement between the two
formalisms before the minimum of the first major oscil-
lation. However by increasing the number of spins to N ¼
2048 we achieve c0=c1N ≈ 0.2 ≪ 1, and we begin to see
the mean-field behavior emerge in the one-body expect-
ation values of the many-body solution.

2. Collective precession

Another evolution modewhich arises from the mean field
EOMs are those such that there is no dynamic evolution
along ê3, but the polarization vectors merely precess in the
ê1 − ê2 plane. Such solutions require that the polarization
vectors all be coplanar initially and precess with the same
oscillation frequency denoted Ωc [9,11,38,39].
We can find such solutions for our mean-field two-block

example system by first taking the ansatz

P⃗A=B ¼

0
BB@

sinðθA=BÞ cosðΩctÞ
sinðθA=BÞ sinðΩctÞ

cosðθA=BÞ

1
CCA: ð24Þ

In order that these ansatz polarization vectors satisfy the
equations of motion, the two polar angles θA=B must satisfy
the (nonlinear) system of equations

L ¼ NA

N
cosðθAÞ þ

NB

N
cosðθBÞ; ð25Þ

Ω sinðθAÞ sinðθBÞ

¼ sinðθA − θBÞ
�
NA

N
sinðθAÞ þ

NB

N
sinðθBÞ

�
: ð26Þ

Here, the quantity L represents the fractional population
difference between initially ν1 neutrinos and initially ν2
neutrinos summed over both beams which is a quantity
conserved by both the many-body and mean-field equa-
tions of motion. In what follows, we will choose it
somewhat arbitrarily in order to investigate a range of
values for Ωc.
Given that we know L, Ω, and the population fraction of

spins in each block, we can find the polarization angles
(θA=B) necessary such that our ansatz initial condition will
precess with frequency Ωc. By taking a time derivative of
P⃗A · ê1, we can find an explicit expression for Ωc in terms
of the initial condition and physical parameters. We can do
the same with P⃗B, and find two equations which are equal
by assumption. These are

Ωc ¼ −
Ω
2
þ NB

N
sinðθA − θBÞ

sinðθAÞ
; ð27Þ

Ωc ¼ Ω
2
−
NA

N
sinðθA − θBÞ

sinðθBÞ
: ð28Þ

As in the bipolar case, we can also compute the variance
of the many-body Hamiltonian for initial polarizations
which result in collective precession modes. We find that
the values of c1 and c0 take the form

c0 ¼
NANB

4N2
ð1 − cosðθA − θBÞÞ2; ð29Þ

c1 ¼
�
Ωc

2

�
2
�
NA

N
sin2ðθAÞ þ

NB

N
sin2ðθBÞ

�
: ð30Þ

While c0 follows straightforwardly from Eq. (9), we find
that c1 is proportional to the square of the collective
precession frequency. This then provides an ideal play-
ground for testing for our hypothesis, as we can simply find
precession solutions which precess slowly or rapidly in
order to maximize or minimize c0=c1N.
We present two examples of collective precession mode

solutions in both the many-body and mean-field approxi-
mation in Fig. 3 with two precession oscillation frequencies
which differ by three orders of magnitude. In the top panel,
we show a precession mode with a precession frequency of
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FIG. 2. Evolution of the three components of the polarization
vector as a function of time in both the mean field approximation
(orange line) and many-body simulations with Ne ¼ Nx ¼ 64
(black line), Ne ¼ Nx ¼ 1024 (turquoise line), and Ω ¼ 0.5 (all
lines and panels). Panels (a),(b) show the x component, panels
(c),(d) the y component, and panels (e),(f) the z component of the
polarization vector. The top row [panels (a),(c),(e)] are for a small
mixing angle θ ¼ 0.001 (c0=c1 ≈ 4.0 × 106) while the bottom
row [panels (b),(d),(f)] use a large mixing angle θ ¼ 0.1
(c0=c1 ≈ 4.054 × 102). Note that these two results correspond
to cases 3 and 7 in the next subsection.
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Ωc ≈ 1.35 × 10−4, while the bottom panel precesses with
frequency Ωc ≈ 2.77 × 10−1. As c0=c1 is approximately
seven orders of magnitude larger for the top panels, we
expect to need a proportionally larger number of spins to
see the emergence of mean-field-like behavior for that
choice of parameters. However, we do note that the many-
body solution still respects the precession requirement that
the polarization vectors do not dynamically evolve along B⃗
even in the case that there is no transient agreement
between the mean-field and many-body formalisms (top
panels of Fig. 3). We leave the investigation of this
intriguing behavior for future work.

