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We look for and place observational constraints on the imprint of ultralight dark matter (ULDM)
soliton cores in rotation-dominated galaxies. Extending previous analyses, we find a conservative
constraint which disfavors the soliton-host halo relation found in some numerical simulations over a
broad range in the ULDM particle mass m. Combining the observational constraints with theoretical
arguments for the efficiency of soliton formation via gravitational dynamical relaxation and assuming
that the soliton-halo relation is correct, our results disfavor ULDM from comprising 100% of the total
cosmological dark matter in the range 10−24 eV≲m ≲ 10−20 eV. The constraints probe the ULDM
fraction down to f ≲ 0.3 of the total dark matter.
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I. INTRODUCTION AND MAIN RESULT

Ultralight bosonic fields offer a plausible candidate for
dark matter (DM). The wave nature of such ultralight dark
matter (ULDM) may manifest itself in a variety of
astrophysical settings [1–9]. A wide range of the particle
mass, 10−25 ≲m≲ 10−19 eV, can be probed via observa-
tions of galaxies [10–20] (for reviews, see [21,22]). At the
lower end in m, Ref. [23] argued that strong gravitational
lensing by massive elliptical galaxies is sensitive to
ULDM as light as m ∼ 10−25 eV, making up a small
fraction of the order of 10% of the total cosmological DM.
At the higher end, Ref. [24] suggested that ULDM-
induced dynamical heating in small satellite galaxies
may probe m ∼ 10−19 eV. Many studies highlighted
m ∼ 10−22 eV, for which ULDM was suggested as a
solution to small-scale puzzles facing cold dark matter
(CDM) [25–28]. However, with further scrutiny, this
proposal became increasingly implausible. The possibility
that ULDM at m ∼ 10−22 eV comprises the majority of
the DM is in tension with Lyman-α forest [29–34]
and cosmic microwave background anisotropy analyses
[35,36], as well as with stellar and gas kinematics in

low-surface-brightness galaxies [37,38] and dwarf gal-
axies [39] (see also [40,41] for related analysis).
In this paper, we concentrate further on galactic signatures

of ULDM. An important prediction, observed in numerical
simulations [26,27], is the formation of a “soliton” density
core in the halo center. The soliton is a ground state
configuration of the equations of motion. Reference [27]
found that the soliton mass in their simulations is related to
the host halo via the so-called soliton-host halo relation.
References [37,38] (hereafter Bar18 and Bar19, respectively)
showed that the empirical soliton-host halo relation is
equivalent to the equilibration of specific kinetic energy
(kinetic energy per unit mass of the field) in the soliton and
in the halo: K=Mjsoliton ≈ K=Mjhalo. While exact equilibra-
tion cannot be the end state of a self-gravitating system, the
observed scaling is likely a bottleneck state to which the
system is driven by gravitational dynamical relaxation
[28,42–47].
Bar18 used rotation curve data from the SPARC database

[48] to look for the imprint of the solitons predicted by the
soliton-host halo relation. The result was null; thus, assum-
ing the soliton-halo relation observed in simulations of
Refs. [26,27] is correct, ULDM in the range 10−22 ≲m≲
10−21 eV is disfavored by the data.
We believe that this (unfortunately, null) result is signifi-

cant: ULDM provided a theoretically plausible model of
DM, for which the soliton-halo relation of Refs. [26,27]
formed a sharp prediction of an observable feature, without
invoking any interactions between DM and the Standard
Model particles apart from minimal gravity alone. The
implications of a positive detection of this feature in a
variety of different galaxies could have been far reaching.
The implications of not detecting the feature are also
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substantial, because they have the potential to exclude a
whole swath of the mass range of DM.
With this motivation in mind, in the current work we

expand on Bar18 in a number of aspects. First, whereas
Bar18 reported only a crude estimate of the observationally
disfavored range in m, we perform a systematic scan of the
data, resulting in broader and more comprehensive limits.
A summary of our results is shown in Fig. 1. The blue
region combines the constraints from all of the SPARC
galaxies; each thin line corresponds to a single individual
galaxy. On the y axis, we use the soliton mass M,
normalized to the mass specified by the soliton-halo
relation, MSH. We allow an uncertainty of a factor of 2,
up or down (cf. Ref. [27] and Bar18), in MSH, represented
by the red band. On the x axis, we show the ULDM mass
m. Where the blue region dips below the red band, which
happens for 3 × 10−24 < m < 2 × 10−20 eV, the soliton-
halo relation is in conflict with the data.
It is important to note that, in many galaxies, the soliton-

halo relation is not generally expected to hold for
m≳ 10−21 eV. The relation was tested only by numerical
simulations (of galaxies similar to DM-dominated SPARC
systems) for m ∼ 10−22 eV; when m is increased, the
efficiency of dynamical relaxation diminishes, and eventually
one expects the relation to break down, because the soliton
does not have enough time to form during the age of the
galaxy. From this perspective, the m≳ 10−21 eV part of the
excluded range in Fig. 1 may not be very informative.
Nevertheless, as we explain later on, the full excluded range
(including the higher m range) is still of phenomenological
interest. First, it is an observational constraint and can be
considered as a null search for the soliton imprint, putting

aside theoretical bias. The sensitivity that we demonstrate in
the data strongly motivates additional simulation analyses to
test the extension of the theoretical soliton-halo relation up to
higher m. Second, we shall see that, in a class of models
(inspired by the “string axiverse” scenario [49]) in which
more than one species of ULDM coexist, dynamical relax-
ation could become unexpectedly efficient and populate the
soliton state even for high-m fields: In other words, there are
interesting and well-motivated theoretical models that could
be expected to produce a soliton even for m > 10−21 eV.
Another aspect which we extend over Bar18 is to use the

theoretical analysis of dynamical relaxation in order to
derive constraints also in the case where ULDM comprises
just a fraction f < 1 of the total cosmological DM.
An outline of the rest of this paper is as follows.

