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General relativity guarantees a unique one-to-one correspondence between static observables of neutron
stars (NSs) accessible by multimessenger astronomy, such as mass-radius or tidal deformability, and the
equation of state (EoS) of beta equilibrated matter. It is well known that these static properties are not
enough to discern conventional NSs from hybrid stars. However, if one assumes that hadrons present in the
neutron star core are only neutrons and protons, the lepton fraction is expected to be determined
unequivocally by the condition of chemical equilibrium. Using a simple analytical method based on a
polynomial expansion of the EoS, we show that multiple solutions are possible to the beta-equilibrium
equation, leading to a characteristic indetermination on the composition of the interiors of NSs, even in the
purely nucleonic hypothesis. We further show that additional empirical information on symmetric matter at
high densities are not very efficient to pin down the composition, if uncertainties on measurements are
accounted for. We conclude that constraints on the symmetry energy at high densities only, can make
meaningful impact to decipher the composition of neutron star core. Our results give a lower limit to the
uncertainty on the NS core composition that can be obtained with astrophysical and terrestrial experiments.
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I. INTRODUCTION

Neutron stars (NS) are among the most dense systems
existing in the universe. Understanding the composition of
their core will help us to peek at the behavior of matter at
extreme density conditions. Unprecedented progress was
achieved in multimessenger astronomy in the last decade
through quantitative measurements of neutron stars proper-
ties, such as mass measurements by radio astronomy
through Shapiro delay [1,2], joint mass-radius determina-
tion by NICER using x-ray timing data [3–6] or the tidal
polarizability extracted from the gravitational wave signal
by LIGO-Virgo Collaboration [7–11].
A straightforward link between the observations and

the underlying microphysics can be established due to a
one-to-one correspondence between the static properties
of NS and the equation of state (EoS) of matter under the
realm of general relativity [12]. The behavior of the dense
matter EoS can therefore be extracted with controlled
uncertainty from the astrophysical observations within
minimal assumptions using Bayesian techniques [13–21].
However, a major persisting challenge consists in con-
necting this empirically determined EoS with the internal
properties of dense matter, notably to bring to light the
existence (or absence) of hyperonic degrees of freedom
and the deconfined quark matter in the core of neutron
stars [22]. Because of the well known “masquerade”

phenomenon [23], hybrid stars including a quark core
can exhibit a mass-radius [M − R] relationship very
similar to the one obtained for a star made of purely
nucleonic matter, see [24] for a recent review.
The discrimination between confined and deconfined

matter in the NS core is clearly of foremost importance for
our understanding of the QCD phase diagram. However,
even in the simplified assumption of a purely nucleonic
composition, a quantitative knowledge on the composition
is of utmost importance. Indeed, the electron fraction in the
star core is a crucial input both for differentiating the
different nuclear theories, and to correctly model dynamical
processes such as pulsar glitches, cooling, and mergers
[25–27]. Extraction of information on the composition
from these dynamical processes is in principle possible, but
it is clearly limited by the many microscopic and macro-
scopic unknowns in the complex theoretical modeling.
In the conventional density functional approaches, the

energy functional fixes the composition a priori, when one
solves the β-equilibrium condition equation to obtain the
EoS of NS matter. Since the latter has a one-to-one
connection to the NS M − R relation, it is systematically
assumed that, in the absence of exotic degrees of freedom,
the uncertainty in the composition only arises from the
error bar on the M − R relation. However, we will dem-
onstrate in this paper that the correspondence between the
NS composition and the EoS, as it can be accessed through
astrophysical observations, is not unique, even in the purely
nucleonic hypothesis. This surprising result is due to the*mondal@lpccaen.in2p3.fr
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existence of multiple solutions to the β-equilibrium equa-
tion, which is analytically proved using two different
realizations of the same EoS. The result is reinforced by
a Bayesian analysis hypothesizing controlled uncertainties
on the pressure of β-equilibrated matter at distinct number
densities. Further, we made the analysis more realistic by
extracting the EoS from an astrophysical measurement
through the inversion of the Tolman-Oppenheimer-Volkoff
(TOV) equation of hydrostatic equilibrium. We show that
the propagation of uncertainties is such that the composi-
tion above twice the saturation density to be fully uncon-
strained, even if the EoS was pinned down very precisely.
We tested independent complementary information from
laboratory experiments at suprasaturation densities to
extract meaningfully the proton fraction (or equivalently
electron fraction) in the NS core and, consequently, the
nuclear matter energy functional.
The plan of the paper is as follows. In Sec. II, we give

