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In this work we derive simple closed-form expressions for the dynamical friction acting on black holes
moving through ultralight (scalar field) dark matter, covering both nonrelativistic and relativistic black hole
speeds. Our derivation is based on long known scattering amplitudes in black hole spacetimes, it includes
the effect of black hole spin and can be easily extended to vector and tensor light fields. Our results cover
and complement recent numerical and previous nonrelativistic treatments of dynamical friction in ultralight
dark matter.
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I. INTRODUCTION

The search for new interactions has been a vibrant field
for decades, the importance of which is hard to over-
emphasize. New axionic degrees of freedom, for example,
have been predicted to arise in extensions of the Standard
Model [1–5]. In fact, a variety of new scalars could
populate the Universe [6]. If such new degrees of freedom
are ultralight, they would also be a natural component of
dark matter (DM) [7–9]. These are often referred to as
fuzzy DM models and require ultralight bosonic fields (we
refer the reader to Refs. [10–18]). Such extensions are not
restricted to scalars or axions: models of minicharged dark
matter predict the existence of new fermions which possess
a fractional electric charge or are charged under a hidden
Uð1Þ symmetry [19–24]. These minicharged particles are a
viable candidate for cold DM and their properties have
been constrained by several cosmological observations and
direct-detection experiments [23,25–33]. In some other
models, dark fermions do not possess (fractional) electric
charge but interact among each other only through the
exchange of dark photons, the latter being the mediators of
a long-range gauge interaction with no coupling to
Standard Model particles [34].
With the above as motivation, a substantial amount

of work has been dedicated to understand the physics of
extended scalar structures. For example, the structure of
composite stars containing boson stars in their interior is
important to understand how dark matter could pile up
and change the composition of neutron stars [35–37].

For compact configurations, it is important to understand
possible gravitational-wave signatures upon coalescence
with black holes or other boson stars [38,39]. When the
configuration is dilute, however, numerical simulations
become extremely challenging or impossible to perform,
as the physical effects of interest act on much longer
timescales. Of particular importance is dynamical friction
(DF) and energy loss via scalar emission, which control
the motion of objects moving within extended scalar
structures [11,16,40–44].
To overcome the different and disparate length scales in

any astrophysical scenario, recent numerical simulations
modeled the spacetime as a fixed Schwarzschild black hole
(BH) geometry, moving at constant velocity through a
scalar field environment of infinite extent and extracted
numerically the DF [41]. Here, we show that in this setup
the DF can be obtained analytically. We derive simple
expressions, valid both for nonrelativistic and relativistic
BH speeds, from scattering amplitudes in BH spacetimes.
We focus on stationary regimes and extend the Newtonian
expressions in Refs. [11,40]. Our results complement the
recent numerical work of Ref. [41].
In this work we follow the conventions of Ref. [45]; in

particular, we adopt the mostly positive metric signature
and use geometrized units (c ¼ G ¼ 1).

II. FRAMEWORK

Ultralight bosons produced through the misalignment
mechanism are described by a coherent state [18,46], for
which the relative quantum field fluctuations are sup-
pressed with 1=

ffiffiffiffi
N

p
, where N is the (average) occupancy

number of the state [47]. From observations we know that
the local DM density in the Solar System’s neighborhood is
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∼1 GeV=cm3 [48–50]. On the other hand, virialized ultra-
light particles in the Galaxy have a de Broglie wavelength
λdB ∼ kpcð10−22 eV

mS
Þð250 km=s

v Þ. So, if these ultralight bosons
are all the DM, the typical occupancy number is
N ∼ 1096ð10−22 eV

mS
Þ4ð250 km=s

v Þ3. Thus, this system can be
completely described in terms of a classical field [18].
In this work we model the scalar particles through a

massive complex scalar field described by the action

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
R
8π

−Φ�
;αΦ;α − μ2jΦj2

�
; ð1Þ

where mS ¼ ℏμ is the mass of the scalar. Therefore, the
scalar field satisfies the Klein-Gordon (KG) equation

□Φ ¼ μ2Φ; ð2Þ

and the spacetime metric satisfies the Einstein equations

Gαβ ¼ 8πTαβ; ð3Þ

where Gαβ ≡ Rαβ − 1
2
Rgαβ is the Einstein tensor, and the

scalar’s energy-momentum tensor is

Tαβ ¼ ∇ðαΦ�∇βÞΦ −
1

2
gαβðΦ�

;δΦ;δ þ μ2jΦj2Þ: ð4Þ

For most situations of interest, the scalar is not very
dense and can be studied in a fixed spacetime geometry—
the so-called “test field” approximation. So, let us
consider a fixed background metric describing a stationary
spinning (Kerr) BH with line element, in Boyer-Lindquist
coordinates,

ds2 ¼ −
Δ
ρ2r

ðdt − a sin2 θdφÞ2 þ ρ2r
Δ
dr2

þ ρ2rdθ2 þ
sin2 θ
ρ2r

ðadt − ðr2 þ a2ÞdφÞ2; ð5Þ

where ρ2r ¼ r2 þ a2 cos2 θ and Δ ¼ r2 þ a2 − 2Mr, with
0 ≤ a ≤ M. Here, M is the BH mass and J ¼ Ma its
angular momentum (pointing along θ ¼ 0).

III. SCALAR FIELD SCATTERING OFF
A BLACK HOLE AT REST

A BH moving through an infinite homogeneous scalar
field medium is equivalent (by applying a Lorentz boost to
the BH frame) to a plane wave scattering off a BH at rest.
So, we start by considering the classical problem of a
monochromatic plane wave scattering off a Kerr BH in its
proper frame. This scattering problem was studied pre-
viously in, e.g., Refs. [51–58].
Let us consider the multipolar decomposition of a

monochromatic scalar field of frequency ω,

Φ ¼
X
l;m

e−iðωt−mφÞPsml ðcos θ; γ2ÞRm
l ðrÞ; ð6Þ

where Psml ðcos θ; γ2Þ are (oblate) angular spheroidal wave
functions of the first kind satisfying the ordinary differ-
ential equation (ODE) [59]

1

sin θ
d
dθ

�
sin θ

dPs
dθ

�
þ
�
λml þ γ2sin2θ −

m2

sin2θ

�
Ps ¼ 0; ð7Þ

with regular conditions at θ ¼ f0; πg, where

γ ≡ ik∞a; k∞ ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 − μ2

q
: ð8Þ

The eigenvalues λml (l ≥ jmj) are not known in analytic
form; asymptotically (l → ∞) they are λml ¼ lðlþ 1Þ þ
1
2
ðk∞aÞ2 þOðl−2Þ [60]. The above decomposition reduces

the KG equation to a radial ordinary differential equation
for the functions Rm

l [52],

Δ
d
dr

�
Δ
dR
dr

�
þ ½ω2ðr2 þ a2Þ2 − 4aMmωr

þ ðmaÞ2 − ðλþ μ2ðr2 þ a2ÞÞΔ�R ¼ 0: ð9Þ

Performing the change of variables

dr
dχ

¼ Δ
r2 þ a2

; −∞ < χ < þ∞; ð10Þ

R ¼ fffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p ; ð11Þ

we can rewrite the radial Eq. (9) in the form of a (time-
independent) Schrödinger-like equation

d2f
dχ2

þ k2ðχÞf ¼ 0; ð12aÞ

with

k2½χðrÞ� ¼
�
ω−

ma
r2þa2

�
2

−
Δ

ðr2þa2Þ2
�
λþμ2ðr2þa2Þ

−2amωþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2þa2

p d
dr

�
rΔ

ðr2þa2Þ3=2
��

; ð12bÞ

The regular solutions to the above equation satisfy the
boundary condition [53]

fðχ→þ∞Þ≃ Ie−i½k∞r−η logð2k∞rÞ� þRei½k∞r−η logð2k∞rÞ� ð13Þ

at spatial infinity, and [52]

fðχ → −∞Þ ≃ Te−iðω−mΩhÞχ ; ð14Þ
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at the BH event horizon rh ¼ M þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
(the largest

real root of Δ), where Ωh ≡ a=ðr2h þ a2Þ is the angular
velocity of the BH event horizon. All the above amplitudes
are also functions of the angular numbers, R ¼ Rm

l , I ¼ Iml
and T ¼ Tm

l . We occasionally omit such dependence when-
ever it is obvious. Above we defined the useful parameter