In Sec. II, after briefly reviewing the soliton-host halo
relation, we derive observational constraints on this
relation using SPARC data. Most of our results are model
independent and conservative, in that we consider only a
rotation curve to constrain a soliton feature if the soliton
feature, by itself and without considering any additional
mass component, overshoots the velocity data. In Sec. III,
we use theoretical considerations of soliton growth by
dynamical relaxation in order to convert the observational
constraints on soliton mass into constraints on the ULDM-
to-total-DM fraction f. In Sec. IV, we comment on
implications when ULDM is comprised of more than
one species (“more than one m”) and on a possible caveat
related to soliton random walk. We conclude in Sec. V. In
Appendix A, we consider more realistic fitting proce-
dures, including estimates of additional DM and baryonic
mass components, to complement the more conservative
analysis of the main text. Appendix B outlines how the
dynamical relaxation estimates can be generalized to a
scenario with more than one species of ULDM.

II. ULDM VERSUS ROTATION CURVE DATA

A. Soliton-halo relation: Summary of previous results

Numerical simulations of ULDM [26,27] found an
empirical relation, connecting the soliton to its host halo.
While the soliton-halo relation was originally reported as a
relation between the soliton mass and the host halo mass,
Bar18 and Bar19 showed that the reported relation is
precisely equivalent to a more physically tractable equality
between the specific kinetic energy stored in the soliton and
that in the host halo:

K
M

����
sol

≈
K
M

����
halo

: ð1Þ

Here, K is the kinetic energy, and M is the total mass in
each component (the soliton core on the lhs and the host
halo on the rhs) of the density profile.

FIG. 1. The combined 95% C.L. constraints (solid blue) of
SPARC galaxies on the mass of the solitonM, normalized by that
predicted by soliton-host halo relation, MSH. Each blue line
corresponds to a galaxy. The blue dashed lines highlight
analytical approximations, valid at small and large m. The red
band comes from allowing MSH to vary by up to a factor of 2 up
or down. See Sec. II B for more details of the computation.
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Phenomenologically, Eq. (1) implies that the peak
rotation velocity of test particles, induced by the soliton
gravitational potential, should be close to the peak rotation
velocity induced by the host halo. This shape information
on the velocity curve makes the soliton-halo relation an
easy observational target.
Theoretically, Eq. (1) is suggestive of quasiequilibrium1 or

approximate thermalization between ULDM particles in the
halo and in the soliton structure. Such a behavior is consistent
with theoutcomeof dynamical relaxation [42,47] that ismuch
more efficient in ULDM than in CDM models due to the
formation of ULDM interference patterns or granules, acting
as massive quasiparticles [28,50].
In much of our analysis, we will use Eq. (1) as a

benchmark for comparison of the soliton prediction of
ULDM with observations. It is therefore important to
emphasize that the soliton-halo relation as expressed by
Eq. (1) is not without dispute. Reference [51], in particular,
reported a different relation; however, it was shown in
Bar18 (see Sec. III B there) that the soliton-halo relation of
Ref. [51] amounts to precisely equating the entire total
energy of the halo with that of the soliton, suggesting that
the initial conditions adopted in Ref. [51] were not realistic.
More in general, additional numerical and analytical tests
of Eq. (1) would be important2: Our results strongly
highlight this fact. We also note that, for the purpose of
deriving constraints on ULDM, the soliton-halo relation
adopted in our benchmark analysis [Eq. (1)] leads to
conservative bounds—with a conservative estimated
uncertainty—when compared to other scaling relations
as reviewed in, e.g., Ref. [53].
In the remaining of this subsection, we briefly review the

derivation of Eq. (1) as given in Bar18 and Bar19. We also
take this opportunity to explain in more detail the physical
meaning of the different relation quoted in Ref. [51]
(clarifying what we believe is a critical caveat in that result).
Readers who have followed the analysis in Bar18, or who are
mainly interested in the observational consequences implied
by Eq. (1), can skip to the following subsection without loss
of information.
Originally, the simulation result of Refs. [26,27] was

presented as a relation between the soliton mass and the
host halo mass [26], which could be summarized by

Msol ≈ 1.4 × 109
�
10−22 eV

m

��
Mhalo

1012 M⊙

�1
3

M⊙: ð2Þ

Reference [27] noted another way by which the same result
can be expressed; casting their result into natural units (see
Sec. III A of Bar18), it can be written as

Msol ¼
α̃

Gm

�jEhaloj
Mhalo

�1
2

; α̃ ≈ 4.2: ð3Þ

Here, G is the Newton constant, and α̃ was an empirical
“fudge factor,” extracted in Ref. [27] by fitting to their
simulation data.3

This empirical picture was clarified to some extent in
Bar18 and Bar19, as follows. The ULDM field under
discussion is a massive free scalar field that we denote by ϕ.
In the nonrelativistic limit (characteristic velocities much
smaller than c), we can express ϕ in terms of the
Schrödinger field ψ as ϕ ¼ 1=ð ffiffiffi

2
p

mÞe−imtψðx; tÞ þ c:c:,4

where in the relevant limit j∇ψ j ≪ mjψ j, j _ψ j ≪ mjψ j. The
soliton is a spherically symmetric self-gravitating ground-
state solution of the Schrödinger-Poisson equations of
motion of ψ (nonrelativistic limit of the full Einstein-
Klein Gordon equations of motion of ϕ); this solution can
be straightforwardly computed numerically. The total mass,
total energy, and total kinetic energy can be expressed as
functionals of the field:

Msol ¼ 4π

Z
dxx2jψðxÞj2; ð4Þ

Esol ¼ 4π

Z
dxx2

�
1

2m2
j∇ψðxÞj2 þ 1

2
ΦðxÞjψðxÞj2

�
; ð5Þ

Ksol ¼
4π

2m2

Z
dxx2j∇ψðxÞj2: ð6Þ

By direct integration of these functionals for the soliton
solution, Bar18 and Bar19 showed that the solution is
virial, that is, Ksol ¼ −Esol; and, moreover, it satisfies the
relation

Msol ≈
4.3
Gm

�jKsolj
Msol

�1
2

: ð7Þ

In this expression, both the lhs and the rhs apply to a self-
gravitating “stand-alone” soliton solution.
Now, compare Eq. (7) to the numerical simulations of

Refs. [26,27], as summarized by Eq. (3). There, the lhs of the
equation is again just the soliton mass, while the rhs
expresses the result of the simulation for the incoherent
large-scale host halo, at the center of which the soliton is
detected. Given that the central soliton observed in simu-
lations is very well described by the self-gravitating solution,

1By quasiequilibrium, we mean that the soliton may continue
to grow after saturating the soliton-host halo relation, but at a
parametrically reduced rate [45,46].

2The tools developed in Ref. [52] may help in this direction.

