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Based on the one-state assumption of ηð1405Þ and ηð1475Þ, ηð1295Þ and ηð1405=1475Þ thus being
organized as the first radial excitations of η and η0, respectively, we investigate the productions and radiative
decays of these two states in J=ψ → γηX → γγV, where ηX stands for ηð1295Þ and ηð1405=1475Þ and V
stands for vector mesons ρ0, ω, ϕ. As we have learned from previous studies that the hadronic decays of
these two states receive important contributions from the intermediate K̄K� þ c:c: meson loops due to the
triangle singularity mechanism, we show that some measurable effects can also arise from the K̄K� þ c:c:
meson loops in their radiative decays. Our calculation shows that the impact of the K̄K� þ c:c:meson loops
on the ηð1405=1475Þ radiative decays is relatively smaller than on ηð1295Þ since the latter has a much
larger coupling to K̄K� þ c:c. However, the production of ηð1295Þ in the J=ψ radiative decays will be
strongly suppressed due to its being the radial excitation state of the η meson. As a consequence of the
K̄K� þ c:c: meson loop contributions, we find that the mixing angle extracted in the radiative decays of
ηð1295Þ and ηð1405=1475Þ will be different from each other, and both are different from the one
determined in other processes.

DOI: 10.1103/PhysRevD.105.076023

I. INTRODUCTION

The study of flavor singlet and octet mixing in the
lightest pseudoscalar nonet, i.e., between η and η0, has
attracted a lot of attention in the history. As it has been well
established that the Uð1ÞA anomaly is the driving mecha-
nism for many interesting phenomena for these two states,
it also raises interesting questions on its role for higher
radial excitation states in the isoscalar pseudoscalar spec-
trum, in particular, the first radial excitation states. The
present experimental data for the JPðCÞ ¼ 0−ðþÞ spectrum
are still far from satisfactory. For the first radial excitation,
there are enough states to fill a nonet between 1.25 ∼
1.50 GeV, which includes πð1300Þ, Kð1460Þ, ηð1295Þ, and
ηð1405Þ=ηð1475Þ [1]. But for higher excitations, the
experimental evidences are far from well established.
Even for the first radial excitations, one can see that the

question of whether there are two states, ηð1405Þ and

ηð1475Þ, present in the same mass region would
have strong impact on our understanding of low-energy
QCD phenomena. Historically, the first evidence for
ηð1405Þ=ηð1475Þ was from pp̄ annihilations at rest into
ðKK̄πÞπþπ− [2], where a pseudoscalar of JPC ¼ 0−þ was
seen in the invariant mass spectrum of KK̄π. As an SU(3)
partner of the lighter pseudoscalar ηð1295Þ, it shows that its
production strength in pp̄ annihilations is much larger than
ηð1295Þ. This was regarded as evidence for its unusual
flavor contents in the literature (see, e.g., Ref. [3] for a
review). Later, MARK III [4] and DM-2 [5] reported
possible two-state structures around 1.44 GeV mass region
with increased statistics. The Obelix Collaboration at
LEAR [6] seemed to confirm the MARK III result and
introduced two pseudoscalars, i.e., ηð1405Þ and ηð1475Þ, in
the description of the invariant mass spectrum of ηππ [7].
The splitting of one state ηð1440Þ into two states, ηð1405Þ
and ηð1475Þ, suggested an outnumbering of the SU(3)
nonet and could be an indication of exotic hadrons beyond
the conventional quark model. In line of this possibility,
there was theoretical expectation from the flux tube model
that the ground-state pseudoscalar glueball should have a
mass around 1.4 GeV [8]. It made one of these two close
states, ηð1405Þ and ηð1475Þ, a possible candidate for the
pseudoscalar glueball and initiated a lot of efforts on
understanding their structures [9–14]. In such a scenario,
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its mixing with the ground states η and η0 become an
interesting topic in phenomenology, although the gluon
contents inside η and η0 cannot be dramatically large
[15–17].
While the signal for the heavier one turned out to be

more clear in the KK̄π channel, and the lighter one seemed
to favor the ηππ channel, ηð1405Þ has been assigned as
the pseudoscalar glueball candidate, while ηð1475Þ was
assigned as the SU(3) partner of ηð1295Þ (see, e.g., the
minireviews on non-qq̄ mesons in early editions of Particle
Data Group (PDG) since 1990). However, the glueball
assignment with a low mass around 1.4 GeV is not
supported by the lattice QCD (LQCD) simulations which
came to the playground later. Both quenched [18–21] and
unquenched calculations [22,23] suggest that the ground-
state pseudoscalar glueball should have a mass around
2.4–2.6 GeV. In experiment, more and more high-precision
data from J=ψ and ψð3686Þ decays at BESIII were
published during the past decade. There is no indication
that two pseudoscalar states ηð1405Þ and ηð1475Þ are
needed in the description of any exclusive channel such
as ηππ [24–26], KK̄π [27], and the isospin-violating 3π
channel [28]. Interestingly, it seems to be true that the
pseudoscalars observed in different channels have slightly
shifted masses. For instance, the mass extracted in the KK̄π
channel is 1452.7� 3.8 MeV [27], while the masses in ηππ
and 3π are about 1405 MeV [24–26,28].
A breakthrough of the puzzling situation was the

proposal by Ref. [29] in the interpretation of the abnormally
large isospin-breaking effects observed by BESIII in
J=ψ → γηð1405=1475Þ → γ þ 3π [28]. The interference
from the intermediate K�K̄ þ c:c: rescattering via a triangle
loop can contribute to the isospin breaking at leading order
due to the satisfaction of the triangle singularity (TS)
condition [30–33]. The TS mechanism can naturally
explain the mass shift and decay patterns with only one
state around 1.4 GeV [29,34,35]. Further detailed studies
including the width effects were also investigated in the
literature [36,37]. In Ref. [36], it was claimed that the TS
contribution would be suppressed by the width effects of
the intermediate K�. Therefore, the TS mechanism may not
be sufficient for accounting for the large isospin-breaking
effects observed by BESIII [28]. A comprehensive analysis
in Ref. [37] later showed that one important transition
process via the TS mechanism was overlooked by the
previous analyses. The TS mechanism can also enhance the
direct production of a0ð980Þ in the isospin-conserving
channel and then enhance the isospin-violating channel
via the a0ð980Þ-f0ð980Þ mixing. The analysis of Ref. [37]
thus firms up the role played by the TS mechanism in the
understanding of the ηð1405Þ and ηð1475Þ puzzle.
It should be mentioned that in phenomenological studies

of the pseudoscalar glueball mixing with the qq̄ states, i.e.,
η-η0-G or η-η0-G-ηc mixings, the physical mass of the
pseudoscalar glueball was assigned by ηð1405Þ. By doing

so, the gluon contents introduced into η and η0 seem to
agree with the experimental observables. However, as
shown by a detailed analysis of Ref. [17] following the
axial vector anomaly dynamics [15,16], the gluon contents
inside η and η0 are not sensitive to the physical mass of the
pseudoscalar glueball. Furthermore, with the LQCD pure
gauge glueball mass as an input, the physical mass cannot
get to be lighter than 1.8 GeV [17]. A similar conclusion
was found by Refs. [38,39] in the framework of the axial
vector anomaly.
Motivated by this progress on disentangling the ηð1405Þ

and ηð1475Þ puzzle, we will investigate the scenario of
treating ηð1295Þ and ηð1405Þ [hereafter, we use ηð1405Þ to
denote all signals related to either ηð1405Þ or ηð1475Þ in the
previous two-state scenario] as the first radial excitation
states of η and η0. The radiative decay of ηð1405Þ → γρ and
ηð1405Þ → γϕ have been measured by BES-II [40] and
BESIII collaborations [41], respectively, in the J=ψ radi-
ative decays. We will systematically study J=ψ → γηX →
γγV with ηX ¼ ηð1295Þ; ηð1405Þ; and V ¼ ϕ; ρ0;ω and
examine the role played by the intermediate K�K̄ meson
loops. This should provide further experimental evidence
for the one-state solution for ηð1405Þ and ηð1475Þ and
allow a natural categorization of ηð1295Þ and ηð1405Þ as
the first radial excitation states of η and η0.
To proceed, we first introduce the mixing between the

SU(3) flavor singlet and octet and then present the
formalism for J=ψ → γηX → γγV in the framework of
the vector meson dominance (VMD) model in Sec. II.
We stress that this will allow a self-consistent calculation of
both tree-level transitions and loop corrections of the
radiative decays of ηX → γV. In Sec. III, we will present
our numerical results for measurable branching fractions
and discuss their phenomenological consequences. A
brief summary will be given in Sec. IV. In the Appendix,
the loop functions for each loop transition amplitude are
provided.

II. FORMALISM

A. Flavor singlet and octet mixing and parametrization
for the production mechanism

As the first radial excitation of η and η0, ηð1295Þ and
ηð1405Þ can be expressed on the quark-flavor basis similar
to η-η0,

ηð1295Þ ¼ cos αPnn̄ − sin αPss̄;

ηð1405Þ ¼ sin αPnn̄þ cos αPss̄; ð1Þ

where nn̄≡ ðuūþ dd̄Þ= ffiffiffi
2

p
and αP ≡ arctan

ffiffiffi
2

p þ θp with
θp the flavor singlet and octet mixing angle. Whether the
mixing angle is the same as that for the η-η0 mixing is still
an open question. In Ref. [42], Isgur proposed that,
although the η-η0 mixing angle deviated from the ideal
mixing significantly, the higher states should restore the
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ideal mixing angle, given that the mass difference between
the flavor nn̄ and ss̄ could be neglected. In this study, we
can either leave the mixing angle to be determined by
experimental data or test the results by adopting the same
mixing angle as that for η-η0.
Taking the advantage of the antisymmetric tensor struc-

ture of the VVP coupling, we can parametrize the coupling
strength for J=ψ → γðqq̄Þ0−þ, where ðqq̄Þ0−þ stands for a
light isoscalar quark-antiquark pair produced in the J=ψ
radiative decays, as

g0 ≡ hðqq̄Þ0−þjĤγjJ=ψi; ð2Þ

where Ĥγ represents the corresponding potential for the
production of ðqq̄Þ0−þ . Based on the SU(3) flavor sym-
metry, the coupling strengths g̃ηX can be written as

g̃ηð1295Þ ¼ g0ð
ffiffiffi
2

p
cos αP − R sin αPÞ;

g̃ηð1405Þ ¼ g0ð
ffiffiffi
2

p
sin αP þ R cos αPÞ; ð3Þ

for ηð1295Þ and ηð1405Þ, respectively. In the above
equation, R is an SU(3) flavor symmetry-breaking param-
eter. It distinguishes the production of an ss̄ from uū and dd̄
and generally takes R ≃mu=d=ms.
It is clear here that the production of ηð1295Þ would be

highly suppressed in comparison with the production of
ηð1405Þ due to the destructive interference between the nn̄
and ss̄ component for ηð1295Þ and constructive interfer-
ence for ηð1405Þ in the radial excitation scenario if the
same mixing angle as that for the η-η0 mixing is adopted.
This is consistent with the current experimental observation
that signals for ηð1405Þ are much stronger than for
ηð1295Þ [1].
Under the assumption, the ratio of ΓðJ=ψ → γηð1405ÞÞ

to ΓðJ=ψ → γηð1295ÞÞ can be expressed as

ΓðJ=ψ → γηð1405ÞÞ
ΓðJ=ψ → γηð1295ÞÞ ¼

�jpηð1405Þj
jpηð1295Þj

�
3

×

� ffiffiffi
2

p
sin αP þ R cos αPffiffiffi

2
p

cos αP − R sin αP

�
2

; ð4Þ

where the partial momentum has been included in these two
P-wave processes. In principle, experimental data for
exclusive decay branching ratios will determine g0, and
the relation in Eq. (4) will provide a test of the radial
excitation picture as αP and R will share the same values as
for η and η0 [43,44]. However, to extract the J=ψ exclusive
decay branching ratios, one has to subtract the decay
information of the intermediate pseudoscalar mesons in
J=ψ → γηX → γγV. As shown in Table I, so far, the most
precise data from BESIII are still combined branching
ratios. It means that a better understanding of the ηX
exclusive decay into γV is required.
The effective couplings for ηX → γV are defined as

