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Minute-long gravitational wave (GW) transients are events lasting from a few to hundreds of seconds.
In opposition to compact binary mergers, their GW signals cover a wide range of poorly understood
astrophysical phenomena such as accretion disk instabilities and magnetar flares. The lack of accurate and
rapidly generated gravitational-wave emission models prevents the use of matched filtering methods. Such
events are thus probed through the template-free excess-power method, consisting in searching for a local
excess of power in the time-frequency space correlated between detectors. The problem can be viewed as a
search for high-value clustered pixels within an image, which has been generally tackled by deep learning
algorithms such as convolutional neural networks (CNNs). In this work, we use a CNN as a anomaly
detection tool for the long-duration searches. We show that it can reach a pixel-wise detection despite
trained with minimal assumptions, while being able to retrieve both astrophysical signals and noise
transients originating from instrumental coupling within the detectors. We also note that our neural network
can extrapolate and connect partially disjoint signal tracks in the time-frequency plane.
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I. INTRODUCTION

The first gravitational wave (GW) event, coming from
the coalescence of two black holes, was detected by the
Advanced LIGO [1] interferometers on September 14, 2015
[2]. Two years later, on August 17, 2017, the first binary
neutron star (BNS) merger was observed [3], paving the way
for the search for longer-duration gravitational waves. These
two events are part of a broader class of signals called
compact binary coalescence (CBC), which further includes
recently observed black hole-neutron star collisions [4].
To this date, only CBC events, coming from powerful
sources and being accurately modelled systems, have been
detected [5]. However, new sources are expected to be
observed given the planned sensitivity improvement of the
Advanced LIGO and Advanced Virgo detectors [6]. Among
the proposed candidates, unmodeled GW transients, known
as bursts, cover a wide range of poorly understood astro-
physical phenomena for which accurate waveforms are not
available. Bursts include accretion-disk instabilities [7],
nonaxisymmetric deformations in magnetars [8], supernovae
[9], gamma-ray bursts [10], fallback accretion events [11].
The above-mentioned family of possible GW progenitor
events contains both short- (< 2 seconds) and long-duration
signals (between 2 and several hundreds of seconds). In this
paper, we present a novel machine learning algorithm
targeted at anomaly detection for long-duration burst
searches (ALBUS).

Minute-long burst searches usually consist in finding an
excess of power in the cross-correlated data of two or
more detectors, known as correlated spectrograms or time-
frequency (TF) maps. Algorithms that are searching for
gravitational waves in these spectrograms can be classi-
fied in two categories: seed-based or seedless. Seed-based
methods aim at clustering pixels above a predefined
threshold while seedless algorithms are processing pixels
derived from generic models. The current generation
pipelines are the long-duration configuration of coherent
WaveBurst (cWB) [12], the two different versions of the
Stochastic Transient Analysis Multi-detector Pipeline—
All Sky (STAMP-AS), Zebragard and Lonetrack [13,14],
PySTAMPAS [15], cocoA [16], and X-SphRad [17].
cWB, PySTAMPAS, and X-SphRad are seed-based algo-
rithms while the two STAMP-AS pipelines, Zebragard
and Lonetrack, use seed-based and seedless clustering
algorithms respectively. As well as Lonetrack, cocoA is a
seedless pipeline. In opposition to CBC searches, no
machine-learning based algorithm has yet been applied
to long-duration searches. The uncertainties in the existing
physical models of long-duration transients lead us to
make minimal assumptions on progenitor sky-position,
inclination, time-of-arrival and GW waveform character-
istics. The waveform models cannot consequently be
taken as accurate patterns to be recognized and are thus
used as tests for algorithms and pipelines rather than
actual targets of the search. The present work aims at
circumventing this problem by mimicking template data-
base of generic long-duration signals, allowing us to take
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advantage of the speed and the robustness of convolu-
tional neural networks.
In Sec. II, we describe the data-generation method as well

as the strategy to mimic long-duration signals. In Sec. III,
details about the architecture and the training method are
given. We present the results of the training and the detection
performances both on injected signals and on background
spectrograms in Sec. IV. Section V is finally dedicated to
discussions and conclusions.