3To be precise, Ref. [27] expressed their results in terms of the
soliton “core mass” Mc, defined as the mass enclosed by the
soliton in the region where its density profile falls by a factor of 2
from its value at the center. Direct integration of the soliton
profile gives the relation Msol ≈ 4.2Mc.

4Note that we follow Bar18 and Bar19 notation so ψ has mass
dimension two, with jψ j2 being the mass density instead of
number density.
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and assuming that the host halo is approximately virialized
as well, satisfying Ehalo ≈ −Khalo, we can conclude that the
empirical result of Refs. [26,27] is contained by equating the
rhs of Eq. (7) (referring to the soliton) with the rhs of Eq. (3)
(referring to the host halo). This is the content of Eq. (1).
Let us now apply a similar exercise to the results claimed

in Ref. [51]. Again, we follow the discussion in Bar18
(Sec. III B there). The “soliton-halo relation” claimed by
Ref. [51] was (in natural units)

GmMsol ≈ 2.6ðGmjEhalojÞ13: ð8Þ

The numerical factor of ≈2.6 was derived empirically by the
authors of Ref. [51], fitting their simulation results.
Alas, a direct integration of the soliton field func-

tionals, done in Bar18, reveals that a self-gravitating soliton
satisfies

GmMsol ≈ 2.64ðGmjEsoljÞ13: ð9Þ

Again, the left-hand sides of both Eqs. (8) and (9), and the
rhs of Eq. (9), refer to the soliton, while the rhs of Eq. (8)
refers to the large-scale host halo as found in the simulations
of Ref. [51]. Equating the right-hand sides of Eqs. (8) and
(9), we can conclude that the entire soliton-halo relation of
Ref. [51] can be precisely summarized by noting that this
study produced halos with a total energy that was completely
dominated by their central solitons: Ehalo ≈ Esol. This
relation cannot be expected to hold for real massive cosm-
ological halos (satisfyingMhalo ≫ Msol). Instead, we suspect
that the scaling claimed by Ref. [51] was an artifact of the
initial conditions chosen for their numerical experiment,
which was not the result of cosmological initial conditions
for the ULDM. More discussion of the details and impact of
these initial conditions can be found in Bar18.5

We conclude that the soliton-halo relation claimed in
Ref. [51] simply says that, in these simulations, the entire
total energy of the “host halo” was dominated by a single
soliton, a situation that is unlikely to describe realistic
cosmological ULDM halos. In contrast, the relation obtained
in Refs. [26,27], summarized by Bar18 and Bar19 in terms
of Eq. (1), could be physical and was indeed discovered by
Ref. [26] in simulations utilizing cosmological initial con-
ditions. We believe that the theoretical perspective we
reviewed here did not receive full attention in some assess-
ments, such as Ref. [53]. Having clarified our perspective on
this matter, in the rest of the paper we focus on Eq. (1) as a
physically motivated benchmark for our results.

B. Looking for solitons in SPARC

We use rotation curve data from the SPARC database [48]
to look for the imprint of solitons. The database consists
primarily of observationally inferred rotation curve data,
along with model results aiming to separate the contribution
of baryons (stellar disk and bulge, as well as gas), for 175
nearby galaxies.
In our main and most conservative pass on the data, we

ignore the modeling attempts to identify the baryonic
contribution to the rotation curve. Instead, to constrain the
allowed Msol in a given galaxy, we perform a “one-sided”
test, where a soliton contribution is excluded if it alone
overshoots some portion of the rotation curve data to some
specified significance. This approach is equivalent to mod-
eling a soliton together with an arbitrary background profile,
where the background profile can be adjusted to fit any
velocity bin that the soliton-induced velocity undershoots.
The only assumption we make for the (otherwise unspeci-
fied) background component is that it gives a positive
contribution to the rotation velocity.
The radial mass profile due to the soliton, MðrÞ, is

given by

Mðr0;Msol; mÞ ¼
Z

r0

0

ρsolðr;Msol; mÞ4πr2dr; ð10Þ

where the soliton density profile is given approximately
by [27]

ρsolðrÞ ≈
ρsolð0Þ

ð1þ 0.091ðr=rcÞ2Þ8
;

ρsolð0Þ ≈ 0.083

�
Msol

M⊙

��
rc
kpc

�
−3 M⊙

kpc3
; ð11Þ

for a soliton total mass Msol. The characteristic radius
rcðMsol; mÞ is given by

rc ≈ 2.28

�
Msol

1011 M⊙

�
−1
�

m
10−22 eV

�
−2

pc: ð12Þ

The soliton profile is then controlled by two parameters,
Msol and m. In our analysis, we scan a fixed grid in m,
determining the limit on Msol for each value of m.
Note that we use the self-gravitating soliton profile,

without including the distortion of the profile due to the
presence of the non-ULDM background density. The effect
of the background density was studied in detail in Bar19.
The general results of that analysis indicate that the self-
gravitating soliton profile is a good approximation to the
actual profile, as long as the background mass component
contained within the soliton core radius is smaller than the
total soliton mass. While this assumption can be violated
when the soliton mass is small, it is valid in the region of the
Msol; m parameter space that saturates our bound.

5We must comment here that numerical experiments in
Ref. [27] also employed toy simulations with noncosmological
initial conditions. Importantly, however, these toy simulations
(i) were shown to agree with the scaling observed in actual
cosmological simulations in Ref. [26] and (ii) employed initial
conditions which were essentially different to those in Ref. [51].
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The results of our analysis are shown in Fig. 1. The
parameter region over which the data are most sensitive to
the soliton-halo relation is m ∼ 10−21 − 10−22 eV. As
discussed in Bar18 and Bar19, we find no convincing hint
for the soliton bump in any well-resolved, DM-dominated
rotation curve. We therefore present exclusion limits,
extending the discussion in Bar18.
For very large and very small values of m, we can

understand the scaling of the exclusion curves in Fig. 1
analytically. This is highlighted in Fig. 1 as dashed lines
for one sample galaxy. At low m, the constraints are
dominated by the largest radius data bin rf , which falls
inside the soliton core. The largest radius bin therefore
constrainsMsolðrfÞ < rfV2

obsðrfÞ=G ¼ const, where Vobs is
the observed rotation velocity. In this regime, the enclosed
soliton mass is MsolðrfÞ ≈ ðrf=rcÞ3Msol ∝ M4

solm
6 [using

Eq. (12)]. In the plot, we show the scaled ratio Msol=MSH,
where MSH ∝ m−1M1=3

halo [26,27]. Therefore, the constraint
on the ratio Msol=MSH in the low-m region in Fig. 1
follows Msol=MSH ∝ ðm−6=4Þ=ðm−1Þ ∝ m−1=2. At large m,
the constraint is dominated by the innermost data bin ri,
and the soliton potential is approximately that of a point
mass. The data then constrain the total soliton mass Msol,
so the constraint on Msol=MSH ∝ m.
In the remaining part of this section, we discuss a number

of additional points related to the constraints in Fig. 1.