LηXγV ¼ gηXγVϵαβδλ∂αVδ∂βAλP; ð5Þ

where gηXγV contains the contributions from all possible
mechanisms in ηX → γV and the electromagnetic (EM)
field Aλ contains both isoscalar and isovector components.
At the hadronic level, the effective coupling can be
decomposed into the tree diagram contributions via the
VMD model and meson loop transitions as higher-order
corrections. The transition mechanism is illustrated by
Fig. 1. Notice that the coupling vertices are well defined
in the SU(3) flavor symmetry limit. The detailed calcu-
lations of the tree and loop amplitudes will be given in the
next subsection. With the calculated gηXγV , one can express
the partial decay width for J=ψ → γηX → γγV as

ΓJ=ψ→γηX→γγV ∝
Z

d3p1d3p2d3p3

ð2πÞ92E12E22E3

ð2πÞ4δ4ðPJ=ψ − p1 − p2 − p3Þ

× fg̃ηXgηXγV ½GηXðs ¼ ðp2 þ p3Þ2Þ þ GηXðs ¼ ðp1 þ p3Þ2Þ�g22s × 2m2
J=ψ jp1j2jp2j2; ð6Þ

TABLE I. Branching ratios of the combined decays of J=ψ → γηð1405=1475Þ and ηð1405=1475Þ decays into
final states. For J=ψ → γηð1405Þ → γγϕ, two solutions are provided by the BESIII analysis [41].

Channel Branching ratio

BRðJ=ψ → γηð1405=1475Þ → γKK̄πÞ ð2.8� 0.6Þ × 10−3 [45]
BRðJ=ψ → γηð1405=1475Þ → γγρÞ ð7.8� 2.0Þ × 10−5 [45]
BRðJ=ψ → γηð1405=1475Þ → γγϕÞðIÞ ð7.03� 0.92� 0.91Þ × 10−6 [41]
BRðJ=ψ → γηð1405=1475Þ → γγϕÞðIIÞ ð10.36� 1.51� 1.54Þ × 10−6 [41]
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where PJ=ψ is the 4-vector momentum of the initial J=ψ ;
GηXðsÞ denotes the propagator of ηð1405Þ or ηð1295Þ,
respectively, i.e.,

Gηð1405ÞðsÞ ¼
i

s −m2
ηð1405Þ þ imηð1405ÞΓηð1405Þ

;

Gηð1295ÞðsÞ ¼
i

s −m2
ηð1295Þ þ imηð1295ÞΓηð1295Þ

: ð7Þ

Note that the parametrization of Eq. (6) has neglected the
energy or momentum dependence with the couplings g̃ηX
and gηXγV . For the kinematics near the pole masses of ηX,
this approximation is reasonable. The decay coupling gηXγV
contains contributions from both tree-level and loop am-
plitudes, i.e., gηXγV ¼ gTηXγV þ gLηXγV with the superscripts T
and L indicating the tree and loop processes, respectively.
These two quantities, gTηXγV and gLηXγV , will then be
calculated in our model.

B. Tree-level amplitude in the VMD model

In this work, we adopt the VMD model [46] to describe
the EM vertices. With the Lagrangian of Eq. (5) and the
VMD model, the amplitude of the tree diagram shown in
Fig. 1(a) can be written as

iMT ¼ igTηXγVϵαβδλp
α
γp

β
Vϵ

δ
γϵ

λ
V; ð8Þ

where the tree-level effective coupling gTηXγV can be
expressed as

gTηXγV ≡ −igηXVV
em2

V

fV
GV; ð9Þ

where GV is the propagator of the intermediate vector
meson V,

GV ≡ −i
p2
γ −m2

V þ imVΓV
; ð10Þ

with V denoting the vector meson ρ0, ω, or ϕ, which is the
same as the final-state vector meson in ηX → γV as required
by the isospin symmetry. The strong coupling constants
gηXVV can be extracted by other independent processes.
Then, the couplings for other vectors within the same SU(3)
multiplet can be related to each other by the SU(3)
symmetry. We will come back to this in the next subsection
with detailed extraction of gηXVV .
The vector meson decay constant e=fV can be deter-

mined by V → eþe− using the experimental data, which
can be expressed as

e
fV

¼
�
3ΓV→eþe−

2αejpej
�

1=2
; ð11Þ

where pe is the three-vector momentum of the electron in
the vector-meson rest frame. The values for different vector
meson decays are extracted by adopting the experimental
data of the vector meson decays into eþe− [1], and they are
listed in Table II.

C. Loop amplitudes in the VMD model

1. Lagrangians and coupling constants

The triangle loop amplitudes illustrated by Fig. 1(b) can
also be calculated in the VMD model. The loop amplitudes
can reduce to an effective coupling which contributes to the
ηXγV coupling in the end. Within the triangle loops, the
vertices for the photon couplings to the kaon and/or K�
pairs can be described by the VMD model. Taking the
K�þK− coupling to the photon γ as an example, the photon
can couple to the intermediate ρ0, ω, and ϕ mesons, via the
following amplitude,

gK�þK−γ ¼
X
q¼u;s

X
V¼ρ;ω;ϕ

hðqq̄Þ1−− jViigV 0VP
em2

V

fV
GV; ð12Þ

where V 0 and P stand for the initial K�þ and pseudoscalar
meson K−, while V stands for the intermediate vector
mesons, ρ0,ω, and ϕ, to which the photon can couple with a
strength of the decay constant e=fV ; hðqq̄Þ1−− jVi is a favor
factor given by the decomposition of the qq̄ into flavor
eigenstate of the intermediate vector mesons. For instance,
we have

(a) (b)

(c) (d)

FIG. 1. Schematic diagrams for the process ηX → γV at the tree
and loop levels in the VMD model. Part (a) stands for the tree-
level transitions; part (b) stands for the hadronic triangle loop
transitions; and parts (c) and (d) denote the contact diagrams with
a photon induced by the minimum substitution at the two strong
interaction vertices, respectively.
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hðuūÞ1−− jVi ¼
��

1

2
ðuū − dd̄Þ þ 1

2
ðuūþ dd̄Þ

�
jVi;

¼ 1ffiffiffi
2

p hðρ0 þ ωÞjVi: ð13Þ

For each transition, we present the detailed
expressions as

gK�þK−γ ¼
iffiffiffi
2

p
�
gωK�þK−

em2
ω

fω
Gω þ gρK�þK−

em2
ρ

fρ
Gρ

�

þ igϕK�þK−
em2

ϕ

fϕ
RGϕ; ð14Þ

gK�0K̄0γ ¼
iffiffiffi
2

p
�
gωK�0K̄0

em2
ω

fω
Gω þ gρK�0K̄0

em2
ρ

fρ
Gρ

�

þ igϕK�0K̄0

em2
ϕ

fϕ
RGϕ ð15Þ

for the K�Kγ vertex,

gK�þK�−γ ¼
iffiffiffi
2

p
�
gωK�þK�−

em2
ω

fω
Gω þ gρK�þK�−

em2
ρ

fρ
Gρ

�

þ igϕK�þK�−
em2

ϕ

fϕ
RGϕ; ð16Þ

gK�0K̄�0γ ¼
iffiffiffi
2

p
�
gωK�0K̄�0

em2
ω

fω
Gω þ gρK�0K̄�0

em2
ρ

fρ
Gρ

�

þ igϕK�0K̄�0
em2

ϕ

fϕ
RGϕ ð17Þ

for the K�K̄�γ vertex, and

gKþK−γ ¼
iffiffiffi
2

p
�
gωKþK−

em2
ω

fω
Gω þ gρKþK−

em2
ρ

fρ
Gρ

�

þ igϕKþK−
em2

ϕ

fϕ
RGϕ; ð18Þ

gK0K̄0γ ¼
iffiffiffi
2

p
�
gωK0K̄0

em2
ω

fω
Gω þ gρK0K̄0

em2
ρ

fρ
Gρ

�

þ igϕK0K̄0

em2
ϕ

fϕ
RGϕ ð19Þ

for the KK̄γ vertex. The ground-state vector meson decay
constants e=fV (V ¼ ϕ; ρ0;ω) have been given by Eq. (11),
and their values are listed in Table II.

For the hadronic vertices, one can see that they can be
arranged by the SU(3) symmetry. Thus, their relative
strengths and phases are fixed. There are three types of
hadronic coupling vertices in the loop amplitudes, i.e.,
VPP, VVP, and VVV, for which effective Lagrangians are
adopted. The corresponding effective Lagrangians are

LVPP ¼ igVPPTr½ðP∂μP − ∂μPPÞVμ�; ð20Þ

LVVP ¼ gVVPϵαβμνTr½∂αVμ∂βVνP�; ð21Þ

LVVV ¼ igVVVhð∂μVν − ∂νVμÞVμVνi; ð22Þ

where V and P stand for the vector and pseudoscalar fields
for the flavor SU(3) multiplets, respectively, and they have
the forms

P¼

0
BBB@

sinαPη0þcosαPηþπ0ffiffi
2

p πþ Kþ

π− sinαPη0þcosαPη−π0ffiffi
2

p K0

K− K̄0 cosαPη0−sinαPη

1
CCCA

ð23Þ

and

V ¼

0
BBB@

ωþρ0ffiffi
2

p ρþ K�þ

ρ− ω−ρ0ffiffi
2

p K�0

K�− K̄�0 ϕ

1
CCCA; ð24Þ

where the ideal mixing between ω (¼ ðuūþ dd̄Þ= ffiffiffi
2

p
) and

ϕ (¼ ss̄) is implied.
Note that we adopt the same form as Eq. (23) for the first

radial excitation states of the pseudoscalar mesons.
Considering the ηX coupling to K�K̄, the effective

Lagrangians have the expressions

Lηð1405ÞK�þK− ¼ igηð1405ÞK�þK−ðK−∂μηð1405Þ − ηð1405Þ∂μK−ÞðK�þÞμ

≡ igXVP

�
sin αPffiffiffi

2
p R − cos αP

�
ðK−∂μηð1405Þ − ηð1405Þ∂μK−ÞðK�þÞμ; ð25Þ

TABLE II. Vector meson decay constants determined by
V → eþe−. The data are taken from the PDG [1].

