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With the rapid development of deep learning technology, more and more researchers apply it to
gravitational wave (GW) data analysis. Previous studies focused on a single deep learning model. In this
paper we design an ensemble algorithm combining a set of convolutional neural networks for GW signal
recognition. The whole ensemble model consists of two subensemble models. Each subensemble model is
also an ensemble model of deep learning. The two subensemble models treat data of Hanford and Livinston
detectors, respectively. Proper voting scheme is adopted to combine the two subensemble models to form
the whole ensemble model. We apply this ensemble model to all reported GWevents in the first observation
and second observation runs (O1/O2) by LIGO-VIRGO Scientific Collaboration. We find that the
ensemble algorithm can clearly identify all binary black hole merger events except GW170818. We also
apply the ensemble model to one month (August 2017) data of O2. No false trigger happens, although only
O1 data are used for training. Our test results indicate that the ensemble learning algorithms can be used in
real-time GW data analysis.
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I. INTRODUCTION

On September 14, 2015, the advanced Laser
Interferometer Gravitational Wave Observatory (aLIGO)
directly detected a gravitational wave (GW) event,
GW150914, for the first time in human history [1]. This
successful detection directly verified the prediction of the
existence of GW in general relativity and opened a new
window of universe observation. Such detection opens the
era of gravitational wave astronomy. Gravitational wave
astronomy is important to the study of the origin and
evolution of the universe, the nature of dark matter and dark
energy, and others. On August 17, 2017, the gravitational
wave event GW170817 [2] produced by the merging of a
binary neutron star was directly observed. This was the first
time that GW, gamma-ray burst, optics, and other electro-
magnetic signals [3–5] were clearly and continuously
detected from one astrophysical source [6]. The observa-
tions of GW170817 marked the arrival of the era of
multimessenger astronomy including GW.
Gravitational wave astronomy requires multidisciplinary

collaborative research, such as mathematics, physics, and

computer science. Since the detected gravitational wave
signal is buried in a background noise, elaborate data
analysis is needed to extract the GW signal. The widely
used data analysis method is matched filtering. With
matched filtering, each data segment in the detected strain
is matched to a template bank. The maximum value of the
output is the matched signal-to-noise ratio (SNR). When it
is bigger than a specified threshold, a GW signal candidate
is announced. Subsequently, further inspection methods
such as χ2 time-frequency test [7], multidetector coincidence
test [8], and others are used to calculate the false-alarm rate of
the candidate which is used to determine whether it is a true
GW event or not. Since the parameters of the potential GW
source are not known in advance, the parameter space of the
template bank must be widely searched. The matched-
filtering method is computationally expensive. The low-
latency implementation of the matched-filtering method
cannot be extended to the nine-dimensional signal manifold
[9]. Recently, research has shown that the method based on
the artificial neural network may replace matched filtering to
achieve efficient detection.
As early as the 1980s, many researchers were engaged in

the study of neural networks [10–13]. However, the
application range of neural networks was very limited at
that time, it was only used to deal with small-size picture*zjcao@amt.ac.cn
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recognition (such as handwritten digital recognition [14]).
Because of the impact of the vanishing gradient problem
[15], the neural network cannot improve the accuracy
through deepening the model structure. This problem
seriously hindered the development of the neural network.
The situation changed in 2012. The AlexNet won the
championship in the ImageNet competition based on the
deep Convolutional Neural Network (CNN) [16]. At
present, the CNN has achieved great success in many
fields such as image classification [17–19], image segmen-
tation [20–22], object detection [23–25], natural language
processing, and speech recognition [26–28].
In 2018, George et al. [29] and Gabbard et al. [30]

individually concluded that deep learning can achieve the
accuracy as matched filtering in gravitational wave data
analysis. Compared to matched filtering, the computational
efficiency of deep learning is much higher. Deep learning is
expected to be applied to real-time detection of transient
GW. Recently, the application of the CNN in GW research
has been expanded greatly [31–38].
Figure 1 shows the comparison of CNN and matched

filtering. To facilitate the comparative analysis, we give a
brief mathematical description of the matched filtering. The
matched output corresponding to the ith template in
template bank is

zi½n� ¼ T
X

m

x½m�hi½m − n�; ð1Þ

where T is sampling period, m and n represent sampling
time, x½n� is the whitened strain, and hi½n� is the ith template
whitened by background noise. Equation (1) indicates that
zi½n� is convolutional results between x½n� and hi½−n�. The
matched SNR of the strain can be calculated by

