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We improve the calculations of the elastic motion induced by dark matter hitting the surface of the mirror
inside an interferometer used for gravitational-wave detection. We focus on the discovery potential of such
a dark matter signal in the third-generation European gravitational-wave detector, the Einstein Telescope.
By taking the thickness of the mirror into account, more than one resonance is predicted in the sensitive
regime of the high-frequency interferometer. When the mass of dark matter is heavier than a few PeVor is
highly boosted, the signal-to-noise ratio could exceed one, and the Einstein Telescope should be able to
detect this dark matter signal.
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I. INTRODUCTION

The existence of dark matter (DM) provides explanations
for several astronomical observations, such asthe rotational
curves of galaxies. However, except for gravitational effects,
we know very little about its physical properties, including
its spin and mass. In other words, the DM particle could be a
boson or a fermion, and its mass could range from below
an eV to greater than a TeV. Even though no conclusive
evidence of a DM signal has been found in the laboratory,
some observations, if interpreted as signals of DM, give us
hits about the mass of DM. The recoil energy detection in the
XENON1Texperiment [1] may imply dark matter with mass
ofOð1Þ keV; the excesses of cosmic-ray positrons observed
by PAMELA [2] and AMS-02 [3] suggest that the mass of
dark matter should be heavier than a few hundred GeV; and
the observations of PeV neutrino events by IceCube point to
super heavy dark matter.
To claim the discovery of dark matter relies on the

detection of the recoil energy of either an electron or nucleus
inside a detector caused by dark matter scattering, e.g., the
XENON1T experiment. However, interestingly, the technol-
ogy used in the discovery of gravitational waves (GWs) by
LIGO and VIRGO in 2016 [4] provides another method for
dark matter detection. The idea for GW detection is that as
GWs pass through the Earth, the tidal force causes tiny shifts
in the length of the LIGO/VIRGO arms, which can be
detected by the laser interferometer. Similarly, when dark

matter particles pass through the interferometer and hit the
mirror of the interferometer, the recoil of the mirror may
generate detectable vibration signals. The geometric proper-
ties of the mirror and the mass of the dark matter particle
determine the characteristic frequencies. The details of such
a scenario have been discussed in Ref. [5]. In this paper, we
take into account the thickness of the mirror and the noise
caused by the thermal fluctuations, which have been
neglected. We consider LIGO/VIRGO, KAGRA, and the
proposed Einstein Telescope (ET), and focus on ET since its
high-frequency interferometer has a better chance of
detecting a signal (as will be shown later). Actually, various
approaches to search for DM with GW detectors have been
discussed in the literature; see, for instance, Refs. [6–33].
The rest of this paper is organized as follows. In Sec. II we

give a detailed derivation of the signal due to the collision of
dark matter particles with the mirror. In Sec. III we discuss
the noises, with an emphasis on internal thermal noises. We
show the signal-to-noise ratio in Sec. IV. Our summary and
conclusions are presented in Sec. V.

II. DARK MATTER SIGNAL

We focus on the elastic oscillation of the mirror due to
the collisions of DM particles. We assume that the test mass
used in the interferometer (TM) collides with a DM particle
at t ¼ 0. During the collision, the DM transfers a recoil
momentum qR to the TM. Following Refs. [5,6], the
external force can be given by

FDM ¼ qRδðtÞ: ð2:1Þ

This collision induces a transverse deflection zElas on the
surface of the mirror and causes the elastic oscillation of the
mirror. For t > 0, the corresponding equations of motion of
the TM with mass MT due to this collision are [34,35]
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with the following initial conditions for zElas:

zElasðr; θ; t ¼ 0Þ ¼ 0;

_zElasðr; θ; t ¼ 0Þ ¼ qR
MT

πa2δðr⃗ − r⃗0Þ; ð2:3Þ

where _zElas ≡ ∂zElas∂t . Here h, a, ρ, QM, and ωe denote the
thickness, radius, mass density, quality factor, and angu-
lar eigenfrequency of the mirror. The vector r⃗0 ¼ ðr0; θ0Þ
specifies the location where the DM particle collides with
the mirror. The components of the mirror moments Mi
and shearing forces Qi can be expressed in terms of the
transverse deflection zElas as well as the angular bending
rotation of the normal to the neutral surface in radial and
circumferential directions, ψ r and ψθ, as [34]
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where the flexural rigidity of the mirror D is written in
terms of the Young’s modulus E and Poisson ratio ν as
D ¼ Eh3=12ð1 − ν2Þ. In Eq. (2.4), G stands for the shear
modulus and κ2 ¼ π2=12 is the shear coefficient. Note
that Eq. (2.2) is different from Kirchhoff thin plate theory
[36,37] used in Ref. [5].
The general solution of Eq. (2.2) for zElas can be

