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Recently, a tight correlation between the dynamical radial acceleration and the baryonic radial
acceleration in galaxies—the radial acceleration relation—has been discovered. This has been claimed
as an indirect support of the modified gravity theories. However, whether the radial acceleration relation
could also be found in galaxy clusters is controversial. In this article, we derive and present an analytic
radial acceleration relation for the central region of galaxy clusters. We examine the data of some large
galaxy clusters and we find that the resulting radial acceleration relation has a very large scatter. Moreover,
although the radial acceleration relation for galaxy clusters shows some agreement with the one discovered
in galaxies for a certain range of baryonic radial acceleration, their functional forms are somewhat different
from each other. This suggests that the radial acceleration relation may not be a universal relation in
general.
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I. INTRODUCTION

In the past few decades, many close relations between
dark matter and baryonic matter were discovered, such as
the Tully-Fisher relation [1], the Faber-Jackson relation [2],
the mass-discrepancy acceleration relation [3], and the
radial acceleration relation (RAR) [4,5]. The close relations
between dark matter and baryons are not intuitively
expected because the standard cold dark matter model
suggests that the interaction between dark matter and
baryons (except gravity) is almost negligible. Therefore,
although some studies are able to reproduce these relations
using the cold dark matter framework [6–8], the close
relations between dark matter and baryons generally more
favor the modified gravity theories because many of these
theories suggest that baryonic mass and dynamical mass are
interrelated [9–13].
Nevertheless, if any modified gravity theory is true for

accounting the close relations between dark matter and
baryons, those close relations should also be found in other
structures such as galaxy clusters. It is because the modified
gravity theory should be universal in nature so that the
resulting relations between dark matter and baryons must
be universal as well. For example, some studies have shown
that the Faber-Jackson relation can also be found in galaxy
clusters [14,15], which may give an indirect support of the
modified gravity theories. In particular, many studies are
now focusing on the RAR in galaxies because it reveals the
existence of an apparent universal acceleration scale, which
has been predicted by some modified gravity theories such
as the modified Newtonian dynamics (MOND) [16] and the
emergent gravity [17]. However, whether a tight RAR

could also be found in galaxy clusters is quite controversial.
Some studies show that the functional form of the RAR in
galaxies might still be true for galaxy clusters, although the
acceleration scale value is different from that in galaxies
[18,19]. Some other studies show that the scatter of the
RAR in galaxy clusters is too large to be consistent with
that in galaxies [20–22].
In this article, we derive an analytic RAR for the central

region of galaxy clusters so that we can easily analyze the
dependence of the RAR in galaxy clusters. We will also
examine the analytic RAR by using the data of some large
galaxy clusters, which can explicitly reveal the alleged
acceleration scale and the scatter of the RAR in galaxy
clusters.

II. THE ANALYTIC RADIAL ACCELERATION
RELATION

The dynamical radial acceleration is defined as

adyn ¼
GMdyn

r2
; ð1Þ

where Mdyn is the enclosed dynamical mass at radius r.
Although the hot gas in a galaxy cluster is a pressure-
supported system, we can define the baryonic radial
acceleration by

abar ¼
GMbar

r2
; ð2Þ

where Mbar is the enclosed baryonic mass at radius r. This
can be interpreted as the radial acceleration contributed by
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the baryonic mass if the gas pressure does not exist.
Generally speaking, for large and massive galaxy clusters,
the enclosed baryonic mass can be approximately repre-
sented by the enclosed hot gas mass Mgas. However, for
small galaxy clusters, the effect of stellar mass Mstar could
be significant, especially in their central regions [23].
Therefore, we include stellar mass in our calculation of
the baryonic mass: Mbar ¼ Mgas þMstar.