η≡ −M
�
ω2 þ k2∞

k∞

�
: ð15Þ

Its absolute value is the ratio of the characteristic (gravita-
tional) deflection radius ∼Mðω2 þ k2∞Þ=k2∞ [as can be read
from Eq. (A11)] to the de Broglie wavelength 1=k∞. For
η2 ≫ 1 the scalar field behaves as a beam of classical
particles1 (particle limit), whereas for η2 ≪ 1 the wave
effects are at their strongest (wave limit).
Note that we must consider only frequencies ω > μ,

which can arrive to spatial infinity and, so, that allow us to
define a scattering problem (alternatively, this is enforced
by the Lorentz boost from the scalar’s proper frame to the
BH frame). The ratios R=I and T=I are fixed by Eqs. (12)
[or, equivalently, by (9)] and can always be obtained
numerically, e.g., by solving Eq. (9) with boundary con-
dition (14) (where one can put T ¼ 1, using the linearity of
the ODE) and comparing the numerical solution with (13).
It is easy to show—through the conservation of the
Wronskian—that the amplitudes satisfy the relation				TI

				2 ¼ k∞
ω −mΩh

�
1 −

				RI
				2
�
: ð16Þ

A monochromatic plane wave of frequency ω and
wave vector k∞ ¼ k∞ξ, where ξ ¼ − cos β∂z þ sin β∂y,

2

deformed by a long-range gravitational potential η=r can
be written in the form [51,56]

e−i½k∞r−η logð2k∞rÞ�ðcos β cos θþsin β sin θ sinφÞ

≃
2lþ 1

2

ðl −mÞ!
ðlþmÞ!

�
e−i½k∞r−η logð2k∞rÞ�

k∞r

�

×
X
l;m

ð−iÞmþ1Psml ðcos β; γ2ÞPsml ðcos θ; γ2Þ

þ ðoutgoingwaveÞ: ð17Þ

So, choosing the incident amplitude

I ¼ 2lþ 1

2

ffiffiffiffiffiffi
ℏn
μ

s
ðl −mÞ!
ðlþmÞ!

ð−iÞmþ1Psml ðcos β; γ2Þ
k∞

; ð18Þ

the solution (6) describes a beam of scalar particles with
proper number density n and momentum ℏk∞ scattering off
a Kerr BH. Note that we need to include the amplitudeffiffiffiffiffiffiffiffiffiffiffi
ℏn=μ

p
, so that the energy density current of the plane

wave is limr→∞ð−Ttαξ
αÞ ¼ ðnk∞=μÞðℏωÞ, i.e., the product

of the number density current nk∞=μ and the energy of
each particle ℏω.

A. Energy absorption

The energy of the scalar field contained in a spacelike
hypersurface St0 ≡ ft ¼ t0g extending from the horizon to
infinity is

Eðt0Þ ¼
Z
St0

dV3TαtNα; ð19Þ

where Nβ ¼ −δtβ=
ffiffiffiffiffiffiffiffi
−gtt

p
is the unit normal covector and

dV3 is the volume form induced in the hypersurface.
Because we are considering the scattering of monochro-
matic waves Φ ∝ e−iωt, which results in a time-invariant
energy-momentum tensor Tαβ, and since the background
metric is stationary, one has

dE
dt0

¼
Z
St0

L∂tðdV3TαtNαÞ ¼ 0; ð20Þ

where L∂tð·Þ is the Lie derivative with respect to ð∂tÞα.
Then, by applying the divergence theorem it follows that
_EBH, the energy crossing the event horizon per unit time t
(the proper time of a stationary observer at infinity), is
equal to the flux through a 2-sphere at spatial infinity

_EBH ¼
Z
r→∞

dΩ2r2Trt; ð21Þ

with the element of area dΩ2 ¼ sin θdθdφ.
Plugging the decomposition (6) with the asymptotic

solution (13) in the scalar field’s energy-momentum tensor
(4) and using the orthogonality relations of the oblate
angular spheroidal wave functions [59]

Z
π

0

dθ sin θPsml Ps
m
l0 ¼

2

2lþ 1

ðlþmÞ!
ðl −mÞ! δl;l0 ð22Þ

it is straightforward to show that

_EBH ¼ ωk∞
X
l;m

4π

2lþ 1

ðlþmÞ!
ðl −mÞ! ðjIj

2 − jRj2Þ: ð23Þ

For the case of an incident monochromatic beam described
by the amplitude (18), the last expression becomes

1More precisely, as we shall see only the modes l ≫ 1
describe classical particles with impact parameter b ¼
k∞=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þp

.
2Without loss of generality, due to the axial symmetry with

respect to the BH’s rotation axis ∂z.
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_EBH¼
πℏωn
μk∞

X
l;m

ð2lþ1Þ ðl−mÞ!
ðlþmÞ!ðPs

m
l Þ2
�
1−
				RI
				2
�
: ð24Þ

As a consistency check, note that in a flat spacetime (i.e.,
M ¼ 0) the plane wave propagates freely and it is easy to
show that R=I ¼ ð−1Þlþ1, which implies _EBH ¼ 0 as
expected (since there is no BH at all); moreover, in the
case of a static BH, due to spherical symmetry, one can
choose β ¼ 0 without loss of generality, which results in
Psml ∝ δm;0 and the above expression reduces then to the
one found in, e.g., Refs. [53,61].
To obtain the BH absorption cross section we just need to

take the ratio of the energy absorbed by the BH per unit of
time _EBH to the energy density current of the incident plane
wave ðnk∞=μÞðℏωÞ,

σabs ¼
π

k2∞

X
l;m

ð2lþ 1Þ ðl −mÞ!
ðlþmÞ! ðPs

m
l Þ2
�
1−
				RI
				2
�
: ð25Þ

1. Low-frequency limit (ωM ≪ 1)

For sufficiently low frequencies ωM ≪ 1 one can use
matched asymptotic expansions to obtain analytical expres-
sions for the scattering amplitudes (worked out in the
Appendix A). So, using the reflection amplitude (A26), at
leading order in ωM, the energy absorbed by the BH is

_EBH ≃
ℏω2nAh

μ

e−πηπη
sinhðπηÞ ; ð26Þ

and the BH’s absorption cross section is

σabs
Ah

≃
ω

k∞

e−πηπη
sinhðπηÞ ; ð27Þ

where Ah ¼ 4πðr2h þ a2Þ is the event horizon area. To get
this result, we used the fact that at leading order in ωM only
the l ¼ 0 mode contributes to both _EBH and σabs, and the
spheroidal wave functions become then Ps00ðcos β; γ2Þ ≃ 1.
We also made use of the property jΓð1þ iηÞj2 ¼
πη= sinhðπηÞ. The particle and wave limits of the factor
e−πηπη= sinhðπηÞ are shown in Table I.
Note that in the limit ω ≫ μwe recover the famous result

σabs ≃ Ah derived for massless scalar fields in the low-
frequency ωM ≪ 1 limit3 [52,62]. For Schwarzschild BHs
(a ¼ 0) the expressions of this section reduce to the ones
obtained decades ago by Unruh [53]. At leading order, the
spin dependence of the BH’s absorption cross section is
encoded solely in the event horizon area.
We verified that the analytical approximation obtained

in Appendix A through matched asymptotic expansions
describes perfectly (with an error ≤ 1%) the numerical
values of 1 − jRl=Ilj2 for ωM=ðl þ 1Þ ≤ 0.01.

Unfortunately, this approximation rapidly breaks down
for larger frequencies; e.g., for ωM=ðlþ 1Þ ∼ 0.05 our
approximation underestimates in ∼15% the true numerical
value of 1 − jRl=Ilj2.