the theoretical formalism based on the inversion of the
β-equilibrium equation through an analytical polynomial
expansion of the EoS in Sec. II A, and different Bayesian
schemes in Sec. II B. Section III comprises the results from
two approaches, first on the inversion of the baryonic EoS
in Sec. III A, and on a more realistic case of the M − R
relation in Sec. III B. We explore the potential impact of
laboratory constraints of the high-density regime at fixed
proton fraction, on the β-equilibrium composition in
Sec. III C. A brief summary and conclusions are drawn
in Sec. IV.

II. INVERTING THE β-EQUILIBRIUM EQUATION

A. Analytical approach

We consider purely nucleonic matter, characterized by its
baryonic density n and asymmetry δ ¼ ðnn − npÞ=n, where
nnðpÞ is the neutron (proton) density. In order to study the
possibility of extracting the composition from the knowl-
edge on the EoS, we take the beta-equilibrium energy
functional from an arbitrary reference nuclear model
eth;βðnÞ, and solve the equilibrium equation for the com-
position δβðnÞ,

μnðn; δβÞ − μpðn; δβÞ ¼ μeðn; δβÞ: ð1Þ

Here, the electron chemical potential is simply given
by the Fermi energy, μe ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3π2neÞ2=3 þm2

e

p
with ne ¼

ðnp − nμÞ and nμ the net muon density in the global
equilibrium (μμ ¼ μe). The neutron and proton chemical
potentials are given by

μn;p ¼ ∂ðnethÞ
∂nn;p ¼ eth þmn;p þ n

∂eth
∂n

����
δ

� ∂eth
∂δ

����
n
; ð2Þ

where mn;p are the free nucleon masses. The quantity
ethðn; δÞ is the energy per baryon that we want to

reconstruct from the knowledge on eth;βðnÞ in a finite
number of density points ni; i ¼ 1;…; N. Inserting Eq. (2)
in Eq. (1) we immediately get

2
∂ethðn; δβÞ

∂δ
����
n
¼ μeðn; δβÞ − Δmnp; ð3Þ

with Δmnp ¼ mn −mp. To evaluate the left-hand side of
Eq. (3) in order to extract δβðnÞ, we need to parametrize the
functional out of the β-equilibrium trajectory. A convenient
representation that can precisely reproduce any generic
realistic nucleonic functional [14], is given by the so called
metamodel approach as

emetaðn; δÞ ¼ t�FGðn; δÞ þ U0ðnÞ þUsymðnÞδ2: ð4Þ

Here, t�FG is a Fermi-gas type kinetic energy term which
also takes into account the density dependence of the
effective nucleon masses, and the deviation of the parabolic
approximation of the symmetry energy [14]; U0ðnÞ and
UsymðnÞ can be attributed to the symmetric and asymmetric
parts of the nuclear potential written as a Taylor’s expan-
sion in density that, keeping up to fourth order, can be
written as

U0;symðnÞ ¼
X4
k¼0

ðvkÞ0;sym
k!

xk; with; x ¼ n − nsat
3nsat

; ð5Þ

where ðvkÞ0;sym are functions of nuclear matter properties
(NMPs) at saturation density nsat [14]. The NMPs
needed for the metafunctional in Eq. (4) are the energy
per particle Esat, incompressibility Ksat, skewness Qsat,
and stiffness Zsat of symmetric nuclear matter (SNM),
e0ðnÞ ¼ ethðn; δ ¼ 0Þ; and symmetry energy Esym, sym-
metry slope Lsym, symmetry incompressibility Ksym, sym-
metry skewness Qsym, and symmetry stiffness Zsym

corresponding to the density dependent symmetry energy,
esymðnÞ ¼ ð1=2Þ∂2eth=∂δ2ðn; δ ¼ 0Þ, all evaluated at the
equilibrium density of nuclear matter nsat. The NMPs are
connected to the successive derivatives of the energy
functional at saturation in the isoscalar (symmetric matter
e0) and isovector (symmetry energy esym) sector. For the
exact definitions of ðvkÞ0;sym c.f. Eq. (21–31) of Ref. [14].
Over the last three or four decades an enormous amount