z½n� ¼ max
i
ðzi½n�Þ: ð2Þ

From the above analysis, we can get a conclusion that
matched filtering can beunderstood as a convolutional neural
network with only one convolutional layer composed of a
large number of kernels comprising the template bank and
this conclusion agrees with work of Jingkai Yan et al. [39].
The deep learning model effectively compresses a large
number of approximated template waveforms from the
dimension of width to the dimension of depth. Some recent
research shows that the deep learning model has a relatively
high probability ofmisjudging the noise as aGWsignal [40].
The ensemble of multiple deep learning models may simul-
taneously focus on the width and depth of the approximated
template waveforms and is expected to improve the effect of
gravitational wave detection.
Ensemble learning can improve the performance of the

learner via a combination of multiple learners. In 1979,
Dasarathy et al. [41] first proposed the concept of an
ensemble system, which opened the prelude to the

development of ensemble learning. In 1990, Hansen et al.
[42] proved that the ensemble system has the characteristic
of variance reduction. The discovery of this property proves
that ensemble learning has the ability to improve the effect
of neural networks and provides a theoretical basis for
neural networks combined with ensemble learning. In
2021, Huerta et al. [43] designed a model for GW detection
which is composed of two optimized WaveNet. Their
model realized real-time signal recognition. Recently, they
developed a GW detection workflow with an artificial
intelligence (AI) ensemble. Using this AI ensemble, they
only spent 7 min to analyze all LIGO data in 2017 August.
All signals are found without false alarm [44]. In the current
work, we build an ensemble model to detect real GWevents
by using the optimized bagging [45] algorithm and suc-
cessfully detect almost all GW events in O1 and O2. The
most obvious difference between our method and the
method in [44] is that we individually build two ensemble
models for Hanford and Livingston interferometers, respec-
tively. Differently, Huerta et al. [44] use feature fusion to
combine the strain data of two interferometers for each

(a)

(b)

FIG. 1. Diagram of matched filtering (a) and CNN (b). The
channel with gray circles represents the whitened strain. In
second layer, the various channels with colored circles are the
convolutional output of different kernels and the circles in a
channel represent the output at different times. Note that the
channels of second layer in (a) are not the templates. In (a), the
convolutional kernels of second layer are templates whitened by
the background noise while in (b) the kernels are gotten via
training.
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model in the ensemble. The individual model of the
ensemble is also called base learner.
The χ2 time-frequency test together with the matched-

filtering method can eliminate the false trigger caused by a
glitch. However, χ2 time-frequency test cannot be used
together with deep learning. We use the strategy of cross
validation of two detectors to treat this problem. Since the
probability of the simultaneous presence of glitch in the
detected noise signal from two interferometers is extremely
low, combining the detection results from the two inter-
ferometers can effectively reduce the number of false
triggers caused by the glitch. This is the basic idea for
the current work. The test results based on August 2017
LIGO data indicates that our idea works very well.
This paper is organized as follows. In Sec. II, we

introduce the process of building data for training and
testing. After that we describe our ensemble model in
Sec. III. Then we apply our ensemble model to the O1/O2
LIGO data in Sec. IV. The high true-alarm rate and
extremely low false-alarm rate behavior of our ensemble
model will be reported there. The last section is devoted to a
summary.

II. DATA FOR TRAINING AND TESTING

The dataset for the deep model in this work was
generated by the open-source project ggwd1 [46]. We focus
on gravitational wave signals produced by binary black
hole (BBH) mergers. Two classes of data are generated.
One is the data strain of pure background noise and the
other is the data strain including background noise and a
GW waveform. The GW waveform contains the complete
inspiral, merger, and ringdown phases of the BBH coa-
lescence. The synthetic data can be represented by

sðtÞ ¼ hðtÞ þ nðtÞ; ð3Þ

where hðtÞ represents the GW waveform which is gen-
erated by the effective one-body numerical relativity wave-
form model [47–50]. nðtÞ is the background noise that is
randomly sampled from the O1 data and all of the identified
GW events are eliminated.
To filter out the spectral components of the environ-

mental noise and eliminate the influence of Newtonian
noise, all the data in the dataset were whitened and passed
through a high-pass filter with a cutoff frequency of 20 Hz.
The duration of the training dataset is 1 s and the sampling
rate is 4096 Hz.
The mass of both black holes is randomly sampled