B. One-body observables and mean-field
emergence in many-body solutions

In order to demonstrate the large N behavior of the
many-body system and compare it with the mean-field
solutions, we investigated seven cases in each of three
categories of solution to the many-body and mean-field
neutrino oscillations problem. We then inspect the
deviation between the large N many-body calculations,
and the mean-field approximation. We concentrate on one-
body observables like the flavor content versus beam (more
generally energy and angle), which are the observables that
can be detected in terrestrial neutrino observatories.

The first class of solution are bipolar modes, the mean-
field configurations and solutions of which are described in
the previous subsection. For the different choices of
physical parameter, we solved the corresponding many-
body problem with N ¼ ½700; 1000; 1300; 1600; 3600�.
The second are collective precession solution modes, also
as described previously. Finally we randomly chose the
values of Ω ∈ ð−3.0; 3.0Þ and NA=N ∈ ð0; 1.0Þ as well as
the polarizations of the two spin blocks, n̂A=B. For all of the
precession modes, and random parameter calculation sets
we chose N ¼ ½100; 200; 300; 400; 800�. We used signifi-
cantly more spins in the bipolar cases in light of our insight
that the bipolar modes represent very sparse distributions in
energy space, and a sufficiently large N is necessary for the
energy distribution to be approximately Gaussian.
For every choice of parameters and total number of spins

(N), we solved the systems to a time

tf ¼ 3

ffiffiffiffiffiffiffiffiffiffi
N

ΔH2

r
¼ 3ffiffiffiffiffi

c1
p

0
B@ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ c0
c1N

q
1
CA: ð31Þ

This time has an N-independent term and a correction term
resulting from the finite size of the many-body system. This
correction goes to zero in the large N limit, and thus this
time represents a natural scale over which the system’s size-
invariant behavior in the many-body case may be expected
to be observed. As this is a persistent timescale as N
becomes large, it is natural to employ in comparisons with
mean-field evolution. We do indeed observe that this
timescale is directly proportional to the inverse of the
collective precession frequency of the mean-field preces-
sion modes.
Furthermore, in the large system size limit it is expected

that at some finite time the mean-field and many-body
predictions for the evolution of the one body operators will
diverge. Because the above time approaches a constant asN
becomes large, it does not represent this divergence time
which should depend on N. Because of its invariance for
sufficiently large systems and our observation that it is
directly related to the evolution timescale of at least one
mean-field evolution mode, we employ this timescale for
evolving our systems in order to self-consistently compare
results between different oscillation modes and parameter
choices which evolve on significantly differing timescales.
As a simple measure of agreement between the mean-

field and many-body single “beam” observables, we define
the polarization vectors in the many-body system according
to Eq. (18) and calculate the magnitude of the vector
difference between the many-body and mean-field P⃗
vectors for both blocks A and B. We then take the largest
magnitude value which occurs in both spin blocks of this
vector difference over our solution interval.
In Fig. 4 we show the behavior of the largest deviation in

polarization between the many-body and corresponding
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FIG. 3. Evolution of the three components of the polarization
vectors describing beam A for two precession mode solutions.
The top panels represent a precession mode with Ωc ≈ 1.35 ×
10−4 (c0=c1 ≈ 1.25 × 106), and the bottom panels have Ωc ≈
2.77 × 10−1 (c0=c1 ≈ 9.018 × 10−2). The black and cyan curves
employ N ¼ 100 and N ¼ 1000 total spins, respectively. For the
larger precession frequency, c0=c1N ≪ 1 may be obtained with
many fewer spins than for the lower precession frequency, and the
qualitative correctness of the mean-field prediction is maintained
over longer time periods by increasing N once c0=c1N ≪ 1 is
reached. The plotted curves utilize the parameters in cases 7 (top
panels) and 1 (bottom panels) provided in Table II.
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mean-field behavior for each N and parameter set. In this
figure, color denotes the choice of physical parameters,
tabulated by case number (# column) in Tables I–III.
Square markers represent bipolar mode solutions, circle
markers represent precession mode solutions, and dia-
monds represent randomly chosen parameters. We note
that there is a categorical difference in solution behavior in
the regime in which c0=c1N ≫ 1, and the case such that
c0=c1N ≪ 1. For all cases in which c0=c1N ≫ 1, the
deviation between many-body and mean-field solutions
is approximately maximal on our solution interval, but

when c0=c1N approaches 0.1 there is a knee in the
deviation of the solutions past which increasing N results
in improving agreement between the many-body and mean-
field approaches. Thus we observe that the ratio condition
c0=c1 ≈ N can be used as a heuristic for determining the
number of spins which must be included to observe mean-
field-like behavior emerge in full many-body calculations,
however these curves are not identical so further refine-
ments on a per-calculation-basis are still required to
demonstrate full convergence of one-body observables.
We also note the qualitative differences in the con-

vergence behaviors of the three categories of flavor
oscillations. Bipolar mode oscillations are characterized
by large values of c0=c1 due both to the smallness of
sin2ð2θÞ in the denominator of this ratio and the limit
placed on Ω by the inequality of Eq. (22). Precession
mode solutions display a wide range of values for c0=c1
determined by the collective precession frequency Ωc.
When the initial polarizations, population fractions and
vacuum oscillation frequency are chosen at random, the