1. Plateau at small m: Lack of constraining power for
high-surface-brightness galaxies

It is interesting to note that, in the small-m region
m≲ 10−24 eV, the data (including potential sensitivity
from many galaxies) are compatible with a soliton satu-
rating the soliton-halo relation. Observationally, this
reflects the fact that many galaxies in the SPARC database
display rotation curves that scale linearly with radius,
Vobs ∝ r, consistent with the total density profiles of these
galaxies forming large-radius cores. The shallow slope of
these rotation curves suggest low-density, large-radius
cores; to attribute such cores to ULDM, one would be
forced to require m≲ 10−24 eV. Such light ULDM is in
strong contradiction with cosmological Ly-α data, unless
the ULDM makes up just a small fraction of the total DM,
f ≲ 0.2. If that was the case, it is unclear how the main 80%
of the DM disappears from these galaxies.
To clarify this point further, in the top panel in Fig. 2,

we highlight the bounds corresponding to galaxies that
exhibit a flat segment at small m. Referring to SPARC
data, we find most of these galaxies are high-surface-
brightness galaxies with a large baryonic component. As
a representative example, we focus on NGC5371; in the
bottom panel in Fig. 2, we plot the observed rotation
curve (blue markers), along with an estimated contribu-
tion of each baryonic component, stellar disk (green) and
gas (orange). For the disk, we assume ϒdisk ¼ 0.6. We

then superimpose the contribution of a soliton component
with different values of m and normalization chosen to
saturate the bound depicted for this system in the top
panel (thin red line, embedded in the family of orange
lines in the top panel). This inspection makes clear that
the weak constraint on m arising from this galaxy is a
consequence of our conservative baseline analysis, which
does not attempt to subtract any model of the baryonic
components but rather just requires the soliton not to
overshoot the observed velocity.

2. Realistic background density

The analysis leading to Fig. 1 was conservative, in that we
considered the impact of the soliton only when it overshoots

FIG. 2. Top panel: similar to Fig. 1 but highlighting (in orange)
bounds arising from galaxies with particularly weak constraints at
m > 10−23 eV. The bound from NGC5371, which is a typical
system for this set of rotation curves, is colored red (embedded in
the orange lines). Bottom panel: detailed rotation curve of
NGC5371 (see the text), including the estimated baryonic gas
(red) and disk (green) components. Soliton components (black)
saturating the bound in the top panel are also shown for values of
m in the range 10−25 to 10−19 eV.
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the rotation velocity data, allowing an unspecified back-
ground density profile to fit underpredicted velocity bins. In
Appendix A, we study how the limits change when consid-
ering more realistic background profiles. The exercise there
involves a statistical fit of the velocity profile, deriving the
constraints on ULDM from a log-likelihood ratio. In addition
to the soliton component, we include the following ingre-
dients. (i) We add the baryonic contribution to the velocity
curve, using the gas, disk, and bulge models from SPARC
[48] and allowing the mass-to-light ratios of the disk and
the bulge to vary freely in the fit; (ii) we consider two models
for the DM contribution, in addition to the soliton: A
Navarro-Frenk-White (NFW) profile [54] and a cored
Burkert profile [55]. These are matched to the soliton feature
in different ways.
We leave the details of the fitting analysis to Appendix A.

The results are shown in Fig. 3. In terms of the limit on
Msol=MSH or on m, the consideration of more realistic
background profiles strengthens the limit by up to a factor of
2 in the large m region.

3. Impact of baryons

In the top panel in Fig. 4, we repeat Fig. 1, color coding
the limit from each galaxy according to the importance
of the baryonic contribution in the rotation curve. The
baryonic contribution is estimated via

Mbar

Mtot

����
rpeak

¼ V2
bar

V2
obs

����
rpeak

; ð13Þ

where rpeak is the bin with maximal rotation velocity. For the
purpose of this estimate, we fix the mass-to-light ratios as
ϒdisk ¼ 0.5 and ϒbulge ¼ 0.5 (see Appendix A for details).
We see that (i) the strongest constraints derive mostly from
DM-dominated galaxies, with Mbar

Mtot
jrpeak < 0.5, and (ii) drop-

ping galaxies with a high baryonic fraction from the analysis
would not affect the results. In the bottom panel in Fig. 4, we
further explore the impact of the baryonic fraction by means
of a scatter plot, showing that the strongest constraints,
again, arise from DM-dominated systems.

4. Role of host halo mass

We now inspect the role played by the mass of the host
halo in a given galaxy in the soliton bound derived for that
galaxy. To this end, we define a proxy for the virial mass of
the host halo as

FIG. 3. 95% C.L. limit on Msol=MSH versus m, obtained with
different modeling of the background density profile for a sample
galaxy (NGC100). The horizontal dashed line marks the soliton-
halo relation. The green solid line shows the limit obtained with
an arbitrary background profile: This is the procedure we refer to
in the main text. In addition, we also show results where the
background DM is fitted with NFW (red) or Burkert (blue)
profiles, matching the soliton and background halo components
(solid) as well as simply adding the components on top of each
other (dashed). More details can be found in Appendix A.