of theoretical and experimental works have been devoted to
obtain the different nuclear matter properties. For example,
the binding energy data of nuclei constrain Esat and Esym
[28,29] very well, giant monopole resonance energies limit
the value of Ksat [30,31], and with some reasonable
ambiguities Lsym and Ksym can be constrained by many
different approaches [32–41]. Since the lower-order NMPs
are relatively well constrained, for this analytical exercise
we consider that they are known exactly in Eq. (4), and take
the corresponding values of the reference model which we
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are trying to reproduce. However, the rest of the parameters
Qsat;sym and Zsat;sym are not experimentally accessible, and
scattered over a huge range of values across many different
nuclear models [42,43].
These higher-order parameters can be determined by

equating the input eth;βðnÞ to its metamodel representation
emetaðn; δβÞ, at the asymmetry δβðnÞ corresponding to the
solution of Eq. (3). Using the ansatz of Eq. (4) we arrive at
the equation,

1

6
x3Qsat þ

1

24
x4Zsat þ

1

6
x3δ2βQsym þ 1

24
x4δβ2Zsym

¼ eth;βðnÞ − e0metaðn; δβÞ; ð6Þ

where e0meta is the functional emeta from Eq. (4) obtained by
setting the lower order NMPs from the input functional, and
Qsat;sym ¼ Zsat;sym ¼ 0. The simultaneous solution of
Eqs. (6) and (3) can be obtained with a simple iterative
matrix inversion by inputting the values of eth;βðniÞ
corresponding to four distinct density points i ¼ 1;…; 4 as

2
6664

Qsat

Zsat

Qsym

Zsym

3
7775 ¼ 24

2
6664

4x31 x41 4x31δ
2
1 x41δ

2
1

4x32 x42 4x32δ
2
2 x42δ

2
2

4x33 x43 4x33δ
2
3 x43δ

2
3

4x34 x44 4x34δ
2
4 x44δ

2
4

3
7775

−12
6664

e1
e2
e3
e4

3
7775; ð7Þ

with ei ¼ eth;βðniÞ − e0metaðni; δiÞ, and δi the solution of the
metamodel equivalent of Eq. (3)

2
∂emetaðni; δÞ

∂δ
����
ni

¼ μeðni; δÞ − Δmnp: ð8Þ

The solution of the coupled Eqs. (8), (4), and (7) fully
determines the functional emeta that by construction coin-
cides with the reference model in β-equilibrium, at the four
chosen density points. Possible multiple solutions of the
β-equilibrium equation can then be sought out, by slightly
varying the chosen density points, or modifying the
initialization of the iterative procedure, resulting in differ-
ent Qsat;sym and Zsat;sym. Such multiple solutions arise from
the indetermination of the high-order NMPs Qsat;sym and
Zsat;sym. If we consider that parameters such as Lsym and
Ksym are not sufficiently pinned down as well, the pro-
cedure of Sec. II A could also be extended to a higher set of
NMPs by increasing the number of density points in
Eq. (7). For this reason, in the Bayesian approach presented
in the next section, we have also added the relatively poorly
constrained Ksym parameter to our prior. However, we have
checked that adding an extra dimension to Eq. (7) including
Ksym does not change the results of Sec. III.

B. Bayesian approach

In the astrophysical context, the EoS of dense matter is
not directly measured at different density points; they are
rather inferred from the mass, tidal polarizability and radius
through the structural equations of the star in general
relativity, which imply an integration of the β-equilibrated
EoS over the whole star density profile. Moreover, the
observational quantities are known with finite precision,
inducing an uncertainty that propagates to the EoS, and
might blur the correlation between the EoS and the energy
functional and composition as given by the matrix inver-
sion in Eq. (7). To account for this limitation, we attempt a
reconstruction of the reference model from the general
metafunctional Eq. (4) through a Bayesian approach,
where we sample the prior keeping fixed the lower-order
parameters (which are considered as “known” from inde-
pendent measurements) Esat; Ksat; Esym, and Lsym to the
corresponding model values. The rest of the parameters
Ksym, Qsat;sym, and Zsat;sym are populated in a Monte Carlo
sampling with a flat distribution as Ksym ¼ ½−400; 200�,
Qsat ¼ ½−1000; 1000�, Qsym ¼ ½−2000; 2000�, Zsat ¼
½−5000; 5000�, Zsym ¼ ½−5000; 5000�, all in units of
MeV. These ranges are chosen such as to include a large
number of popular relativistic as well as nonrelativistic
functionals [14,44]. We have checked that the arbitrary
choice of the reference model does not play any significant
role in the qualitative results presented in this paper.
The posterior distributions of the set X≡ fKsym;