FIG. 4. Each marker indicates the largest difference between
the many-body (MB) and mean-field (MF) polarization vectors
for a choice of solution mode (marker shapes), and each color
represents a choice of parameter set tabulated in one of the
Tables I–III. Squares represent bipolar mode solutions, circles
represent collective precession modes, and diamonds represent
solutions for randomly chosen parameters. The multiplicity of
markers is due to increasing values of N, with increasing N from
right to left in a given marker shape and color.

TABLE II. Parameters utilized in collective precession mode
solutions to both the many-body and mean-field EOMs. Param-
eters were chosen to span a wide range of Ωc, but were otherwise
taken arbitrarily. They are presented with seven significant
figures. As in the bipolar case, the table is ordered by ascending
values of c0=c1.

No. NA=N Ω θA ϕA θB ϕB c0=c1

1 0.51 1.2 0.5978067 0.0 0.2175694 0.0 0.0902
2 0.45 1.5 1.050692 0.0 0.2942370 0.0 0.482
3 0.51 0.2 1.443493 0.0 1.248403 0.0 5.32
4 0.48 0.9 2.012938 0.0 1.079368 0.0 3.34 × 102

5 0.27 1.37 1.568292 0.0 0.3723205 0.0 6.70 × 103

6 0.33 1.2 1.618388 0.0 0.5131689 0.0 3.40 × 105

7 0.52 0.75 2.051478 0.0 1.286571 0.0 1.25 × 106

TABLE I. Parameters utilized in bipolar mode solutions to both
the many-body and mean-field EOMs. Ne=N and Ω were chosen
arbitrarily but satisfy the inequality in Eq. (22). Finally, the table
is ordered by ascending values of c0=c1.

No. Ne=N Ω θA ϕA θB ϕB c0=c1

1 0.5 0.5 π − 0.4 π 0.4 0.0 1.06 × 102

2 0.55 1.5 π − 0.1 π 0.1 0.0 1.77 × 102

3 0.5 0.5 π − 0.2 π 0.2 0.0 4.05 × 102

4 0.25 0.5 π − 0.1 π 0.1 0.0 1.20 × 103

5 0.55 0.33 π − 0.1 π 0.1 0.0 3.65 × 103

6 0.75 0.18 π − 0.1 π 0.1 0.0 9.29 × 103

7 0.5 0.5 π − 0.002 π 0.002 0.0 4.00 × 106

TABLE III. Parameters chosen at random (except case 6 for
which only the polarization angles were chosen at random.
The population fractions and Ω were chosen to match cases 1
and 2 in the bipolar and precession modes, respectively). We
chose Ω ∈ ð−3.0; 3.0Þ, NA=N ∈ ð0; 1.0Þ, each polar angle
θA=B ∈ ð0; πÞ, and each azimuthal angle ϕA=B ∈ ð0; 2πÞ, and
values are specified with four significant figures. As in the
previous two solution categories, this table is ordered by
ascending values of c0=c1.

No. NA=N Ω θA ϕA θB ϕB c0=c1

1 0.66 −1.396 2.920 4.854 2.386 2.027 0.115
2 0.81 0.3134 1.972 4.179 2.771 5.550 0.277
3 0.18 −1.859 0.4564 1.451 1.278 4.236 0.280
4 0.49 1.464 0.8108 3.545 0.3045 0.1005 0.342
5 0.83 2.371 2.339 2.258 1.133 3.828 0.356
6 0.45 1.5 1.881 4.263 2.175 2.174 0.485
7 0.29 2.032 1.996 0.6419 0.5526 3.708 1.62
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ratio c0=c1 is close to Oð1Þ implying that in the majority
of arbitrary cases will only require a moderate number of
total spins N to observe behavior in agreement with an
equivalent mean-field calculation.