2. High-frequency limit (ωM ≫ 1)

For high frequencies ωM ≫ 1 one can use the Wentzel-
Kramers-Brillouin (WKB) approximation to obtain analyti-
cal expressions for the scattering amplitudes (as done in
AppendixA).Using the approximation (B8) for the reflection
amplitude we can directly evaluate Eqs. (24) and (25); this
approximation assumes additionally that ω≫μ (which is
necessarily true for scalars with μM≤1). For a general
incident angle β and spin parameter a it is difficult to proceed
analytically and one is forced to evaluate these expressions
numerically. However, if we restrict to the particular case of
small incident angles one can still do a semianalytical
treatment; so, we will focus on this particular case.
Small incident angles (βωM ≪ 1).—From this

assumption one has Psml ðcos β; γ2Þ ≃ δm0Ps0lð0; γ2Þ and that
most of the contribution to the summation in l comes from
large l≳ωM, in which case Ps0lð0; γ2Þ ≃ 1. Approximating
the sum by an integral (an excellent approximation at
large l) we find

_EBH ≃
2πℏnðωMÞ2

μ

Z ðl=ωMÞcr

0

d

�
l

ωM

�
l

ωM

¼ πℏnðωMÞ2ðl=ωMÞ2cr
μ

; ð28Þ

σabs ≃ 2πM2

Z ðl=ωMÞcr

0

d

�
l

ωM

�
l

ωM

¼ πM2

�
l

ωM

�
2

cr
: ð29Þ

Here, the critical impact parameter ðl=ωMÞcr is evaluated
at β ¼ 0 and can be obtained numerically as a function of
the dimensionless spin parameter ã≡ a=M through the
procedure described in Appendix B; the result is well fitted
by the expression�

l
ωM

�
cr
≃ 3

ffiffiffi
3

p
− 0.28ã2 − 0.087ã4; ð30Þ

which is accurate to 0.08% in the whole range of ã. For a
nonspinning BH (ã ¼ 0) we recover the well-known result
σabs ≃ 27πM2 [63]. We find that the BH spin leads to a
decrease in the energy absorption; in the particular case of

TABLE I. The factor e−πηπη= sinhðπηÞ in the particle and wave
limits [cf. Eqs. (26) and (27)].

Particle (η2 ≫ 1Þ Wave (η2 ≪ 1Þ
2πð−ηÞ 1

3The condition ω ≫ μ is in the wave regime, since we are in
the low-frequency limit ωM ≪ 1 [cf. (15)].
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small incident angles, the spin can suppress the absorption
by up to 13.6%.

B. Transfer of momentum

In the scattering process there will be a transfer of
momentum from the scalar field to the BH, and so the latter
will feel a force. Consider the spatial components of the
Arnowitt-Deser-Misner (ADM) momentum Pi computed
using a 2-sphere with a sufficiently large radius. These
components can be decomposed into the sum of curvature
and scalar field contributions Pi ¼ Pi

BH þ Pi
S, where P

i
S is

Pi
Sðt0Þ ¼

Z
St0
dV3TαiNα: ð31Þ

The rate of change of Pi is

dPi

dt0
¼ −

Z
r→∞

dΩr2Tri; ð32Þ

and, because we are considering a stationary regime, we
have

_Pi
Sðt0Þ ¼

Z
St0

L∂tðdV3TαiNβÞ ¼ 0: ð33Þ

Thus, the force acting on the BH is

Fi ≡ _Pi
BH ¼ _Pi ¼ −

Z
r→∞

dΩr2Tri: ð34Þ

Strictly, in the test field approximation one has _Pi
BH ¼ 0 (at

first order in the scalar field) and _Pi ≠ 0 (at second order in
the scalar field). This is not inconsistent with the last
equation, which holds at each order in the scalar field. In
other words, would we compute the backreaction of the
scalar field on the metric, we would obtain a second order
correction to _Pi

BH which must be equal to _Pi (at the same
order). For a more thorough discussion, which also covers
the case where the steady state is attained dynamically,
see Ref. [64].
In asymptotic Cartesian coordinates ðx; y; zÞ, defined

such that the BH angular momentum is J ¼ J∂z and the
direction of incidence is ξ ¼ − cos β∂z þ sin β∂y, we have

lim
r→∞

r2Trx ≃ r2 sin θ cosφTrr

¼ r2
�
P−11 eiφ −

P11
2
e−iφ

�
Trr; ð35aÞ

lim
r→∞

r2Try ≃ r2 sin θ sinφTrr

¼ −ir2
�
P−11 eiφ þ P11

2
e−iφ

�
Trr; ð35bÞ

lim
r→∞

r2Trz ≃ r2 cos θTrr ¼ r2P01Trr; ð35cÞ

where the Pml ðcos θÞ are associated Legendre polynomials
[59]. To evaluate the integrals (34) we will make use of the
identityZ

dΩe−iðm1þm2−m3ÞφPm1

l1
Pm2

l2
Pm3

l3

¼ 4π

2l3 þ 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl3 þm3Þ!
ðl3 −m3Þ!

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl1 þm1Þ!
ðl1 −m1Þ!

ðl2 þm2Þ!
ðl2 −m2Þ!

s

× hl10l20jl30ihl1m1l2m2jl3m3i; ð36Þ

where hl1m1l2m2jl3m3i are Clebsch-Gordan coefficients;
the last identity is a direct consequence of the Wigner-
Eckart theorem. Plugging the decomposition (6) with the
asymptotic form (13) in the scalar field’s energy-momentum
tensor (4) we find

lim
r→∞

r2Trr ¼ k2∞
X

l;m;l0;m0
Psm

0
l0 Ps

m
l e

−iðm0−mÞφ

× ðIm0�
l0 Iml þ Rm0�

l0 Rm
l Þ: ð37Þ

1. Low-frequency limit (ωM ≪ 1)

In this limit it is useful to consider the power expansion
of the (oblate) angular spheroidal wave functions in γ (since
jγj ∼Oðk∞MÞ ≪ 1)4 [65]

Psml ¼ Pml − ðaml Pmlþ2 þ bml P
m
l−2Þγ2 þOðγ3Þ; ð38aÞ

aml ¼ ðl −mþ 1Þðl −mþ 2Þ
2ð2lþ 1Þð2lþ 3Þ2 ; ð38bÞ

bml ¼ −
ðlþm − 1ÞðlþmÞ
2ð2l − 1Þ2ð2lþ 1Þ : ð38cÞ

Then, substituting the power expansion (38) in (37) and
using Eqs. (35) and (36) it is straightforward to show (here,
ℜ;ℑ denote real and imaginary part of the argument,
respectively)

Fx¼πℏn
μ

X
l;m

�ðl−mþ2Þ!
ðlþmÞ! Pml P

m−1
lþ1ℑ

��
Rm
l

Iml

��Rm−1
lþ1

Im−1
lþ1

�

þðl−mÞ!
ðlþmÞ!P

m
l P

mþ1
lþ1ℑ

��
Rm
l

Iml

��Rmþ1
lþ1

Imþ1
lþ1

��
þOðjγj2Þ; ð39Þ

Fy¼−
πℏn
μ

X
l;m

�ðl−mþ2Þ!
ðlþmÞ! Pml P

m−1
lþ1ℜ

�
1þ
�
Rm
l

Iml

��Rm−1
lþ1

Im−1
lþ1

�

−
ðl−mÞ!
ðlþmÞ!P

m
l P

mþ1
lþ1ℜ

�
1þ
�
Rm
l

Iml

��Rmþ1
lþ1

Imþ1
lþ1

��

þOðjγj2Þ; ð40Þ

4There is a global sign mistake in the coefficient of γ2 in Eq. (4)
of [65].
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Fz¼−
2πℏn
μ

X
l;m

ðl−mþ1Þ!
ðlþmÞ! Pml P

m
lþ1ℜ

�
1þ
�
Rm
l

Iml

��Rm
lþ1

Imlþ1

�

þOðjγj2Þ; ð41Þ

where the associated Legendre polynomials in the last
expressions are evaluated at cos β. Using Eq. (A26) one can
see that at linear order in ωM the products of reflection
amplitudes in the last expressions are independent of m.
Using the identity

X
m

Pml

�ðl −mþ 2Þ!
ðlþmÞ! Pm−1

lþ1 þ
ðl −mÞ!
ðlþmÞ! P

mþ1
lþ1

�
¼ 0; ð42Þ

and [by the scattering amplitude (A26)]

ℜ

�
1þ

�
Rl

Il

�� Rlþ1

Ilþ1

�
≃ 2sin2

�
αl
2

�

þ δl0
ωk∞Ah

2π

e−πηπη
sinhðπηÞ ; ð43Þ

with the deflection angle

αl ≡ 2 argðlþ 1þ iηÞ ¼ 2 arctan

�
η

lþ 1

�
; ð44Þ

the force components become (at leading order in ωM)

Fx ≃ 0; ð45Þ

Fy ≃
4πℏn
μ

X
l;m

ðl −mÞ!
ðlþmÞ!P

m
l P

mþ1
lþ1

×

�
sin2
�
αl
2

�
þ δl0

ωk∞Ah

4π

e−πηπη
sinhðπηÞ

�
; ð46Þ

Fz ≃ −
4πℏn
μ

X
l;m

ðl −mþ 1Þ!
ðlþmÞ! Pml P

m
lþ1

×

�
sin2
�
αl
2

�
þ δl0

ωk∞Ah

4π

e−πηπη
sinhðπηÞ

�
: ð47Þ

In the Cartesian frame ð∂x0 ; ∂y0 ; ∂z0 Þ obtained by rotating
ð∂x; ∂y; ∂zÞ by an angle β around ∂x (so that the direction of
incidence is ξ ¼ −∂z0 ) the components of the force acting
on the BH are Fx0 ¼ Fx, Fy0 ¼ cos βFy þ sin βFz and
Fz0 ¼ cos βFz − sin βFy. Now using the identities