Channel Total width of V BRðV → eþe−Þ e=fVð×10−2Þ
ϕ → eþe− 4.25 MeV ð2.97� 0.04Þ × 10−4 −2.26
ρ0 → eþe− 147.8 MeV ð4.72� 0.05Þ × 10−5 6.05
ω → eþe− 8.49 MeV ð7.36� 0.15Þ × 10−5 1.78
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and

Lηð1295ÞK�þK− ¼ igηð1295ÞK�þK−ðK−∂μηð1295Þ − ηð1295Þ∂μK−ÞðK�þÞμ

≡ igXVP

�
cos αPffiffiffi

2
p Rþ sin αP

�
ðK−∂μηð1295Þ − ηð1295Þ∂μK−ÞðK�þÞμ; ð26Þ

where gXVP is the overall coupling between a radial excitation pseudoscalar qq̄ and K�þK− and will be determined later; R
is the SU(3) flavor symmetry-breaking factor defined earlier.
Couplings between ηX and K�K̄� also contribute to the loop amplitudes. The corresponding Lagrangians are

Lηð1405ÞK�þK�− ¼ gXVVϵαβμν

�
sin αPffiffiffi

2
p R∂αðK�þÞμ∂βðK�−Þνηð1405Þ þ cos αP∂αðK�−Þμ∂βðK�þÞνηð1405Þ

�

¼ gXVV

�
sin αPffiffiffi

2
p Rþ cos αP

�
ϵαβμν∂αðK�þÞμ∂βðK�−Þνηð1405Þ ð27Þ

for the ηð1405ÞK�þK�− coupling and

Lηð1295ÞK�þK�− ¼ gXVV

�
cos αPffiffiffi

2
p R − sin αP

�
ϵαβμν

× ∂αðK�þÞμ∂βðK�−Þνηð1295Þ ð28Þ

for the ηð1295ÞK�þK�− coupling, respectively. The cou-
pling gXVV is the overall coupling strength of the first radial
excitation state of a ðqq̄Þ0−þ to a vector meson pair. This
quantity will be determined by the combined analysis of the
data for J=ψ → γηð1405=1475Þ → γKK̄π and J=ψ →
γηð1405=1475Þ → γγρ0 [1].
The other hadronic vertices, which involve the inter-

actions between the ground-state vector and pseudoscalar
mesons, can be obtained by expanding Eqs. (20)–(22).
We adopt the following strategy to determine the

coupling constants:
(i) In our calculation, we take the same sign for the

ground-state coupling gVPP and gXVP. They are
defined as positive and real numbers, and then the
signs for the other couplings will be fixed.

(ii) The coupling gVPP between the ground-state vector
and pseudoscalar mesons can be determined by
ϕ → KþK−. Then, the other VPP couplings can
be related to gϕKþK− by the SU(3) flavor symmetry.
We note that one can also extract gVPP via ρ → ππ,
and some SU(3) flavor symmetry-breaking effects
can be found. By adopting the coupling extracted
from ϕ → KK̄, we actually absorb some leading SU
(3) flavor symmetry-breaking effects into this quan-
tity since all the vertices in the loop processes
involve couplings with the strange mesons. The
corresponding couplings gϕKþK− and gVPP are listed
in Table III.

(iii) The coupling gVVP in the loop between the ground-
state vector and pseudoscalar mesons is determined
by fitting the experimental data for V → γP and
η0 → γV in the VMD model. For these transitions

between the ground-state vector and pseudoscalar
mesons, we assume that the intermediate ground-
state vector mesons saturate the transition ampli-
tudes. The corresponding channels and fitting results
are listed in Table IV, and the best fitting gives
gVVP ¼ 8.38� 0.1 GeV−1. We then adopt gVVP ¼
8.38 GeV−1 to extract other VVP couplings in the
loop amplitudes which are listed in Table V. The sign
is determined to be consistent with the gVPP follow-
ing the 3P0 model.

TABLE III. Strong couplings adopted for the VPP vertices in
the K�K̄ðKð�ÞÞ loops.
VPP coupling constant Values

gϕKþK− 4.47
gρKþK− − gϕKþK−ffiffi

2
p

gωKþK− − gϕKþK−ffiffi
2

p

gVPP 4.47

TABLE IV. The fitted radiative transitions between the ground-
state vector and pseudoscalar mesons in comparison with the
experimental data in the VMD model. The best fitting gives
gVVP ¼ 8.38� 0.1 GeV−1.

Channels Experiments (MeV) Fitted values (MeV)

η0 → γρ ð6.7� 0.7Þ × 10−2 ð8.6� 0.2Þ × 10−2

ρ → γη ð4.5� 0.3Þ × 10−2 ð5� 0.1Þ × 10−2

ρ → γπ ð7� 1Þ × 10−2 ð6.1� 0.1Þ × 10−2

η0 → γω ð5.8� 0.7Þ × 10−3 ð6.4� 0.2Þ × 10−3

ω → γη ð3.8� 0.4Þ × 10−3 ð5.2� 0.1Þ × 10−3

ω → γπ 0.71� 0.03 0.72� 0.02
ϕ → γη0 ð2.6� 0.1Þ × 10−4 ð2.9� 0.1Þ × 10−4

ϕ → γη ð5.5� 0.1Þ × 10−2 ð5.2� 0.1Þ × 10−2

K�� → γK� ð5� 0.5Þ × 10−2 ð2.4� 0.05Þ × 10−2

K�0ðK̄�0Þ → γK0ðK̄0Þ 0.12� 0.01 0.081� 0.002
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(iv) The strong couplings gVVV , gVVP, and gVPP can be
related to each other by matching the relation of their
corresponding transition amplitudes in an effective
Lagrangian approach (ELA) to the same relation
which can be extracted explicitly in the quark pair
creation (QPC) model (i.e., 3P0 model). In Appen-
dix B, we provide the main formalisms for the QPC
model calculations as a reference. The values of
gVVV for the relevant channels are also listed in
Table V. We mention that the two couplings gVPP
and gVVP hold a reasonable relation to that extracted
in the quark model, i.e., gVPP ≃mVgVVP=2.

(v) The physical coupling gηð1405ÞK�K̄ can be extracted
from experimental data by a combined analysis of the
ηð1405Þ decays into KK̄π, ηππ, and 3π [34,37]. By
adopting the branching ratio B:R:ðηð1405Þ →
K�K̄ þ c:c:Þ ≃ 50% and the total width Γηð1405Þ ¼
90 MeV, we can extract gXVP with αP ¼ 42° [37].
Then, both gηð1405ÞK�þK− and gηð1295ÞK�þK− can be
determined. Their values are listed in Table VI. The
overall coupling gXVP can also be determined. The
extracted values are listed in Table VI.

(vi) One can determine gXVV by matching the partial
decay width of ηð1405Þ → γρ0 to the existing data
[47]. We will show later that the gXVV determined in
this way is reasonable since the decay width for
ηð1405Þ → γρ is dominated by the tree-level tran-
sition amplitude and the loop contributions are
negligibly small. Then, by taking the ratio
of BRðJ=ψ → γηð1405Þ → γγρ0Þ=BRðJ=ψ →
γηð1405Þ → γK�K̄ þ c:c:Þ and with the constraint
from the experimental data (see Table I and
Refs. [41,45]), we can extract gXVV ¼ 9.5� 1.5 as
listed in Table VII.

Combining the couplings collected in Tables II and V, we
can extract the effective couplings defined in Eqs. (14)–(19)
as a test of the VMD model, and the couplings are listed in
Table VIII. Since the widths of the intermediate vector
mesons are considered, the couplings extracted in the VMD
are complex numbers. In Table VIII, we also provide the
magnitudes of the complex couplings in round brackets in
order to compare with the quantities extracted from experi-
ment. One can see that the VMD model has accounted for
the experimental data reasonably well under the assumption
of the ground-state vector meson saturation.
The relations for couplings among the flavor SU(3)

multiplets will be explicitly presented in the construction of
each loop amplitude.

2. Loop amplitudes

With the above effective Lagrangians, we can write
down the loop transition amplitudes for Figs. 1(b)–1(d). For

TABLE V. Strong couplings adopted for the vertices in the
K�K̄ðKð�ÞÞ loops.
VVP Values (GeV−1) VVV Values

gϕK�þK− 8.38 gϕK�þK�− 4.47
gρK�þK−

gϕK�þK−ffiffi
2

p gρK�þK�− − gϕK�þK�−ffiffi
2

p

gωK�þK−
gϕK�þK−ffiffi

2
p gωK�þK�− − gϕK�þK�−ffiffi

2
p

gVVP 8.38 gVVV 4.47

TABLE VI. Hadronic couplings for ηX → K�þK− based on
gηð1405ÞK�þK− ¼ −3.64 determined by combined analyses of the
decays of ηð1405Þ → K�K̄ þ c:c: and ηππ [34,37]. αP ¼ 42° is
adopted for the mixing between ηð1295Þ and ηð1405Þ.
ηXVP Values

gηð1405ÞK�þK− −3.64 [34,37]
gηð1295ÞK�þK− 10.9
gXVP 9.98

TABLE VII. Strong couplings for ηX → VV in the VMD
model. The overall coupling gXVV ¼ 9.5� 1.5 is extracted by
the combined analysis of J=ψ → γηð1405Þ → γγρ0 and
J=ψ → γηð1405Þ → γK�K̄ þ c:c. We adopt the central value of
gXVV ¼ 9.5 in the numerical calculation.