C. Special cases

As mentioned above, the model in Eq. (3) can be solved
numerically exactly using the Bethe ansatz but for particu-
lar choices of the parameters the full time evolution can be
computed analytically. For models without the vacuum
contribution, i.e. setting Ω ¼ 0, and for NA ¼ NB with
θA ¼ 0 and θB ¼ π, Friedland and Lunardini have shown
how to express the evolved state analytically in terms of
appropriate Clebsh-Gordan coefficients [40]. In this limit,
the mean-field equation of motion Eq. (19) predicts no
flavor evolution while the full many-body treatment shows
significant oscillations. The timescale for these oscillations
grows however very quickly with system size as t ¼
Oð ffiffiffiffiffiffiffi

NA
p Þ and quickly diverges for large systems, indicating

that the mean-field prediction is qualitatively correct. These
results were later extended in Ref. [41] to the asymmetric
case NA ≠ NB and it was shown that the amplitude of
oscillations in these models decays as a polynomial in
jNA − NBj, once again showing the qualitative correctness
of the mean-field approximation. In recent work by one of
us [31] it was shown, using a many-body simulation
employing Matrix Product States (MPS), that a system
with NA ¼ NB starting in a product state can develop an
entanglement entropy scaling as S ¼ OðlogðNAÞÞ showing
that there exist observables which will fail to be predicted
correctly in a mean-field calculation (which by construction
have S ¼ 0 at all times.) We will investigate the behavior of
entanglement measures in the next section.

V. ENTANGLEMENT AS ORDER PARAMETER
FOR INSTABILITY

The use of entanglement measures to characterize differ-
ent phases of matter and to classify many-body states in
terms of their correlation structure and topological proper-
ties has a long history in condensed matter physics (see e.g.
[42–44]) and more recently has been applied to systems in
nuclear and high-energy physics producing interesting
insights (see e.g. [45–47]). In the context of collective
neutrino oscillations the role of quantum correlations is not
fully understood yet, on one hand entanglement has been
associated with a speed-up of flavor conversion [48,49] and
on the other hand has been argued to not play any role in
neutrino systems that are prepared in a mean-field state
[40,50]. Recent work adopting Tensor Network methods
has shown how these, seemingly conflicting, results could
be reconciled adopting the point of view that many-body
coherent speed-up of flavor dynamics are generated when
the neutrino systems under study undergoes a dynamical
phase transition [30,31]. In particular the scaling of

entanglement with the size of a neutrino systems has been
shown to be a strong indicator for the presence of bipolar
modes [30,31] suggesting it could possibly be employed in
conjunction with linear stability analysis to detect insta-
bilities in a neutrino system. Recent work employing exact
diagonalization techniques in small neutrino systems has
also shown how entanglement can signal the presence of
spectral splits in the neutrino spectrum [19] (see also
[20,51] for studies of entanglement in small neutrino
systems and [29] for an extension of the work in [31] to
larger system sizes).
In this section we generalize the results presented in

Refs. [30,31] to the more general bipolar case described by
the Hamiltonian in Eq. (3). The crucial difference is that,
for values of the mixing-angle θA and θB different from
integer multiples of π, the mean-field approximation also
predicts flavor evolution. Throughout this section when
considering bipolar modes we will denote θB ¼ θA þ π and
simply denote θA=2 as θ.
We used the strategy described after Eq. (5) (exploiting

the high degree of symmetry of the systemand the sparsity of
the Hamiltonian) to simulate large systems beyond the reach
of MPS simulations [limited to N ¼ Oð100Þ on a work-
station] and report the results for the value of the maximum
entanglement entropy in the minority beam in Fig. 5. We
have checked, using MPS simulations on systems with
N ¼ 64 and various population asymmetries, that for these
models this is indicative of themaximumbipartite entropy in
the system. Figures 5(b)–5(d) show the entanglement
entropy, defined as SðNminÞ ¼ −Trðρlog2ðρÞÞ, where ρ is
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FIG. 5. Entanglement entropy when the system is divided into
the two beams. Panels (b–d) show the beam entanglement
entropy as a function of the energy asymmetry Ω for three
different population asymmetries η ¼ Ne=N: panel (b) uses
η ¼ 1=2, panel (c) uses η ¼ 4=5 and panel (d) is for η ¼ 8=9.
Panel (a) instead shows the evolution of the beam entanglement
entropy for fixed Nx ¼ 64 for different values of Ne (correspond-
ing to increasing η.) The vertical orange dashed lines correspond
to the threshold values of the bipolar instability obtained from the
analysis of the mean-field approximation in Eq. (22).
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the reduced density matrix for the beam with the fewest
flavor spins, as a function of the energy asymmetry Ω for
increasing values of the occupation Nmin in the minority
beam while keeping the same ratio Nmin=N constant
[Nmin=N ¼ 1=2; 1=5; 1=9 for Figs. 5(b), 5(c), and 5(d),
respectively]. In all of these results the value of the mixing
angle was chosen to be θ ¼ 0.001; for larger values of θ the
behavior is similar but the transition is less sharp, and a
similar behavior is found with the purity discussed below.
The orange vertical dashed lines correspond to the bounda-
ries of the unstable bipolar region from Eq. (22) which was
obtained from the stability analysis of the mean field
solution. The results for Nmin=N ¼ 1=2 in Fig. 5(b) exactly
match the earlier results from Refs. [30,31] and obtained
using theMPS ansatz: inside the unstable region the entropy
scales as logðNminÞwhile outsidewe find a constant entropy
for all the considered system sizes. The scaling of the
entropy as logðNminÞ can be understood as a consequence of
the N3=2 size of the Hilbert space accessible by the
prototypical initial condition Eq. (4) as discussed in
Sec. III. The same behavior of the entropy is also found
for different systems with a larger asymmetry between the
occupation in the two beams [Figs. 5(c)–5(d)] even though
the left transition point becomes less sharp. The independ-
ence of the entanglement entropy on the size of the majority
beam is shown in Fig. 5(a) where we show results for
fixed Nmin ¼ 64 and increasing occupation asymmetries
(Nmin=N ¼ 1=2; 1=3; 1=5; 1=9; 1=17). In all cases we find
the same entanglement signature of the instability as in the
other panels. For larger mixing angles the behavior of the
entanglement entropy is similar with the only main differ-
ence that, at least for small system sizes, the curves as a
function of Ω are less smooth and show small amplitude
oscillations around the value found in the small mixing
angle limit.
Another measure that shows entanglement production in