between 5 M⊙ and 80 M⊙, and the dimensionless spin is
randomly sampled in (0, 0.998). The polarization angle is
sampled uniformly at random from the interval ð0; 2πÞ. The
coalescence phase and the inclination angle are sampled

jointly from a uniform distribution over a sphere, while the
right ascension and the declination are all sampled from a
uniform distribution over the sky. The distance between the
Earth and the source is a fixed value of 100 Mpc. But, the
simulated waveforms are later rescaled to match a given
network SNR [51] which is randomly sampled in (7,20).
A dataset of 120,000 samples was generated, within

45,000 samples containing GW signal and 75,000 samples
containing pure background noise. We use 60,000 samples
(30,000 GWand 30,000 noise) for training, 10,000 samples
(5,000 GW and 5,000 noise) for validation, and 50,000
samples (10,000 GWand 40,000 noise) for testing. In order
to mimic the fact that the number of noise samples in actual
gravitational wave detection are much larger than that of
the gravitational wave samples, we did not adopt the
conventional scheme which generate a test set with the
50% noise samples and 50% GW samples. Alternatively,
we make the test set with 80% noise samples and 20% GW
samples.

III. ENSEMBLE DEEP LEARNING SCHEME FOR
GRAVITATIONAL WAVE DATA ANALYSIS

This section exhibits the proposed ensemble model for
GW data analysis. We apply the bagging algorithm [45] to
build the ensemble model. Firstly, we introduce the
structure of the base learners. Secondly, we present the
proposed detection method consisting of two independent
ensemble models, and each model detects the data of
Hanford and Livingston interferometer, respectively. Then,
the training method of the base learners and the method for
the model selection will be detailed.

A. Base learner

In recent years, many works investigated the application
of the CNN to the GW detection [29,52–55]. The CNN
here we used contains one input layer, several hidden
layers, and one output layer to form the base learners of the
ensemble deep learning model.
Considering the good performance of the model

designed by Gabbard et al. [30], we adopt this model as
the base learner of our ensemble model. In the original
work [30], the simulated Gaussian noise was used. After
using the optimized ensemble method and real background
noise, an ensemble model with better detection capability
can be constructed. We find that the ensemble model works
well for real background noise and surmise that the dropout
[56] augments the diversity of the base model to make it
suitable to be assembled.
The public data recorded by LIGO include two types

which correspond to sampling rate 4096 and 16384 Hz. In
the current work we treat the 4096-Hz one. The model
designed in [30] is only applicable to data with the
sampling rate 8192 Hz; we make some modifications to
the structure of their model. Our base learner has six1https://github.com/timothygebhard/ggwd
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convolutional layers, three max-pooling layers, and two
dense layers, which are shown in Table I. The nonlinear
activation function Elu is used after every layer except the
last dense layer. The softmax activate function is added
after the last dense layer. The output of the base learner
returns a value in the range [0, 1] which indicates whether a
BBH coalescence signal is present or not. To further
enhance the diversity of the base learners, bootstrap and
a data augmentation method are used. We use adaptive
moment estimation with incorporated Nesterov momentum
[57] with a momentum schedule of 0.004. The learning rate
is set to 0.002, and the batch number value is 32.

B. Ensemble model

The architecture of the whole ensemble deep learning
model is shown in Fig. 2. This ensemble model consists of
two individual subensemble models which are used for
Hanford and Livingston interferometers, respectively. Each
subensemble model includes ten base learners. These ten
base learners are chosen from 100 trained weak learners.
The model training and selection methods will be described
in the next section.
Here we describe the voting strategy used in the

ensemble model. Both hard voting and soft voting are
widely used in machine learning. Hard voting uses multiple
individual models to make its predictions. Soft voting relies
on probabilistic outcome values generated by classification
algorithms. Compared to hard voting, soft voting takes into
account more information. Based on this consideration our
ensemble model adopts the soft voting scheme.
The average voting method can reduce the bias caused

by abnormal voting results to a certain extent. In ensemble
learning, average voting method is often used. We inves-
tigated two types of average voting schemes including
arithmetic mean and harmonic mean. The detection

capability of the two methods will be shown in the
following subsection.
We denote the output of the ith base learner in the

ensemble model belonging to the interferometer X
(Hanford or Livingston) as yi;X, and the ensemble output
as yX. Then for the arithmetic mean, the average can be
expressed as

yX ¼ 1

N

XN

i¼1

yi;X: ð4Þ

For the harmonic mean, the average can be expressed as

yX ¼ NP
N
i¼1

1
yi;X

: ð5Þ

In the currentworkN ¼ 10 is the number of the base learners
of each detector. The detail of the model combination is
introduced in the following subsection.