X
m

Pml

�ðl−mÞ!
ðlþmÞ!P

mþ1
lþ1 cosβþ

ðl−mþ 1Þ!
ðlþmÞ! Pmlþ1 sinβ

�
¼ 0;

ð48Þ

X
m

Pml

�ðl −mþ 1Þ!
ðlþmÞ! Pmlþ1 cos β −

ðl −mÞ!
ðlþmÞ!P

mþ1
lþ1 sin β

�

¼ lþ 1; ð49Þ

we obtain

Fx0 ≃ Fy0 ≃ 0; ð50Þ

Fz0 ≃ −
4πℏn
μ

�X
l≥1

lsin2
�
αl−1
2

�
þ ωk∞Ah

4π

e−πηπη
sinhðπηÞ

�

¼ −
4πℏn
μ

�X
l≥1

η2l
η2 þ l2

þ ωk∞Ah

4π

e−πηπη
sinhðπηÞ

�
: ð51Þ

We see that at leading order in ωM the force acting on the
BH does not depend on the BH spin nor on its angle with
respect to the direction of incidence, and it is directed along
the direction of incidence ξ. This can be interpreted as a
consequence of the fact that in the limit ωM ≪ 1 the force
acting on the BH is imparted mostly by scalar field probing
the weak (gravitational) field, which is not sensitive to a.
Actually, the l ¼ 0 mode probes the strong field and is
substantially absorbed by the BH, being responsible for the
extra term in the above expression, but this contribution is
also independent of a because of its spherical symmetry.
On the other hand, it is easily seen that the force diverges
logarithmically in l—which is to be expected due to the
long-range 1=r nature of the gravitational potential. So, we
proceed by introducing a cutoff lmax, which is associated
with the size of the incident beam; the maximum impact
parameter is roughly bmax ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lmaxðlmax þ 1Þp

=k∞ (this
cutoff scheme is discussed in more detail in Sec. V). The
truncated sum can be written in terms of the digamma
function Ψ [59], after which the force becomes

Fz0 ≃ −
4πℏn
μ

�
η2ℜ½Ψð1þ lmax þ iηÞ − Ψð1þ iηÞ�

þωk∞Ah

4π

e−πηπη
sinhðπηÞ

�
: ð52Þ

It is easy to show that in the particle and wave limits the
finite sum is excellently approximated by the closed-form
expressions in Table II.
It is worth noting that, in the eikonal limit l ≫ 1, αl is

indeed the deflection angle of a particle scattering off a
weak gravitational field with impact parameter b ≃ l=k∞
and angular momentum ℏl.5 In particular, in the non-
relativistic limit (ω ∼ μ) one finds

5The eikonal limit can be seen as a manifestation of Bohr’s
correspondence principle. For an interesting discussion about the
correspondence between wave and particle scattering see
Ref. [66].
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αl ≃ −2 arctan
�
Mμ2

bk2∞

�
; ð53Þ

which is exactly the Newtonian deflection angle; and in the
ultrarelativistic limit (ω ≫ μ) one gets

αl ≃ −2 arctan
�
2M
b

�
≃ −

4M
b

; ð54Þ

which is the deflection angle of light rays obtained by
Einstein using his general theory of relativity [67]. If we
compute then the force that would act on a source of such
weak gravitational field due to a beam of particles coming
with momentum ℏk∞ and impact parameters between b and
bþ δb and being deflected by an angle αl we find

δFz0

k∞δb
¼ −

4πℏn
μ

ðk∞bÞ sin2
�
αl
2

�
; ð55Þ

which matches the first term of Eq. (51) in the eikonal limit;
the extra term is due to accretion as explained above.
We verified that the analytic approximation derived

in Appendix A and employed here describes quite
well (with an error ≤ 5%) the numerical values of
ℜ½1þ ðRl=IlÞ�ðRlþ1=Ilþ1Þ� for ωM ≤ 0.01. As for the
energy absorption, the analytic approximation breaks down
for larger frequencies; e.g., for ωM=ðlþ 1Þ ∼ 0.05 our
expression underestimates in ∼20% the true numerical
value of ℜ½1þ ðRl=IlÞ�ðRlþ1=Ilþ1Þ�.

2. High-frequency limit (ωM ≫ 1)

To proceed with a semianalytical treatment we focus
again on the case of small incident angles.
Small incident angles (βωM ≪ 1).—In this case we can

consider only m ¼ 0 modes in the scalar’s decomposition
(6) (due to the approximate axial symmetry) and we note
that most of the contribution to the summation in l comes
from large l≳ωM, in which case Ps0lðcosθ;γ2Þ≃P0lðcosθÞ.
So, using Eqs. (35)–(37) it is straightforward to show

Fx ≃ Fy ≃ 0; ð56Þ

Fz ≃ −
2πℏn
μ

X
l

ðlþ 1Þℜ
�
1þ

�
R0
l

I0l

�� R0
lþ1

I0lþ1

�
; ð57Þ

where the reflection amplitudes can be approximated by
(B8). Here the accretion of scalar field gives an important

contribution to the force acting on the BH, which is
contained in the terms of (57) with l < lcr, for which
R=I ≃ 0. In the high-frequency limit the summation is
dominated by the large azimuthal numbers l ≫ 1 and so
can be approximated by an integral. Thus, the accretion of
scalar is responsible for the contribution −πℏnl2

cr=μ to the
force (which, naturally, matches _EBH in absolute value,
since we are considering the ultrarelativistic regime
ω ≫ μ). The remaining contribution from larger l’s can
be obtained by using the eikonal approximation (where
l ≃ ωb) and rewriting the summation as

X
l>lcr

ðlþ1Þℜ
�
1þ
�
R0
l

I0l

��R0
lþ1

I0lþ1

�
≃2ω2

Z
∞

lcr=ω
dbbsin2

�
α

2

�
;

ð58Þ

where

α ¼ π − 2
d
db

�
χðrtpÞ þ

Z
∞

rtp

dr

�
r2 þ a2

Δ

��
1 −

k
ω

��

¼ π − 2

Z
∞

rtp

drffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr2þa2Þ2

b2 − Δ
q ; ð59Þ

with rtp being the larger real number satisfying

b ¼ ωðr2tp þ a2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2tp þ a2 − 2Mrtp

q : ð60Þ

Remarkably, the angle α matches exactly the deflection
angle of a null particle in a Schwarzschild spacetime when
a ¼ 0 [68–70]; and, although we did not check it, in the
case a ≠ 0, it is natural to expect α to be the deflection
angle of a null particle in a Kerr spacetime for on-axis
scattering. It is easy to check that for large impact
parameters b ≫ M we recover again Einstein’s deflection
angle [67]

α ≃ −
4M
b

: ð61Þ

For a beam of scalar particles with maximum impact
parameter bmax > 20M (remember that the integral in b
diverges logarithmically and we need to truncate it) we find

Z
bmax

lcr=ω
dbbsin2

�
α

2

�
¼ 4M2

�
Λ2 þ log

�
bmax

20M

��
; ð62Þ

where the function Λ can be obtained numerically by
performing the integration between lcr=ω and 20M. This
function is well fitted (accurate to 0.1%) by

Λ ≃ 1.91þ 0.0565ã2 þ 0.0165ã4: ð63Þ

TABLE II. The term ℜ½Ψð1þ lmax þ iηÞ − Ψð1þ iηÞ� in the
particle and wave limits [cf. Eq. (52)]; γE ¼ 0.5772… is Euler’s
constant [59].

Particle (η2 ≫ 1) Wave (η2 ≪ 1)

ð1=2Þ log ð1þ k2∞b2max=η2Þ logðk∞bmaxÞ þ γE
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Finally, putting all together (including accretion) we find
that the force applied to the BH is

Fz ≃ −
4πη2ℏn

μ

�
log

�
bmax

20M

�
þ l2

cr

16
þ Λ2

�
: ð64Þ

The quantity l2
cr=16þ Λ2 has a very mild dependence on ã,

it is strictly increasing and takes values in [5.31, 5.37]. Here
we have η2 ¼ ð2ωMÞ2 ≫ 1, which is clearly in the particle
limit; this is to be expected, since high-frequency modes are
known to be well described by “geometrical optics” (i.e.,
geodesics).