FIG. 4. Top panel: the same as Fig. 1 but color coding the
baryonic fraction Mbar

Mtot
jrpeak [see the text around Eq. (13)] for each

galaxy. Bottom panel: scatter plot including all galaxies in the
sample, showing the baryonic fraction defined in Eq. (13) on the
x axis and the tightest constraint on Msol=MSH derived for each
galaxy on the y axis (namely, the Msol=MSH quoted for the value
of m at which the bound is strongest).
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Mhalo ¼ maxr

�
V2
obsðrÞr
G

�
; ð14Þ

where Vobs is the observed rotation velocity and the
maximization is carried with respect to all radius bins.
In Fig. 5, we show a scatter plot of the Msol=MSH bound

versus Mhalo, obtained for three representative values of m.
For clarity, we truncate the y axis at Msol=MSH ≤ 1;
namely, we show only those systems which place an
informative limit on ULDM. We can see that more massive
galaxies place the most important constraints for small
values of m (blue dots corresponding to m ¼ 10−24 eV),
while lower mass galaxies are most important at larger m
(orange þ and green × corresponding to m ¼ 10−22 eV
and m ¼ 10−20 eV, respectively). The main reason for this
is simply the data coverage of different types of galaxies in
the sample: The data for massive galaxies often extend out
to many kiloparsecs, allowing one to probe the slow-rising
soliton profiles of low-m ULDM, but is not well resolved at
small r ≪ 1 kpc and, thus, cannot constrain the abrupt
feature induced by large-m ULDM. Low mass galaxies
have the opposite trend.

5. Statistical significance

Figure 6 compares the 3σ, 5σ, and 10σ constraints
obtained by combining the data from all of the SPARC
galaxies. At large m≳ 10−21 eV, the difference between
the 3σ and 10σ excluded regions, in terms of Msol=MSH or
m, is roughly a factor of 2.

III. CONSTRAINING THE ULDM FRACTION

The constraints we derived in Sec. II B on Msol=MSH
versus m were purely observational: We simply looked in
the data for the imprint of the soliton core and constrained
its possible amplitude. The role of the theoretical quantity
MSH in that exercise was simply to provide a convenient
reference point, so that results from different galaxies could
be analyzed in conjunction. In the current section, our goal
is to turn these observational limits into constraints on the

fraction f of the total DM, which could be supplied by
ULDM. To do this, we need to understand under what
conditions the soliton-halo relationMsol ≈MSH is expected
to hold in reality.
An irreducible channel for the formation of soliton cores

is via gravitational dynamical relaxation [28,42,50] acting
on an initially incoherent ensemble of ULDM waves.6 The
dynamical relaxation time for ULDM in a system with
ULDM density ρ and one-dimensional velocity dispersion
σ is [28,42,50]

τ ¼ b
ffiffiffi
2

p

12π3
m3σ6

G2ρ2 lnðmσRÞ

≈ 10 Myr

�
m

10−22 eV

�
3
�

σ

50 km
s

�
6

×

�
0.1 M⊙

pc3

ρ

�2�
3

lnΛ

�
: ð15Þ

The numerical factor b ≈ 0.7 is calibrated by numerical
simulations [42] (see also [45–47]). We estimate the
Coulomb log as lnΛ ¼ ln ðmσRÞ, where R is the character-
istic radius of the system. Note that Eq. (15) is expected to
become inaccurate for lnΛ≲ 1.
Equation (15) shows that, over wide regions in the

density profile of typical galaxies (specifically, typical
SPARC galaxies referred to later on in this work), τ can
become much shorter than the age of the galaxy.
The relaxation time becomes longer if ULDM comprises

only a fraction f < 1 of the total density ρ; in that case, we

FIG. 5. Scatter plot of the Msol=MSH bound versus halo mass
(inferred from the rotation curve; see the text), for all galaxies in
the sample, specified at three reference values of m: 10−24 (blue
dot), 10−22 (orange þ), and 10−20 eV (green ×).

FIG. 6. Combined 3σ, 5σ, and 10σ constraints on the soliton-
halo relation. The axes are the same as Fig. 1.

6Dynamical relaxation starting from a stochastic initial state is
not necessarily the only channel to form solitons. In principle, a
coherent soliton core could exist in halo centers from the early
structure formation stage.
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should replace ρ → fρ in Eq. (15) [23] (see also
Appendix B).
If the relaxation time is much shorter than the age of a

galaxy, then we expect that a soliton should form. Once
the soliton specific kinetic energy saturates the value
corresponding to the soliton-halo relation, Eq. (1) (that is,
once Msol grows to saturate MSH), the soliton growth
by dynamical relaxation becomes quenched and slows
down considerably. This scenario, which is understood
theoretically, is consistent with the results of numerical
simulations [26,27,42,45,46].
On the other hand, a relaxation time longer than the age

of a galaxy may mean that a soliton could not have formed
in the galaxy. In such a system, we do not translate the
observational constraints on Msol to a constraint on total
ULDM fraction f.
Following Ref. [23], we suggest a concrete, approximate

criterion, to see if a given galaxy should be expected to have
formed a soliton of mass Msol by dynamical relaxation. To
this end, we define two characteristic radii.

(i) rsupply.—If solitons grow by accreting mass from an
initially stochastic halo, then, to assemble a soliton of
mass Msol, a field needs to be accreted from a radius
that is at least as large as rsupply, defined byR rsupply
0 4πr2ρXðrÞdr ¼ Msol, where ρX is the initial
ULDM halo density profile. If ULDMmakes up only
a fraction of the total DM density, then only the
ULDM part should be included in ρX. In particular, if
the ULDM fraction f is decreased, then rsupply must
increase, to compensate for the overall smaller
ULDM density by drawing mass from larger dis-
tances.
To make an analytic estimate, if ρX follows an

NFW profile, then for r ≪ rs we have ρX ∝ f=r and

Msol ∝ fr2supply. Since MSH ∝ 1=m, we find rsupply ∝
ðmfÞ−1=2. If, for a very massive soliton, the process
extends out to the region r ∼ rs, where ρX ∝ f=r2, a
similar consideration gives rsupply ∝ ðmfÞ−1.

(ii) rrelax.—The process of soliton growth should be
efficient only within a region of the halo for which
the dynamical relaxation time is shorter than the age
of the system. Defining the boundary of that region
by rrelax, we have τrelaxðrrelaxÞ ¼ tgal, with tgal the age
of the galaxy. As discussed above, if ULDM makes
up only a fraction f < 1 of the total DM density,
then τ in Eq. (15) is increased as τ → τ=f2. Thus,
making f smaller has the effect of pushing rrelax
further in to a smaller radius in the halo, to
compensate for the smaller f by a larger density
[for simplicity, in this argument we assume a
roughly constant velocity dispersion σ; in practice,
we use a prescription to estimate σðrÞ from the
observed velocity data, to be explained shortly
below].