C. Model optimization

We use several skills to optimize our ensemble model.
Some are about the training data. Some are about model
construction. And, others are about model parameter setting.
The following sub-subsections are for these optimizations.

1. Augmenting training data

In order to generate training data, we firstly use ggwd
[46] to produce 60,000 samples (30,000 GW and 30,000
noise). Each sample data contain 8-s-long strain. When we
inject a simulated GW signal into the strain, we always let
the merger time of the BBH coalescence waveform locate at
a fixed time. Specifically the merge occurs at 5.5 s in all
GW strains. We named these data as original training set.
Similarly, we generate 10,000 samples (5000 GWand 5000
noise) for validation and we named these data as original
validation set. When we generate the noise for the training
and validation data, only O1 data of LIGO are used.
Although the training data are quite limited in this noise
respect, the performance of our ensemble model is quite
good as we will show in the following. This fact also
indicates the robustness of our ensemble model for GW
data analysis.
For training, We use bootstrap [58] to generate 100

sample data sets from the original training set. The detail of
the bootstrap operation is as following. Firstly, we divide
the 60,000 samples into 600 groups. Each group contains
100 samples. Then we randomly select group from these
600 groups. After each selection, the selected group will be
put back and we randomly select again. Overall we do 600
selections. After these 600 selections we get a dataset
which contains 60,000 samples. We repeat the above
selection 100 times. Then we get 100 data sets. Each set
contains 60,000 samples.

TABLE I. The basic structure of base learner.

Layer Input Vector (size: 4096)

1 Reshape Matrix (size: 1 × 4096)
2 Convolution Matrix (size: 8 × 4033)
3 Convolution Matrix (size: 8 × 4002)
4 Max pooling Matrix (size: 8 × 500)
5 Convolution Matrix (size: 16 × 469)
6 Convolution Matrix (size: 16 × 454)
7 Max pooling Matrix (size: 16 × 75)
8 Convolution Matrix (size: 32 × 60)
9 Convolution Matrix (size: 32 × 45)
10 Max pooling Matrix (size: 32 × 11)
11 Flatten Vector (size: 352)
12 Dense layer Vector (size: 64)
13 Dropout Vector (size: 64)
14 Dense layer Vector (size: 64)
15 Dropout Vector (size: 64)

Output Vector (size: 2)
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Now we have 100 × 60, 000 data samples. Each sample
contain 8-s-long strain. Based on each sample, we ran-
domly extract two segments with duration 1 s and let the
merger time of the BBH waveform locate in the range
ð1
8
; 7
8
Þ s. In Fig. 3 we show two examples of such extraction.

For validation, we adopt the same method as above but
only randomly extract the data of the original validation set
once to generate a validation set containing 10,000 1-s-long
strain.
Through the above-described augmentation, we get 100

different training sets (each training set contain 120,000
data samples) for training and one validation set containing
10,000 data samples. Each sample contain 1-s strain. And,
the merger time of the BBH waveform happens randomly
between 1

8
s and 7

8
s.

2. Base learner construction

For each detector including Hanford or Livingston, we
train 100 models individually. Since these models only aim
to work for the specific training data, the generalization
property may not be good. Consequently these models are
traditionally called weak learner.
In machine learning, there are many ways to evaluate the

performance of a model. For binary classification prob-
lems, the receiver operator characteristic (ROC) curves [59]
can effectively reflect the model’s performance. To draw
the ROC curve, we need to calculate the true-alarm
probability (TAP) and false-alarm probability (FAP) of

the model. We assume that in the test set, the subset
containing GW signals is SGW, and the subset only
containing background noise is SN. In the prediction
results, the subset of samples predicted to be GW signal
is SpGW, and the subset of samples predicted to be noise is
SpN; then, TAP and FAP can be calculated according to the
following formula:

TAP ¼ SGW ∩ SpGW
SGW

; ð6Þ

FIG. 2. The structure of the ensemble deep learning model designed in the current work. Base learner iH or iL (i ∈ ½1; 10�) denotes the
ith base learner for the Hanford or Livingston detector, respectively. yi;H and yi;L represent the output of base learner iH and iL,
respectively. The output yout of the whole model is combined by the outputs yH on Hanford detector and yL on Livingston detector.