written as

zElasðr;θ;r0;θ0;tÞ¼ΘðtÞ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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where m is the number of nodal diameters, n denotes
the number of nodal circles, and ωmn corresponds to
the eigenfrequencies for each mode. The coefficient
Kmnðr0; θ0Þ depends on the location of the DM hit on
the mirror.1 The function Wmnðr; θÞ can be obtained by
redefining the problem in terms of three potentials w1, w2,
w3 as [38]

ψ r ¼ ðσ1 − 1Þ ∂w1

∂r þ ðσ2 − 1Þ ∂w2
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W ¼ w1 þ w2; ð2:6Þ

where we have suppressed the m and n indices. These
potentials wi satisfy the following equations in polar
coordinates:

ð∇2 þ δ2i Þwi ¼ 0; ð2:7Þ

where i runs from 1 to 3 and the Laplacian operator
∇2 ¼ ∂2=∂χ2 þ ð1=χÞ∂=∂χ þ ð1=χÞ2∂2=∂θ2 is expressed
in terms of the dimensionless quantity χ ¼ r=a. In
Eqs. (2.6) and (2.7) we introduced the dimensionless
parameters

δ21; δ
2
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1

2
λ2fRþ S� ½ðR − SÞ2 þ 4λ−2�1=2g;
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2

ð1 − νÞ ðRλ
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σ1; σ2 ¼ ðδ22; δ21ÞðRλ2 − S−1Þ−1;
R ¼ ðh=aÞ2=12;
S ¼ D=ðκ2Ga2hÞ ¼ ½2=ðπ2ð1 − νÞÞ�ðh=aÞ2: ð2:8Þ

These parameters are functions of the dimensionless
frequency parameter λ (or, more accurately, λmn),

λmn ¼ ωmna2
�
ρh
D

�
1=2

; ð2:9Þ

1This implies that the transverse deflection of the mirror zElas
becomes r0 and θ0 dependent, as explicitly written in Eq. (2.5).
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where we have restored the m and n indices. The general
solutions of Eq. (2.7) are given in terms of the product of
the radial and angular functions as

w1 ¼ A1RmðΔ1ðλmnÞχÞ cosðmθÞ;
w2 ¼ A2RmðΔ2ðλmnÞχÞ cosðmθÞ;
w3 ¼ A3RmðΔ3ðλmnÞχÞ sinðmθÞ; ð2:10Þ

where Δi is a function of λmn. Furthermore, it also
depends on the sign of δ2i as [39]

Δi ¼ f δi if δ2i ≥ 0 ; ð2:11aÞ

Δi ¼ f ImðδiÞ if δ2i < 0 ; ð2:11bÞ

The function Rm is given in terms of the Bessel function
of the first kind Jm and its modified version Im as

RmðΔiχÞ ¼ f JmðΔiχÞ if δ2i ≥ 0 ; ð2:12aÞ

RmðΔiχÞ ¼ f ImðΔiχÞ if δ2i < 0 : ð2:12bÞ

The frequency parameter λmn is obtained by assuming
that the edges of the mirror used in GW detectors are free.
This sets the boundary conditions at r ¼ a as

Mrjr¼a ¼ Mrθjr¼a ¼ Qrjr¼a ¼ 0: ð2:13Þ

Substituting Eqs. (2.4)–(2.6) into the boundary conditions
in Eq. (2.13), we arrive at the following matrix equation:

0
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1
CA
0
B@

A1

A2

A3

1
CA ¼

0
B@

0

0

0

1
CA: ð2:14Þ

This can be written in vector notation, CA⃗ ¼ 0⃗. The
elements of the C matrix are

C1j ¼ ðσj − 1Þ½R00
mðΔjÞ þ νR0

mðΔjÞ − νm2RmðΔjÞ�;
C13 ¼ mð1 − νÞ½R0

mðΔ3Þ − RmðΔ3Þ�;
C2j ¼ −2mðσj − 1Þ½R0

mðΔjÞ − RmðΔjÞ�;
C23 ¼ −½R00

mðΔ3Þ − R0
mðΔ3Þ þm2RmðΔ3Þ�;

C3j ¼ σjR0
mðΔjÞ;

C33 ¼ mRmðΔ3Þ; ð2:15Þ

where R0
mðΔiχÞ ¼ ∂RmðΔiχÞ∂χ and the index j runs from 1 to 2.