A. Hydrostatic dynamical mass framework

When the hot gas with temperature T is in hydrostatic
equilibrium, we have

d
dr

½nðrÞkT� ¼ −
GMdynðrÞρðrÞ

r2
; ð3Þ

where nðrÞ and ρðrÞ are the number density profile and
mass density profile of the hot gas respectively. Generally
speaking, the temperature of the hot gas is almost constant
for most noncool-core clusters [24,25]. The temperature
gradient in the hot gas can be less than 8% [26]. Therefore,
it would be a very good approximation if we simply take a
constant average temperature T [27]. Based on this
assumption, Eq. (3) can be rewritten as [27]

MdynðrÞ ¼ −
kTr
Gμmp

d ln nðrÞ
d ln r

; ð4Þ

where μ ¼ 0.59 is the molecular weight and mp is the
proton mass.
On the other hand, observations indicate that the hot gas

number density profile can be well described by the β
model [27,28]:

nðrÞ ¼ n0

�
1þ r2

r2c

�−3β=2
; ð5Þ

where n0 is the central number density, rc is the hot gas core
radius and β is the index parameter. Therefore, combining
Eqs. (4) and (5), and following Eq. (1), we get the
dynamical radial acceleration expression

adynðrÞ ¼
3βkTr

μmpðr2 þ r2cÞ
: ð6Þ

Generally speaking, there are two possible positions r
which can have the same value of adyn (see the example of
the Coma cluster in Fig. 1):

r ¼
3βkT �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9β2k2T2 − 4a2dynμ

2m2
pr2c

q
2μmpadyn

: ð7Þ

In the following, we only focus on the region for the smaller
root of r as it can be shown that the analytic relation derived

would be converged in the smaller-root region only. This
corresponds to the central region (r ≤ rc) of the hot gas. As
shown in Fig. 1, the values of adyn in the smaller-root region
of a galaxy cluster can represent most of the possible values
of the dynamical radial acceleration.
Next, to simplify our discussion, we define a dimension-

less term y≡ adyn=amax with amax ≡ 3βkT=2μmprc so that
the smaller root r can be rewritten as

r ¼ rc

 
1

y
−

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1

y2
− 1

s !
: ð8Þ

For our focusing region r ≤ rc, we have y ≤ 1.
To get the hot gas mass profile, we can integrate the hot

gas number density profile:

MgasðrÞ ¼
Z

r

0

4πr02mgnðr0Þdr0; ð9Þ

where mg is the average mass of a hot gas particle. By
substituting the number density profile in Eq. (5), the above
integral can be expressed analytically in terms of the
generalized hypergeometric series. We write the general-
ized hypergeometric series explicitly by the sum of the
following infinite series:

MgasðrÞ ¼ 4πmgn0
r3

3

X∞
j¼0

ð3β=2Þjð3=2Þj
ð5=2Þjj!

�
−
r2

r2c

�
j

; ð10Þ

where ðxÞj ¼ Γðxþ jÞ=ΓðxÞ ¼ xðxþ 1Þ…ðxþ j − 1Þ is
the Pochhammer symbol. Since ð3=2Þj=ð5=2Þj ¼
3=ð3þ 2jÞ, following the definition of agas ¼ GMgas=r2,
we get:
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r [kpc]

0

1e-010

2e-010

a dy
n [

m
s-2

]

Smaller-root region

FIG. 1. The black solid line represents the values of adyn against
different radii r from the center of the Coma cluster.
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agas ¼ 4πGmgn0r
X∞
j¼0

ð3β=2Þj
j!ð3þ 2jÞ

�
−
r2

r2c

�
j

: ð11Þ

Substituting the expression of the smaller root r from
Eq. (8) into Eq. (11) and expand the series about y ¼ 0, we
get the analytic series of agas up to the fifth-order terms:

agas ¼ 4πGmgn0rc

�
1

6
yþ

�
1

24
−

1

80
β

�
y3

þ
�
1

48
−

111

4480
β þ 9

1792
β2
�
y5 þOðy7Þ

�
: ð12Þ

Since y≡ adyn=amax, we can see that adyn and agas
are explicitly related by Eq. (12). For large and
massive galaxy clusters, since Mbar ≈Mgas, Eq. (12) can
be regarded as the analytic RAR for the central region of
galaxy clusters. Nevertheless, if the contribution of stellar
mass in galaxy clusters is significant, then we need to revise
Eq. (12) to include the stellar mass component. Previous
studies have shown that the stellar mass in galaxy clusters
can be best described by a power law of hot gas mass [29].
Here, since we have focused on the central region of galaxy
clusters, we use the data of the inner region obtained in [30]
to examine the power-law relation betweenMbar ¼ Mstar þ
Mgas andMgas.We find thatMbar can be best describedby the
following power law:Mbar=1013M⊙¼α0ðMgas=1013M⊙Þα
with α0 ¼ 1.35þ0.02