FIG. 3. Extracting 1-s duration segment from 8-s-long strain.
The red and green blocks represent two examples of extraction.
The blue curve is a strain that consists of GW waveform plus
noise. The orange curve is the theoretical GW waveform in the
strain.
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FAP ¼ SN ∩ SpGW
SN

: ð7Þ

When the output of the model p is bigger than a given
threshold Pc, the input sample is classified as GW signal
s ∈ SpGW. In this way SpGW is affected by the threshold Pc.
Along with the changing of Pc, corresponding TAP and
FAP can be obtained.
The building process of the base learners is shown in

Fig. 4. For each detector (Hanford or Livingston), ten base
learners are selected from 100 weak learners, and 100 weak
learners are trained by the 100 datasets generated in the
previous section. In the training process of the weak learner,
10% of the data in the training set corresponding to the
weak learner are randomly selected to verify the weak
learner, and we reserve the weak learners with the highest
verification accuracy. Note that this part of the validation
data does not belong to the validation set used in the next
stage, but to the training set corresponding to each weak
learner. After getting 100 weak learners, we calculate the
AUC of each weak learner based on the validation set. AUC
means the area under the ROC curve. AUC has been widely
used to reflect the generalization ability of a model [36]. We
select the top ten models with the largest AUC in the 100
weak learners as the base learner. The code implementation
of the above weak learner training and base learner choice

is based on the Keras framework [60]. All of the compu-
tations are done on a NVIDIA 1080Ti GPU. Based on such
hardware, the typical delay time of our ensemble model is
less than 2 miniseconds.

3. Subensemble model construction

As explained before and shown in Fig. 2, our whole
ensemble model includes two subensemble models corre-
sponding to Hanford and Livingston detectors. Here we
describe how to construct these two subensemble models.
Using the aforementioned method of weak learner

training, selecting, and assembling, we get an ensemble
model consisting of ten base learners. In this section, the
performance of the single Gabbard model (model I) [30],
the ensemble model using the arithmetic mean voting
strategy (model II), and the ensemble model using the
harmonic mean voting strategy (model III) are compared.
Most of the strain data recorded by LIGO do not include

GW signal. Even for current LIGO, the recorded data in
most of the time are the background noise without signal.
Due to the data characteristics with extremely asymmetrical
distribution, the main problem in deep learning for GW
data analysis is false triggering. In long-duration data, the
model may generate numerous false triggers even its false-
alarm probability is relatively low. The research of deep
learning models with low false-alarm probability is helpful

FIG. 4. Schematic diagram of building process of base learners. There are four steps to build the base learners. First step is using
bootstrap and data augmentation to build 100 training sets. Second step is training 100 weak learners. Third step is using validation set to
calculate the area under curve (AUC) of each weak learner. Final step is selecting top ten weak learners with largest AUC as base
learners.
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to develop a gravitational wave detection model with a low
number of false-alarm triggers. Therefore, we pay much
attention to the ROC curves of the low FAP interval.
The ROC curves of model I model II and model III are

drawn in the range FAP ∈ ½0; 0.02� which are shown in
Fig. 5. The ROC curves of model II and model III are almost
the same in this range. For the results on Hanford interfer-
ometer [Fig. 5(a)],when theTAP is 0.8, the FAPs ofmodels I,
II, and III are 0.0042, 0.00195, and 0.00185, respectively,
which indicate that with the same TAP, the FAP of model II
and model III are about 54 and 56% lower than that of
model I. For Livingston interferometer [Fig. 5(b)], when the
TAP is 0.8, the FAPs of models I, II, and III are 0.0025,
0.0012, and 0.0012, respectively, and in this case the FAPs of
model II and model III are reduced by about 52% compared
to model I.
From the above results, we can see that ensemble models

have lower FAP than single models with the same TAP. The
use of our ensemble model can greatly reduce the number

of false triggers in real data analysis. Such improvement
can make the GW signal recognition more reliable.