IV. BLACK HOLE MOVING THROUGH
A SCALAR FIELD

Now we know the rate at which energy and linear
momentum is imparted to a Kerr BH by a scalar field
scattering it off, from the point of view of a distant observer
stationary with respect to the BH (“BH frame“). We would
like to use this information to find out what are these rates,
now from the point of view of a distant observer stationary
with respect to the asymptotic scalar field (“scalar field
frame”). The latter observer perceives the BH moving with
constant velocity v ¼ −ξk∞=ω with respect to the asymp-
totic scalar field, which is perceived at rest (by definition).
While at rest (and neglecting quantum effects) the BH is a
perfect absorber, but when moving it may transfer some of
its kinetic energy to the scalar field, with the interesting
possibility of, globally, losing energy. The deposition of the
BH’s kinetic energy on the scalar field environment is
intrinsically connected with the phenomenon of DF.
Knowing the rate at which energy is accreted and linear
momentum is imparted to the moving BH allows us to
compute how its relative motion with respect to the scalar
field will evolve in time due to DF.6

The scalar field frame is related to the BH frame through
a Lorentz boost with velocity −v. Noting that the curvature
ADM four-momentum Pα

BH transforms as Lorentz four-
vector [71], it is trivial to find the rates in the scalar field
frame (primed quantities)

_E0
BH ¼ _EBH þ v · F; ð65Þ

F0 ¼ Fþ _EBHv; ð66Þ

where we used dt0 ¼ dt=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p
and Fkv. In the general

case, the force does not need to point along v (e.g., Magnus
effect), but as seen in the previous section the force does
oppose the velocity in the low-frequency limit or for
sufficiently small incident angles—the cases we focused
on in this work. The wave effects are controlled by the
parameter (15), which, after substituting ω ¼ μ=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p

and k∞ ¼ μv=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p
, reads

η ¼ −
μMð1þ v2Þ
v
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p : ð67Þ

A. Weak field regime

For BH velocities satisfying 1 − v2 ≫ μ2M2 the scalar
field is perceived with low frequency (ωM ≪ 1) in the BH
frame and so only probes the weak (Newtonian) gravita-
tional field, as shown in Sec. III. This limit is possible only
for light fields μM ≪ 1. On the other hand, for light fields
all relevant astrophysical velocities are in this regime; in
other words, light fields are not expected to probe the
strong gravitational field of BHs, because their de Broglie
wavelength is too large.
In the scalar field frame the rate of change of the BH’s

energy is

_E0
BH

ρ
¼ Ah

1 − v2
e−πηπη
sinhðπηÞ

−
4πη2v
μ2

ℜ½Ψð1þ lmax þ iηÞ −Ψð1þ iηÞ�; ð68Þ

and the DF is

F0 ¼ −
4πη2ρv
μ2v

ℜ½Ψð1þ lmax þ iηÞ −Ψð1þ iηÞ�; ð69Þ

where we have defined the scalar’s proper mass density
ρ≡ nmS and the medium size is

bmax ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lmaxðlmax þ 1Þð1 − v2Þ

p
μv

: ð70Þ

We remark that, as discussed in the previous section, the
analytic approximations that we are using here can only be
trusted (with an error < 5%) for μM=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p
≤ 0.01.

In the particle limit η2 ≫ 1, which corresponds to
nonrelativistic velocities v ≪ μM, the above expressions
reduce to

_E0
BH ¼ 4πM2ρ

v

�
μAh

8M
− log

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ b2max

ðM=v2Þ2

s ��
; ð71Þ

and

6In nonrelativistic treatments, DF (as standing for the gravi-
tational interaction of a perturber with its wake) and accretion of
momentum are distinct effects, both contributing to the dynamics
of gravitational systems; in relativistic treatments the separation
into these two effects is not absolute, but gauge-dependent
instead [41,64] [see, e.g., Eq. (36) and subsequent discussion
in Ref. [64]]. In this work we (abusively) call DF to the total
effect, which includes also the accretion of momentum.
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F0 ¼ −
4πM2ρv

v3
log

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ b2max

ðM=v2Þ2

s !
: ð72Þ

For an extended medium bmax ≫ M=v2 we recover
Chandrasekhar’s result for DF in collisionless media [72].
In the wave limit η2 ≪ 1, which corresponds to BH

velocities v ≫ μM, the rate of change of the BH’s energy
becomes

_E0
BH¼

4πM2ρ

vð1−v2Þ

×

�
Ahv
4πM2

−ð1þv2Þ2
�
log

�
vμbmaxffiffiffiffiffiffiffiffiffiffiffiffi
1−v2

p
�
þγE

��
; ð73Þ

and the DF

F0 ¼ −
4πM2ρð1þ v2Þ2v

v3ð1 − v2Þ
�
log

�
vμbmaxffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p
�
þ γE

�
: ð74Þ

We see that the force on the BH is indeed a friction (i.e., it
acts to decrease the absolute value of its velocity) in the
entire range of v. For nonrelativistic velocities this force
reduces to

F0 ¼ −
4πM2ρv

v3
½log ðvμbmaxÞ þ γE�; ð75Þ

which for an extended medium bmax ≫ 1=vμ coincides
with the result derived in [11,40] and extracted numerically
in [41] (up to an additive constant, which is due to a
different cutoff scheme, to be discussed in Sec. V).7

In Fig. 1 we show the energy density Ttt=ρ of the scalar
field in the weak field regime, obtained using the far-region
solution (A13) with coefficients (A20) and (A21) [in which
we substitute (A23) and (18)]. This wake is in the wave
limit (η2 ≪ 1) and its wave structure (interference fringes)
of characteristic length ∼λdB=2M ¼ πð1þ v−2Þ=jηj is
clearly seen. Our figure should be compared with the
steady wake attained dynamically in the numerical evolu-
tion performed in Ref. [41] (shown in the second row of
their Fig. 2 for the same set of parameters); the resemblance
between the two images is remarkable. Going away from
the wave limit into the particle limit, the fringes disappear
and the wake becomes concentrated in a single tail with
much greater energy density (as it was seen in [41]).

B. Strong field regime

For velocities 1 − v2 ≪ μ2M2 the scalar field is per-
ceived with high frequency (ωM ≫ 1) in the BH frame and
so it is able to probe the strong gravity region of the BH.

Here we restrict to the special case in which the BH motion
is along the direction of its spin and we consider light
scalars with mass μM ≤ 1. In this case, the condition
1 − v2 ≪ μ2M2 is satisfied only at ultrarelativistic speeds
v ∼ 1 and the scalar field behaves as particles (η2 ≫ 1).
In the scalar field frame the rate of change of the BH’s

energy is

_E0
BH ¼ −

16πM2ρ

1 − v2

�
log

�
bmax

20M

�
þ Λ2

�
; ð76Þ

and the DF is

F0 ¼ −
16πM2ρv
ð1 − v2Þv

�
log

�
bmax

20M

�
þ Λ2

�
; ð77Þ

where we recall that Λ ≃ 1.91þ 0.0565ã2 þ 0.0165ã4 and
that these expressions are valid only for bmax < 20M; for
smaller bmax we need to perform a numerical integration.

V. DISCUSSION

In this work we derived simple closed-form expressions
for the dynamical friction acting on BHs moving through
an ultralight scalar field, covering both nonrelativistic and

FIG. 1. Scalar field energy density Ttt=ρ (in the BH frame) in
the weak field regime, obtained using the far-region solution
(A13) with coefficients (A20) and (A21) [in which we substitute
(A23) and (18)]. The BH is at the origin moving from left to right
with velocity v ¼ 0.8c. The scalars have mass μM ¼ 0.05 and
bmax=M ≃ 396. For these parameters the scalar field is close to the
wave limit (η2 ≃ 0.016) as can be clearly seen by the interference
fringes with characteristic length ∼λdB=2M.