Coupling constant Expression Value (GeV−1)

gηð1295ÞK�þK�− gXVVðR cos αP=
ffiffiffi
2

p
− sin αPÞ −1.36� 0.22

gηð1405ÞK�þK�− gXVVðR sin αP=
ffiffiffi
2

p þ cos αPÞ 11.6� 1.8
gηð1295Þρρ

ffiffiffi
2

p
gXVV cos αP 10.0� 1.6

gηð1405Þρρ
ffiffiffi
2

p
gXVV sin αP 9.0� 1.4

gηð1295Þωω
ffiffiffi
2

p
gXVV cos αP 10.0� 1.6

gηð1405Þωω
ffiffiffi
2

p
gXVV sin αP 9.0� 1.4

gηð1295Þϕϕ −2gXVVR sin αP −10.2� 1.6
gηð1405Þϕϕ 2gXVVR cos αP 11.3� 1.8
gXVV � � � 9.5� 1.5

TABLE VIII. The effective couplings for the K�Kð�Þγ transi-
tions. The values extracted from the VMD model are listed in the
second column, and their corresponding modules are presented in
the parentheses. In the last column, the signs of the gK�Kγ

couplings are determined in the quark model. The couplings
gK�K�γ and gKKγ are treated as pure QED couplings. Thus, their
coupling strengths will be given by the charge of the hadron. Note
that e ≃ 0.3.

Electromagnetic
couplings

Values in VMD
(magnitude)

Experimental
values

gK�þKþγ (GeV−1) −0.17 − i0.05 (0.18) −0.25
gK�0K0γ (GeV−1) 0.33þ 0.05i (0.33) 0.38
gK�þK�þγ 0.25þ 0.026i (0.25) e
gK�0K�0γ −0.01 − 0.024i (0.03) 0
gKþKþγ 0.25þ 0.026i (0.25) e
gK0K0γ −0.01 − 0.024i (0.03) 0
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the triangle loops [Fig. 1(b)], we use the notation
½M1;M3; ðM2Þ� to denote the intermediate interaction
between particle M1 and M3 by exchanging M2; e.g.,
½K�; K̄; ðKÞ� represents the loop where the intermediate K�

and K̄ scatter into the final states by exchanging K. The
masses and 4-vector momenta of these internal particles are
denoted by (m1,m3,m2) and (p1, p3, p2), respectively. The
4-vector momenta of the initial-state meson X, final-state
photon, and vector meson are labeled as pX, pγ , and pV ,
respectively. The polarizations of the final-state photon and
vector meson are ϵγ and ϵV , respectively. Similarly,
we adopt notation ½M1;M2� for the internal mesons in
Figs. 1(c)–1(d).
To cut off the UV divergence in the loop integrals, we

include a commonly adopted form factor to regularize the
integrand,

F ðp2i Þ ¼
Y
i

exp

�
−
p2i
Λ2

�
; ð29Þ

where Λ is the cutoff energy and its typical value is around
the ρ mass; pi is the 3-momentum of the ith particle in the
loops in the c.m. frame of the initial particle. In the loop
integrals, we first reduce the four-dimension integrations
into the three-dimension ones by integrating the energy
component and then regularize the integrands by the above
form factor. Such a form factor originates from the quark
model wave function convolutions at the coupling vertices.
The corresponding hadronic coupling constant is usually
defined with all the interacting hadrons being at rest. For
instance, in a decay process where the final-state hadrons
carry momenta, suppressions or corrections to the constant
coupling will be introduced by the wave function con-
volutions which have a form as Eq. (29).
As follows, we will write down the detailed amplitude

for each loop transition with explicit phase conventions.

½K�; K̄; ðKÞ�.—The amplitude for the ½K�; K̄; ðKÞ� loop is

iM¼
Z

d4p1

ð2πÞ4V1σDσμðK�ÞV2μV3DðKÞDðK̄ÞF ðp2i Þ; ð30Þ

where the vertex functions have been expressed by a
compact form and have the expressions

V1σ ¼ igηXK�K̄ðpX þ p3Þσ;
V2μ ¼ igK�Kγϵαβδμpα

γp
β
1ϵ

δ
γ ;

V3 ¼ iRgVKK̄ðp2 − p3ÞλϵλV; ð31Þ

with the SU(3) flavor symmetry-breaking factor R included
if the interacting vector meson V ¼ ρ and ω. In Eq. (30),
functions DσμðK�Þ and DðKÞ are the propagators for K�
and K, respectively, with 4-vector momentum p, i.e.,

DσμðK�Þ ¼
−iðgσμ − pσpμ

p2 Þ
p2 −m2

K� þ iϵ

DðKÞ ¼ i
p2 −m2

K þ iϵ
: ð32Þ

In the calculations, the propagators will carry the corre-
sponding 4-vector momenta required by momentum
conservation.
There are four isospin channels for this type of triangle

diagram, which include ½K�þ; Kþ; ðK−Þ�, ½K�−; K−; ðKþÞ�,
½K�0; K0; ðK̄0Þ�, and ½K̄�0; K̄0ðK0Þ�. The vertex coupling
constants are connected by the SU(3) flavor symmetry:

gηXK�þK− ¼ −gηXK�−Kþ ¼ gηXK�0K̄0 ¼ −gηXK̄�0K0 ;

gϕKþK− ¼ −gϕK−Kþ ¼ gϕK0K̄0 ¼ −gϕK̄0K0 ;

gωKþK− ¼ −gωK−Kþ ¼ gωK0K̄0 ¼ −gωK̄0K0 ;

gρKþK− ¼ −gρK−Kþ ¼ −gρK0K̄0 ¼ gρK̄0K0 : ð33Þ

The coupling constants for the sum of all the isospin
channels of the ½K�; K̄; ðKÞ� loop can be written as
the following forms for the γϕ, γω, and γρ channels,
respectively:

2gηXK�þK−gϕKþK−ðgK�þKþγ þ gK�0K0γÞ; ð34Þ

2gηXK�þK−gωKþK−ðgK�þKþγ þ gK�0K0γÞ; ð35Þ

2gηXK�þK−gρKþK−ðgK�þKþγ − gK�0K0γÞ: ð36Þ

As listed in Table VIII, the couplings gK�þKþγ and gK�0K0γ

have a sign phase, which implies the constructive phase
between the charged and neutral meson loops for ηX → γρ,
while the γϕ and γω channels involve a destructive phase.
The loop integral will be given in the Appendix, and the

contributions of each type of the loop transitions will be
collected and compared with each other among different
processes.

½K�; K̄; ðK�Þ�.—Similarly, by denoting the masses and 4-
vector momenta of the intermediate mesons (K�, K�, K̄) as
(m1, m2, m3) and (p1, p2, p3), respectively, the loop
transition amplitude can be written as

iM ¼
Z

d4p1

ð2πÞ4 V1σDσμðK�ÞV2μρDρνðK�ÞV3νDðK̄ÞF ðp2i Þ;

ð37Þ

where the vertex function V1σ has the same form as that in
Eq. (31) and the other two functions are
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V2μρ ¼ −igK�K�γ½ϵδγgδμp1ρ þ ϵδγgδρp2μ − gμρðp1 þ p2Þδϵδγ �;
ð38Þ

V3ν ¼ iRgVK�þK−ϵαβνλpα
2p

β
Vϵ

λ
V: ð39Þ

Similar to the previous loop amplitude, there are also
four isospin channels which involve the charged and
neutral intermediate mesons. They can be combined
together with the coupling constants for the γϕ, γω, and
γρ0 channels, respectively, i.e.,

2gηXK�þK−gϕK�þK−ðgK�þK�þγ þ gK�0K�0γÞ; ð40Þ

2gηXK�þK−gωK�þK−ðgK�þK�þγ þ gK�0K�0γÞ; ð41Þ

2gηXK�þK−gρK�þK−ðgK�þK�þγ − gK�0K�0γÞ: ð42Þ

As listed in Table VIII, the charge neutral coupling gK�0K�0γ
is much smaller than the charged one.

½K�; K̄�; ðKÞ�.—With the same notation convention for the
masses and 4-vector momenta of the intermediate mesons,
the loop amplitude can be expressed as

iM¼
Z

d4p1

ð2πÞ4V1μνDμμ0 ðK�ÞV2μ0DðKÞV3ν0Dν0νðK̄�ÞF ðp2i Þ;

ð43Þ

where the vertex function V2μ0 has been given in Eq. (31)
and the other two vertex functions are

V1μν ¼ −igηXK�K̄�ϵαβμνpα
1p

β
3 ð44Þ

V3ν0 ¼ iRgVK�K̄ϵα2β2ν0λp
α2
3 pβ2

V ϵ
λ
V: ð45Þ

Combining together the four isospin channels, we have the
coupling constants for the γϕ, γω, and γρ0 decays,
respectively, as follows:

2gηXK�þK�−gϕK�þK−ðgK�þKþγ þ gK�0K0γÞ; ð46Þ
2gηXK�þK�−gωK�þK−ðgK�þKþγ þ gK�0K0γÞ; ð47Þ

2gηXK�þK�−gρK�þK−ðgK�þKþγ − gK�0K0γÞ: ð48Þ

½K�; K̄�; ðK�Þ�.—The transition amplitude can be written as

iM¼
Z

d4p1

ð2πÞ4V1μνDμμ0 ðK�ÞV2μ0ρDρσðK�ÞV3ν0σ

×Dν0νðK̄�ÞF ðp2i Þ; ð49Þ
where the vertex functions have been given earlier for the
corresponding couplings. Similar to the loop amplitudes

discussed, we combine the isospin channels together to
give the couplings for the γϕ, γω, and γρ0 decays,
respectively, as follows:

2gηXK�þK�−gϕK�þK�−ðgK�þK�þγ þ gK�0K�0γÞ; ð50Þ

2gηXK�þK�−gωK�þK�−ðgK�þK�þγ þ gK�0K�0γÞ; ð51Þ

2gηXK�þK�−gρK�þK�−ðgK�þK�þγ − gK�0K�0γÞ: ð52Þ

½K; K̄�; ðKÞ�.—The transition amplitude can be written as

iM ¼
Z

d4p1

ð2πÞ4 V1μDðKÞV2DðKÞV3νDμνðK̄�ÞF ðp2i Þ; ð53Þ

where the vertex functions V1μ and V3ν have been given
earlier and V2 has the following form:

V2 ¼ igKKγðp1 þ p2Þδϵδγ : ð54Þ

Again, combining the four isospin channels of this type
of the loop transitions, we obtain the coupling constants for
the γϕ, γω, and γρ0 decays, respectively, as

2gηXKþK�−gϕKþK�−ðgKþKþγ þ gK0K0γÞ; ð55Þ

2gηXKþK�−gωKþK�−ðgKþKþγ þ gK0K0γÞ; ð56Þ

2gηXKþK�−gρKþK�−ðgKþKþγ − gK0K0γÞ; ð57Þ

where the charge neutral amplitudes vanish literally due to
the suppressed coupling gK0K0γ .