The nontrivial solution of Eq. (2.14) requires the determi-
nant of the matrix C to vanish, which further sets the values
of the eigenfrequencies.
The properties of the mirrors in both existing and proposed

third-generation GWexperiments are summarized in Table I.
For LIGO, VIRGO, KAGRA, and the low-frequency
Einstein Telescope (LF-ET) the lowest eigenfrequencies
are 10.74, 10.74, 15.33, and 15.75 kHz, respectively.
These frequencies lie outside of their detection bands. This
can be understood from Eq. (2.9) and Table I, where the
values of the eigenfrequencies are proportional to the ratio of
the thickness to the radius h=a, the Young’s modulus E, and
the mass density of the mirror ρ. On the other hand, the
eigenfrequencies of the mirror of the high-frequency Einstein
Telescope (HF-ET) are located inside the detection band, as
shown in Table II. The quality factor for the HF-ET mirror is
2.5 × 109 [40].2 We find that there are four resonance peaks
inside the HF-ET detection band. This is different from the
study of Ref. [5] which found one resonance peak at
7.24 kHz. Furthermore, the thin mirror proposed in
Ref. [5] could generate more resonance peaks inside the
ET detection band. However (as will be shown below), this is
not a suitable option since the resonance peaks are also
excited by internal thermal noise of the mirror, causing the
detector to lose its sensitivity. From here on, we focus on

TABLE I. Properties of the mirrors used in the interferometers for different GW experiments [5,40].

LIGO, VIRGO KAGRA LF-ET HF-ET

Material Fused silica Sapphire Silicon Fused silica

Mirror mass MT (kg) 40 22.8 211 200
Thickness h (cm) 20 15 50 30
Radius a (cm) 17.5 11 22.5 31
Mass density ρ (g=cm3) 2.20 4.00 2.33 2.20
Young’s modulus E (GPa) 72 400 188 72
Poisson ratio ν 0.17 0.30 0.22 0.17

2We take the loss angle of fused silica provided in Ref. [40]. To
keep the validity of the limits set by our subsequent calculation,
one must improve the loss angle of the fused silica mirror to
overcome the parametric instabilities in the GW detector, as
shown in Refs. [41,42].
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studying the elastic oscillations of the mirror in the HF-ET
induced by DM collisions.
The functionWmnðr; θÞ can be determined by expressing

the coefficients A2 and A3 in terms of A1 via Eq. (2.14) and
using Eq. (2.6) as

Wmnðr; θÞ ¼ A1

�
Rm

�
Δ1ðλmnÞ

a
r

�
−
�
C31C23 − C21C33

C32C23 − C22C33

�

× Rm

�
Δ2ðλmnÞ

a
r

��
cosðmθÞ: ð2:16Þ

The transverse deflection of the mirror zElasðr; θ; tÞ can be
determined by inserting Eq. (2.16) back into Eq. (2.5), with
the redefinition A1Kmn → Kmn. In GW experiments, the
signal of the gravitational waves as well as the noises
present in the interferometer are analyzed in terms of the
strain amplitude in the frequency domain. Therefore, one
needs to do the Fourier transform

z̃Elasðr; θ; r0; θ0; fÞ ¼
Z

∞

−∞
zElasðr; θ; r0; θ0; tÞe−i2πftdt

ð2:17Þ

of the DM signal and evaluate its absolute value in order to
write the corresponding strain amplitude of the signal,

jz̃Elasðr; θ; r0; θ0; fÞj

¼ 1

2π

Xm¼∞

m¼0

Xn¼∞

n¼0

Kmnðr0; θ0ÞWmnðr; θÞ

×
fmnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð−f2 þ f2mnÞ2 þ ðffmn
QM