II. DATA

A. Time-frequency map generation

One of the detection methods of long-duration GWs is
based on the excess of power method [18]. It consists in
correlating the output of a least two different detectors,
under the assumption that their noise is uncorrelated. This
produces coherent spectrograms where GW signals are
represented as minute-long high-correlation patterns. The
problem of detecting long-duration GWs can therefore be
reduced to finding a cluster of pixels with high intensity in
background noise.
The exact formulation of the coherence between two

signals x and y is:

CxyðfÞ ¼
jGxyðfÞj2

GxxðfÞGyyðfÞ
; ð1Þ

where GxyðfÞ is the cross-spectral density (CSD) between
signals x and y, and GxxðfÞ and GyyðfÞ the power spectral
density (PSD) of x and y respectively. The cross-spectral
density is defined as:

GxyðfÞ ¼
Z
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× e−i2πfτdτ. ð2Þ

GxxðfÞ and GyyðfÞ are then a particular case of (2)
where respectively y is replaced by x and conversely. As
the latter expression is intractable for a real signal, we
employ Welch’s method [19] as an approximation method.
Evaluating (1) at several sampled frequencies then leads to
the generation of a vector of coherence values versus
frequency bins. To generate a full time-frequency array,
we apply Welch’s method to small subsets of our original
signal. This is equivalent to updating the coherence value
after some time and compiling this time evolution as a
single map. The resulting spectrogram is finally whitened
along the time axis by summing all the values of a
frequency bin along the time axis and dividing by the
total sum. An example of the obtained spectrogram is
shown in Fig. 1.
To constitute a sufficient number of background spectro-

grams, we use time-slides [20] where the detector data are
shifted by time delays larger than the time of flight of GWs
between detectors. The time delays are also larger than the
duration of target signals (≥ 500 s) to guarantee our cross-
correlated data to contain only detector noise.
The time and frequency resolutions of the generated

spectrograms have an impact on the sensitivity of the search.
The longer the time segments, the more GW energy will be
accumulated in a single pixel, leading to a higher coherence.
As the noise appears to be coherent on very small timescales
(≪ 1 second) [21], increasing the length of the time seg-
ments allows to reduce the coherence of the noise versus the
coherence of hypothetical signals, yielding an increased
signal-to-noise ratio (SNR). However, longer time bins will

FIG. 1. Typical time-frequency map of cross-correlated O3a background noise. The GPS time at the start of the Advanced LIGO
Hanford (H1) and Advanced LIGO Livingston (L1) data is respectively 1246174396 and 1246108524.
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cause short signals (∼10 seconds) to fall into very few pixels,
making them harder to detect. An identical reasoning can be
made for the frequency resolution. In this work, we use a
6-second time resolution combined with a 2 Hertz frequency
bin as a good compromise. Taking a 1000s data stream from
the Advanced LIGO interferometers spanning frequencies
up to 2048 Hz (see Fig. 1), results in spectrograms with
dimensions of 166 × 1025 pixels.
The time-frequency arrays are heavy to store in the

default 32-bit Python precision because of their large
amount (>105) of pixels. Each TF map weights about 13
megabytes. This substantial storage space can reduce the
maximum batch size, i.e., the number of training samples
that are passed through the network in a single forward
pass, accessible for the training, eventually increase the
training time and downgrade the test performance [22]. It
is also recommended to use batch sizes above 10 to avoid
a highly noisy gradient descent, and to take advantage of
the speed-up of matrix-matrix products over matrix-vector
products [22]. A noisy gradient descent is obtained when
the gradients obtained after each training iteration poorly
generalizes to all the samples in the dataset and in fine
extend the time needed for the network to converge.
Saving the spectrograms as RGB images (8-bit integers)
allows to reduce the storage needed at the cost of a small
loss of precision in the values of the array. The maximum
loss of precision for values falling right in between two
integer levels is ð1=28Þ=2, which is less than 0.2%. We
thus have 3 channels displaying different information
depending on the color map used to draw the initial array.
We choose the “cubehelix” colormap from the Matplotlib
Python library [23], displaying the GW signals clearly in
all 3 channels, as seen in Fig. 2. The final reduction factor

in memory is roughly 26 compared to the 32-bit NumPy
arrays [24], ultimately giving access to larger training
batches. A further argument in favour of using RGB
images is the wide use of the format in deep learning
applications, e.g., some neural networks even require a
3-channel image as input [25–27].
Therefore, the final dataset that we consider is made up of

RGB time-frequency images generated from the coherence
between the data from the Advanced LIGO Hanford (H1)
and Advanced LIGO Livingston (L1) detectors, gathered
during the first phase of the third advanced LIGO observing
run (O3a).