the unstable region is the single neutrino purity, defined as
follows [52]

Pi ¼ hσxi i2 þ hσyi i2 þ hσzi i2;
¼ 2Tr½ρ2i � − 1; ð32Þ

with σki the kth Pauli matrix acting on the amplitude of the
ith neutrino in the system and ρi its density matrix. In a
mean field calculation we always have Pi ¼ 1 at all times
since this quantity measures the norm of the polarization
vector. Using the results for the entropy discussed above,
we can place an upper bound on the possible purity in the
presence of nonzero entanglement. As we show in detail in
the Appendix, if we denote by SA the entropy of beam A
with NA amplitudes and with PA the purity of a neutrino in
that beam, we have (for SA < NA=ð4 lnð2ÞÞ)

PA < 1 − e

�
SA
NA

�
lnð2Þ

2
−

ffiffiffiffiffiffiffiffiffiffiffiffi
2 lnðNA

SA
Þ

q
: ð33Þ

This shows that, even in systems with logarithmically
scaling entropy SA ¼ OðlogðNAÞÞ, the individual neutrino
flavor spins could be found in an essentially pure state in the
largeNA limit. A stronger argument would however require
also a lower bound on the purity which in general we suspect
cannot be obtained purely based on entropic arguments due
to the subadditivity of the entanglement entropy.
We show several results for the purity in Fig. 6 for

systems with equal numbers of neutrinos in the two beams,
and, due to symmetry coming from Nx ¼ Ne, we will
consider only the purity evaluated for the first neutrino. In
Fig. 6(a) we show the dependence of the minimum neutrino
purity on the energy asymmetry Ω for systems of neutrinos
of increasing size and at a small value (θ ¼ 0.001) for the
mixing angle. The unstable region is denoted by the vertical
dashed orange lines and we can see that the purity deviates
significantly from one in this region. As the system size
increases the boundaries become sharper but we do not
observe a significant increase in the value of the purity
inside this region (possibly due to the system sizes
being too small). Outside the unstable region we found a
rapid convergence towards the mean field result with
1 − P ≈Oð1=NÞ, which is consistent with the entropy
being constant outside the unstable region [cf. bound from
Eq. (33)]. Inside the unstable region the system size
dependence is very weak and we were not able to
characterize the asymptotic limit of the purity with the
system sizes explored in this work.

-4 -2 0 2
Energy asymmetry Ω [μ]

0

0.2

0.4

0.6

0.8

1

N
eu

tr
in

o 
Pu

ri
ty

[32,32]
[64,64]
[128,128]
[256,256]
[512,512]
[1024,1024]

0 10 20 30 40 50 60 70

Evolution time [μ
−1

]

0

0.2

0.4

0.6

0.8

1

1.2

N
eu

tr
in

o 
Pu

ri
ty

Ω=−0.1
Ω = 0
Ω = 0.1

-4 -2 0 2 4
Energy asymmetry Ω [μ]

0

0.2

0.4

0.6

0.8

1

N
eu

tr
in

o 
Pu

ri
ty

θ=0.1
θ=0.001

N=[1024,1024]

N=[1024,1024]

(a)

(b)

(c)