Qsat; Qsym; Zsat; Zsymg of EoS parameters are conditioned
by likelihood models of the different observations and
constraints c according to the standard definition,

PðXjcÞ ¼ NPðXÞ
Y
k

PðckjXÞ; ð9Þ

where PðXÞ is the prior, and N is a normalization factor.
Posterior distributions of different observables Y are
calculated by marginalizing over the EoS parameters as

PðYjcÞ ¼
YM
k¼1

Z
Xmax
k

Xmin
k

dXkPðXjcÞδðY − YðXÞÞ; ð10Þ

whereM ¼ 5 is the number of parameters in the metamodel
which are varied. YðXÞ is the value of any observable Y
obtained with the X parameter set along with the fixed

lower-order parameters, with XminðmaxÞ
k being the minimum

(maximum) value in the prior distribution taken for the
analysis. The constraints ck are pseudo-observations from
the reference model FSU2. We will successively consider
different choices for the pseudo-observations, leading to
four different posterior distributions:

(i) post-1 - The total equilibrium pressure Pth of the
reference model is imposed at four different density
points, as in the analytical inversion presented in
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Sec. II A. No uncertainty is considered on the
baryonic density, and the likelihood model is a
Gaussian distribution with σP=Pth ¼ 0.1.

(ii) post-2 - Three hypothetical radii measurements at
fixed NS mass are imposed, where the 1-σ uncer-
tainty is arbitrarily fixed to 5% of the model values:
R1.4 M⊙

, R1.7 M⊙
, and R2.01 M⊙

.
(iii) post-3 - The pseudo-observations of radii of post-2

are complemented with a hypothetical SNM pres-
sure observation at 4nsat calculated from the refer-
ence model with 10% precision.

(iv) post-4 -An extra constraint is further imposed on top
of post-3 as the theoretical value of the symmetry
energy at 4nsat, again with 10% precision.

III. RESULTS

The determination of the energy functional and matter
composition from the inversion of the β equilibrium
information as explained in Sec. II is illustrated using
the relativistic mean field (RMF) model FSU2 [37] as the
reference model, including nucleons, electrons, and muons.
We have repeated all the calculations shown in this paper
using the BSK24 [45], the Sly4 [46], and the SINPA [36]
models. Though the quantitative predictions are obviously
different, all the qualitative results presented in the paper
are independent of the choice of the reference model.

A. Constraining the pressure of β-equilibrated matter

To illustrate the existence of multiple solutions to
the β-equilibrium equation, and validate the Bayesian
approach, we first consider the academic situation of
post-1, where the pseudo-observations are the values of
the FSU2 equilibrium pressure at different density points,
chosen to be similar ni, i ¼ 1;…; 4 used for the analytical
inversion in Eq. (7), with an arbitrarily chosen 10%
precision.
In Fig. 1 the NS EoS calculated from FSU2 is given by

the black line. The corresponding red-dashed, and blue
dashed-dotted lines give two different metamodel equiv-
alents of FSU2 produced with Eq. (7). The red dashed lines
(“β-eq.”) are obtained by considering initial guess values
for the parameters Qsat ¼ Zsat ¼ Qsym ¼ Zsym ¼ 0, while
the functional described by the blue dashed-dotted line
(“β-eq:þ lab”) is obtained if Qsat and Zsat are initialized to
the values that exactly reproduce the SNM energy and
pressure of FSU2 at n ¼ 4nsat [see Sec. III C and Eq. (11)].
The two extremities of density points chosen to obtain the
“β-eq.” and “β-eq:þ lab” solutions are the central densities
corresponding to NSs with mass 1.4 M⊙ and 2.01 M⊙ in
FSU2, with two more equispaced points in between for the
former i.e., “β-eq.”. The coherence between the three lines
in the upper panel of Fig. 1 shows the absolute compat-
ibility between FSU2 and its metamodel equivalents, as far
as the β-equilibrium EoS is concerned. However, if we turn