B. A new measure of excess power

In order to form our dataset, we need to inject signals so
that our neural network can learn to recognize their patterns
in spectrograms. The current way of adding long-duration
burst signals to background noise makes use of the root
sum squared value of the strain hðtÞ to gauge the strength of
the injection. It is defined as:

hrss ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ

hðtÞ2dt
s

: ð3Þ

However, this expression only depends on the strain value
of the injected signal, and makes the human eye visibility of
the injection vary with the local noise level of the back-
ground map. Figure 3 shows a waveform model injected
with a hrss value of 510−22 in two different O3a background
spectrograms. When the noise level is sufficiently high, as
in the right panel of Fig. 3, the signal can be buried in
the background noise, preventing a clear detection for the

FIG. 2. RGB channels of an 03a time-frequency background map where aGRBplateau waveform [28] is injected. Note how the signal
is visible in all 3 channels, from 250s to 550s. The GPS time at the start of the H1 and L1 data is respectively 1246174396 and
1246108524.
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network. Such samples can fool a neural network during a
supervised learning and eventually cause the training to be
badly conditioned [29]. A new criterion is therefore required
to form a healthy dataset.
To be visible in time-frequency representations, an injected

signal has to stand out of the local noise level. Defining a
noise-only spectrogram Nij and the same spectrogram to
which a signal has been injected by Sij, the new criterion is

V ¼
X
i;j

ðSij − NijÞ; ð4Þ

where the sum is carried over all the pixels ði; jÞ in the map.
We call this new criterion “visibility”. The pixel-to-pixel
difference allows to fine tune how much signal emerges from
the local noise level and form a dataset with different levels of
intensity. This is particularly useful when training procedures
like curriculum learning [30] are used.

C. Mimicking long-duration signals

Neural networks are particularly good at recognizing and
classifying shapes and objects they have seen in training
(YOLO [25], AlexNet [31], GoogLeNet [32], etc). They are
therefore well suited for detecting signals in time-frequency
images if the training set is sufficiently close to the expected
long-duration GWs. Figure 4 shows the models used to test
the long-duration pipelines for the third advanced LIGO-
Virgo observing run. The waveforms generally show a chirp
up or chirp down behavior. This property can be easily
mimicked thanks to the SCIPY PYTHON package [33].
Specifically, it allows us to draw time series with varying
parameters such as the duration, the frequency bandwidth,
and the frequency evolution. The frequency evolution can
either be linear, hyperbolic, quadratic or logarithmic. Once
the chirp signal is generated, the energy distribution is
adjusted thanks to a Kaiser filter [34] as seen in Fig. 5. For
this, a window twice as long as the signal is generated and
the chirp signal is multiplied by either the first or second half
of the window. When the first half is implied, the final chirp
shows a increasing energy distribution and the reverse holds

FIG. 3. Injection of a GRBplateau waveform from [28] at 300s
with a hrss value of 510−22 in two different O3a background
spectrograms. The GPS time at the start of the H1 and L1 data in
the left panel is respectively 1246174396 and 1246108524, while
for the right panel it is 1248305006 and 1248273184.