4. Moving time step

For real GW detection data analysis, we face a long-
duration data. We take a data segment with duration 1 s and
plug it into our ensemble model for signal recognition.
Afterwards we move forward a time step Δt to take the
following data segment to the following works. The time
step will also affect the signal recognition.
Specifically, we consider the GW arrival time problem.

The gravitational wave arrival time of BBH merger is
predicted according to the time range of continuous alarm
of GW trigger as

tarr ¼
1

2
× ðtfe þ tlbÞ; ð8Þ

where tfe represents the end time of the detection window
of the first alarm and tlb represents the beginning time of the
detection window at the last alarm. Since the time position
of the GW signal in the training set is symmetrically
distributed, we take the midpoint of this interval as the
predicted arrival time of the detected gravitational wave.
Note that the arrival time (8) does not mean the beginning
time of the detected GW signal. Instead, it corresponds to a
specific time of the detected GW strain on a given
interferometer. Such information is important to be used
to determine the location of the GW source.
We use 10,000 samples for each interferometer which

contain GW signals in the test set to test the above-
mentioned arrival time prediction issue. Based on model
III we have tested two moving time steps, Δt ¼ 1

8
s and

1
16

s. We estimated the prediction error with the difference
between the tarr gotten via Eq. (8) and the simulated merger
time of the binary black hole coalescence waveform. We
count the error and plot the histogram in Fig. 6. With Δt ¼
1
8
s [Fig. 6(a)] and 1

16
s [Fig. 6(b)], respectively, model III

successfully detects 8711 and 8751 signals for Hanford
interferometer and successfully detects 7851 and 7921
signals for Livingston interferometer.
As we can see in Fig. 6(a), among all successfully

detected strain in the test on Hanford and Livingston
interferometer, 51.1 and 50.6% predictions admit errors
falling in ½− 1

8
; 1
8
�, and 98.1 and 98% predictions admit

errors falling in ½− 1
4
; 1
4
�. In Fig. 6(b), of all successfully

detected strain in the test on Hanford and Livingston
interferometer, 71.3 and 70.8% predictions admit errors
falling in ½− 1

8
; 1
8
�; 95.7 and 95.8% predictions admit errors

falling in ½− 1
4
; 1
4
�.

Above results indicate that the predicted GWarrival time
(8) corresponds to the merger time of BBH. We can
understand such correspondence in the following way.
BBH merger results in the strongest strain for the whole

(a)

(b)

FIG. 5. ROC curve of subensemble models and single model
trained by Hanford (a) and Livingston (b) interferometer data.
The TAP of red line is 0.8. The blue, orange, and green lines
indicate the ROC curve of model I, II, and III, respectively.
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coalescence process. Consequently, the merger time will
appear at the center of the continuous triggers produced by
our ensemble model. Such fact makes the estimated time
(8) correspond to the merger time of BBH. In addition we
find from the above test results that the accuracy of the
predicted merger time of BBH GW is improved when the
moving time step Δt changes from 1

8
s to 1

16
s. We find this

is a general trend that smaller moving time step results in
more accurate merger time prediction.

IV. APPLICATION TO O1 AND O2 DATA

Now we apply our ensemble model to the O1 and O2
data of LIGO detectors. As we designed in the last section,
the length of data segment window is 1 s. We take the
moving time step Δt ¼ 1

8
s.

We have done two investigations. In the first one, we
consider all GW events of O1 and O2 reported by LIGO.
For each event we take 16-s-long data and let the GWevent
locate at the center of the corresponding strain. In the
second investigation, we consider 68-min-long strain and

also let the GW event locate at the center of the corre-
sponding strain.

A. Threshold setting

GW signal recognition is essentially a binary classifi-
cation problem. Many researchers use a strategy with a
detection threshold of 0.5 [36,37]. The background noise
related to Hanford and Livingston interferometers has
different statistical property. Consequently, the models
trained by different detector noise admit different character.
With respect to the same threshold, two ensemble models
working for Hanford and Livingston interferometers,
respectively, have different FAP and TAP. Accordingly,
we chose different thresholds for the two ensemble models.
We decide the threshold of the two ensemble models

through fixing the FAP to 0.004. Through the ROC curve
obtained above, we calculate the thresholds corresponding
to model I, model II, and model III, respectively. The
thresholds are shown in the Table II. When the output of a
subensemble model exceeds its corresponding threshold,
an alarm will be given.

