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The hunt for dark matter remains one of the principal objectives of modern physics and cosmology.
Searches for dark matter in the form of axions are proposed or underway across a range of experimental
collaborations. As we look to the next generation of detectors, a natural question to ask is whether there are
new experimental designs waiting to be discovered and how we might find them. Here we take a new
approach to the experimental design procedure by using gradient descent techniques to search for optimal
detector designs. We provide a proof of principle for this technique by searching 1D detectors varying the
bulk properties of the detector until the optimal detector design is obtained. Remarkably, we find the
detector is capable of outperforming a human designed experiment on which the search was initiated. This
opens the door to further gradient descent searches of more complex 2D and 3D designs across a wider
variety of materials and boundary geometries of the detector. There is also an opportunity to use more
sophisticated gradient descent algorithms to complete a more exhaustive scan of the landscape of designs.
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I. INTRODUCTION

The quest for an understanding of dark matter remains
one of the foremost challenges of modern particle physics.
Axions [1–5] represent one of the leading candidates for
dark matter [6–8] and are predicted by a range of theories
beyond the standard model [9,10]. One possibility to detect
axions is via their astrophysical signatures, for instance via
galactic halo axions decaying into two photons [11–22] or
through observations of neutron stars [14,23–32]. It is also
of vital importance to complement these efforts through
laboratory searches and there are a number of current and
proposed experiments aiming to detect axion dark matter
here on Earth. Notable examples are HAYSTAC [33],
ADMX [34], MADMAX [35], ABRACADABRA [36],
and ORGAN [37] to name a few.
In recent years there has also been a new proposal [38]

which seeks to push dark matter searches in new directions
by exploiting novel material structures. This gives rise to
detectors with new and unusual properties. In that work, the
authors explored metamaterials capable of mimicking
the properties of plasma at radio/microwave frequencies,
providing an entirely new way to probe axion dark matter.

Furthermore, in light of the wonderful array of exotic and
tunable metamaterials [39–42], the door is now open to
detectors with a wider and more complex variety of struc-
tures with a greater flexibility in demanding materials with
prespecified properties.
In this spirit, the purpose of the present paper is to

perform the following thought experiment. If one is free
to choose the properties of the detector (subject to reason-
able constraints, e.g., total volume, fixed magnetic field
strength, and some unavoidable losses in the materials etc.),
what is the best design and how can we find it? Given the
increasingly large variety of experimental designs, a selec-
tion of which is listed above, answering this question is of
paramount importance for the following reasons. Any
experimentalist wants to be able to answer the question
as to whether a better design awaits discovery, or whether
their design is in fact already effectively optimal and can
only be improved via iterative adjustments such as better
refrigeration, more sensitive photodetectors and lower loss
materials, and so on.
At present, answering this question is a trial-and-error

process whereby anyone wishing to propose a new experi-
ment must generate a new design and hope that the idea
they conceive can outperform its current competitors. The
proposal of the present paper seeks instead to take the first
steps towards automating the experimental design pro-
cedure by using a gradient descent search to locate optimal
detector designs. Though this should not be considered an
exhaustive tool for the experimental design procedure, it is
nonetheless fascinating to see what the landscape of
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potential designs might look like and ultimately to ask the
question: can a computer design a better experiment than a
human being, which has far-reaching consequences beyond
the field of axion physics.
This paper is not any kind of white paper for a specific

experimental proposal but is an attempt to take the first
steps towards asking whether machine intelligence may be
able to assist in the design of new experiments whose
objective can be phrased in terms of a simple optimizable
function. This is especially timely in light of the many other
recent advances in artificial intelligence and machine
learning which are increasingly demonstrating their ability
to match or outperform humans across various disciplines.
The structure of the remainder of this paper is organised

as follows. In Sec. II we present a 1D axion haloscope
model consisting of metamaterial components, providing a
simple setup on which to demonstrate the gradient descent
approach to experimental design. Here we also introduce
gradient descent and explain how the detector design can be
reformulated in terms of an objective function (the halo-
scope stored energy) to be maximized. In Sec. III we
present detector designs resulting from our search with
fiducial axion mass values at 150 μeV and compare the
performance of these optimized designs to a uniform
plasma haloscope considered in [38]. Finally in sec. IV
we offer our conclusions and discuss several directions for
future work.