Þ2
q ; ð2:18Þ

where fmn ≡ ωmn
2π is the eigenfrequency of the mirror

expressed in hertz. We see that at a resonance frequency
f ¼ fmn, the elastic oscillation induced by DM collisions
has pronounced peaks.
To determine the coefficient Kmn, we employ the

momentum conservation [5]

qRδðr⃗ − r⃗0Þ ¼ 2πρh
Xm¼∞

m¼0

Xn¼∞

n¼0

KmnWmnðr; θÞfmn; ð2:19Þ

where r⃗0 specifies the location of the DM hit on the mirror.
We multiply both sides of Eq. (2.19) by Wklðr; θÞ and
further integrate over the mirror surface,

qRWklðr0;θ0Þ¼ 2πρhKklfkl

Z
2π

0

Z
a
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klðr;θÞrdrdθ;
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R
2π
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R
a
0 W

2
mnðr;θÞrdrdθ

; ð2:20Þ

where we changed the indices k, l back to m, n in the last
line. The laser beam used in a typical GW detector is
focused at the center of the mirror to monitor the differ-
ential change of the interferometer arm. Therefore, we
evaluate the elastic oscillation at the center of the mirror,
which corresponds to the m ¼ 0 mode or the axis-sym-
metric mode. In this case, the coefficient Kmn reads

K0nðr0; θ0Þ ¼
qRW0nðr0; θ0Þ

4π2ρhf0n
R
a
0 W2

0nðrÞrdr
: ð2:21Þ

The magnitudes of jz̃Elasj at resonance frequencies
f ¼ f0n evaluated at r ¼ 0 for different nodal circle modes
n and various collision points on the mirror r0 are collected
in Table III. As can be seen from this table, for each n mode,
the highest transverse displacement is reached when DM hits
the center of the mirror (r0 ¼ 0). To compare the DM signal
with the ET’s sensitivity, we need to calculate the strain
amplitude induced by DM collisions. It is given by

h̃DMðr; θ; r0; θ0; fÞ ¼
ffiffiffiffiffiffi
4f
L2

r
jz̃Elasðr; θ; r0; θ0; fÞj; ð2:22Þ

where L denotes the arm length of the interferometer. We are
aware that the resonance modes discussed here can also be
excited by the noise. We discuss the relevant noise that may
overcome the DM signal in the next section.

III. RELEVANT NOISE

In this section we briefly discuss the noise that affects the
sensitivity of ET. The details of the noise components can
be found in Ref. [40] and references therein, and therefore
we will not repeat them here. We only highlight the
dominant noise component that could potentially suppress
the DM signal under consideration.
The Einstein Telescope employs a new strategy called the

xylophone technique in its design. It combines two inter-
ferometers operating in different frequency regimes. One
interferometer (LF-ET) is cooled down to cryogenic temper-
atures at 10 K with a low-power laser to reduce radiation
pressure noise. This is designed to have a high sensitivity in
the low-frequency regime. On the other hand, the second
interferometer (HF-ET) works at room temperature (290 K),
and a high-power laser is utilized to reduce the shot noise.
This is done to reach a high sensitivity at high frequencies.

TABLE II. Numerical values of the eigenfrequencies (ωmn
2π ) of

the HF-ET for the first few values ofm and n in units of ×104 Hz.

m ¼ 0 m ¼ 1 m ¼ 2 m ¼ 3

n ¼ 0 … … 0.240 0.485
n ¼ 1 0.514 0.601 0.791 0.897
n ¼ 2 0.548 0.635 1.100 1.338
n ¼ 3 0.643 0.820 1.271 1.455
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As a result, this technique allows ET to gain good sensi-
tivities for both low and high frequencies.
At low frequencies below 10 Hz, the dominant noise

components are seismic noise and gravity-gradient noise.
In the intermediate regime up to 500 Hz, the relevant noises
are suspension thermal noise and internal thermal noise
(mirror thermal noise). The internal thermal noise excites
the eigenfrequencies of the mirror and may potentially hide
the DM signal. In fact, the internal thermal noise of the
mirror with the power spectral density (PSD) given by [43]

x2thðfÞ ¼
8kBT
ð2πÞ3

Xm;n¼∞

m;n¼0

ϕmnðfÞf2mn

MTf½ðf2 − f2mnÞ2 þ ϕ2
mnðfÞf4mn�

ð3:1Þ

mimics the DM signal at f ¼ fmn. Here, kB; T, and MT
stand for the Boltzmann constant, temperature, and mirror
mass, respectively. In many materials, the mechanical loss
angle ϕmn is approximately a constant over a wide band of
frequencies. It characterizes the internal damping of the
mirror and is inversely proportional to the quality factor of
the mirror, namely, ϕmn ∝ 1=QM. Note that when the
temperature drops to zero or the loss angle vanishes, there
would be no internal thermal noise, as it should be. The
corresponding strain amplitude due to this noise is