to the composition [Fig. 1(b)], we observe a strong
deviation between the model (black line) compared to
the “β-eq.” solution (red dashed line), pointing towards
multiple solutions of the β-equilibrium equation.
The corresponding Bayesian analysis “post-1” also

supports this toy model calculation. In Fig. 1, the 68%
and 95% posteriors on the pressure and proton fraction,
along with the 99% prior are plotted as green, blue, and
orange bands, respectively. We observe that the posterior
for pressure is correctly centered on the reference model
EoS, but the uncertainty in the composition covers the
whole physical range of xp, with the highest probability
concentrated on the solution given by the functional
solution that is not compatible with the reference FSU2
functional. The compatibility of the Bayesian analysis with

FIG. 1. Pressure (a) and electron fraction (b) for β-equilibrated
matter as a function of density for FSU2 and its metamodel
equivalents “β-eq.” and “β-eq:þ lab” along with its prior and
posterior distributions with different confidence intervals (CI)
calculated from “post-1” (see text for details).
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the “β-eq.” solution is most likely due to the fact that we
have arbitrarily centered around zero in the prior distribu-
tion of the unknown high-order NMPs. However, a more
educated guess is difficult to justify given the absence of
direct constraints on those quantities.

B. Constraining the M −R relation

As already discussed in Sec. II B, realistic experimental
constraints on the nuclear functional are given by the
observation of integrated quantities such as the mass, the
radius, or the tidal polarizability of NSs.We therefore turn to
the post-2 protocol, where three hypothetical radii measure-
ments at fixedNSmasses are imposed, centered on the FSU2
theoretical value: R1.4 M⊙

¼ 14.18� 0.71 km, R1.7 M⊙
¼

13.79� 0.69 km and R2.01 M⊙
¼ 12.93� 0.65 km. In

Fig. 2(a), these are denoted by the vertical black error bands
on the FSU2 M − R curve (black line). The corresponding
68% and 95% posteriors on the radii, accompanied by 99%
prior are plotted as green, blue, and orange bands, respec-
tively. The accuracy on the posteriors obtained in the
Bayesian analysis conditioned on M − R, is similar to the
one obtained by directly imposing the EoS behavior as in
post-1. The 5% error bar on the pseudo-observations
converts into ≈20% uncertainty in the high density EoS,
as displayed in Fig. 2(b). This is due to the well known
nonlinearity of the relation between M − R and EoS, as
given by the TOV equation. We can also observe a
systematic shift compared to the “true” values towards
higher pressure as the density increases, with a correspond-
ing shift in the radius, increasing with increasing NS mass.
This behavior is expected in any Bayesian analysis, if the
prior is not centered on the true value. We can also see that
the width of the posterior M − R band is thinner than the
hypothetical measurement. This can be appreciated from the
fact that the separate radii measurements effectively con-
strain the same parameters, leading to a stronger constraint
than any individual measurement. Moreover, the strong
assumption of an exact knowledge of the low density
physics encoded in the lower order parameters in Eq. (4)
strongly constrains the EoS up to ∼2nsat, as seen in Fig. 1.
The fact that only the higher-order parameters are varied is
not sufficient to eliminate the global bias observed, but it
contributes to narrow the posterior prediction.
All in all, the true EoS is recovered at the 1-σ level,

which can be considered as a very satisfactory EoS
determination. This is an illustration of the well-known
fact that a precise measurement of NS radii is an extremely
powerful EoS estimator. However, the posterior distribution
of the proton fraction is very similar to the one observed in
Fig. 1, and the uncertainty in the composition covers the
whole physical range of xp. This confirms the observations
of Sec. III A, namely the uncertainty in the composition
appears not to be due to the imprecision in the knowledge
of the EoS, but rather to the degeneracy between very
different energy functionals that happen to lead to the same

FIG. 2. Radius versus mass (a), Pressure (b), and proton
fraction (c) versus density for FSU2 and its metamodel equiv-
alents, along with its prior and posterior distributions with
different confidence intervals (CI) calculated from “post-2”
(see text for details).
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β-equilibrium trajectory due to cancellations between the
symmetric matter U0 and the symmetry Usym functionals
[see Eq. (4)].