II. SETUP

Our starting points is the equations for axion-electrody-
namics given by augmenting Maxwell’s equations with an
additional term L ¼ gaγγ

4
aFμνF̃μν, where a is the axion field

and gaγγ a coupling constant. These read

∇ · D ¼ −gaγγB · ∇a; ð1Þ

∇ ×B − _D ¼ gaγγ _aB − gaγγE ×∇a; ð2Þ

∇ ·B ¼ 0; ð3Þ

_Bþ∇ ×E ¼ 0; ð4Þ

where E and B are the electric and magnetic fields. We
shall assume a simple constitutive relation D ¼ ε · E where
ε is the permittivity tensor of the medium. Furthermore, we
shall neglect spatial gradients of the axion field. This is
valid when the detector size is much less than axion
wavelengths, as is the case for nonrelativistic axions and
the masses and detector sizes we shall consider. With these
assumptions, one obtains the following equation for the
electric field:

−∇2Eþ∇ð∇ ·EÞ þ ε · Ë ¼ gaγγäB: ð5Þ

Inspired by the results of [38] we consider an idealized
detector consisting of N metamaterial layers with permit-
tivities εðiÞ. We assume the detector contains a magnetic
field sufficiently strong that the permittivities have a single
scalar component in the direction of B which can be
described by a Drude-like model via

εðiÞ ¼ 1 −
ωðiÞ
p

ω2 þ iΓðiÞω
; 1 ≤ i ≤ N; ð6Þ

where ΓðiÞ is a loss rate and ω the frequency of the electric
field. This provides a useful relation between the plasma
frequencies and losses in a physically well-motivated way,
though of course the true relation will depend on the precise
properties of the (meta)material in question. We shall
consider a 1D prototypical detector design. In future work
we will include 2D and 3D effects, but the computational
overhead associated with solving axion-electrodynamics in
higher dimensions would require more careful thought in
light of the many iterations which must be performed
during a gradient descent search. We therefore consider a
simple 1D setup in which the electric field is sourced only
via its component Ek parallel to a constant magnetic field
magnitude B0 with the equations expressible in terms of a
single integration parameter x perpendicular to the electric
field which vanishes at the endpoints of the detector x ¼ 0
and x ¼ L, where L is the length of the detector. This leads
to the following equation:

−
d2Ek
dx2

þ ω2εEk ¼ gaγγω2a0B0; ð7Þ

where ε is a discontinuous function taking the piecewise
values (6) in each of the layers and a0 is the amplitude of
the axion field. This setup is sufficient to illustrate the
gradient descent approach, and also provides a good proxy
for higher dimensional configurations as shown in e.g.,
MADMAX [35] and plasma haloscopes [38].
Since the purpose of the present work is to achieve the

best design through an iterative optimization procedure, we
must first decide what function to maximize. In the future,
one may want to minimize the total scan time over a desired
frequency range, or minimize the amount of tuning
required by e.g., finding a broadband configuration. For
now we take the simplest approach and seek to maximize
the stored energy U for a given axion mass. This works
since for a critically coupled haloscope, the power entering
probe is proportional to U which for a plasmalike material
is defined by [43]

U½fωðiÞ
p g� ¼

Z
dV½∂ωðωRe½ε�ÞE2 þ B2�: ð8Þ

The aim of the remainder of the present work is to find
those plasma values and permittivities which maximize U
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and therefore the sensitivity to axion dark matter. To this
end, we identify an objective function to be minimized as