FIG. 4. Signal models (waveforms) targeted by long-duration pipelines for the third observing run [35].
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when the second half is concerned. A shape parameter β is
used to control the width of the Kaiser window. A larger beta
parameter implies a narrower Kaiser window leading to a
more unbalanced energy distribution, the signal showing
more intensity in the beginning or in the end of the chirp
structure.
Figure 6 shows examples of chirp signals. These chirps

are nearly identical to the models that have been selected to
test long-duration algorithms. However, the harmonics that
appear in GW emission models like [36] or [37] cannot be
reproduced with the SCIPY library [33]. These harmonics
come from emission mechanisms such as multiple mass
moments in the torus around black holes [38] or eccentricity

oscillations in eccentric compact binary coalescences [37].
They usually show less power than the main component of
the gravitational wave and show up exclusively for high
amplitude injections, usually easily recognized in time-
frequency images. We will thus make use of [33] to generate
our dataset and train our neural network without a priori
knowledge of the expected burst signals.

III. DEEP LEARNING APPROACH

A. Neural network in GW applications

Neural networks and machine learning techniques have
been recently applied to gravitational wave physics [39].
Among the variety of networks used, convolutional neural
networks (CNNs) [40], being very good at pattern and
shape detection [25,31], have shown successful applica-
tions in the detection of black hole collisions [41],
identification of the GW counterpart from supernovae
[42], binary neutron star detection [43,44] and estimation
of their parameters [45], as well as in classification of
detector glitches [46]. CNNs have also been used in short
burst detection with [47].
The strong capability of CNNs to recognize patterns can

either be applied to one-dimensional (time series) [41,43,44]
or two-dimensional data [32,46]. Their efficiency to detect
shapes has even been adapted to generative adversarial
networks (GAN) [48]. Such networks have recently been
used to generate short duration bursts [49].
Given the performance, speed and wide application of

machine learning techniques in the gravitational wave
domain, we decide to apply it to the long duration search.
Specifically, we use CNNs to detect and precisely localize
chirp signals in the time-frequency space.

FIG. 5. Examples of Kaiser windows with different values for
the β parameter.

FIG. 6. Examples of chirp signals produced for the training of our neural network.
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B. ALBUS

In order to detect signatures of long-duration bursts, we
will also make use of CNNs. Most of the CNNs used to
detect patterns and objects also involve a classification task
[25,26,31]. However, we want to highlight the pixels that
could resemble to burst signals rather than assigning a label
to the whole input map. We found that the convolutional
network built in [50] returns a pixel-by-pixel localization
map. They associated a boolean target map to every image
in the training set. The training method then consists in
minimizing a loss between the output map and the target
map, so that the former keeps approaching the latter as the
training progresses. We will follow the same strategy but
also bring some modifications, notably on the network
architecture and on the definition of the target map.
The network, shown in Fig. 7, is made up of two parts, a

downscaling part that keeps the useful information through
its different layers, and an upscaling part that aims at
localizing precisely this information in a map with the same
dimensions as the input of the network. The connections
between the downscaling and upscaling parts help the
network to learn how to precisely position the signals.
The number of filters at every step, indicated below each
layer in Fig. 7, has been divided by 2 compared to [50],
reducing both the training time and the memory usage.
The target map definition has also been modified. The

localization map alone is not sufficient to rank the spectro-
grams based on their content. As an example, a score can be
defined as the sum of the pixels in the localization map,
which helps distinguishing GW candidates from noise-only
images. If we keep the definition of [50], all the pixels
that will be highlighted by the network will be put to 1 in
the localization map. Therefore, summing up all the 1’s
in the image can lead to a high score, even if the pixels are
scattered in the map. In such a case, it becomes harder to
identify GW events through a unique score. We rather
need a definition that can output both high and low values

depending on the intensity of the signal injected in the
image. We set a threshold on the spectrogram pixels
corresponding to the 99th percentile of the values. This is
equivalent to keeping the top 1% pixels showing the
highest values. We then normalize the spectrogram. This
procedure leads to a target map that follows the intensity
evolution of the signals through the input map. An
example of a spectrogram containing a chirp signal and
its corresponding target map can be seen in Fig. 8.
The last adaptation concerns the loss used to train our

neural network. The loss defined by [50] is a weighted
mean squared error (MSE):

L ¼ 1

2

X
i;j

ðTij þ λT̄ÞðTij −OijÞ2; ð5Þ

where T and O respectively stand for the target and output
maps, T̄ is the mean of the target map and λ is a control

FIG. 7. Architecture of ALBUS, modified from [50]. The downscaling and upscaling parts are represented in blue and red respectively.
These two parts are coupled thanks to skipped connections, represented as concatenation lines. The numbers in black indicate the
number of filters used at each stage of the network.