−0.03 and α ¼ 0.79� 0.02 (see Fig. 2).
Putting it into Eq. (12), we get:

abar¼ab

�
4π
X∞
j¼0

ð−1Þjð3β=2Þj
j!ð3þ2jÞ

�
1−

ffiffiffiffiffiffiffiffiffiffiffi
1−y2

p
y

�2jþ3−2=α�α
;

ð13Þ

where ab ¼ α0Gð1013 M⊙Þ1−αðmgn0r3cÞα=r2c. We can
expand Eq. (13) around y ¼ 0 up to less than the fifth
order, and substitute α0 ≈ 1.35 and α ≈ 0.79 to get the
following approximated form:

abar ≈ ab½2.4y0.37 þ ð0.22 − 0.14βÞy2.37
þð0.093 − 0.26β þ 0.056β2Þy4.37�: ð14Þ

Simply looking at Eq. (14), it seems that adyn is tightly
correlated with abar, while the actual RAR depends on the
empirical hot gas parameters (e.g., rc, T, β, and n0) of
different galaxy clusters.

B. NFW framework

The analytic relation in Eq. (14) is based on the hydro-
static equilibrium of hot gas. However, numerical simu-
lations show that the density profile for cold dark matter
can be best described by the Navarro-Frenk-White (NFW)
profile [31]:

ρDM ¼ ρsr3s
rðrþ rsÞ2

; ð15Þ

where ρs and rs are the scale density and scale radius of
dark matter respectively. The enclosed dark matter mass
profile can be obtained analytically:

MDM¼
Z

r

0

4πr02ρDMdr0 ¼4πρsr3s

�
ln

�
1þ r

rs

�
−

r
rþrs

�
:

ð16Þ

Some studies have shown that the NFW profile can give
good fit to the dynamical mass of galaxy clusters [32].
Nevertheless, the enclosed dynamical mass profile
(MDM þMbar) derived in the NFW framework is somewhat
different from the hydrostatic dynamical mass in Eq. (6).
Therefore, in the followings, we also derive an analytic
RAR relation within the NFW framework.
The dynamical radial acceleration is given by adyn ¼

abar þ aDM, where aDM ¼ GMDM=r2. Note that the expres-
sions of abar and agas in the NFW framework are identical to
those in the hydrostatic framework because the hot gas
number density profile in Eq. (5) is merely empirical. We
first expand aDM in terms of an infinite series:

aDM ¼ 4πGρsrs

�X∞
j¼1

�
1 −

1

j

��
−

r
rs

�
j−2
�
: ð17Þ
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FIG. 2. The circles are the data of Mbar ¼ Mgas þMstar and
Mgas at the inner region r ¼ r2500 of 37 galaxy groups and
clusters obtained in [30] (in the unit of 1013 M⊙). The red line is
the best-fit power-law relation logMbar ¼ 0.13þ 0.79 logMgas.
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As we will focus on the central region, we expand the
expression of agas in Eq. (11) and approximate it by
neglecting the fifth-order or higher terms:

agas ≈ 4πGmgn0

�
r
3
−

3β

10r2c
r3
�
: ð18Þ

By using the relation abar ¼ α0ð1013 M⊙G=r2Þ1−αaαgas, we
can write

9β

�
r
rc

�
5−2=α

− 10

�
r
rc

�
3−2=α

þ 15

2βπ

�
abar
ab

�
1=α

¼ 0: ð19Þ

We can go analytically further by putting α ≈ 0.8 ¼ 4=5
into Eq. (19). Expanding Eq. (19) around r=rc ¼ 1 up to
the second order and solve the quadratic equation in
ðr=rc − 1Þ, we get