C. Constraining the SNM and symmetry energy

The results of Fig. 2 suggest that, to eliminate the
degeneracy and pin down the behavior of the reference
model, independent additional constraints are needed from
either the symmetric or the asymmetric part of the func-
tional to complement the astrophysical observations. This
argument is confirmed by the fact that the analytical EoS
inversion presented in Sec. II A systematically leads to the
correct reproduction of the reference functional even in the
composition, if the β-equilibrium information is only used
to extract the NMPs associated to the symmetry energy. In
particular, we consider a high density point that we fix for
illustrative purposes at n ¼ 4nsat, and impose the metafunc-
tional in Eq. (4) to exactly reproduce the SNM energy and
pressure of the reference model. This fixes the parameters
Qsat and Zsat [14]. We then follow the same method of
matrix inversion as in Eq. (7) to extract Qsym and Zsym as
the following,

1

6
x3δβ2Qsym þ 1

24
x4δβ2Zsym ¼ ethðn; δβÞ − e0;satmetaðn; δβÞ;

ð11Þ

where e0;satmeta is the functional emeta from Eq. (4) obtained by
using the lower-order NMPs from the input functional,Qsat
and Zsat from the method described above and
Qsym ¼ Zsym ¼ 0. Here, we need only two density points,
which we have chosen as the central densities of FSU2
corresponding to NSs of masses 1.4 M⊙ and 2.01 M⊙. As
expected, among the different possible solutions of the
β-equilibrium equation, this strategy selects the metafunc-
tional that correctly reproduces the reference model both in
the isoscalar and in the isovector sector (“β-eq:þ lab”),
represented by dot-dashed blue lines in Figs. 1 and 2.
In Fig. 3, we display the behavior of SNM (e0 in panel a)

and symmetry energy (esym in panel b) as a function of
number density n for the reference model FSU2 in
conjunction with “β-eq.” and “β-eq:þ lab” metamodel
equivalents represented by black solid, red-dashed, and
blue dash-dotted lines, respectively. One can notice that
even though “β-eq.” solution does not match with e0 and
esym of FSU2, it perfectly reproduces the β-equilibrium
pressure [Fig. 1(a)]. This explains the mismatch between
the red-dashed and black solid lines in the composition
[Fig. 1(b) and Fig. 2(c)]. However, for obvious reasons
“β-eq:þ lab” solution agrees everywhere with FSU2 in
Figs. 1 and 2 as it correctly reproduces the SNM and
symmetry energy behavior separately (see Fig. 3).
Information on the energy and pressure of symmetric

matter at suprasaturation density is expected from

upcoming measurements in relativistic heavy-ion collisions
[47]. However, we expect those constraints to be affected by
considerable uncertainties like any other measurements. To
understand their effect on the determination of the compo-
sition, we perform a similar Bayesian analysis as before
(“post-3”), by complementing the pseudo-observations of
radii introduced earlier, with a hypothetical SNM pressure
observation at 4nsat calculated from FSU2 with 10%
precision i.e., PSNMð0.6 fm−3Þ ¼ 125.14� 12.51 MeV.
The resulting posterior proton fraction xp as a function of

density n is displayed in Fig. 4(a). One can notice that the
distribution is less disperse, but it is still centered around
the wrong composition described earlier (dashed red line).
The mismatch can be understood as follows. The energy of
the β-equilibrated matter in Eq. (3) is determined by an
interplay between energy of SNM and symmetry energy.
Those quantities are not independent, since the relative
proportion of the two is imposed by the β-equilibrium
equation, but the latter possesses multiple solutions. In the
case of the blue dash-dotted lines in Fig. 4, the symmetric
matter NMPs are fitted exactly to their true values, which
forces the symmetry energy and xp to take their model
values (see Fig. 3). But in “post-3”, the SNM is not fixed
exactly, which leaves leeway for errors to creep in and get
transferred further to symmetry energy and xp because of
the intrinsic degeneracy between the two parts of the
functional. This interpretation is in agreement with pre-
vious studies [48–50]. To better quantify the statement, we
add another constraint on top of “post-3” by further
imposing the symmetry energy of FSU2 at 4nsat as
esymð0.6 fm−3Þ ¼ 131.65� 13.16 MeV, which is coined
as “post-4”. We plot the proton fraction xp as a function of
density for “post-4” in Fig. 4(b), and the 68% posterior
of the Bayesian analysis gets aligned with the true
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FIG. 3. Energy for symmetric nuclear matter e0 (a) and
symmetry energy esym (b) as a function of number density for
FSU2 and its metamodel equivalents “β-eq.” and “β-eq:þ lab”
are displayed.
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composition, albeit with a non-negligible amount of
uncertainty associated with it. Details on the composition
explored by the prior used in this calculation are discussed
in the supplemental material [51].
The different sensitivity of xp to eβ, e0, and esym can be