h̃thðfÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4x2thðfÞ
L2

r
: ð3:2Þ

On the other hand, the most dominant noise component in
the high-frequency regime above 500 Hz comes from the
photon shot originated from the phase fluctuation of the
laser beam. This noise affects the readout of interference
fringes at the dark port of the interferometer where the GW
signal is detected. Several techniques can be applied to
reduce the shot noise. HF-ET plans to use the squeezed
states of the photons to optimize the sensitivity in certain
frequency regimes below the standard quantum limit. As an
additional remark, ET employs an ultra-high vacuum to
reduce the surrounding gas pressure at 10−10 mbar [38].
The corresponding quality factor should be much higher
than the mirror quality factor considered here. Therefore,
the viscous damping due to the ambient gas collisions is
insignificant [43].

Both internal thermal noise and photon shot noise are
the dominant noises that potentially conceal the presence
of our DM signals. In Fig. 1 we show the strain amplitude
curve of ETwhich includes all the noise components [44].
The DM signals for two benchmark masses of 1 GeV=c2

and 50 PeV=c2, representing light and heavy DM,
respectively, are also shown. The heights of the resonance
peaks seem to be different in both cases. This is due to the
difficulty in plotting very narrow peaks around the
resonances. As one can see, the dark matter signal of
heavy DM lies above the ET sensitivity curve at resonant
frequencies, while the light DM signal is buried under the
noises.

IV. SIGNAL-TO-NOISE RATIO

In this section we would like to analyze the detectability
of the DM signal discussed previously in terms of the
signal-to-noise ratio (SNR), ϱ2. Basically, this is done
by integrating the ratio of the DM signal over the noise
in the corresponding frequency domain. Furthermore,
one applies the appropriate filter to improve the SNR,
which is optimally given by [45]

TABLE III. Values of jz̃Elasðr ¼ 0; θ ¼ 0; r0; θ0; f ¼ f0nÞj × 10−23 at different collision points r0 for qR ≈
mDMv ¼ 1 GeV=c2 × 220 km=s in units of cmHz−1. The resonance frequency for each mode is shown in the
second column.

f0n (kHz) r0 ¼ 0.0 a r0 ¼ 0.1 a r0 ¼ 0.2 a r0 ¼ 0.3 a r0 ¼ 0.4 a r0 ¼ 0.5 a

n ¼ 1 5.136 282.8 265.1 216.8 150.9 84.67 33.03
n ¼ 2 5.482 253.6 236.2 189.4 127.0 66.41 22.21
n ¼ 3 6.431 192.1 175.4 131.9 77.62 31.08 4.828
n ¼ 4 9.072 163.3 139.8 84.52 30.16 2.431 3.068

FIG. 1. Strain sensitivity of ET [44] (orange dashed line) and
the hypothetical DM signals for light DM with a mass of
1 GeV=c2 (red line) as well as heavy DM with a mass of
50 PeV=c2 (blue line). The velocity of the dark matter particle is
taken to be 220 km=s.
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ϱ2 ≡
Z

fmax

fmin

df
f

SsðfÞ
SnðfÞ

; ð4:1Þ

where SsðfÞ ¼ h̃2sðfÞ and SnðfÞ ¼ h̃2nðfÞ are the PSD of
the signal and the noise, respectively. Here, the integral
runs over the frequency range probed by the correspond-
ing detector. In our case, the SNR reads