r
rc

¼ 1 − 2γ½1þ fðabarÞ� ð20Þ

with

fðabarÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4

5γ

�
8ð1−4γÞ
1−3γ

−
5ð1−3γÞ
3ð1þγÞπ

�
abar
ab

�
5=4
�s
; ð21Þ

where γ ¼ ð9β − 2Þ=ð27β þ 2Þ. Putting Eq. (20) into
Eq. (17) and following our definition adyn ¼ aDM þ abar,
we have

adyn¼abarþ4πGρsrs

×
X∞
j¼1

�
1−

1

j

��
−
rc
rs
½1−2γð1þfðabarÞÞ�

�
j−2

: ð22Þ

Since we will focus on the central region r < rc, we expand
the first 3 terms (j ¼ 1, 2, 3) to get the final approximate
analytic RAR adynðabarÞ for the NFW framework:

adyn≈abarþ2πGρsrs

�
1−

4rc
3rs

þ8rc
3rs

γð1þfðabarÞÞ
�
: ð23Þ

III. DATA ANALYSIS

To examine the analytic radial acceleration relation
explicitly, we plot the RAR by putting the values of
parameters from the available data. We analyze the data
from the extended HIFLUGCS galaxy cluster sample
obtained from [27]. However, since we have assumed a
constant temperature profile in the derivation, we will only
use the data of the noncool-core clusters. Also, we neglect
the small galaxy clusters with rc ≤ 100 kpc because the
central bright cluster galaxies (BCGs) would dominate the
baryonic mass at the centers, which might have complex
behaviors. Therefore, we altogether analyze 52 non-cool-
core clusters with core radii rc > 100 kpc in the extended
HIFLUGCS sample.
Besides, the fitted parameters from observations may not

be accurate in describing the deep central region (e.g.,
r ≤ 20 kpc). Therefore, for the hydrostatic framework, we
constrain our analysis to the range of y ¼ 0.4–0.9 (i.e.,
r ≈ 0.21rc − 0.63rc) only. For y ¼ 0.9, the error of our
analytic RAR is less than 10%. For the NFW framework, as
we have expanded our series around r ¼ rc, we will focus
on the region r ¼ 0.5rc − 1rc.
We first plot the RAR for the hydrostatic framework by

using the data of 52 galaxy clusters (with gas mass
∼1013 M⊙ − 1015 M⊙) with their corresponding parame-
ters β, rc, T, and n0 (see Fig. 3). The values of the
parameters can be found in [27]. We have rescaled the
values of the parameters by adopting the Hubble parameter
h ¼ 0.68. The error bars of our results shown in Fig. 3
represent the possible ranges of adyn and abar due to the
uncertainties of the input parameters. For y ¼ 0.4–0.9, we
can see that the resultant RAR scatters in a very large
logadyn − log abar space. Although it is in remarkable
agreement with the galactic RAR for a certain range of
abar, its functional form adynðabarÞ is somewhat different
from that of the galactic RAR (the galactic RAR has a
smaller slope for larger abar). The difference becomes more
significant for a larger value of y (e.g., y ¼ 0.9, see Fig. 3).
Also, our results give a larger value of the “acceleration
scale” (if it exists) for the central RAR in galaxy clusters
compared with the galactic RAR. These results are
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FIG. 3. The circular dots represent the data of the RAR in the
hydrostatic framework calculated by our derived analytic ex-
pression for y ¼ 0.4 (black), 0.7 (green), and 0.9 (orange). The
blue triangles represent the data of the RAR in the NFW
framework for r ¼ 0.5rc and r ¼ 0.9rc. Here, the error bars
associated with the circular dots and blue triangles represent the
possible ranges of adyn and abar due to the uncertainties of the
input parameters. The data of the 52 large noncool-core galaxy
clusters are derived from the X-ray parameters obtained in [27].
The red squares with error bars linked up by the red dashed line
represent the RAR of galaxies for comparison [4].
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consistent with other recent studies of the RAR in galaxy
clusters [18–21].
For the NFW framework, we can calculate the NFW