To make an analytic estimate, assuming σ≈ const,
one finds rrelax ∝ f=ðm3σ6Þ1=2 for r ≪ rs and
rrelax ∝ f1=2=ðm3σ6Þ1=4 at r ∼ rs. In the numerical
computation, we take the initial ULDM density to
follow an NFW profile and estimate σ using Jeans
modeling, discussed below.

A rough criterion for the formation of a soliton with mass
Msol is

rrelaxðMsol; m; fÞ > rsupplyðMsol; m; fÞ: ð16Þ

We take this as a condition for the applicability of the
soliton-host halo relation.
To estimate the local velocity dispersion in the relaxation

time in Eq. (15), we solve the Jeans equation for a self-
gravitating NFW halo, assuming isotropic velocity
dispersion [56]

σ2ðrÞ ¼ G
ρðrÞ

Z
∞

r

ρðr0ÞMðr0Þ
r02

dr0; ð17Þ

where MðrÞ ¼ R
r
0 d

3r0ρðr0Þ is the enclosed mass. For
NFW, this integral has an analytic solution. To speed
up the numerical analysis, we use an approximate
form for σ, σðrÞ=VcircðrÞ ≈ 0.55 þ 0.2 exp ð−r=2rsÞþ
0.2 exp ð−2r=rsÞ þ 0.6 exp ð−8r=rsÞ, where rs is the
transition scale in NFW as defined in Eq. (A2) and
VcircðrÞ is the circular velocity. The approximation differs
from the exact solution by less than 2% in the range
of 0.05rs < r < 10rs.
In Fig. 7, we show the different scales as functions of

the ULDM fraction f, for one sample galaxy, setting
m ¼ 10−22 eV. We also show the core radius rc of a
soliton that satisfies Msol ¼ MSH for this system. In this

FIG. 7. Radial scales entering the dynamical relaxation criterion,
Eq. (16), versus the cosmological ULDM fraction f. In this
example, we consider the galaxy UGC4325 and setm ¼ 10−22 eV.
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galaxy, according to the criterion Eq. (16), ULDM with the
prescribed value of m can be expected to form a soliton
saturating the soliton-halo relation only for f ≳ 0.3. For
smaller values of f, the soliton-host halo relation may break
down as dynamical relaxation becomes inefficient.
Using the criterion Eq. (16), we can translate the

observational constraints of Sec. II B into constraints on
the ULDM fraction f. For each value of m, we scrutinize
the SPARC database and find the smallest value of f for
which (i) solitons with a mass Msol ¼ MSH are in tension
with the data to some specified statistical significance, as in
Fig. 6, and (ii) the condition Eq. (16) is satisfied, for all of
the galaxies that yield this tension. We show the result of
this exercise in Fig. 8, where we also explore the sensitivity
of our results to the details of the relaxation condition. The
left panels show the disfavored range of f versus m, using
Eq. (16). The right panels use a stricter condition,
rrelax > 2rsupply. In the upper panels, we take the soliton-
halo relation as in tension with data when Msol < MSH at
95% confidence level, while in the lower panels we use a

stricter criterion Msol < 0.5MSH. For comparison, we also
display the cosmological Lyman-α constraints.

IV. ADDITIONAL COMMENTS

A. More than one m

If one species of ULDM exists, there may just as well be
more than one [57]; indeed, this could be the expectation in
scenarios such as that advocated in Ref. [49]. It is, therefore,
quite relevant to check if the constraints we derived so far
could become weakened by the presence of additional
species of ULDM. We try to address this question in this
section. Our analysis suggests that the constraints derived
under the assumption of only one species of ULDM are, in
fact, more likely to become even tighter, if additional species
exist. Moreover, additional, even subdominant species of
ULDM could open up new regions of the parameter space
for which observational imprints in galaxy kinematics could
be sought after. The reason this happens is dynamical
relaxation, which could become more efficient with addi-
tional ULDM components.

FIG. 8. Cosmological ULDM fraction f, disfavored by combining SPARC data together with the condition of sufficiently fast
dynamical relaxation, for a range of ULDM particle mass m. For the relaxation criterion, in the left panel we impose rrelax > rsupply
[cf. Eq. (16)]. The right panel tests a stricter version of the criterion, with rrelax > 2rsupply. We put bounds on f in the mass range where
the rotation curve data are in tension with the soliton-halo relation at 95% confidence level. In the top panel, we imposeMsol < MSH (m
range below the dashed line in Fig. 1); in the bottom panel, we impose Msol < 0.5MSH (m range below the whole red band in Fig. 1).
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If more than one species of ULDM exists, then quasi-
particles of one species should also induce dynamical
relaxation on the other species. We can define the relax-
ation time τij of species i due to the gravitational interaction
with j. Estimating the relaxation process as coming from
two-body encounters between ULDM quasiparticles
[28,50] shows that τij ≈ τjj (see Appendix B for a deriva-
tion). Note that τii is given by Eq. (15), with ρ → fiρ and
m → mi. The effective relaxation time of a species should,
thus, be given by τi ¼ ðPj τ

−1
ij Þ−1. For example, if two

dominant species of ULDM exist in the system, we can
estimate the effective relaxation time of species 1 as (taking
b

ffiffiffi
2

p
≈ 1)

τ1 ≈
1

12π3
m3

1σ
6

G2ρ2
1

f21 lnΛ1

�
1þ ðf2=f1Þ2

ðm2=m1Þ3X2

�−1
; ð18Þ

where we wrote the Coulomb logarithm X ¼ ðlnΛ1= lnΛ2Þ
and lnΛi ¼ lnΛ1 þ lnðmi=m1Þ.
Up to the logarithmic correction, the relaxation time

due to species i scales as m3
i =f

2
i . This means that the

presence of even a small amount (f2 ≪ 1) of “spectator”
ULDM with a very smallm2 could, in principle, dominate
the relaxation process for another, potentially dominant
(f1 ∼ 1) ULDM species, if ðm1=m2Þ3 > ðf1=f2Þ2. What
cuts off this potential enhancement of relaxation is the
Coulomb log: Eq. (15) should break down for lnΛ ≲ 1.
Thus, the effect can take place only as long as
m2 ≫ 1=ðσRÞ ≈ 4 × 10−23ð1 kpc

R Þð50 km=s
σ Þ eV.