½K; K̄�; ðK�Þ�.—The transition amplitude can be written as

iM¼
Z

d4p1

ð2πÞ4V1μDðKÞV2νDνν0 ðK�ÞV3μ0ν0Dμμ0 ðK̄�ÞF ðp2i Þ;

ð58Þ

where all the vertex functions have been given earlier. The
combined couplings for these four isospin channels can be
expressed as the following forms for the γϕ, γω, and γρ0

decays, respectively:

2gηXKþK�−gϕK�þK�−ðgK�þKþγ þ gK�0K0γÞ; ð59Þ

2gηXKþK�−gωK�þK�−ðgK�þKþγ þ gK�0K0γÞ; ð60Þ

2gηXKþK�−gρK�þK�−ðgK�þKþγ − gK�0K0γÞ: ð61Þ

Contact loop diagrams.—Besides the triangle loop tran-
sitions, the photon can be produced by the minimum
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substitution of the derivative at the hadronic interaction
vertices, i.e.,

∂μ → ∂μ þ ieQ̂Aμ: ð62Þ

Such contributions are illustrated by Figs. 1(c) and 1(d) and
are referred to as the contact loop diagrams in this paper.
For Figs. 1(c) or 1(d), the intermediate mesons ½M1;M2�

both could be ½K�; K̄� or ½K�; K̄��. It can be easily proven
that contributions from Fig. 1(c) with either ½K�; K̄� or
½K�; K̄�� should vanish [48]. For Fig. 1(d) with
½M1;M2� ¼ ½K�; K̄��, the antisymmetric tensor coupling
for the ηXK�K̄� vertex dictates that the induced photon can
only contribute via its longitudinal component. Thus, for
the real photon decay, this transition will be forbidden. As a
result, only the transition of Fig. 1(d) with the intermediate
K�K̄ mesons will have nonvanishing contributions, and the
corresponding amplitude can be expressed as

iM ¼
Z

d4p1

ð2πÞ4 V1μDμαðK�þÞV2αDðK−ÞF ðp2i Þ; ð63Þ

where the vertex function V1μ has been defined in Eq. (31)
and V2α has the following form:

V2α ¼ −ieðQ̂K�þÞRgVK�þK−ϵδβαλϵ
δ
γp

β
Vϵ

λ
V: ð64Þ

It is obvious that the intermediate charge neutral loops
cannot contribute since the amplitude is proportional to the
charge of the pseudoscalar meson. Moreover, taking into
account the SU(3) relation among the couplings, one finds
that the two amplitudes with the intermediate K�−Kþ and
K�þK− loops are constructive for all the decay channels
into γϕ, γω, and γρ0.
The detailed expressions of the loop amplitudes defined

in this subsection are provided in the Appendix.
Meanwhile, taking the advantage of the antisymmetric
tensor structure for the VVP (VγP) coupling, we can
define effective couplings for each transition amplitude,
and the total amplitude can be written as a sum of all these
amplitudes, i.e.,

iMTotal ¼ iðgTηXγV þ gLηXγVÞϵαβδλpα
γp

β
Vϵ

δ
γϵ

λ
V; ð65Þ

where gTηXγV and gLηXγV are the effective couplings extracted
from the tree and loop transitions, respectively.

III. NUMERICAL RESULTS AND DISCUSSIONS

The present experimental measurements of the exclusive
decays of ηð1295Þ and ηð1405Þ are still far from satisfac-
tory. In particular, the mass degeneracy of f1ð1285Þ and
f1ð1420Þ with ηð1295Þ and ηð1405Þ has brought a lot of
challenges to the data analysis. At this moment, the data

from J=ψ and ψð3686Þ decays provide the joint branching
ratios for the production and decay of these two states.

A. Partial decay widths for ηð1405Þ and ηð1295Þ → γV

With the amplitudes and parameters provided in the
previous section, we can directly calculate the radiative
decays of these two states. In Table IX, the exclusive
contributions from the tree-level amplitudes are listed and
compared with the results with the loop contributions
included. Two values for the cutoff parameter Λ ¼ 0.75
and 1.0 GeV are adopted for the loop amplitudes to show
the sensitivities of the partial decay widths to the loop
contributions. It shows that the tree-level amplitude is
dominant in ηð1405Þ → γρ0, while relatively large loop
interferences occur in ηð1405Þ → γω and γϕ. Similar
phenomena appear in the ηð1295Þ decays. One can see
the dominance of the tree-level transition amplitude in
ηð1295Þ → γρ0, while the loop transitions have relatively
large interference effects in ηð1295Þ → γω and γϕ. In
particular, the loop contributions in ηð1295Þ → γϕ turn
out to be dominant. This is understandable since ηð1295Þ
has large couplings to K�K̄ þ c:c: in the mixing scheme,
which will strongly enhance the loop amplitude. Moreover,
the tree-level amplitude is suppressed by the intermediate
ϕ → eþe− coupling in the VMD model.
We can also examine the exclusive contributions from

each loop diagram in order to clarify their roles in the
interference with the tree-level amplitude. The results are
listed in Table X for two cutoff values, i.e., Λ ¼ 0.75 and
1.0 GeV. It shows that the triangle diagrams [Fig. 1(b)] have
much smaller contributions than the contact diagrams
[Figs. 1(c) and (d)]. Since both the γω and γϕ channels
experience relatively large interferences from the loop
transitions, it may lead to significant changes to the
branching ratio fractions among these channels if compared
with the tree-level results. It should also be noted that
dependence of the interference effects on the cutoff param-
eter implies that a combined analysis of all the channels with
constraints from experimental data is necessary. In the next
subsection, we will show that the branching ratio fractions

TABLE IX. Partial decay widths of ηX → γV (in unit of MeV)
calculated by the exclusive tree-level amplitudes, and two values
Λ ¼ 0.75 and 1.0 GeV for the cut-off energy are adopted as a
comparison.

Channels
Widths

(tree amp.)

Widths (all)
with Λ ¼
0.75 GeV

Widths (all)
with Λ ¼
1.0 GeV

ηð1295Þ
γρ 2.1� 0.6 2.5� 0.7 2.8� 0.7
γω 0.17� 0.06 0.26� 0.06 0.28� 0.06
γϕ 0.062� 0.02 0.19� 0.03 0.3� 0.03

ηð1405Þ
γρ 2.7� 0.9 2.5� 0.8 2.5� 0.08
γω 0.23� 0.07 0.17� 0.06 0.14� 0.04
γϕ 0.19� 0.06 0.27� 0.07 0.33� 0.06
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between different decay channels can provide further con-
straints on the role of the loop transitions.

B. Relative production rate between ηð1405Þ and
ηð1295Þ

To extract information about their internal structures,
we define several branching ratio fractions which can be
directly compared with the experimental data. For the
production and decay of ηð1295Þ and ηð1405Þ in the same
channel, we define

Rρ ≡ ΓJ=ψ→γηð1405Þ→γγρ

ΓJ=ψ→γηð1295Þ→γγρ
;

Rω ≡ ΓJ=ψ→γηð1405Þ→γγω

ΓJ=ψ→γηð1295Þ→γγω
;

Rϕ ≡ ΓJ=ψ→γηð1405Þ→γγϕ

ΓJ=ψ→γηð1295Þ→γγϕ
: ð66Þ

With the amplitudes given in the previous section, we
can first examine the branching ratio fractions contributed
by the tree diagram in Fig. 1. As an example, the fraction
Rρ has the expression from the tree-level transitions

Rρ ¼
�jpηð1405Þj
jpηð1295Þj

�
3
�jpρj
jp0

ρj
�

3
�
mLΓL

mHΓH

�
2

×

� ffiffiffi
2

p
tan αP þ Rffiffiffi

2
p

− R tan αP

�
2

tan2αP; ð67Þ

where pηð1405Þ and pηð1295Þ denote the three-vector momenta
of ηð1405Þ and ηð1295Þ in the J=ψ rest frame, respectively;
pρ and p0

ρ are the final-state vector meson momenta in the
rest frame of ηð1405Þ and ηð1295Þ, respectively. This ratio
is likely to be larger than unity given that αP ≃ 42° in the
scenario of the first radial excitations. Similarly, the ratios
Rω and Rϕ from the tree diagrams can be extracted.
In Table XI, these three branching ratio fractions from

the tree diagrams are listed. It shows that the combined
branching ratio for ηð1405Þ is about 1 order of magnitude
larger than that for ηð1295Þ. This is consistent with the
experimental observations that the signal for ηð1295Þ is
significantly suppressed in the J=ψ radiative decays.
The inclusion of the loop processes introduces sizeable

corrections to the branching ratio fractions, as we have
learned earlier. In Table XI, the calculation results of Rρ,
Rω, and Rϕ with the loop contributions are also listed.

TABLE X. Decay widths of each type of the hadronic loop diagrams with the cutoff parameter Λ ¼ 0.75 and
1.0 GeV.

Λ ¼ 0.75 GeV Λ ¼ 1.0 GeV

Diagrams Decay channels (KeV) ηð1295Þ ηð1405Þ ηð1295Þ ηð1405Þ

½K�; K̄; ðKÞ�
γρ 0.48 0.39 2.54 1.33
γω 0.038 0.034 0.21 0.16
γϕ 0.70 0.37 1.33 0.78

½K�; K̄; ðK�Þ�
γρ 5.73 2.63 10.0 7.63
γω 5.45 2.4 8.65 3.4
γϕ 4.56 2.83 5.3 3.25

½K�; K̄�; ðKÞ�
γρ 0.12 2.16 0.55 10.7
γω 6.8 × 10−3 0.20 0.031 0.98
γϕ 8.2 × 10−3 0.38 0.031 1.54

½K�; K̄�; ðK�Þ�
γρ 0.044 1.46 0.15 5.1
γω 0.036 1.22 0.12 4.22
γϕ 0.051 2.68 0.15 7.97

½K; K̄�; ðKÞ�
γρ 5.8 × 10−3 3.8 × 10−3 0.073 0.028
γω 4.9 × 10−3 3.2 × 10−3 0.06 0.024
γϕ 0.012 0.013 0.087 0.058

½K; K̄�; ðK�Þ�
γρ 6.1 1.16 29.3 3.35
γω 1.16 0.43 3.91 0.16
γϕ 0.8 0.69 3.9 3.39

½K�; K̄�
γρ 85.3 17 193.3 42.3
γω 82.3 16.6 185.4 41.1
γϕ 73.2 23.1 149.4 51.2

All loops
γρ 84.0 8.5 264.6 20.9
γω 43.9 11.7 111.6 43.8
γϕ 57.4 15.4 158.0 64.6
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The results marked with “Tree level” and “Tþ L”
distinguish the situations of whether or not to include
the loop contributions. Note again that Fig. 1(c) always
vanishes. It shows that the inclusion of the loop diagrams
has led to significant corrections to both Rω and Rϕ. In
contrast, Rρ appears to be a relatively stable quantity. This
is due to the dominance of the tree diagrams in γρ0 for both
ηð1405Þ and ηð1295Þ.