FIG. 6. Panel (a) shows the minimum purity in simulations up
to time tμ ¼ 70 for neutrino system with Nx ¼ Ne, θ ¼ 0.001
and increasing system size. Panel (b) shows the minimum purity
for the largest system and two different mixing angles θ ¼ 0.1
(dashed line) and θ ¼ 0.001 (solid line). Panel (c) shows
the time evolution of the purity for a neutrino system with
Nx ¼ Ne ¼ 1024, θ ¼ 0.001 and different values of the energy
asymmetry.
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In Fig. 6(b) we show the difference in purity found for a
system with Ne ¼ Nx ¼ 1024 when increasing the value of
the mixing angle θ, we can see that the left boundary at
Ω ¼ 0 remains sharp while there is a smoother transition to
the large Ω regime. Finally, in Fig. 6(c) we show the time
evolution of the purity for three different values of the
energy asymmetry across the transition at Ω ¼ 0. For
positive values of Ω, inside the unstable region, we find
a much quicker development of entanglement than at the
critical value Ω ¼ 0. For both systems with η ¼ 1=2 as in
Fig. 6, as well as other asymmetries, we find that the
minimum of the purity is reached on timescales tpminμ ≈
logðNÞwhile in the stable region the minimum is attained at
constant time. Both of these are similar to the behavior of
the entanglement entropy observed in earlier work [30,31].
In Fig. 7 the timescale for the minimum is reported for a
system near equipartition with Nx ¼ 3=7N and for a small
mixing angle θ ¼ 0.001.
In order to show the dependence of the result with the

mixing angle, which can be understood to be a conse-
quence of the scaling of the second moment as discussed in
Sec. IVA 1, we present in Fig. 8 results for the time
evolution of the purity in the two bipolar models used in
Fig. 2 above. Figure 8(a) shows result for θ ¼ 0.001 while
Fig. 8(b) corresponds to systems with θ ¼ 0.1. The system
size are the same used in Fig. 2 where the solid black line
corresponds to Ne ¼ 64 and the turquoise solid line to
Ne ¼ 1024 and the asymmetry in neutrino populations is
η ¼ 1=2. As shown in Fig. 2, the evolution of the three
Cartesian components of the polarization vector with
system size is widely different for these two model: for
the small mixing angle the results deviate significantly from
the mean-field prediction with these system sizes while
for the large mixing angle the simulation with Ne ¼ 1024

follows closely the mean-field value up to times t ≈ 15μ−1.

As shown in Fig. 8, the neutrino purity in both cases shows
still significant deviations from the mean-field value P ¼ 1
but with important differences depending on the mix-
ing angle.
In the small mixing angle regime [Fig. 7(a)] the mini-

mum of the purity is reached at the first oscillation, its value
almost constant and the timescale growing as logðNÞ
as expected from the previous results shown in Fig. 7.
The behavior of the purity in the large mixing angle case
[Fig. 7(b)] is instead much different with the first minimum
quickly converging to one and little evolution in the
timescale. This is seemingly in conflict with the behavior
shown in Fig. 6(b) where for Ω ¼ 0.5 the purity shows
little evolution with the mixing angle. The reason for this
is the fact that the purity results in Fig. 6 show the
minimum reached over a fixed time interval of size 70μ−1

and, as we see in Fig. 8(b) the minimum is attained at
longer times as we increase the system size (tmin ≈ 20μ−1

for Ne ¼ 64 and tmin ≈ 70μ−1 for Ne ¼ 1024). This
suggests that, for systems showing a quick convergence
to the mean field, long time evolution might be needed to
use the behavior of the purity to identify unstable con-
ditions. The choice of 70μ−1 as the time interval to study
flavor evolution was motivated by ensuring that the
entanglement entropy could reach its maximum value
for the largest system considered here. The time evolution
of the entanglement entropy for these two configurations
and Ne ¼ 1024 is shown in Fig. 9(a), the solid black line
corresponds to θ ¼ 0.001 while the dashed blue line to
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FIG. 8. Time evolution of the purity in two models showing
bipolar oscillations: panel (a) corresponds to a small mixing angle
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black solid lines correspond toNe ¼ Nx ¼ 64while the turquoise
to Ne ¼ Nx ¼ 1024. The black circles indicate the timescale tf
from Eq. (31) for the models with small system size. The value of
tf for the larger models are out of scale and correspond to tf ¼
271.5μ−1 for the small mixing angle case and tf ¼ 110.4μ−1 for
the larger mixing angle. These two models are the same as those
shown in Fig. 2.
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θ ¼ 0.1. The most significant difference between these
results is that the maximum of the entanglement entropy
≈ log2ðNeÞ is reached at the first peak for θ ¼ 0.001,
consistently with what was found at θ¼ 0 in Refs. [30,31],
while for larger mixing angles the maximum is reached only
after the fourth oscillation. Interestingly, the value of the
entropy in the first peaks seems to stop scaling proportion-
ally to logðNeÞ (as the maximum does) and reaches a
constant value for large enough system sizes. For small
mixing angles instead all peaks seem to scale logarithmi-
cally in system size. The convergence of the entropy value
as a function of system size is shown more explicitly in
Fig. 9(b) where we compare results obtained with Ne ¼
½64; 256; 1024� and θ ¼ 0.1.
Similarly to the expectation values shown in Fig. 2, we