B. Performance of subensemble models

We firstly apply the subensemble model to the single-
interferometer data. When the number of continuous alarms
exceeds five, we let the model generate a GW trigger.
Regarding the 16-s-strain tests, we plot the analysis

results in Fig. 7. H denotes the strain detected by Hanford
and L denotes the strain detected by Livingston. The
comparison among models I, II, and III is shown there.
Except H-GW170818, all BBH GW events in O1 and O2
are successfully recognized by ensemble model II and
model III. As we mentioned before, although the ensemble
models are trained based on only O1 data, they work very
well for O2 data. In contrast, the single model I misses H-
GW151226, L-GW151226, and L-GW170608 signals.
Since the training data do not contain binary neutron star
(BNS) coalescence, the BNS gravitational wave event
GW170817 is lost. As we can see from the recognition
results of H-GW170817, all three types of models produced
outputs greater than 0.5 at 1 s, but the duration of the
outputs did not cover the time of the event and the outputs
did not exceed the corresponding thresholds. Similarly, for
L-GW170817, although the three types of models have
successfully generated GW triggers, the duration of the
trigger is more matched with the occurrence time of the

(a)

(b)

FIG. 6. The distribution histogram of the prediction error of the
merger time. Model III is used here. Blue line and orange line are,
respectively, for Hanford and Livingston interferometer. (a) and
(b) correspond tomoving time stepΔt ¼ 1

8
s and 1

16
s, respectively.

TABLE II. The thresholds of the three models on Hanford and
Livingston interferometers.

Detector Hanford Livingston

Model I 0.9761 0.9421
Model II 0.8877 0.8793
Model III 0.8363 0.8454
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FIG. 7. The GW signal recognition results for the events of O1 and O2. The blue, orange, and green lines indicate the response of
models I, II, and III, respectively. H and L represent the tests done for Hanford and Livingston interferometers, respectively. All GW
events happened at 0 s.
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glitch shown in Fig. 8(b). We think this trigger may be a
false trigger.
Interestingly, all models result in a false trigger about 6 s

before the event for L-GW170814. We check the constant-
Q Transformation [61] of L-GW170814 in Fig. 8(a). From
this figure, we can see a glitch corresponding to the false
trigger near L-GW170814.
Similarly, all models result in a false trigger with an alarm

time more than 2 s at approximately 4 s before the GW
event L-GW170817. We again check the constant-Q
Transformation of L-GW170817 in Fig. 8(b). We can see
the famous glitch of GW170817 which results in the false
trigger.
Regarding H-GW170818, none of the models success-

fully recognize this signal. We remind that the matching
SNR of GW170818 in Hanford is only 4.1. GW170818
was only detected by GstLAL [62,63]. PyCBC [64] missed
this signal because the SNRs in Hanford and Virgo are 4.1
and 4.2, respectively, which was lower than the threshold
5.5 [65] used by PyCBC. Similarly, the training set used in
the current work admitted the lowest SNR 7. Consequently,
our model also missed this signal.
We have seen above that the subensemble models

perform better than the single model. In the next subsection
we will see that our whole ensemble model can even
improve much more.

C. Performance of the whole ensemble model

The test results shown in the last subsection show that the
subensemble models corresponding to a single interferom-
eter behaves better than a single model. Now we combine
the two subensemble models for Hanford and Livingston
interferometers to obtain more reliable real-time GW signal

recognition results. In this subsection, we even increase the
difficulty of the problem. We consider 68-min-long data,
which are much longer than the 16 s considered in the last
subsection. The schematic diagram of our ensemble mod-
el’s work style is shown in Fig. 9. If the two subensemble
models generate more than five alerts continuously, a GW
signal trigger will be given. All the tests done in this
subsection are based on model III.
Regarding the false-alarm problem, the two individual

subensemble models produce averagely 12.85 and 11.07
triggers per hour, respectively, for Hanford and Livingston
interferometers. In contrast, our ensemble model does not
give triggers at all except the ten BBH events. Regarding
the missing trigger problem, our ensemble model fails to
find out GW170818. As we analyzed in the last subsection,
GW170818 is only detected by the Livingston interferom-
eter. Consequently, our ensemble model misses this signal.
Besides the 68-min data segment near the ten BBH

events, we tested the whole LIGO data in August 2017.
Note that we only analyzed the time when both Hanford
and Livingston interferometers were normally working.
After combining the two submodels, our whole ensemble
model does not give any more triggers except the GW
events reported by LIGO.
The results of the FAP do not directly correspond to the

false-alarm rates (FAR) on continuous detection via moving
the time window. In the continuous analysis of background
noise, the FAR reflects the average time for the model
generating a false trigger. The FAR is given by [66]