ϱ2ðr; θ; r0; θ0Þ ¼
Z

fmax

fmin

df
f
h̃2DMðr; θ; r0; θ0; fÞ

h̃2nðfÞ
: ð4:2Þ

In the following, we take the axis-symmetric mode
(m ¼ 0) to evaluate the SNR in Eq. (4.2) as well as
r0 ¼ θ0 ¼ 0, which corresponds to a DM collision at the
center of the mirror. Furthermore, since the laser is
focused at the center of the mirror, we set r ¼ 0. This
setup corresponds to the maximal jz̃Elasðr; θ; r0; θ0; fÞj, as

can be seen from Table III. To get a better understanding
about the quantities that optimize the SNR, we make a
simplification first before evaluating the actual SNR. Let
us consider under which circumstances the DM signal
overcomes the internal thermal noise. Based on Fig. 1, it is
instructive to evaluate the SNR around the DM signal
peak. We see from Eq. (3.1) that the PSD has a Lorentzian
form peaked at f ¼ f0n (for m ¼ 0) with the associated
full width at half maximum (FWHM) given by

f2max ¼ f20nð1þ ϕ0nÞ;
f2min ¼ f20nð1 − ϕ0nÞ: ð4:3Þ

After expanding h̃DMðfÞ and h̃thðfÞ around the resonance
(f ≈ f0n) and setting ϕ0n ≈ 1

QM
, the SNR becomes
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a
0 W2

0nðrÞrdr
�
2

≈
1

π

ER

Eth

�
J20ð0Þ
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�
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; ð4:4Þ

where we have defined the recoil energy ER ≡ q2R=ð2MTÞ
and the thermal energy Eth ≡ kBT=2 for a single degree of
freedom. To obtain the last line, we set δ2i > 0 and used the
fact that the first term on the right-hand side of Eq. (2.16)
dominates over the second term. The integration boundary
is given by Eq. (4.3).
Apart from the normal mode function, the SNR is

proportional to the ratio of the dark matter recoil energy
(ER) and thermal energy (Eth). Thus, to optimize the SNR
in this case, one needs a lighter mirror and lower
temperature. This is in qualitative agreement with the
toy model considered in Ref. [6]. However, lowering the
mass of the mirror will not be suitable for current GW
detectors as it enhances the radiation pressure noise at
low frequencies and further limits the sensitivity of the
detector. Furthermore, reducing the temperature would
significantly increase the loss angle ϕmn relevant for the
thermal mirror noise [40]. The only option left is to have
DM with a higher recoil momentum qR.
We see from the second line of Eq. (4.4) that the SNR is

proportional to q2R ¼ 2MTER. The recoil energy can be
used to parametrize the SNR in any GW detector. In
HF-ET, we focus on the middle peak of Fig. 1 around

6431 Hz to compute the SNR. For the integration boundary,
one can use the FWHM as before. However, this is not
recommended since the frequency resolution of HF-ET is
bigger than the FWHM. Thus, we choose the following
integration boundary:

fmin ¼ 6426 Hz and fmax ¼ 6436 Hz: ð4:5Þ

The resulting SNR as a function of ER is shown in Fig. 2. It
is clear that, in order to achieve a considerable signal for
detection (namely, SNR > 1), one needs a recoil energy
higher than about 10−30 J. Note that in our numerical results
we take the typical velocity about 220 km=s of dark matter
particles as the Earth passes through the dark matter
halo. In this case, HF-ET should be able to detect DM
with a mass heavier than PeV=c2, such as the super-heavy
DM suggested in Refs. [27,46]. On the other hand,
the kinetic energy of light dark matter boosted by
unknown sources may reach the PeV regime as well
[47–54]. As a result, the recoil energy ER will be enhanced
and makes the detectability of such dark matter particles in
ET become feasible.
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V. SUMMARY AND CONCLUSIONS

We described the scattering of DM particles and GW
detectors, focusing on the HF-ET. We showed that DM
induces elastic oscillations in the mirror employed in the
interferometer arm of ET. This motion excites the reso-
nance frequencies of the mirror and can be detected in the
optomechanical setup used in ET.

Our work improved the previous calculations of the DM
signal in two ways. First, by taking into account the
thickness of the mirror, we found four resonance frequen-
cies of the mirror inside the HF-ET detection band, as
opposed to only a single resonance frequency found in the
previous study. Furthermore, we demonstrated that the
same resonance frequencies are excited by mirror thermal
noise. This may conceal the hypothetical DM signal and
hence cannot be neglected. To overcome the thermal
noise, one needs to reduce both the mirror mass and its
temperature.
We considered the detection of light DM and heavy

DM with masses of 1 GeV=c2 and 50 PeV=c2, respec-
tively, as our benchmarks. We found a linear relationship
between the recoil energy induced by DM collisions and
the SNR. The signal from heavy DM with a mass of the
order of a few PeV could reach SNR ≳ 1, while the light
DM would be buried by the thermal noise unless it is
highly boosted.
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