FIG. 8. Background spectrogram in which a chirp signal is
injected at 100s (left) and its associated target map used for the
training phase (right). The energy distribution of the chirp signal
can also be seen in the target map, providing adequate samples for
the training phase.
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parameter. However, our dataset is also composed of
background images where no signal has been injected,
leading to empty target maps. It is essential to add them in
the training loop so that the network will not automatically
try to find something in the input TF maps. With empty
maps, the left parenthesis in (5) is null, preventing the loss
to give any feedback to the network in the backpropagation
loop, which does not happen with the classical MSE loss,
defined as:

MSE ¼ 1

2

X
i;j

ðTij −OijÞ2. ð6Þ

As the MSE loss still gives a nonzero response with
background images for which Tij is zero everywhere, we
decided to choose it for the training of our neural network.

IV. RESULTS

A. Training ALBUS

The dataset for the training is composed of 4500
background images and 4500 chirp images. The chirp
signals were injected with 9 levels of visibility (500
samples for each intensity). All the parameters for
injecting chirp signals are summarized in Table I. The
validation set is made of 10% of both the background and
injection dataset. The delay indicates the time from the
start of the spectrogram where signals are injected. We set
a low frequency threshold at 30 Hz because of the high
noise level of the Advanced LIGO detectors at lower
frequencies [21]. The chirp signals being drawn at a
chosen hrss value, the visibility level is evaluated after
every injection. An iterative loop then allows to obtain the
desired visibility levels by adapting accordingly the initial
hrss value. Because of this iterative loop, we tolerate a
�10% range around the selected values to cover a wider
space and to converge faster.
The training algorithms have all been coded with

PYTORCH [51]. The ADAM optimizer [52] has been chosen
with a learning rate of 10−4. The batch size is set to 20
where one half is taken from the background images and
the other half from the injection images. The training and

validation losses for a training phase of 30 epochs are
shown in Fig. 9. The training loss decreases monotonically
which suggests that the learning progresses evenly. The
validation loss remains in close vicinity of the training loss
ruling out any overfitting on the training data. We decided
to stop the training after 30 epochs because both losses
started to reach a plateau, indicating that no major improve-
ments are made by the network.

B. Detection performance

Figure 10 shows the output of ALBUS for 4 different
waveforms from the selected models in [35]. The simulated
signals are well recognized and the variation of intensity in
the input map is also seen in the localization map.
An additional remark can be made concerning the

upper right panel of Fig. 10, where a few pixels above the
curve (around 600 Hz and 300 seconds) are highlighted in
the output map. This behavior is also observed in the
lower right panel. Indeed, our network is not only looking
at the pixels having a high value but also at the
connectivity between these pixels. It then naturally looks
prolongs the main structure to catch pixels following the
general trend of the signal. Such a propriety can be a
relevant tool to reject background images showing iso-
lated hot pixels.
Another detection capability is observed with transient

noises called glitches. Glitches are appearing in the
detector data in abundant quantities, produced due to
several sources such as instruments or the environment
[54,55]. Several classes of these artefacts have been
identified through machine learning algorithms [46] and
all show particular time-frequency morphologies. As most
of the glitches last less than 6 seconds [21], they show up
in our TF maps as straight vertical lines. The cross-
correlation method reduces their impact since a glitch

FIG. 9. Training and validation losses for a 30-epoch training of
ALBUS.

TABLE I. Parameters used to inject chirp signals in the TF
maps. All the parameters are uniformly drawn from their range of
values.