FAR ¼ Nf

t0
; ð9Þ

(a)

(b)

FIG. 8. The spectrogram of 16-s strain near L-GW170814 and L-GW170817. Each strain contain a glitch which results in the false
trigger of the ensemble models shown in Fig. 7. The GWevents happened at 8s. Two types of glitch happened near 2 s and 7 s in (a) and
(b), respectively.
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where Nf represents the number of false triggers generated
in detection process and t0 represents the detection duration.
However, there was no false trigger in the one-month
detection by using the whole detection model; we cannot
estimate the FAR of the whole ensemble model directly.
Alternatively, we can estimate the FAR from the detection
results of two subensemblemodels. FromEq. (9), we can get

FAR ¼ Nf=N

t0=N
¼ pft

ds
; ð10Þ

whereN represents the number of detections in the duration
t0, pf ¼ Nf

N corresponds to the probability of generating a
false trigger and ds ¼ t0

N corresponds to the detection time
step. Note that pf is not FAP. FAP only considers the output
of a single detection rather than GW trigger (more than five
continuous alerts). Assuming that Hanford and Livingston
interferometers have independent distributions of back-
ground noise data, we can conclude that

pf ¼ pfH × pfL; ð11Þ

where pfH and pfL represent the probability of generating a
false trigger by the subensemble model working on Hanford
and Livingston interferometers, respectively. Based the
August 2017 detection result of two subensemble models,
we find that pfH ≈ 4.16 × 10−4 and pfL ≈ 3.09 × 10−4.
Through Eq. (11), pf ≈ 1.29 × 10−7. Consequently, the
whole ensemble model’s FAR is about 1 per 11.24 d. The
co-working time of Hanford and Livingston interferometers
in August 2017 is about 17 d, which means the expected
false-alarm event is about 1. That is consistent with the fact
that there is no false trigger happening at all.
We also estimate the arrival time of the three BBH

merger events by Eq. (8) and list the result in Table III. We

find that the prediction error of the three GW events is less
than 0.1 s. This means our ensemble model can roughly
recover the data analysis results based on complicated
Bayesian method. Based on these good performances, we
conclude that our ensemble model can be well applied to
real-time GW signal recognition.

V. SUMMARY

In this work, we designed an ensemble model for
gravitational wave signal recognition. The whole ensemble
model consists of two individual subensemble models. The
model is trained by O1 data of Hanford and Livingston
interferometers, respectively. We applied this ensemble
model to the gravitational wave events of O1 and O2 of
LIGO. Our ensemble model can successfully figure out
nine BBH GW events of the ten reported ones by LIGO.
The missed GW170818 admits subthreshold behavior for
Hanford detector. This means our ensemble model admits
very high true-alarm rate.
We have also applied our ensemble model to the whole-

month LIGO data in August 2017. Except the BBH events
reported by LIGO, our ensemble model does not give extra
GW trigger. This means our ensemble model admits
extremely low false-alarm rates. These test results indicate
that the machine learning with ensemble algorithm [44] can
greatly reduce the number of false triggers in the GW signal
recognition process.

TABLE III. The merge time prediction.

Event Predict merge time Merge time [67]

GW170809 1186302519.75 1186302519.8
GW170814 1186741861.5625 1186741861.5
GW170823 1187529256.5625 1187529256.5

FIG. 9. The schematic diagram of the ensemble model’s work style. When the two subensemble models generate more than five alerts
continuously, a GW signal trigger is given by the ensemble model.
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The above-mentioned high true-alarm rate and extremely
low false-alarm rate prove that the optimized ensemble
learning algorithm can be applied to real-time gravitational
wave signal recognition. Compared with feature fusion
strategy, cross validation used in the ensemble model does
not require additional training and consequently less
computation cost. And, cross validation is more explicable
than feature fusion.
As caveats, there are also drawbacks to cross validation.

Some GW signal may be confidently detected by just one
detector while the other detector admits low SNR. Such
kind of signal will be missed like GW170818.

The test code and the source data are available at https://
github.com/WeiWang31/EnsembleModel.
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