C. Branching ratio fractions between different radiative
decay channels

For ηð1295Þ or ηð1405Þ radiative decays into different
channels, we define the following branching ratio fractions:

Rρ=ϕ
ηð1405Þ ≡

Γηð1405Þ→γρ

Γηð1405Þ→γϕ
;

Rϕ=ω
ηð1405Þ ≡

Γηð1405Þ→γϕ

Γηð1405Þ→γω
;

Rρ=ϕ
ηð1295Þ ≡

Γηð1295Þ→γρ

Γηð1295Þ→γϕ
;

Rω=ϕ
ηð1295Þ ≡

Γηð1295Þ→γω

Γηð1295Þ→γϕ
: ð68Þ

Note that the fractions in Eq. (68) are defined in such a way
that the values at leading order will be larger than unity if
ηð1295Þ and ηð1405Þ are the first radial excitations of η and
η0, respectively.
Supposing that only the tree-level amplitudes contribute

in ηX → γV, the branching ratio fractions defined in
Eq. (68) would have simple forms in terms of the mixing
angle. As an example, the ratio between the γρ0 and γϕ
decay channel can be written as

Rρ=ϕ
ηð1405Þ ≡

Γηð1405Þ→γρ

Γηð1405Þ→γϕ
¼

�jpρj
jpϕj

�
3
� ðem2

ρ=fρÞGρ

ðem2
ϕ=fϕÞGϕ

�
2 tan2αP

2R2
;

ð69Þ

where pρ and pϕ are the three-vector momenta of the final-
state ρ0 and ϕ in the initial ηð1405Þ rest frame. By including
the loop amplitudes, the branching ratio fractions will
deviate from the above expectation.
As mentioned in the Introduction that the BESIII

Collaboration recently measured the radiative decay of
ηð1405Þ → γϕ in J=ψ → γγϕ [41], we can thus calculate
Rρ=ϕ

ηð1405Þ and compare it with the data. The results are

presented in Fig. 2 in terms of two parameters αP and
mηð1405Þ. These two variables are closely related to the
interpretation of these two pseudoscalars. Therefore, the
dependence ofRρ=ϕ

ηð1405Þ on these two variables can illustrate
whether it is a reasonable picture to treat these two states as
the first radial excitation states

1. ηð1405Þ → γV

In Fig. 2, the two overlapping bands denote the ranges of
the experimental ratios extracted from the two solutions for
J=ψ → γηð1405=1475Þ → γγϕ at BESIII [41] as listed in

TABLE XI. Numerical results of Rρ, Rω, and Rϕ with SU(3)-
breaking factor R ¼ 0.8, cutoff energy Λ ¼ 0.75 GeV, and
mixing angle αP ¼ 42°. Here, we only list the values calculated
with the central value of coupling gXVV .

Λ ¼ 0.75 GeV Rρ Rω Rϕ

Tree level 10.8 10.9 20.8
Tþ L 8.8 6.0 12.5

(a) (b)

FIG. 2. (a) Dependence ofRρ=ϕ
ηð1405Þ on the mixing angle αP withmηð1405Þ fixed at 1.405 GeV. The solid dots and triangles denote the full

calculation results and tree-level results, respectively. (b) Dependence ofRρ=ϕ
ηð1405Þ on the mass of ηð1405Þ with the mixing angle αP set at

42°. The solid dots and triangles have the same meaning as (a). In both figures, the cutoff energy Λ ¼ 0.75 GeV is adopted; “Tþ L”
denotes the full calculations including the tree and loop contributions. “ExpCent” denotes the central value of the two solutions from the
BESIII analysis ofRρ=ϕ

ηð1405Þ, i.e., 11.10� 3.50 and 7.53� 2.49, respectively [41]. The light and dark gray bands indicate the error bars of

the two solutions.
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Table I. The central values, 7.53� 2.49 and 11.10� 3.50,
are denoted by the solid and dashed lines, respectively.
Within the commonly adopted values for αP, i.e., αP ≃
38° ∼ 44° [Fig. 2(a)] and within the mass region of
mηð1405Þ ¼ 1.405∼1.475 GeV [Fig. 2(b)], the ratios (round
dots) are consistent with the data within the errors. Since we
carry out numerical calculations of the loop integrals, we
only present separated calculation results for demonstra-
tion. The errors with the round dots are given by the
experimental errors with the data for ηð1405Þ → γρ0 [45].
We also plot the ratios with only the tree amplitude
(triangles) as a comparison. Again, the large discrepancies
between the round dots and triangles indicate that the loop
diagrams provide the significant interferences to the
branching ratio fractions.
In Fig. 3, we present the predictions of Rϕ=ω

ηð1405Þ for a
range of αP [Fig. 3(a)] and mηð1405Þ [Fig. 3(b)], similar to
Fig. 2. The ratios turn out to be stable, and these two
decays, i.e., ηð1405Þ → γϕ and γω, are comparable to each
other. Again, we see that the full amplitude calculations
(round dots) are significantly different from the results with
only the tree diagram contributions (triangles). This also

indicates the dominant role played by the loop diagrams.
The distributions of the round dots with errors show that the
loop contributions are sensitive to the coupling of gXVV
determined by the data of ηð1405Þ → γρ0.
Another aspect to be examined is the cutoff dependence

of the branching ratio fractions. In Fig. 4, both ratios
Rρ=ϕ
ηð1405Þ and Rϕ=ω

ηð1405Þ in terms of a range of the cutoff

parameter Λ ¼ 0.75–1.0 GeV are presented in parts (a) and
(b), respectively. It shows that Rρ=ϕ

ηð1405Þ is a stable quantity

with the increasing Λ. Because of the dominance of the
tree-level amplitude in ηð1405Þ → γρ0, the errors with the
round dots appear to be relatively smaller than those
in Rϕ=ω

ηð1405Þ.
In Fig. 4(b), it shows that the ratio Rϕ=ω

ηð1405Þ increases
gradually in terms of Λ. This indicates the increasing
contributions of the loop amplitudes in ηð1405Þ → γϕ
with the increasing Λ. Combining Figs. 4(a) and 4(b)
together, one can see that the relation Γηð1405Þ→γρ0 >
Γηð1405Þ→γϕ > Γηð1405Þ→γω, which is consistent with the
expectation of the first radial excitation assignment

(a) (b)

FIG. 3. (a) The dependence ofRϕ=ω
ηð1405Þ on the mixing angle αP with Λ ¼ 0.75 GeV andmηð1405Þ ¼ 1.405 GeV. (b) The dependence of

Rϕ=ω
ηð1405Þ on the mass of ηð1405Þ with the mixing angle αP ¼ 42°. In both figures, the cutoff energy Λ ¼ 0.75 GeV is adopted. The

legends of the symbols are the same as those in Fig. 2.

(a) (b)

FIG. 4. The dependence of Rρ=ϕ
ηð1405Þ [Fig. 4(a)] and Rϕ=ω

ηð1405Þ [Fig. 4(b)] on the cutoff energy Λ, with αP ¼ 42° and mηð1405Þ ¼
1.405 GeV fixed in the calculations. The light and dark gray bands in (a) indicate the two solutions from the BESIII analysis,
7.53� 2.49 and 11.10� 3.50, respectively [41], and the central values are denoted by the solid and dashed lines, respectively.
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[29,34]. Also, the ratio Rρ=ϕ
ηð1405Þ favors the solution of

7.53� 2.49 in Ref. [41].

2. ηð1295Þ → γV

In Fig. 5(a), the predicted ratio Rρ=ϕ
ηð1295Þ in terms of the

mixing angle αP is plotted. The full calculation is denoted
by the solid round dots, while the results for the exclusive
tree-level transition are denoted by the triangles. Their
difference indicates the significant interferences from the
loop diagrams.
In Fig. 5(b), the dependence of Rρ=ϕ

ηð1295Þ on the cutoff
parameter Λ is shown by the solid round dots. Within the
range of Λ ¼ 0.75∼1.0 GeV, the ratio remains stable,
although a decreasing tendency appears with the
increasing Λ.
In Fig. 6, the ratio Rω=ϕ

ηð1295Þ is calculated and presented in
a similar way as in Fig. 5. We can see that the dependence
of the ratios on the mixing angle αP [Fig. 6(a)] is similar to
Rρ=ϕ
ηð1295Þ. We also investigate the cutoff dependence of the

loop transition contributions, and the results are presented
in Fig. 6(b). Again, we find that the ratio keeps stable.

The present calculation results favor that Rρ=ϕ
ηð1405Þ takes

the lower ratio 7.53� 2.49 in Ref. [41], and its dependence
of the form factor parameter appears to be stable. However,
we should caution that the experimental ratio strongly
depends on the data for ηð1405Þ → γρ0 [40], which still
contain large errors. Meanwhile, the two experimental
solutions are for the constructive and destructive interfer-
ences from Xð1835Þ in Ref. [41], which means a combined
partial wave analysis is required for more quantitative
studies. Such uncertainties will affect our determination of
the parameter gXVV and influence the loop interfering
patterns.

D. Loop influence on the mixing angle

The above studies have shown the impact of the loop
transitions on the experimental observables defined in the
productions and decays of ηð1295Þ and ηð1405Þ in
J=ψ → γγV. As a consequence, it implies that the mea-
sured mixing angle between ηð1295Þ and ηð1405Þ
may possess different values in different processes if the
detailed transition mechanisms have not been properly
included.

(a) (b)

FIG. 6. (a) The dependence of Rω=ϕ
ηð1295Þ on the mixing angle αP with Λ ¼ 0.75 GeV. (b) The dependence of Rω=ϕ

ηð1295Þ on parameter Λ
with the mixing angle αP ¼ 42°. The legends are the same as Fig. 5.

(a) (b)

FIG. 5. (a) The dependence ofRρ=ϕ
ηð1295Þ on the mixing angle αP with Λ ¼ 0.75 GeV. The tree-level results are denoted by the triangles,

while the full calculation results are denoted by the solid round dots. (b) The dependence of Rρ=ϕ
ηð1295Þ on the cutoff energy

Λ with αP ¼ 42°.
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To illustrate this, we adopt Eq. (69) as an example.
Without the loop transitions, Eq. (69) will define a mixing
angle which can be extracted with the experimental value
of Rρ=ϕ

ηð1405Þ as the input. But if the loop transitions are
included, the ratio should be expressed as

Rρ=ϕ
ηð1405Þ≡

Γηð1405Þ→γρ

Γηð1405Þ→γϕ

¼
�jpρj
jpϕj

�
3
�gTηð1405ÞγρðαPÞþgLηð1405ÞγρðαPÞ
gTηð1405ÞγϕðαPÞþgLηð1405ÞγϕðαPÞ

�2
:

ð70Þ
By matching it to the tree-level relation defined in Eq. (69),
one has

� ðem2
ρ=fρÞGρ

ðem2
ϕ=fϕÞGϕ

�
2 tan2α̃P

2R2
≡
�gTηð1405ÞγρðαPÞþgLηð1405ÞγρðαPÞ
gTηð1405ÞγϕðαPÞþgLηð1405ÞγϕðαPÞ

�2
;

ð71Þ

and the “empirical” mixing angle α̃P can be extracted. In
Table XII, we list the extracted values of α̃P from the ratios
Rρ=ϕ
ηð1405Þ and Rρ=ϕ

ηð1295Þ. With three values for αP in the

calculations as an illustration, we see that the extracted values
for the mixing angle α̃P are different in the measurements of
these two ratios. To some extent, the deviations of α̃P from the
commonly adopted values could be acceptable in a single
channel. However, when putting two channels together, such
deviations should be regarded as significant. Further exper-
imental measurements of these ratios would be able to clarify
the role played by the loop transitions.