observe good convergence for the first two oscillations
while deviations persist at longer times. These results
suggest that, in the large system size limit and for finite
mixing angles, the entanglement entropy presents oscil-
lations on a timescale similar to the one for flavor
oscillations with maxima which are system size indepen-
dent but increasing at each oscillation period until even-
tually reaching the expected value ≈ logðNeÞ at long times.
In order to test this scenario we have also simulated the
entropy evolution for a mixing angle θ ¼ 0.5, for which the
convergence to the mean-field behavior is much faster, and
show the results with different system sizes in Fig. 9(c). As
expected the entropy shows an increase at every oscillation
with peaks at late time displaying a slower convergence and
reaching values close the maximum. This shows that it is
not necessarily correct to understand the results presented
in Sec. IV B as a full convergence to the mean field state in
the large system size limit since the full evolution creates

states with nonzero entanglement. A possibly better char-
acterization is that the mean field predictions of one-body
observables become quantitatively correct in the large
system size limit, at least for short enough times. For
astrophysical neutrinos, of which we do not have direct
access to many-body observables, the effect of entangle-
ment might not be observable in practice.
These results presented in this section support the

intuition gained in previous work withMPS in Refs. [30,31]
that entanglement properties in out-of-equilbrium neutrino
systems can serve as a diagnostic for the presence of unstable
modes. The precession modes may evade this classification
as it is currently unclear under what conditions the pre-
cession modes are unstable to perturbations. Furthermore,
we observe that the presence of collective precession
modes is not correlated with maximization of entanglement.
However, the time evolution of entanglement can still be
useful to uncover characteristic timescales in this regime.
In order to explore two extreme regimes, we will now
look at entanglement properties of case 1 (corresponding
to c0=c1 ≈ 0.09) and of case 7 (corresponding to
c0=c1 ≈ 1.25 × 106) characterized by the parameters shown
in Table II above.
We present in Fig. 10 the purity of the majority species

for the same simulations used to show the evolution of
the flavor polarization in Fig. 3 in Sec. IVA 2. The time
interval 600μ−1 is the same used there. An interesting
feature that can be noticed from these results is that the
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FIG. 9. Panel (a) shows the time evolution of the entanglement
entropy for the same systems considered in Fig. 2 with
Ne ¼ Nx ¼ 1024, Ω ¼ 0.5, and θ ¼ 0.001 (black solid line)
or θ ¼ 0.1 (blue dashed line). Panels (b) and (c) show the entropy
for three different system sizes: Ne ¼ 64 (black line), Ne ¼ 256
(red line), and Ne ¼ 1024 (turquoise line). Panel (b) is for
θ ¼ 0.1 while panel (c) for a larger value θ ¼ 0.5.
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FIG. 10. Time evolution of the purity in two models showing
precession solutions: panel (a) corresponds to case 7 in Table II
with Ωc ≈ 1.35 × 10−4 and panel (b) to case 1 with a much larger
precession frequency Ωc ≈ 2.77 × 10−1. The black solid lines
correspond to a total system size N ¼ 100 while the turquoise to
N ¼ 1000. We also indicate with black circles the time tf from
Eq. (31) for the small models with N ¼ 100 and with a turquoise
diamond the tf time for N ¼ 1000 in the model of case 1 [for this
model tfðN ¼ 1000Þ − tfðN ¼ 100Þ ≈ 0.02μ−1]. For case 7 we
have tf ¼ 1363μ−1 and is out of scale. These two models are the
same as those shown in Fig. 3.
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typical timescales for entanglement development for both
cases is similar while the timescale for flavor oscillations
(controlled by the precession frequency Ωc) are signifi-
cantly different (cf. results in Fig. 3). Similarly, the
evolution of entanglement also occurs on similar timescales
and, for the system sizes explored in this work, saturates
over a comparable interval.