As an aside, note that, in a multispecies scenario of
axionlike particles, the cosmological relic abundance of
each species is expected in the minimal vacuum misalign-
ment mechanism to satisfy Ωi ¼ fiΩDM ∝ θ2i F

2
i m

1=2
i ,

where Fi is the axion decay constant and θi is a vacuum
misalignment angle (expected to be of the order of unity
for initial conditions set before inflation). Assuming that
Fi ∼ F is roughly universal among the different species
and neglecting Oð1Þ differences in initial misalignment
angles, we find the parametric dependence of the factor in
the parentheses in Eq. (18):

�X
j

ðfj=f1Þ2
ðmj=m1Þ3

�−1
∼
�X

j

m2
1

m2
j

�−1
∼
minðmÞ2

m2
1

: ð19Þ

The species participating in the sum are those for which
mi ≫ 1=ðσRÞ. Even with this condition, it is possible in
principle for this factor to enhance the efficiency of
dynamical relaxation, compared to naive expectations
with a single species of ULDM.
Suppose there is one species of ULDM with m1, f1, and

a second species with m2 < m1 and f2. This setup could
lead to stronger constraints on f1, compared to the single-
species scenario. Figure 9 demonstrates this point. The
region inside the gray-colored contour corresponds to

single-species relaxation discussed previously. The total
blue-shaded region is the constraint on f1 versus m1 that
would be obtained if, in the relaxation time computation,
we include an additional species of ULDM at m2 ¼
10−23 eV and f2 ¼ 0.1, consistent with the Lyman-α limit.

B. Soliton random walk

Throughout our analysis, we considered the soliton to be
at rest at the bottom of the host halo gravitational potential
well. Simulations in Ref. [58] (see also discussion in
Refs. [59–61]) suggest that, instead, the soliton may be
constantly moving in a random walk at the center of the
halo. For the halo studied in Ref. [58], which was intended
to mimic the dwarf galaxy Eridanus II with a virial mass of
the order of ∼1010 M⊙, the range of the soliton motion was
found to be of the same order as the soliton core radius,
with a timescale of the order of the gravitational dynamical
timescale.
Soliton random walk [58] could affect our constraints,

because it would induce a time-varying potential.
Dedicated simulations would be needed to conclusively
check the effect, and we think that our results strongly
motivate such dedicated simulations. This said, we sus-
pect that it is unlikely to ameliorate our bounds signifi-
cantly. The first point to make is that the benchmark
soliton-halo relation is in a rather significant tension with
respect to many rotation curves. Judging from Figs. 1 and
6, even at 10σ C.L., with a conservative treatment of
the background mass profile of galaxies, the soliton-
halo relation overpredicts the rotation velocity of many

FIG. 9. Demonstration of the impact of a light “spectator”
ULDM species with mass m2 ¼ 10−23 eV and DM fraction
f2 ¼ 0.1 on the dynamical relaxation of a second species with
m1. The region inside the gray contour shows the constraint
derived in the m1, f1 plane, neglecting the impact of the m2

species. The all blue shaded region shows the constraint when
the m2 species is accounted for in the relaxation time estimate.
The sharp cutoff at the right edge of the blue region for each
galaxy is due to the soliton-halo relation becoming compatible
with the data at high m1.
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galaxies by factors of a few.7 The soliton-induced “bump”
in the rotation velocity of a star peaks at a radius xpeak ≈
2xc (see, e.g., Bar18), where xc is the core radius as
defined in Refs. [26,27]. Displacing the soliton by 2xc
would decrease the soliton-induced rotation velocity at
its former peak position by only about 40%, compared to
the factor of a few mismatch noted above. The second
point is that soliton random walk in 3D in the central
region of a cold stellar disk, like those of some low-
surface-brightness, low-dispersion galaxies in SPARC
[48] (see discussion in Bar19), is likely to heat up and
disperse such cold disks, analogously to the effect found
in Ref. [58] when considering the nuclear cluster of
Eridanus II. Investigating this effect further is beyond
our present scope, but we suspect that it may amplify,
rather than ameliorate, the tension for ULDM in disk
galaxies.

V. CONCLUSIONS

We used galaxy rotation curves to look for and
constrain ultralight dark matter, following and extending
earlier work by Bar18 and Bar19. The analysis is
independent from and complementary to cosmological
bounds in the literature. As already shown in Bar18 and
Bar19, the soliton-halo relation found in simulations is
strongly disfavored by the data in the range of ULDM
particle mass around m ∼ 10−22 eV, where it was directly
tested in numerical experiments. Here we have shown that
the data disfavor the soliton-halo relation over a broad
range, 10−24 eV < m < 2 × 10−20 eV. In much of this
range, the relation was not directly tested numerically;
however, theoretical analysis of soliton formation via
gravitational dynamical relaxation suggests that, in many
galaxies, a soliton adhering to the soliton-halo relation
should indeed form. While turning this argument into a
robust constraint would require dedicated simulations,
we believe that it (i) provides adequate motivation for
the search in the data, and (ii) having done the search, the
lack of significant soliton features disfavors (if indeed not
robustly excludes) ULDM in a broad range of m.
As an aside, we argued that the presence of multiple

species of ULDM, as might be expected in the string
axiverse scenario, could lead to dynamical relaxation
becoming more efficient than would be naively estimated
in case the ULDM makes up just a fraction f < 1 of the
total cosmological DM. This suggests that having “more
than one m” could open up unexpected regions in param-
eter space where the signature of an ULDM soliton might
be meaningfully sought after.

The analysis code can be downloaded from Ref. [62].
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APPENDIX A: MODELING A SOLITON WITH
REALISTIC BACKGROUND PROFILES

The constraints we considered in Sec. II B and most of the
main text were based on a conservative analysis, in which no
attempt was made to fit the actual rotation curve data, and an
ULDM soliton was disfavored only if the soliton-induced
rotation velocity by itself overshoots the data. In reality, of
course, we expect additional contributions to the rotation
curve, coming from baryonic matter as well as from ULDM
outside of the soliton core, or perhaps non-ULDM compo-
nents of DM in scenarios in which f < 1. The goal of this
Appendix is to estimate the impact of such additional mass
components on the analysis.
Regarding the baryonic mass, the SPARC database [48]

includes model estimates of the baryon-induced velocity
components, with radial profiles anchored to stellar (3.6μ)
surface brightness and HI column density data:

V2
barðriÞ ¼ jVgasðriÞjVgasðriÞ þϒdiskjVdiskðriÞjVdiskðriÞ

þϒbulgejVbulgeðriÞjVbulgeðriÞ: ðA1Þ

We allow the mass-to-light ratiosϒdisk;bulge to vary in the fit.
The gas component is held fixed as given in SPARC.8

We will consider two models for the DM or ULDM
outside of the soliton region: an NFW profile [54] and a
Burkert profile [55].