7Upon the identification r≡ bmax=2 between the cutoff radius
r employed in [11,41] and our impact parameter bmax.
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relativistic speeds, and including the effect of BH spin. We
showed that for velocities 1 − v2 ≫ μ2M2 the scalar has too
large a de Broglie wavelength to probe the strong gravity
region of the spacetime (we called it weak field regime).
In this case, for low nonrelativistic velocities v ≪ μM the
scalars behave as particles and the force on the BH (in the
scalar’s frame) is

F0 ¼ −
4πM2ρv

v3
log

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ b2max

ðM=v2Þ2

s �
:

Still in the weak field regime, the wave effects grow with
the BH velocity and are at their greatest for v ≫ μM, in
which case

F0 ¼ −
4πM2ρð1þ v2Þ2v

v3ð1 − v2Þ
�
log

�
vμbmaxffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p
�
þ γE

�
:

For light scalar masses μM ≤ 1 and astrophysical BH
velocities all systems are expected to be in the weak field
regime (even for the possibly relativistic velocities found in
BH mergers). We verified that these analytic expressions
describe very well the numerical results (obtained using the
numerical values for the scattering amplitudes) for
μM=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p
≤ 0.01. For the sake of curiosity, for ultra-

relativistic BH velocities (v ∼ 1) satisfying 1 − v2 ≪ μ2M2

the scalars are able to probe the strong field region of
spacetime (since their de Broglie wavelength becomes
much smaller than the event horizon radius) and behave
again as particles; here the DF is

F0 ¼ −
16πM2ρv
ð1 − v2Þv

�
log

�
bmax

20M

�
þ Λ2

�
:

Additionally, we derived simple expressions for the rate of
change of the BH’s energy, which allows us to do an energy
balance between the kinetic energy deposited in the
environment and the accreted mass; we also extended
these expressions to the case of massless (scalar) radiation,
covering the numerical results of Ref. [73].
Due to the 1=r falloff of the gravitational potential, the

DF in an unbounded homogeneous scalar field medium
diverges and a cutoff is needed (in practice this is not a
problem, because these scalar environments have a finite
size, e.g., DM halos). In previous studies (e.g., [11,40,64])
an ad hoc cutoff scheme was employed, consisting of
neglecting the contribution to DF of scalar field from a
region outside a ball of radius r centered at the BH. This is
clearly not self-consistent, since the wake is computed for a
medium of infinite extension. In this work we use a cutoff
scheme more similar to the one employed in the original
Chandrasekhar’s treatment [72], which consists of consid-
ering a maximal impact parameter for the unperturbed
medium. This approach is self-consistent since the wake is
computed for the truncated medium. But, actually, there is
also a subtlety with our cutoff scheme. In the BH frame, our
truncated medium is in a superposition of eigenstates
of the operator L̂z with maximum eigenvalue ℏlmax and
with coefficients such that the expectation value of the
asymptotic scalar’s momentum satisfies limlmax→∞hp̂∞i ¼
−mSv=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p
. So, we note that the interpretation of

a BH moving with velocity v with respect to the scalars
is only correct for lmax ≫ 1; in particular, in our description
there is an inherent velocity dispersion jΔvj=v≳
ð1 − v2Þ= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

lmaxðlmax þ 1Þp
, by the uncertainty principle.

Interestingly, a velocity dispersion of the scalars in a DM
halo is actually expected and can be modeled through a
random phase distribution, e.g., [18,40] (in principle, our

FIG. 2. Comparison between the numerical results of Traykova
et al. [41] and our framework based on the scattering amplitudes
with the R=I obtained numerically (F0

numerical) and with the
analytic approximation of Eq. (69) (F0

analitic). Top: μM ¼ 0.05.
Bottom: μM ¼ 0.2. Here, the analytical approximation (69) does
not describe very well F0

numerical because μM=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p
is not

sufficiently small.
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framework can also be applied to such setup, but we
postpone the study of this issue to future work).
For nonrelativistic BH velocities in an extended

medium of size bmax ≫ maxf1=vμ;M=v2g we recover
the Newtonian expressions derived in [11,40] (up to an
additive constant, which comes from the different cutoff
scheme used there) and we find that the ratio of the wave to
the particle DF expressions is

F0
wave

F0
particle

¼ log ðk∞bmaxÞ þ γE
log ðk∞bmaxÞ − log jηj ; ð78Þ

which is smaller than unity in the wave limit jηj ≪ 1.
Remarkably, the above ratio is unchanged for relativistic
velocities if for F0

particle we use the expression derived in
Ref. [74] describing the relativistic DF in a collisionless
medium. So, we find that the wave effects of light scalars
suppress DF in an extended medium, both for nonrelativ-
istic and relativistic velocities. This fact, as remarked
previously in Ref. [11], can alleviate substantially the
timing problem of the five globular clusters in the
Fornax dwarf spheroidal [75] and similar issues in faint
dwarfs in several nearby galaxy clusters8 [80,81].
As inferred in the numerical treatment of Ref. [41], we

find that the relativistic corrections to DF introduce a factor
ð1þ v2Þ2=ð1 − v2Þ; the same correction was found in [74]
for collisionless and in [82] for collisional media. But we
argue here that (at least in the weak field regime
1 − v2 ≫ μ2M2) this sole factor encodes the entire correc-
tion to DF and that the extra corrections introduced in [41]
are slightly misguided. When boosting from their
simulation frame to the BHs, the authors neglected the
contribution of accretion [their Eq. (10)]; actually, this
contribution is important and it cannot be neglected.
Because of that, their results for the DF are valid in their
simulation coordinates—and not in the BH’s frame. It is
easy to show that the force in their simulation frame is equal
to the force F0 in the scalar’s frame. As we have shown the
accretion of momentum cancels out of F0 [cf. (66)] So, we
argue here that both their “pressure correction” (depending
on a parameter κ) and Bondi’s momentum accretion are
actually describing strong gravity corrections to the DF;
remember that the weak field analytic expressions
that we derived are a good approximation only for
μM=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p
≤ 0.01, for larger μM strong gravity effects

start to kick in. We predict that these corrections will not be
needed to fit their results for μM=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p
≤ 0.01.

Our suspicions are supported by the fact that using
our framework to compute the force F0 with the

scattering amplitudes R=I obtained numerically gives
results in remarkable agreement with Ref. [41]9 (as can
be seen in Fig. 2). The main difference between that
numerical procedure and the analytic expression (69) are
strong gravity corrections (which are suppressed for
μM=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p
≤ 0.01). Summarizing, we conclude that in

the scalar field frame and in the weak field regime the
relativistic corrections to DF are encoded solely in the
factor ð1þ v2Þ2=ð1 − v2Þ.
For simplicity, in this work we considered complex

scalars, which can arise in simple extensions of the
Standard Model [5], but this framework can also be applied
to (the more physically motivated) real scalars. In that case,
looking at the form of the energy-momentum tensor (4), it
is easy to conclude that the scalar’s energy (momentum)
density cannot reach a stationary state, but instead it will be
left oscillating with frequency 2ωM ¼ 2μM=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p
. The

DF will also oscillate with the same frequency and it is
straightforward to show that its average is half of the value
of DF in the complex case. The same conclusion was also
obtained using numerical simulations in [41].
In this work we included also the effect of BH spin in DF.

In the weak field regime (the most relevant for astrophysical
applications) the spin does not affect DF in the scalar field
frame and affects accretion only mildly by changing the
event horizon area. In the particular case of a BH moving at
ultrarelativistic speeds with its spin aligned with the direction
of motion, the DF is also almost not affected by the BH spin.
The strong field regime with a BH spin not aligned with its
direction of motion was not studied here; this is the case in
which we expect the BH spin to affect the most DF. In
particular, DF will not be in general aligned with the
direction of motion and there will be a Magnus effect
bending the BH’s trajectory. We postpone the study of this
and other interesting phenomena to future work.

ACKNOWLEDGMENTS

We thank Katy Clough, Pedro Ferreira and Dina Traykova
for helpful discussions about their work and for helping us
showing the consistency between our results. We also thank
Emanuele Berti, Diego Blas, Miguel Correia and Ricardo Z.
Ferreira for their comments. R. V. was supported by “la
Caixa” Foundation Grant No. LCF/BQ/PI20/11760032 and
Agencia Estatal de Investigación del Ministerio de Ciencia e
Innovación Grant No. PID2020–115845GB-I00. R. V. also
acknowledges support by Grant No. CERN/FIS-PAR/0023/
2019. V. C. is supported by VILLUM FONDEN (Grant
No. 37766) and is funded by the Danish National Research
Foundation. V. C. acknowledges financial support provided
under the European Union’s H2020 ERC Consolidator Grant
“Matter and strong-field gravity: New frontiers in Einstein’s

8However, the dominant effect suppressing DF seems to be the
cored density profile [76,77] of the Fornax (e.g., Fig. 6 of [78]).
These cores can arise naturally in alternative models to the
standard cold DM (like fuzzy DM [16,18], but not only [76]) or
can develop due to baryonic feedback in cold DM halos [79].

9To do the comparison we introduced an additive constant that
accounts for the different cutoff schemes (as explained before).