IV. SUMMARY

In this work, based on the one-state assumption for
ηð1405Þ and ηð1475Þ, we systematically investigate the
radiative decays of ηð1295Þ and ηð1405Þ by treating them
as the first radial excitations of η and η0. In the framework of
the VMD model, we include the intermediate K̄K� þ c:c:
meson loops as the leading correction to the tree-level
transition amplitudes for the ηð1295Þ and ηð1405Þ → γV.
With an exponential form factor for the regularization of the
loop integrals, we are able to to understand the production
and decay behavior of both states in the J=ψ radiative

decays. In particular, the radiative decays of ηð1405Þ → γV
can be described in agreement with the BESIII measure-
ment. It is interesting to note that the loop transitions can
produce significant effects in some decay channels. For
instance, the loop contributions in ηð1295Þ → γϕ are found
to be compatible with the tree-level contributions. This
should not be surprising since the coupling of gηð1295ÞK�K in
the loop amplitude is sizeable and the ϕ meson decay
constant in the tree-level amplitude is much smaller than
that of the ρ0 meson (see Table II). Since the production of
ηð1295Þ in J=ψ → γγρ0 has the largest branching ratio,
experimental study of ηð1295Þ in this channel is strongly
recommended for testing the relations presented in
this work.
In the scenario of assigning ηð1295Þ and ηð1405Þ as the

first radial excitation states of η and η0, we show that the
branching ratio fractions between these two states in the
same decay channel, or between two exclusive decay
channels for the same state, exhibit interesting patterns
when the intermediate K̄K� þ c:c: meson loops are prop-
erly included. Due to the loop corrections, the mixing angle
extracted from the radiative decay data will be affected by
the loop correction effects. It would be different from the
commonly adopted one extracted in other processes. We
also find that the contributions from the meson loops are
relatively small in ηð1405Þ and ηð1295Þ → γρ0. Thus, this
channel will be dominated by the tree-level transition and is
ideal for extracting the mixing angle.
In brief, we find that the radiative decays of J=ψ → γγV

can serve as a probe for understanding the nature of
ηð1295Þ and ηð1405Þ. With the large data sample of
J=ψ at BESIII, we can disentangle the role played by
the meson loop transitions and gain more insights into the
pseudoscalar meson spectrum.
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APPENDIX A: AMPLITUDES OF THE
HADRONIC LOOP DIAGRAMS

In this Appendix, we present the loop amplitudes for the
convenience of tracking the calculation details (for
simplicity, we do not distinguish the coupling constants
at the hadronic vertices but just denote them as gi with
i ¼ 1, 2, 3):

TABLE XII. Extracting a new mixing angle α̃P for the given
mixing angle αP with cut off parameter Λ ¼ 0.75 GeV.

α̃P

αP Rρ=ϕ
ηð1295Þ Rρ=ϕ

ηð1405Þ

42° 54.9° 32.4°
40° 52.4° 34.2°
38° 50° 36°
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(i) ½K�; K̄; ðKÞ�:

iM ¼ g1g2g3

Z
d4p1

ð2πÞ4 ðpX þ p3Þσ
ðgσμ − pσ

1
pμ
1

p2
1

Þ
p2
1 −m2

K� þ iϵ
ϵαβδμpα

γp
β
1ϵ

δ
γ

ðp2 − p3ÞλϵλV
ðp2

2 −m2
K þ iϵÞðp2

3 −m2
K þ iϵÞF ðp2i Þ

¼ g1g2g3

Z
d4p1

ð2πÞ4
ϵαβδμpα

γp
β
1ϵ

δ
γð2pγ þ 2pV − p1Þμð2p1 − 2pγ − pVÞλϵλV

ðp2
1 −m2

K� þ iϵÞðp2
2 −m2

K þ iϵÞðp2
3 −m2

K þ iϵÞ F ðp2i Þ

¼ 2g1g2g3ϵαβδμpα
γp

μ
Vϵ

δ
γϵ

λ
V

Z
d4p1

ð2πÞ4
pβ
1½2ðp1Þλ − ð2pγ þ pVÞλ�

ðp2
1 −m2

K� þ iϵÞðp2
3 −m2

K þ iϵÞðp2
2 −m2

K þ iϵÞF ðp2i Þ

¼ 2g1g2g3ϵαβδμpα
γp

μ
Vϵ

δ
γϵ

λ
V

Z
d4p1

ð2πÞ4
2pβ

1p1λ

ðp2
1 −m2

K� þ iϵÞðp2
3 −m2

K þ iϵÞðp2
2 −m2

K þ iϵÞF ðp2i Þ: ðA1Þ

Note that, due to the property of the antisymmetric tensor, only the δβλ term could survive in the tensor integral.
(ii) ½K�; K̄; ðK�Þ�:

iM ¼
Z

d4p1

ð2πÞ4
g1g2g3ðpX þ p3Þσðgσμ − pσ

1
pμ
1

p2
1

Þðgρν − pρ
2
pν
2

p2
2

Þϵαβνλpα
2p

β
Vϵ

λ
V

ðp2
1 −m2

K� Þðp2
2 −m2

K� Þðp2
3 −m2

KÞ
× ½ϵδγgδμp1ρ þ ϵδγgδρp2μ − gμρðp1 þ p2Þδϵδγ �F ðp2i Þ

¼ g1g2g3

Z
d4p1

ð2πÞ4
−2

p2
1ðp2

1 −m2
K� Þðp2

2 −m2
K� Þðp2

3 −m2
KÞ

× fϵαβνλpα
γp

β
Vϵ

ν
γϵ

λ
V ½ðp1 · pγÞ2 − p2

1ðpV · pγÞ þ ðp1 · pγÞðp1 · pVÞ�
−ϵαβνλpα

1p
β
Vϵ

ν
γϵ

λ
V ½ðp1 · pγÞ2 − p2

1ðpV · pγÞ þ ðp1 · pγÞðp1 · pVÞ�
− ϵαβνλpα

γp
β
Vp

ν
1ϵ

λ
V ½ðp1 · ϵγ − pγ · ϵγÞð2p2

1 − p1 · pγ − p1 · pVÞ − p2
1ðpV · ϵγÞ�gF ðp2i Þ: ðA2Þ

In the above integral, after contracting the Lorentz indices, the amplitude can be simplified to a more compact form.
One notices that the first term in the big brackets is a scalar integral, while the second and third terms will pick up the
linear terms containing pα

γ and ϵνγ , respectively, due to the property of the antisymmetric tensor. The same analysis is
also applied to the following loop amplitudes.

(iii) ½K�; K̄�; ðKÞ�:

iM¼g1g2g3

Z
d4p1

ð2πÞ4
ϵαβμνpα

1p
β
3ðgμμ

0 −pμ
1
pμ0
1

p2
1

Þϵα1β1μ0δpα1
1 pβ1

γ ϵδγϵα2β2ν0λp
α2
3 pβ2

V ϵ
λ
Vðgνν0 −pν

3
pν0
3

p2
3

Þ
ðp2

1−m2
K� Þðp2

2−m2
KÞðp2

3−m2
K� Þ F ðp2i Þ

¼g1g2g3

Z
d4p1

ð2πÞ4
ϵαβμνpα

1p
β
3×ϵα1β1μδp

α1
1 pβ1

γ ϵδγ×ϵα2β2νλp
α2
3 pβ2

V ϵ
λ
V

ðp2
1−m2

K� Þðp2
2−m2

KÞðp2
3−m2

K� Þ F ðp2i Þ

¼g1g2g3

Z
d4p1

ð2πÞ4
F ðp2i Þ

ðp2
1−m2

K� Þðp2
2−m2

KÞðp2
3−m2

K� Þ×fϵαβδλpα
γp

β
Vϵ

δ
γϵ

λ
V ½ðp1 ·pγÞ2þðp1 ·pγÞðp1 ·pVÞ−p2

1ðpV ·pγÞ�

þϵαβδλpα
1p

β
Vϵ

δ
γϵ

λ
V ½−ðp1 ·pγÞ2�þϵαβδλpα

γp
β
1ϵ

δ
γϵ

λ
V ½ðp1 ·pVÞ2−p2

1p
2
V �−ϵαβδλpα

γp
β
Vp

δ
1ϵ

λ
V ½ðp1 ·pγÞðp1 ·ϵγÞ

−ðpV ·pγÞðp1 ·ϵγÞþðp1 ·pγÞðpV ·ϵγÞ�þϵαβδλpα
γp

β
Vϵ

δ
γpλ

1½ðp1 ·pVÞðp1 ·ϵVÞ�g: ðA3Þ
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(iv) ½K�; K̄�; ðK�Þ�:

iM ¼ g1g2g3

Z
d4p1

ð2πÞ4
ϵαβμνpα

1p
β
3ðgμμ

0 − pμ
1
pμ0
1

p2
1

Þðgρσ − pρ
2
pσ
2

p2
2

Þðgνν0 − pν
3
pν0
3

p2
3

Þ
ðp2

1 −m2
K� Þðp2

2 −m2
K� Þðp2

3 −m2
K� Þ

× ½ϵδγgδμ0p1ρ þ ϵδγgδρp2μ0 − gμ0ρðp1 þ p2Þδϵδγ � × ½ϵλVgλν0p3σ − ϵλVgλσp2ν0 þ gν0σðp2 − p3ÞλϵλV �F ðp2i Þ;

¼ g1g2g3

Z
d4p1

ð2πÞ4
ϵαβμνpα

1p
β
3ðgρσ − pρ

2
pσ
2

p2
2

Þ
ðp2

1 −m2
K� Þðp2

2 −m2
K� Þðp2

3 −m2
K� Þ

× ½ϵδγgδμp1ρ þ ϵδγgδρp2μ − gμρðp1 þ p2Þδϵδγ � × ½ϵλVgλνp3σ − ϵλVgλσp2ν þ gνσðp2 − p3ÞλϵλV �F ðp2i Þ;