VI. CONCLUSIONS

We have studied a simple two-beam model of coherent
neutrino oscillations starting with the dynamics of an SU(2)
Hamiltonian with one- and two-body couplings [Eq. (3)]
with a symmetric initial state within each beam [Eq. (4)].
The symmetries of this Hamiltonian and initial state
severely limit the propagated amplitudes from 2N ampli-
tudes to OðN3=2Þ thus enabling numerical solutions
through simple diagonalization of tridiagonal matrices.
We find that the dynamics of one-body observables

follow the mean-field (product state) time evolution in the
limit of a large number of neutrino flavor spins despite the
development of entanglement in the full many-body state.
The approach to the mean-field limit with increasing N can
depend very sensitively on the initial state. The difference
between maximum and minimum energy levels of the
Hamiltonian is proportional to N, while the width of an
initial product state in the energy space is proportional toffiffiffiffi
N

p
and the typical level spacing is of order 1=N. The

moments of the energy distribution in the evolving state
behave like a Gaussian for moments up to four. When the
initial state average energy is in regions where the (sym-
metric) density of states is low, the convergence to the mean
field is comparatively slow.
This Hamiltonian is closely related to typical lattice spin

models like the Heisenberg models, though in principle the
neutrino Hamiltonian has all-to-all couplings. The dynam-
ics of these systems may be suitable for studies in trapped-
ion or other similar experimental facilities. There are likely
physical systems where the finite N results are important,
with significant differences between mean-field (product
state) evolution and full quantum simulations.
We have also studied quantum information measures of

the evolving states including entanglement entropy and
purity, and find that they can be useful in identifying
regions where collective modes are present. In some cases
we find intriguing relations between the moments of the
energy distribution and simple physical observables.
Further study of the relation between quantum information
and physical measures in these systems are warranted.
Generalizations of this problem may be useful for studying
both dynamical phase transitions and the eigenstate ther-
malization hypothesis. The impact of breaking the sym-
metries in this system, both in the initial state and the
Hamiltonian, are also very intriguing. In core-collapse
supernovae, these would be introduced by fluctuations in
the emission from the protoneutron star surface and

turbulence and time-dependence of the neutrino flux,
respectively.
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APPENDIX: BOUND ON SINGLE
NEUTRINO PURITY

We denote by Si the entropy of the ith neutrino in one of
the two beams, let us call it beam A with NA amplitudes
and entropy SA. Using the subadditivity of the entropy we
have that

SA ≤
XNA

i¼1

Si ¼ NAS1; ðA1Þ

where in the second equality we used the permutation
symmetry for neutrinos in the beam. This directly implies

S1 ≥
SA
NA

: ðA2Þ

To see how this can be used to place an upper bound on the
purity P1 consider the following parametrization for a
single spin density matrix

ρ1 ¼ U1

�
r 0

0 ð1 − rÞ

�
U†

1; ðA3Þ

with r ∈ ½0; 1� and U1 a unitary transformation to bring a
general density matrix to this form. Both the entropy and
the purity will not depend on the choice of U1 and we will
then neglect it from here on. Also, we can always consider
r ∈ ½0; 1=2� since we can reparamterize it mapping
r → 1 − r. We now have

S1 ¼ −r log2ðrÞ − ð1 − rÞ log2ð1 − rÞ ðA4Þ

for the entropy and

P1 ¼ 2ðr2 þ ð1 − rÞ2Þ − 1 ðA5Þ
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for the purity as defined in Eq. (32) of the main text. For
r ∈ ½0; 1=2� we have

S1 < −r log2ðrÞ þ r= lnð2Þ: ðA6Þ

We now express r as follows

r ¼ 2−α α ≥ 1: ðA7Þ

The bound on the entropy than becomes

S1 <
�
αþ 1

lnð2Þ
�
2−α: ðA8Þ

Using the bound in Eq. (A2) we have�
αþ 1

lnð2Þ
�
2−α >

SA
NA

: ðA9Þ

Inverting the relationship with α we then find

αþ 1

lnð2Þ < −W−1

�
−

SA
eNA

�
; ðA10Þ

with W−1ðxÞ the negative branch on the Lambert W
function. Using the upper bound [53] for u > 0

1þ
ffiffiffiffiffiffi
2u

p
þ u > −W−1ð−e−u−1Þ; ðA11Þ

we find

α < 1 −
1

lnð2Þ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ln

�
NA

SA

�s
þ ln

�
NA

SA

�
: ðA12Þ

This implies

r ¼ 2−α ≥
e
2

�
SA
NA

�
lnð2Þ

2
−

ffiffiffiffiffiffiffiffiffiffiffiffi
2 lnðNA

SA
Þ

q
: ðA13Þ

We are now in a position to place an upper bound on the
purity. Since, for r ∈ ½0; 1=2�, the purity is monotonically
decreasing in r we can directly use the lower bound in
Eq. (A13). A more manageable expression, which is
however not very tight, is to use instead

r2 þ ð1 − rÞ2 < 1 − r; ðA14Þ

to arrive at

Pi < 1 − e

�
SA
NA

�
lnð2Þ

2
−

ffiffiffiffiffiffiffiffiffiffiffiffi
2 lnðNA

SA
Þ

q
: ðA15Þ

This is the bound quoted in the main text.
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