DYNAMICAL FRICTION OF BLACK HOLES IN ULTRALIGHT … PHYS. REV. D 105, 083008 (2022)

083008-11



theory” Grant Agreement No. MaGRaTh–646597.
This project has received funding from the European
Union’s Horizon 2020 Research and Innovation
Programme under the Marie Skłodowska-Curie Grant
Agreement No. 101007855.We thank FCT for financial
support through Project No. UIDB/00099/2020. We
acknowledge financial support provided by FCT/
Portugal through Grants No. PTDC/MAT-APL/30043/
2017 and No. PTDC/FIS-AST/7002/2020. I. F. A. E. is
partially funded by the CERCA program of the
Generalitat de Catalunya.

APPENDIX A: SCATTERING AMPLITUDES IN
THE LOW-FREQUENCY LIMIT (ωM ≪ 1)

Here we use the method of matched asymptotic expan-
sions to find an approximate analytic expressions for the
amplitudes R=I and T=I of massive scalar waves scattering
off spinning BHs in the low-frequency limit ωM ≪ 1. This
is an extension of the treatment in Refs. [52,53,83].
Note that the spheroidal eigenvalues have a power

expansion [59]

λml ¼ lðlþ 1Þ þ ðk∞aÞ2
2

�
1þ ð2m − 1Þð2mþ 1Þ

ð2l − 1Þð2lþ 3Þ
�

þO½ðk0aÞ4� ðA1Þ
and so in the low-frequency limit ωM ≪ 1, the eigenvalues
are λml ≃ lðlþ 1Þ at leading order.

1. Region I

Let us consider first the region

x≡ r − rh
rh − rc

≪
lþ 1

ωðrh − rcÞ
; ðA2Þ

where rc ¼ M −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
is the radius of the Cauchy

horizon (the smallest real root of Δ). In this region Eq. (9)
reduces to [52]

xðxþ1Þ d
dx

�
xðxþ1ÞdR

dx

�
þ½Q2−lðlþ1Þxðxþ1Þ�R¼0;

ðA3Þ
where

Q ¼ r2h þ a2

rh − rc
ðmΩh − ωÞ: ðA4Þ

The general solution of this equation is [59]

R ¼ ð1þ xÞiQfc1x−iQFð−l;lþ 1; 1 − Q̄;−xÞ
þ c2xiQFð−lþ Q̄;lþ 1þ Q̄; 1þ Q̄;−xÞg; ðA5Þ

with Q̄≡ 2iQ and where Fða; b; c; zÞ is the hypergeometric
function [59]. The physical boundary conditions (14) at the
event horizon (x → 0þ) imply that

c1 ¼ 0; ðA6Þ

c2 ¼
T

ðr2h þ a2Þ12 : ðA7Þ

Note that the tortoise coordinate χ in (14) is defined up to
an additive constant that we have fixed here through the

condition χðrÞ ≃ ðr2hþa2

rh−rc
Þ logð r−rhrh−rc

Þ for r ∼ rh.
In the limit x ≫ 1 one finds that the above solution has

the form [83]

R ≃ d1xl þ
�

d2
2lþ 1

�
x−l−1; ðA8Þ

with

d1 ¼ T

� ð2lÞ!
l!ð1þ Q̄Þlðr2h þ a2Þ12

�
; ðA9Þ

d2 ¼ ð−1Þlþ1T

�
l!ðQ̄ − lÞlþ1

2ð2lÞ!ðr2h þ a2Þ12
�
; ðA10Þ

where ðzÞn ≡ zðzþ 1Þ � � � ðzþ n − 1Þ is the Pochhammer
symbol.

2. Region II

Now we focus on the region r ≫ rh (which implies
x ≫ 1), where Eq. (9) reduces to

�
d2

dr2
þ k2∞ −

2ηk∞
r

−
lðlþ 1Þ

r2

�
ð
ffiffiffiffi
Δ

p
RÞ ¼ 0: ðA11Þ

To obtain the last equation we neglected terms of order
ðrh=rÞ3, used the low-frequency condition ωM ≪ 1, and
defined the parameter

η≡ −M
�
ω2 þ k2∞

k∞

�
: ðA12Þ

This equation admits the solution

R ¼ c3
r
FCl ðη; k∞rÞ þ

c4
r
GC

l ðη; k∞rÞ; ðA13Þ

where FCl and GC
l are the Coulomb wave functions [59].

At k∞r ≪ l the solution has the polynomial form [59]

R ≃ c3ClðηÞklþ1
∞ rl þ c4

k−l∞ r−l−1

ð2lþ 1ÞClðηÞ
; ðA14Þ

with
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Cl ¼ 2le−ηπ=2jΓðlþ 1þ iηÞj
ð2lþ 1Þ! : ðA15Þ

At spatial infinity k∞r → ∞ it has the asymptotic form

R ≃
c3
r
sin½θlðη; k∞rÞ� þ

c4
r
cos½θlðη; k∞rÞ�; ðA16Þ

where

θl ¼ k∞r−η logð2k∞rÞ−l
π

2
þ argΓðlþ1þ iηÞ; ðA17Þ

with argðzÞ the principal argument of z. The physical
boundary conditions (13) imply that

I ¼
�
c4 þ ic3

2

�
ei½lπ=2−argΓðlþ1þiηÞ�; ðA18Þ

R ¼
�
c4 − ic3

2

�
e−i½lπ=2−argΓðlþ1þiηÞ�: ðA19Þ

3. Matching the two regions

Finally, we just need to match the solutions in the two
regions. Matching (A14) with (A8) at rh ≪ r ≪ 1=k∞
gives

c3 ¼ T

� ð2lÞ!ðM2 − a2Þ−l
2

2ll!ð1þ Q̄Þlðr2h þ a2Þ1=2Clklþ1
∞

�
; ðA20Þ

c4 ¼ ð−1Þlþ1T

�
2ll!ðQ̄ − lÞlþ1ðM2 − a2Þlþ1

2

ð2lÞ!ðr2h þ a2Þ1=2C−1
l k−l∞

�
: ðA21Þ

So, using Eqs. (A18) and (A19) we find the following
scattering amplitudes:

R
I
¼ ð−1Þlþ1e2i argΓðlþ1þiηÞ

�½ð2lÞ!�2 þQðl!Þ2C2
ljð1þ 2iQÞlj2ð2k∞

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
Þ2lþ1

½ð2lÞ!�2 −Qðl!Þ2C2
ljð1þ 2iQÞlj2ð2k∞

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
Þ2lþ1

�
; ðA22Þ

T
I
¼ ð−iÞlþ1ei argΓðlþ1þiηÞ

�
k∞

jω −mΩhj
�1

2

�
2
ffiffiffiffiffiffiffijQjp

l!ð2lÞ!Clð1þ 2iQÞlð2k∞
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
Þlþ1

2

½ð2lÞ!�2 −Qðl!Þ2C2
ljð1þ 2iQÞlj2ð2k∞

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
Þ2lþ1

�
: ðA23Þ

It is easy to verify that the last expressions satisfy the conservation of the Wronskian (16).
For a static (Schwarzschild) BH we have a ¼ 0, rh ¼ 2M and Q ¼ 2ωM ≪ 1, the last expressions simplify to

R
I
¼ ð−1Þlþ1e2i argΓðlþ1þiηÞ

�½ð2lÞ!�2 − ðl!Þ4C2
lð2k∞MÞ2ðlþ1Þðω=k∞Þ

½ð2lÞ!�2 þ ðl!Þ4C2
lð2k∞MÞ2ðlþ1Þðω=k∞Þ

�

≃ ð−1Þlþ1e2i argΓðlþ1þiηÞ
�
1 −

�
2ðl!Þ4
½ð2lÞ!�2

��
ω

k∞

�
C2
lð2k∞MÞ2ðlþ1Þ

�
; ðA24Þ

T
I
¼ ð−iÞlþ1ei argΓðlþ1þiηÞ

�
2ðl!Þ2ð2lÞ!Clð2k∞MÞlþ1

½ð2lÞ!�2 þ ðl!Þ4C2
lð2k∞MÞ2ðlþ1Þðω=k∞Þ

�

≃ ð−iÞlþ1ei argΓðlþ1þiηÞ
�
2ðl!Þ2
ð2lÞ!

�
Clð2k∞MÞlþ1; ðA25Þ

which agrees with previous calculations [53,61].
Note that this method does not assume Q ≪ 1 in the case of a spinning BH, and the expressions for the amplitudes hold

for any Q (as long as ωM ≪ 1). Since the derivation assumes ωM ≪ 1, the expressions (A22) and (A23) can be written in
the simpler form

R
I
¼ ð−1Þlþ1e2i argΓðlþ1þiηÞ

�
1þ

�
2ðl!Þ2
½ð2lÞ!�2

�
QC2

ljð1þ 2iQÞlj2ð2k∞
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
Þ2lþ1

�
; ðA26Þ

T
I
¼ ð−iÞlþ1ei argΓðlþ1þiηÞ

�
2l!
ð2lÞ!