1. Soliton+NFW

In addition to the baryonic contributions and the soliton
core, this model includes an NFW density profile:

ρNFWðrÞ ¼
ρsrs

rð1þ r=rsÞ2
: ðA2Þ

ρNFW has two parameters, which we take to be the NFW
radius rs and the concentration parameter c, related to the
density parameter ρs via ρs ¼ ρcð200c3Þ=ð3ðlnð1þ cÞ−
c=ð1þ cÞÞÞ, with ρc the critical density.

7A factor of ∼3 overprediction of the velocity comes from a
factor of ∼10 overprediction of the central mass of the halo,
which is what the y axis in Fig. 6 shows.

8Bar19 did an independent gas model reconstruction for a few
sample galaxies, arriving at similar results to those reported in
Ref. [48].
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We consider two versions of the model. In the first, we
simply add the NFW component in addition to the soliton
profile. This way, even in the region where the soliton
profile dominates the density, the two DM components
overlap. This scenario may be quite relevant, if ULDM
makes up just a fraction of the total DM.
In the second version of the model, we match the

density of the soliton and NFW profiles at a transition
radius rt, where ρsolðrtÞ ¼ ρNFWðrtÞ, and consider the
NFW (soliton) component only outside (inside) of rt (in
case ρsol is subdominant everywhere, rt ¼ 0, we use only
the NFW profile):

ρDMðrÞ ¼
�
ρNFWðrÞ; r > rt;

ρsolðrÞ; r < rt:
ðA3Þ

In both versions, the total DM mass profile has four free
parameters: Msol, m, c, and rs. We define the total model-
predicted velocity as

V2
thðr; θth; θνÞ ¼

GMDMðr; θth; θνÞ
r

þ V2
barðr; θνÞ; ðA4Þ

where θth ¼ fMsol; mg and θν ¼ fc; rs;ϒdisk;ϒbulgeg. This
is compared with the observed velocity data using

χ2ðθth; θνÞ ¼
X
i

�
V thðri; θth; θνÞ − VobsðriÞ

Σi

�
2

; ðA5Þ

where VobsðriÞ and Σi are the measured rotation velocity
and standard deviation in the ith radius bin, respectively.
The summation is over the radial data bins.
We scan a grid of values of the ULDM particle mass

m ∈ ð10−24; 10−19Þ eV. For each value of m, we allow the
remaining model parameters to vary in the following
range:

Msol=M⊙ ∈ ð104.5; 1012Þ;
ϒdisk ∈ ð0; 5Þ; rs=kpc ∈ ð5; 30Þ;
ϒbulge ∈ ð0; 5Þ; c ∈ ð5; 30Þ:

To constrain Msol, we perform a log-likelihood ratio test
for Msol ∪ θν separately for each value of m, minimizing
the χ2 with respect to θν.

2. Soliton+Burkert

This model is identical to that in the previous section
(including the two versions of adding the soliton term),
apart from replacing the NFW density profile with the
Burkert profile:

ρBktðrÞ ¼
ρ0

ð1þ r
r0
Þð1þ ð rr0Þ2Þ

: ðA6Þ

We express ρ0 ¼ ρcδ0, with ρc the critical density of the
Universe. The total DM mass profile has four free param-
eters:Msol,m, δ0, and r0. For each value ofm on a fixed grid
m ∈ ð10−24; 10−19Þ eV, we allow the remaining parameters
to vary in the following range:

Msol=M⊙ ∈ ð104.5; 1012Þ;
ϒdisk ∈ ð0; 5Þ; log10ðδ0Þ ∈ ð−1; 6Þ;
ϒbulge ∈ ð0; 5Þ; r0=kpc ∈ ð1; 60Þ:

APPENDIX B: RELAXATION OF MULTIPLE
AXIONS

Reference [28] pointed out that gravitational dynamical
relaxation (see, e.g., Ref. [56] for a textbook review) in an
ULDM field can be understood effectively as being mediated
by two-body scattering events of massive quasiparticles
(QPs). The QPs arise from interference patterns in the field,
with a characteristic coherence length of λdB ∼ 2π=ðmσÞ.
If the ULDM ambient density is ρ, the mass of each QP is of
the order of MQP ∼ ð4π=3Þρλ3dB ∼ 6 × 109ðρ=0.1 M⊙ pc−3Þ
ð50 km s−1=σÞ3ð10−22 eV=mÞ3 M⊙. The effective QP
description was made rigorous in analytical studies
[50] and further elucidated and calibrated in numerical
simulations [42].
Consider the case of just one species of ULDM, with

particle mass m, ambient density ρ, and QP mass MQP, and
consider the motion of a single test particle (not necessarily
ULDM), with mass mtest ≪ MQP, traversing this medium.
The mean time between significant collisions of the test
particle against QPs in the background is (ignoring order
unity factors)

τ ∼
1

nQPσb2
; ðB1Þ

where nQP ¼ ρ=MQP is the QP number density, σ is the
velocity dispersion in the system (pertaining to the QPs and to
the test particle alike), and b is the impact parameter for a
significant collision. We define significant collisions as
collisions that change the velocity of the test particle by
an order unity factor; thus,

b ∼
GMQP

σ2
: ðB2Þ

Inserting this into Eq. (B1) and using the definition of MQP,
we have

τ ∼
m3σ6

G2ρ2
: ðB3Þ

Up to the Coulomb log, Eq. (B3) has the same parametric
scaling as Eq. (15). Of course, the equations describe the
same process; we could just as well have set the test
particle mass to mtest ¼ m, making it part of the ULDM.
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The numerical factors required to make Eq. (B3) precise were
calibrated in Refs. [42,50].
Using this understanding, the dynamical relaxation

induced by one “spectator” species of ULDM, with particle

mass m2 and DM fraction f2, onto another ULDM species
with particle mass m1, is simply obtained from Eq. (15),
substituting ρ → f2ρ and m → m2. In the main text, we
referred to this “off-diagonal” relaxation time as τ12.
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