F½X�≡ −U½fωðiÞ
p g�; X ¼ fωð1Þ

p ;…;ωðNÞ
p g: ð9Þ

Note the minus sign in (9) appears owing to the convention
that one minimizes rather than maximizes the objective
function. We emphasize that in future work, the objective
function arguments could be extended so that X includes
e.g., the shape of the boundary in 2D and 3D searches1 in a
way reminiscent of novel cavity shapes [44,45]. One might
also consider varying the magnetic permeability in various
layers or adjusting the nature of boundary conditions and so
on. Similarly, if there are practical limitations e.g., maxi-
mum number of layers, minimum size of components,
these can be incorporated as constraints in the optimization
procedure. This allows one to find an optimal design
subject to whatever material limitations one wishes to
impose.
We then perform a gradient descent as follows. First

some initial search point X0 is chosen, successive points Xn
(the “designs”) are then computed according to

Xnþ1 ¼ Xn − γn∇XFðXnÞ; ð10Þ

where ∇F is the gradient of the cost function and γ is the
learning rate, which decreases with successive iterations as
the minimum is approached and makes use of rmijo
backtracking along the direction of the gradient to ensure
the objective function decreases when moving in the
direction of the negative gradient.
We terminate the iteration scheme when convergence in

FðXÞ and each coordinate of X has reached 0.1%. Note we
also decrease the learning rate γ0 until this tolerance
condition is exceeded by the first step, which avoids the
algorithm terminating artificially on the first iteration from
trivially small initial value of γ. We illustrate the gradient
descent approach for a toy two-layer haloscope in Fig. 1

searching for the minimizing plasma values ðωð1Þ
p ;ωð2Þ

p Þ.
We mention in passing that optimization procedures have
also been used to explore the best disc spacings in
MADMAX [46], though this work used random sampling
techniques rather than gradient descent. We also emphasize
that the rationale behind the present paper is to provide a
much more general and far-reaching approach to exper-
imental design beyond simply optimizing one aspect of a
particular experiment.

III. RESULTS

We now scan detector configurations by varying the
number and value of layers within the experimental design.
We choose a detector length L ¼ 2.7 m, with vanishing
boundary conditions at x ¼ 0 an x ¼ L and fix the damping
rate Γ ¼ 0.1ωp to be uniform across each layer. This is the
same conservative fiducial value for losses chosen in [38].
We performed a gradient descent starting from initial values

ωðiÞ
p ≃ ωa close to the axion frequency ωa and keep the size

L ¼ 2.7 m fixed. At lower masses there may be some
advantage in adjusting the geometry of the detector to
achieve resonances through its spatial configuration. This
would be especially interesting in 2D and 3D studies in
future work. However, in the present setup, for the larger
axion masses considered here, we found that if L is treated
as a free parameter, the gradient descent simply increases L
without limit to maximize the volume (and hence total
stored energy) of the detector, which is a trivial form of
optimization, and so we keep L fixed. In Fig. 2 we display
the permittivities corresponding to the optimal gradient
descent search for different numbers of layers and Fig. 3
shows how the power of the optimal design scales with the
number of layers.
Unsurprisingly, one finds that periodic structure can

enhance the signal relative to uniform plasma haloscopes.
One can offer some words of explanation as to what is
occurring physically. On the one hand the permittivity has
the effect of altering the photons dispersion relation, so that

FIG. 1. Gradient descent search of detector design. For a toy
two-layer haloscope one can visualize the gradient descent search
superimposed on a contour plot. The purple lines display the

gradient descent search points X ¼ ðωð1Þ
p ;ωð2Þ

p Þ on top of the
contours of the objective function F ¼ −U given by the halo-
scope stored energy.

1This could be achieved by discretizing the boundary of the
detector into a mesh of nodes xi ¼ ðxi; yi; ziÞ connected by
smooth surfaces and finding those combinations which maximize
the axion signal, treating the xi as free parameters in X. In other
words, moulding the exterior geometry iteratively until the
optimum shape is achieved.
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by matching the photon and axion masses a resonance is
created. This is the effect exploited in [38] and would occur
in an infinite medium without edge effects. On the other
hand, the permittivity also plays the role of an effective
potential for the photon. In this instance, we know that
potential wells or periodic structure can be used to create
additional resonances and constructive intereferences [35].