��
k∞

jω −mΩhj
�1

2 ffiffiffiffiffiffiffi
jQj

p
Clð1þ 2iQÞlð2k∞

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
Þlþ1

2: ðA27Þ
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To see this one should note that (i) when jQj → ∞,
Qjð1þ 2iQÞlj2 ∼O½1=ðM2 − a2Þlþ1

2�, and (ii) when
η → −∞, C2

l ∼O½ðMμ2=k∞Þ2lþ1�, which can be seen more
easily through the alternative form of Cl [59],

Cl ¼ 2lf½2πη=ðe2πη − 1Þ�Ql
j¼1 ðη2 þ j2Þg1=2

ð2lþ 1Þ! : ðA28Þ

APPENDIX B: SCATTERING AMPLITUDES IN
THE HIGH-FREQUENCY LIMIT (ωM ≫ 1)

In the high-frequency limit we will focus only on the
ultrarelativistic regime ω ≫ μ (which, in particular, is the
only possibility for scalars with μM ≤ 1). This limit in
frequency was studied for instance in Refs. [56,63,84]. For
very large azimuthal numbers l ≫ ωM using a WKB
approximation to solve Eq. (12), with the physical boun-
dary conditions (13) and (14), one finds that [85]

R
I
¼ i exp

�
−2iω

�
χðrtpÞ þ

Z
∞

rtp

dr

�
r2 þ a2

Δ

��
1 −

k
ω

���
;

ðB1Þ

where

kðrÞ¼
��

ω−
ma

r2þa2

�
2

−
Δ

ðr2þa2Þ2
�
lþ1

2

�
2
�1

2

; ðB2Þ

and rtp is the largest classical turning point satisfying
kðrtpÞ ¼ 0, with the tortoise coordinate fixed by the con-
dition χðrÞ ≃ rþ 2M logð2ωrÞ for r ≫ rh; in particular,

χðrtpÞ ¼ rtp −
�
r2c þ a2

rh − rc

�
log ½2ωðrtp − rcÞ�

þ
�
r2h þ a2

rh − rc

�
log ½2ωðrtp − rhÞ�: ðB3Þ

For large azimuthal numbers l ∼ ωM it is also possible
to use a WKB approximation to compute the absolute
value [85]

				RI
				2 ≃ 1

1þ e2πϵ
; ðB4Þ

where

ϵ ¼ k2minffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð d2dχ2 k

2Þ
χmin

q ðB5Þ

with kmin ¼ kðχminÞ and where χminð l
ωM ; mlÞ is the largest

(real) root of

�
d
dχ

k2
�

χmin

¼ 0: ðB6Þ

Note that, in the large l limit, χmin is indeed only a function
of the ratios l=ωM and m=l. Although not easy to show
explicitly for a general a, in the high-frequency limit
ωM ≫ 1 we expect ϵ to be a monotonic rapidly decreasing
function of l=ωM, crossing zero at a critical ðl=ωMÞcr
which is a function of m=l and a=M. This expectation is
motivated by what happens for a ¼ 0, in which case
ðl=ωMÞcr ¼ 3

ffiffiffi
3

p
and

ϵ ¼ 27ðωMÞ2
2l

�
1 −

�
l

3
ffiffiffi
3

p
ωM

�
2
�

ðB7Þ

and was confirmed by our numerics. Thus, one concludes
that in the high-frequency limit the reflectivity jR=Ij2 is
well approximated by a very steep function of l=ωM
that vanishes for l=ωM < ðl=ωMÞcr and is unity for
ðl=ωMÞ > ðl=ωMÞcr. One is then led to the (geometrical
optics) approximation [66]

R
I
¼
� 0; l < lcr

ie
−2iω½χðrtpÞþ

R
∞
rtp

drðr2þa2
Δ Þð1−k

ωÞ�; l ≥ lcr

: ðB8Þ

Note that ðl=ωMÞcr is a root of the discriminant of k2ðrÞ.
This discriminant is a polynomial of degree 8 in ωM=l with

FIG. 3. Numerical result of ðl=ωMÞcr as function of a=M and
m=l.
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a double root at zero, two complex roots, two negative and
two positive roots (this was established by our numerics for
the physical parameters 0 ≤ a=M ≤ 1 and −1 ≤ m=l ≤ 1).
We have shown numerically that ðl=ωMÞcr is always the
largest real l=ωM that is a root of k2ðrÞ. This gives us a
very efficient way to compute numerically ðl=ωMÞcr as
function of m=l and a=M (shown in Fig. 3). Alternatively,
one can use an analogous procedure to compute numeri-
cally ðl=ωMÞcr as function of m=ωM and a=M (shown
in Fig. 4).

APPENDIX C: BLACK HOLE MOVING
THROUGH A MASSLESS SCALAR FIELD

The problem of obtaining the rate of change of the BH’s
energy as it moves through a massless radiation (scalar)
field was solved numerically in Ref. [73]. There, it was
concluded that, depending on the medium size, there is a
critical velocity above which the BH deposits kinetic
energy in its environment at a greater rate than it accretes.
In this Appendix, we show that, when moving through
a massless scalar field, both the rate of change of the
BH’s energy and the DF acting on it can be computed
analytically.
In the case of a massless scalar field we cannot go to its

proper frame. So, we consider here a “lab frame” with
respect to which the BH moves at velocity v and the
massless scalar has momentum −ℏω0v=v. So, we have

ω ¼
ffiffiffiffiffiffiffi
1þv
1−v

q
ω0 and k ¼ −

ffiffiffiffiffiffiffi
1þv
1−v

q
ω0v=v in the BH frame.10 The

factor nω0=μ is not well defined here (remember that n is
the number density far from the BH in the scalar’s proper
frame); this factor must be replaced by the number density
in the lab frame n0 (as can be readily seen by continuity,
taking the limit mS → 0).

1. Weak field regime

For BH velocities satisfying 1 − v ≫ ω02M2 the
scalar field only probes the weak (Newtonian) gravita-
tional field. In this regime the rate of change of the BH’s
energy is

_E0
BH ¼ 16πM2n0ℏω0ð1þvÞv

1−v

×

�
Ah

16πM2

�
1

v
−1

�
− log

� ffiffiffiffiffiffiffiffiffiffi
1þv
1−v

r
ω0bmax

�
− γEM

�
;

ðC1Þ

and the DF is

ðFÞlab ≃ −
16πM2n0ℏω0ð1þ vÞv

ð1 − vÞv

×

�
log

� ffiffiffiffiffiffiffiffiffiffiffi
1þ v
1 − v

r
ω0bmax

�
þ γEM þ Ahð1 − vÞ

16πM2

�
:

ðC2Þ

2. Strong field regime

For velocities 1 − v ≪ ω02M2 the scalar field is per-
ceived with high frequency (ωM ≫ 1) in the BH frame,
and thus it probes the strong gravity region of the
spacetime. We consider the special case in which the
BH velocity is along its spin axis. Here the rate of change
of the BH’s energy is

_E0
BH ¼ 16πM2n0ℏω0ð1þ vÞv

1 − v

×

�
l2
cr

16

�
1

v
− 1

�
− log

�
bmax

20M

�
− Λ2

�
; ðC3Þ

and the force acting on the moving BH is

FIG. 4. Numerical result of ðl=ωMÞcr as function of a=M and
m=ωM. In the (unbounded) white region of parameter space there
exists no ðl=ωMÞcr and expression (B1) can be used for any
l=ωM (as long as jmj ≤ l).

10We could also consider a more general setup in which the BH
is not moving head-on against the scalar field. But this particular
setup is specially interesting, because when the BH moves at
ultrarelativistic speeds (v ∼ 1), due to relativistic beaming, even
isotropic radiation is perceived as countermoving in the BH frame
[73]. However, we do not expect to find BHs moving at
ultrarelativistic speeds in our Universe.
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F0 ≃ −
16πM2n0ℏω0ð1þ vÞv

ð1 − vÞv

×

�
log

�
bmax

20M

�
þ Λ2 þ l2

cr

16
ð1 − vÞ

�
: ðC4Þ

These expressions are valid for media with bmax ≥ 20M
and the function ΛðãÞ is fitted by (63). These analytical
expressions describe excellently the numerical results
of [73].
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