scale density ρs and the scale radius rs from the X-ray
parameters based on the analytic formulas recently
obtained in [33]. The RAR calculated in the NFW
framework generally has larger adyn compared with the
one in the hydrostatic framework. This is because the NFW
profile is a cusp profile, which predicts a higher central dark
matter density and a larger dynamical acceleration. For the
hydrostatic framework, the central dynamical profile is
close to a constant cored profile, which predicts a smaller
dynamical acceleration. Generally speaking, these two
models provide two extreme descriptions of the central
RAR profile. The actual distribution of the RAR would lie
between these two benchmark models.
We also plot the RARs of two particularly chosen galaxy

clusters (the Coma cluster and the A2877 cluster, see
Fig. 4). We can see that the two RARs have completely
different functional forms (i.e., different slopes in the
log adyn − log abar space) compared with the existing
RAR. The RAR in the NFW framework is almost “flat”
because the dark matter contribution has dominated the
dynamical mass. Since the NFW mass profile goes like r2

in the central region, we get adyn ≈ aDM ¼ GMDM=r2≈
constant.

IV. DISCUSSION

In this article, we have derived two analytic RARs (one
for the hydrostatic framework and one for the NFW
framework), which are applicable for the central region
of galaxy clusters. The analytic RARs are particularly good
for describing large and massive noncool-core clusters. In
fact, many previous related studies focus on the outer

region of galaxy clusters (e.g., r ≥ rc) [19,20]. Therefore,
our study can give some new insight for understanding the
behavior of the RAR for galaxy clusters, especially for their
central region. Also, the derived analytic RAR can explic-
itly reveal the potential dependence of the RAR, and how
the hot gas parameters affect the scatter and the functional
form of the RAR.
Although the functional form of the analytic RAR is

quite simple, it depends on four empirical hot gas parameters
β, rc, T, and n0, which have broad ranges of values in
general. Therefore, it is not surprising that the resultant RAR
for the central region would scatter in a large space. In the
derivation of the hydrostatic framework, we have assumed
that the hot gas temperature is constant and the hot gas is in
hydrostatic equilibrium. The former assumption is very
good for the noncool-core clusters as they do not have any
large temperature gradient near the central region [26]. For
the latter one, hydrostatic equilibrium is also a very good
assumption for the noncool-core clusters because the tem-
perature gradient is so small such that no convection would
be expected to affect the hydrostatic equilibrium [25].
Another recent study shows that the systematic uncertainty
for assuming hydrostatic equilibrium is less than 15% in
general [34], which is relatively small compared with the
possible scatter of theRAR.Besides, we have also examined
the analytic RAR for the NFW framework. Therefore, our
derived analytic expressions would be comprehensive
enough in describing the RAR for large noncool-core
clusters. This also provides a comparison of the RARs
between two different frameworks.
Generally speaking, although our derived RAR is only

good for large noncool-core clusters and we only focus on
the central region, the resultant RAR scatters in a very large
logadyn − log abar space, although it shows some agree-
ment with the galactic RAR for a certain range of abar.
Moreover, the functional form of the RAR for galaxy
clusters is somewhat different from that of the galactic
RAR, especially for larger values of y. The significant
difference in functional form can also be seen from the plot
using the data of individual galaxy clusters (e.g., the Coma
cluster and the A2877 cluster in Fig. 4). These suggest that
there may be no universal RAR for both galaxies and
galaxy clusters. Besides, another recent study also suggests
that there is a significant difference between the RARs of
early type and late-type galaxies [13]. Therefore, the tight
RAR shown in previous studies may be just a special
characteristic for rotating system only. Nevertheless, since
the uncertainties of the input parameters are quite large for
galaxy clusters, more precise observational data are
required to verify our conclusion. Note that our results
do not have any implication for the modified gravity
theories. However, if there is no universal RAR, the
RAR discovered in galaxies may not be a good evidence
for supporting any modified gravity theories which predict
a universal acceleration scale (e.g., MOND).
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FIG. 4. The black dots and blue diamonds represent the RARs
for the Coma cluster and the A2877 cluster respectively. The red
squares with error bars linked up by the red dashed line represent
the RAR of galaxies for comparison [4].
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