It seems that the optimization routine is harnessing the
power of the hard reflective boundary at the endpoints of
the detector and using periodic permittivity structures to
create additional enhancements in the stored energy. Of
course the optimal design must strike some balance
between these two effects. The fact the edge effects and
periodic structure do not persist into the bulk of the detector
may be related to the finite propagation lengths associated
to losses in the medium.
Of course widening the class of free parameters in future

work could lead to an even greater variety of detector
designs giving rise to more exotic detectors than those
produced here. Quite remarkably, we also see that when
there is sufficient substructure in the detector for larger N,
the power can be slightly improved over that of a homo-
geneous plasma haloscope, motivating further study for a
larger family of free parameters in the detector design. It is
also worth emphasizing that gradient descent can be
sensitive to the choice of initial conditions. Here we took
as our starting point designs with plasma values close to a
homogeneous case and evolved the optimization procedure
from there. Gradient descent will of course seek a minimum
close to the initial search point. A more exhaustive search
of initial conditions has the possibility to reveal an even
greater variety of optimal designs.

IV. CONCLUSIONS

The aim of this work was to open a discussion towards a
new way of designing experiments in particle physics and
address the question of what is the optimal detector design
according to a gradient descent search of haloscope pro-
perties. In this work, we have illustrated a new gradient

FIG. 2. Gradient descent designs. Optimal axion dark matter
detector designs from applying a gradient descent search of
designs. As an example we illustrate designs for ma ¼ 150 μeV
for differing number N of layers with L ¼ 60 cm we display
results for N ¼ 30, 80, 120. We took Γ ¼ 0.1ωp and defined
E0 ¼ gaγγa0B0. For each value of N we display the permittivities
and the and the electric field of the optimal design (pink) and for
the initial design (black dashed) on which the search was initiated
with ωp ≃ ωa. For comparison, we also show the electric field
(gray solid) of a homogeneous detector with ωp ¼ ωa considered
in Ref. [38].

FIG. 3. Parametric dependence on N. The optimized detector
stored energy U (red) given by performing a gradient descent
search on the detector design for different values of N for fixed
ma ¼ 150 μeV. We display U normalized to the homogeneous
case with ωp ¼ ma (black dashed) as considered in [38].
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descent approach to axion dark matter detector design
using a simple setup. We have shown how the power of a
detector can be maximized by choosing an optimal con-
figuration of detector components and that the precise
specifications are given straightforwardly by an iterative
search. We achieved this by considering simple 1D halo-
scopes consisting of N layers of metamaterial components

forming an effective plasma frequency ωðiÞ
p for i ¼ 1;…; N

and performed a gradient descent search over the ωðiÞ
p to

maximize the stored energy. We find that by beginning the
search from near a uniform tuned haloscope with all plasma

masses set to ωðiÞ
p ≃ ωa, an improvement in power can be

achieved through periodic structures within the detector in
a similar vein to the MADMAX design [35].
While the seed of any idea for a new experiment

inevitably must overcome future practical challenges, the
present study nonetheless opens up many more avenues for
future work, including a more detailed study of higher
dimensional 2D and 3D detector designs as alluded to in the
footnote above, as well as a wider class of material
properties including the magnetic permeability μ. In prac-
tice, antenna (coupling) and photon detectors have another
big impact on scan speed. Explicitly including the readout
antenna and optimizing its coupling to obtain maximal scan
speed assuming a quantum limited amplifier would also be
an interesting and important extension of the present work.
The existing example, and indeed these more com-

plicated considerations may also benefit from more

sophisticated gradient descent searches than those consid-
ered here. This would facilitate a more exhaustive search of
the detector design landscape and perhaps reveal new
designs hidden in local minima whose location requires
state-of-the art machine learning techniques.
Although more work is needed to confront issues of

tunability and incorporate practical limitations into the
design procedure as constraints in the optimization, the
scheme presented here may help to guide us in searching
the landscape of detectors when planning our designs for
the next generation of experiments. This is vital in order
that we do not miss any opportunities for new designs
hiding just around the corner.
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