qualitatively understood via analytical uncertainty propa-
gation. If we employ a simple parabolic approximation for
the symmetry energy eβ ≈ e0 þ esymδ2β, Eq. (3) can be
written in terms of the proton fraction as

4ð1 − 2xpÞesym − Δmnp ¼ μeðxpÞ: ð12Þ

In the ultrarelativistic approximation for the electron
gas, one can easily write the uncertainty in proton
fraction Δxp in terms of uncertainties on β-equilibrium
energy Δeβ and SNM energy Δe0, or on symmetry energy
Δesym as

Δxp ≈
12xpðΔeβ þ Δe0Þ

μej1 − 8xpj
≈
12ð1 − 2xpÞ2xpΔesym

μeð4xp þ 1Þ : ð13Þ

The first equality in Eq. (13) reflects the situation of
“post-3” and the second one of “post-4”. As a qualitative
estimate of the present uncertainty in the symmetry energy,
we consider the uncertainties in the NMPs proposed in
Table IX of Ref. [14]. In Fig. 5(a) we plot this (red band) as
a function of density n. The thinner blue band is simply half
of it. Concerning Δeβ and Δe0, we take the conservative

choice Δeβ þ Δe0 ¼ Δesym, such as to concentrate on the
different uncertainty propagation due to the form of
the β-equilibrium equation, independent of the actual
precision of the measurements. The results are shown in
Figs. 5(b) and 5(c). One can see that the error band on Δxp
spans the whole space in Fig. 5(b), at variance with
Fig. 5(c). This can qualitatively explain the findings of
our Bayesian analyses “post-3” and “post-4” of Fig. 4,
pointing to the fact that the knowledge on symmetry energy
at high density plays stronger role in determining the proton
fraction inside the core of a NS, than an equivalent
information on SNM. It is worthwhile to pose a caution
on the information derived from Eq. (13). The apparent
divergence in Δxp at xp ¼ 0.125 is an artifact of the
simplistic way to extract the error from the approximate
β-equilibrium relation Eq. (12). However, a smooth
removal of the divergence still engulfs the whole available
space of the proton fraction xp in Fig. 5(b).

IV. SUMMARY AND CONCLUSIONS

In summary, we have analyzed the amount of empirical
information which is needed to decipher the composition of
the core of a catalyzed nonrotating neutron star within the
nucleonic hypothesis. Using both a quasianalytical inver-
sion of the β-equilibrium equation, and a more quantitative
Bayesian analysis, we have shown that one can land in a
wrong conclusion on the composition relying only on
astrophysical informations coming from static properties of
neutron star.

FIG. 4. Proton fraction xp as a function of density to compare
the distributions “post-3” (a) and “post-4” (b) (see text for
details).
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FIG. 5. Uncertainty on the symmetry energy Δesym as a
function of density (a), its consequence on the uncertainties of
proton fraction Δxp as a function of density (c) along with Δxp
caused due to uncertainties in β-equilibrated energy Δeβ and
SNM energy Δe0 (b), all obtained from Eq. (13) (see text for
details).
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In an ideal situation, where one knows all the NMPs up
to second order exactly, the composition can be extracted
by providing exact information on the energy per nucleon
of SNM at a single high density point. However, if
uncertainties are taken into account even moderately, the
core proton fraction is fully unconstrained unless the static
astrophysical observations are complemented with accurate
measurements on the symmetry energy at high density or
possibly complementary information from dynamical
observables.

Finally, it is important to mention that this study gives
only a lower limit on the accessible uncertainty to the
composition of neutron star interior. Further uncertainties
will arise from the possible incorporation of exotic degrees
of freedom e.g., hyperons or the deconfined quark matter,
which are kept out in the present study.
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