Range of values

Duration 10–500 s
Delay 0–500 s
Frequency range 30–2000 Hz
Frequency evolution Linear quadratic,

logarithmic or hyperbolic
β parameter 1–4
Visibility levels 12, 14, 16, 18, 20, 30, 40, 50, 60
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from L1 data needs to fall in the same pixel as another
glitch from H1 data to show up in the correlated TF map.
That small number of cross-correlated glitches in the
background can explain why ALBUS does not consider
them as part of the background noise and actually detects

them. Figure 11 shows an example of a glitch and its
localization by ALBUS.
The final point concerns harmonics of waveform

models. It is reasonable to foresee that ALBUS will
not detect them as they are not showing up in the training

FIG. 10. Examples of detection performance on long-duration waveforms (top left: Magnetar-D [53], top right: ISCOchirp-C [36],
bottom left: ADI [7] and bottom right: GRBplateau [28]). The left image of each panel is the red channel of the input image and the right
panel shows the output of ALBUS.

FIG. 11. Example of glitch detection. The left image shows the
red channel of the input map while the right panel shows the
output of ALBUS.

FIG. 12. Example of waveform showing harmonics (ECBC-C).
The left image shows the red channel of the input map while the
right panel shows the output of ALBUS.
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dataset. Figure 12 displays this phenomenon to some
extent. The harmonics that appear to the left of the rising
chirp are not found in the output map except in the very
beginning of the signal around 50 Hz. This effect is
certainly due to the extrapolation capability mentioned
above, for which ALBUS is “looking” for smooth
connected signals. The choice of not incorporating
harmonics of chirps in the data has minimal consequence
since the waveform models showing these harmonics are
still detected.
The detection performance as a function of the vis-

ibility levels can be seen in Figs. 13 and 14 for two
different long-duration waveforms. The minimal visibil-
ity level to which ALBUS can identify most of the signal

lies between 16 and 12, which is consistent with the
perception of the human eye with no a priori knowledge
of the injected signal.

C. Background analysis

Figure 15 compares the output of ALBUS for 3
different background images to its output when a long-
duration waveform is injected. The output map shows
correlation values smaller than 0.1. This trend is observed
for all the processed spectrograms, with the exception of
some isolated hot pixels that can show values up to 0.5. In
any case, the highlighted pixels appear sparse and
unconnected for background spectrograms, confirming

FIG. 13. Detection performance of ALBUS on 6 different visibility levels (from left to right: 60, 40, 30, 20, 16, and 12) for the
waveform model Magnetar-D. The top panel shows the input images and the lower panel shows the output of ALBUS.
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that our network is searching for connectivity among high
value pixels.

V. DISCUSSION AND CONCLUSION

We have shown that convolutional neural networks can be
applied to the search for minute-long gravitational wave
transients in the time-frequency space of the cross-correlated
LIGO noise. Our approach allows a fast and pixel-precise
identification of the long-duration signals with no training on
the latter. The speed of neural networks naturally allows to
extend our algorithm to low-latency searches. With training
on data accumulated during the first month of the observing
run, after which the network would be active for the rest of
the run. The whole process including the data acquisition,

the spectrogram generation and the forward pass to ALBUS
can be carried out in just a few seconds. A low-latency
implementation will then consist in repeating this process
periodically.
In a low-latency implementation, coherent glitches

appearing in both Hanford and Livingston interferometers
will be detected. There is a need to remove these in order
to avoid sending false alarms to other astronomers.
Among the low-latency tools to identify and classify
glitches, GravitySpy [46] and Omicron [56] can produce
triggers in few minutes. We could make use of these
triggers to discriminate cross-correlated glitches from
short signals like ADI and ECBC (see Fig. 4), that have
the potential to be misclassified as a glitch. An alternative

FIG. 14. Detection performance of ALBUS on 6 different visibility levels (from left to right: 60, 40, 30, 20, 16, and 12) for the
waveform model GRBplateau. The top panel shows the input images and the lower panel shows the output of ALBUS.
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is to train a second network to recognize only coherent
glitches, appearing as vertical lines, and run it in parallel
to the current algorithm. This new network would then
serve as a check for glitches.
The threshold for the detection of long-duration signals

is determined by the highest background candidates, i.e.,
the background candidates that show the highest detection
score as defined by a particular pipeline. Usually, the
highest candidates are identified after analyzing at least
50 years of background, making more than 1 million
spectrograms to process [35]. In order to rank these
candidates and automate the detection, a detection statistics
needs to be defined in follow-up works.
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