¼ g1g2g3

Z
d4p1

ð2πÞ4
F ðp2i Þ

p2
2ðp2

1 −m2
K� Þðp2

2 −m2
K� Þðp2

3 −m2
K� Þ

× f−ϵαβδλpα
1p

β
Vϵ

δ
γϵ

λ
V ½p2

2ð−p1 · pγ − p1 · pV þ p2
1Þ þ ðp1 · pγ − p2

1Þð−2ðp1 · pγÞ þ pV · pγ − p1 · pV þ p2
1Þ�

þ ϵαβδλpα
γp

β
1ϵ

δ
γϵ

λ
V ½p2

2ð−p1 · pγ − p1 · pV þ p2
1Þ þ ðp1 · pγ − p2

1Þð−2ðp1 · pγÞ þ pV · pγ − p1 · pV þ p2
1Þ�

− ϵαβδλpα
γp

β
Vp

δ
1ϵ

λ
V ½2p2

2ðp1 · ϵγÞ þ p2
2ðp1 · ϵγ − pV · ϵγÞ þ ðp1 · ϵγÞð−2ðp1 · pγÞ þ pV · pγ − p1 · pV þ p2

1Þ�
þ ϵαβδλpα

γp
β
Vϵ

δ
γpλ

1½2p2
2ðpγ · ϵVÞ − 3p2

2ðp1 · ϵVÞ − 2ðp2
1 − p1 · pγÞðp1 · ϵVÞ

þðp2
1 − p1 · pγÞðp1 · ϵV − pγ · ϵVÞ þ 2ðp2

1 − p1 · pγÞðpγ · ϵVÞ�g: ðA4Þ

(v) ½K; K̄�; ðKÞ�:

iM ¼
Z

d4p1

ð2πÞ4 g1g2g3
ðpX þ p1Þμðp1 þ p2Þδϵδγϵαβνλpα

3p
β
Vϵ

λ
Vðgμν − pμ

3
pν
3

p2
3

Þ
ðp2

1 −m2
KÞðp2

2 −m2
KÞðp2

3 −m2
K�Þ F ðp2i Þ

¼ g1g2g3

Z
d4p1

ð2πÞ4
ϵαβμλpα

3p
β
Vϵ

λ
Vð2p1 þ p3Þμð2p1 − pγÞδϵδγ

ðp2
1 −m2

KÞðp2
2 −m2

KÞðp2
3 −m2

K�Þ F ðp2i Þ

¼ g1g2g3

Z
d4p1

ð2πÞ4
ϵαβμλpα

3p
β
Vϵ

λ
Vð2p1Þμð2p1Þδϵδγ

ðp2
1 −m2

KÞðp2
2 −m2

KÞðp2
3 −m2

K� ÞF ðp2i Þ

¼ g1g2g3

Z
d4p1

ð2πÞ4
ϵαβμλðpγ þ pV − p1Þαpβ

Vϵ
λ
Vð2p1Þμð2p1Þδϵδγ

ðp2
1 −m2

KÞðp2
2 −m2

KÞðp2
3 −m2

K� Þ F ðp2i Þ

¼ 4g1g2g3ϵαβμλp
β
Vϵ

λ
Vϵ

δ
γ

Z
d4p1

ð2πÞ4
pα
γp

μ
1p1δ − pα

1p
μ
1p

δ
1

ðp2
1 −m2

KÞðp2
2 −m2

KÞðp2
3 −m2

K� ÞF ðp2i Þ

¼ 4g1g2g3ϵαβμλpα
γp

β
Vϵ

λ
Vϵ

δ
γ

Z
d4p1

ð2πÞ4
pμ
1p1δ

ðp2
1 −m2

KÞðp2
2 −m2

KÞðp2
3 −m2

K�ÞF ðp2i Þ: ðA5Þ

(vi) ½K; K̄�; ðK�Þ�:

iM¼g1g2g3

Z
d4p1

ð2πÞ4
ðpXþp1Þμϵαβνδpα

2p
β
γ ϵδγðgνν0−pν

2
pν0
2

p2
2

Þðgμ0μ−pμ0
3
pμ
3

p2
3

Þ
ðp2

1−m2
KÞðp2

2−m2
K� Þðp2

3−m2
K� Þ ½ϵλVgλμ0p3ν0−ϵλVgλν0p2μ0 þgμ0ν0 ðp2−p3ÞλϵλV �F ðp2i Þ;

¼g1g2g3

Z
d4p1

ð2πÞ4
ðpXþp1Þμϵαβνδpα

2p
β
γ ϵδγðgμ0μ−pμ0

3
pμ
3

p2
3

Þ
ðp2

1−m2
KÞðp2

2−m2
K� Þðp2

3−m2
K� Þ × ½ϵλVgλμ0p3ν−ϵλVgλνp2μ0 þgμ0νðp2−p3ÞλϵλV �F ðp2i Þ;

¼g1g2g3

Z
d4p1

ð2πÞ4
F ðp2i Þ

p2
3ðp2

1−m2
KÞðp2

2−m2
K� Þðp2

3−m2
K�Þ
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×f−ϵαβδλpα
γp

β
1ϵ

δ
γϵ

λ
V ½2ðpγ ·pVÞ2þ2p2

1ðp1 ·pγÞ−p2
3ðpγ ·pVÞþp2

3ðp1 ·pVÞþp2
3p

2
1þp2

1ðpγ ·pVÞ−2p2
Vðp1 ·pγÞ

−2ðp1 ·pVÞðpγ ·pVÞ−4ðp1 ·pγÞðpγ ·pVÞþp2
Vðpγ ·pVÞþp2

1p
2
Vþp2

1ðp1 ·pVÞ−p2
Vðp1 ·pVÞ−p4

1�
−ϵαβδλpα

γp
β
Vϵ

δ
γpλ

1½−p2
3ðpγ ·ϵVÞþ3p2

3ðp1 ·ϵVÞ−p2
1ðpγ ·ϵVÞ−2ðpγ ·pVÞðp1 ·ϵVÞþp2

Vðpγ ·ϵVÞ
þ2ðpγ ·pVÞðpγ ·ϵVÞþp2

1ðp1 ·ϵVÞ−p2
Vðp1 ·ϵVÞ�g: ðA6Þ

(vii) ½K�; K̄�:

iM ¼ egηXK�þK−gVK�þK−

Z
d4p1

ð2πÞ4
ðpX þ p2Þμðgμα − pμ

1
pα
1

p2
1

Þϵδβαλϵδγpβ
Vϵ

λ
V

ðp2
1 −m2

K� Þðp2
2 −m2

KÞ
F ðp2i Þ:

¼ eg1g2

Z
d4p1

ð2πÞ4
ϵδβαλϵ

δ
γp

β
Vϵ

λ
VðpX þ p2Þμðgμα − pμ

1
pα
1

p2
1

Þ
ðp2

1 −m2
K� Þðp2

2 −m2
KÞ

F ðp2i Þ:

¼ eg1g2

Z
d4p1

ð2πÞ4
�
ϵαβδλpα

1p
β
Vϵ

δ
γϵ

λ
V

2ðp1 · pγ þ p1 · pVÞ
p2
1ðp2

1 −m2
K�Þðp2

2 −m2
KÞ

−
2ϵαβδλpα

γp
β
Vϵ

δ
γϵ

λ
V

ðp2
1 −m2

K� Þðp2
2 −m2

KÞ
	
F ðp2i Þ: ðA7Þ

APPENDIX B: COUPLING RELATION EXTRACTED IN THE 3P0 MODEL

The VPP, VVP, and VVV couplings have dynamic connections in the quark model. Here, V and P are the ground-state
vector and pseudoscalar qq̄ mesons. Taking the ϕ meson couplings to KK̄, K�K̄, and K�K̄� as an example, we can see that
the spatial wave function overlaps only involve the ground states V and P and they can be treated the same at the leading
order. Then, the coupling differences will arise from the spin-flavor structure in the transition operators. Note that the color
factor is a trivial one and it is the same for all these couplings.
Considering the effective couplings at the hadronic level, we can write down the transition amplitudes as follows:

iMVPP ¼ −igϕKþK−ðpB − pCÞμϵμA; ðB1Þ

iMVVP ¼ igϕK�K̄ϵαβμνp
α
Ap

β
Bϵ

μ
Aϵ

ν�
B ; ðB2Þ

iMVVV ¼ −igϕK�K̄� ½ϵ�B · ϵ�CðpB − pCÞ · ϵA − ϵ�B · ϵAðpB · ϵ�CÞ þ ϵ�C · ϵAðpC · ϵ�BÞ�: ðB3Þ

The same processes can also be described by the quark model formalism, and we adopt the quark pair creation model (i.e.,
3P0 model) [49] to extract the coupling in the quark model.
For an Okubo-Zweig-Iizuka (OZI)-allowed decay of A → BC, the general form of the transition matrix element is [50]

MMJA
MJB

MJC ðP⃗Þ ¼ γ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8EAEBEC

p X
MLA

;MSA
;MLB

;MSB
MLC

;MSC
;m

hLAMLA
SAMSA jJAMJAihLBMLB

SBMSB jJBMJBihLCMLC
SCMSC jJCMJCi

× h1m1 −mj00ihχ14SBMSB
χ32SCMSC

jχ12SAMSA
χ341−mi½hϕ14

B ϕ32
C jϕ12

A ϕ34
0 iIðP⃗; m1; m2; m3Þ

þ ð−1Þ1þSAþSBþSChϕ32
B ϕ14

C jϕ12
A ϕ34

0 iIðP⃗; m2; m1; m3Þ�; ðB4Þ

where MJA , MJB , and MJC denote the spin projections of each particles and the kinematic variables in the rest frame of the
initial-state A are defined as

pA ¼ ðmV; 0; 0; 0Þ; pB ¼ ðEB; 0; 0; pzÞ; pC ¼ ðEC; 0; 0;−pzÞ: ðB5Þ

The overlap of the spin wave functions is
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hχ14SBMSB
χ32SCMSC

jχ12SAMSA
χ341−mi

¼
X
S;MS

hðj1j4ÞSB; ðj3j2ÞSC; SMSjðj1j2ÞSA; ðj3j4Þ1; SMSi

× hSBMSBSCMSC jSMSihSAMSA1 −mjSMSi: ðB6Þ

As we know, in the case of VVP, only the transversely
polarized states of A will have nonvanishing contributions
due to the antisymmetric tensor coupling. It is consistent
with the fact that in the 3P0 model the nonvanishing helicity
amplitudes are just the MJAMJBMJC ¼ 110 and
MJAMJBMJC ¼ −1 − 10. Similarly, we can analyze the
VPP and VVV coupling in the quark model. The transition
amplitudes calculated in the ELA and 3P0 model, respec-
tively, are listed in Table XIII. One can easily read the
coupling relation:

gVPP ¼ mV

2
gVVP; ðB7Þ

gVVV ¼ gVPP: ðB8Þ

Note that these two relations hold in the degenerate limit of
V and P. In reality, they are broken by the mass differences
between the V and P mesons. But for the purpose of
constraining the number of free parameters, we can still
adopt them in the analysis.
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