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Based on the one-state assumption of 1(1405) and 5(1475), 7(1295) and 7(1405/1475) thus being
organized as the first radial excitations of  and 7', respectively, we investigate the productions and radiative
decays of these two states in J/w — yny — yyV, where ny stands for 7(1295) and #(1405/1475) and V
stands for vector mesons p°, @, ¢p. As we have learned from previous studies that the hadronic decays of
these two states receive important contributions from the intermediate KK* + c.c. meson loops due to the
triangle singularity mechanism, we show that some measurable effects can also arise from the KK* + c.c.
meson loops in their radiative decays. Our calculation shows that the impact of the KK* + c.c. meson loops
on the 7(1405/1475) radiative decays is relatively smaller than on 7(1295) since the latter has a much
larger coupling to KK* + c.c. However, the production of #(1295) in the J/y radiative decays will be
strongly suppressed due to its being the radial excitation state of the # meson. As a consequence of the
KK* + c.c. meson loop contributions, we find that the mixing angle extracted in the radiative decays of
n(1295) and #5(1405/1475) will be different from each other, and both are different from the one

determined in other processes.

DOI: 10.1103/PhysRevD.105.076023

I. INTRODUCTION

The study of flavor singlet and octet mixing in the
lightest pseudoscalar nonet, i.e., between 7 and #/, has
attracted a lot of attention in the history. As it has been well
established that the U(1), anomaly is the driving mecha-
nism for many interesting phenomena for these two states,
it also raises interesting questions on its role for higher
radial excitation states in the isoscalar pseudoscalar spec-
trum, in particular, the first radial excitation states. The
present experimental data for the J7(€) = 0~(+) spectrum
are still far from satisfactory. For the first radial excitation,
there are enough states to fill a nonet between 1.25 ~
1.50 GeV, which includes z(1300), K(1460), 7(1295), and
1n(1405)/n(1475) [1]. But for higher excitations, the
experimental evidences are far from well established.

Even for the first radial excitations, one can see that the
question of whether there are two states, (1405) and
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n(1475), present in the same mass region would
have strong impact on our understanding of low-energy
QCD phenomena. Historically, the first evidence for
n(1405)/5(1475) was from pp annihilations at rest into
(KKr)zt = [2], where a pseudoscalar of JP€ = 0= was
seen in the invariant mass spectrum of KKz. As an SU(3)
partner of the lighter pseudoscalar 7(1295), it shows that its
production strength in p p annihilations is much larger than
7(1295). This was regarded as evidence for its unusual
flavor contents in the literature (see, e.g., Ref. [3] for a
review). Later, MARK III [4] and DM-2 [5] reported
possible two-state structures around 1.44 GeV mass region
with increased statistics. The Obelix Collaboration at
LEAR [6] seemed to confirm the MARK III result and
introduced two pseudoscalars, i.e., 7(1405) and 7(1475), in
the description of the invariant mass spectrum of yzz [7].
The splitting of one state #(1440) into two states, 7(1405)
and 7(1475), suggested an outnumbering of the SU(3)
nonet and could be an indication of exotic hadrons beyond
the conventional quark model. In line of this possibility,
there was theoretical expectation from the flux tube model
that the ground-state pseudoscalar glueball should have a
mass around 1.4 GeV [8]. It made one of these two close
states, 7(1405) and #(1475), a possible candidate for the
pseudoscalar glueball and initiated a lot of efforts on
understanding their structures [9—14]. In such a scenario,
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its mixing with the ground states # and 5’ become an
interesting topic in phenomenology, although the gluon
contents inside # and 5 cannot be dramatically large
[15-17].

While the signal for the heavier one turned out to be
more clear in the KKz channel, and the lighter one seemed
to favor the nzz channel, 7(1405) has been assigned as
the pseudoscalar glueball candidate, while 7(1475) was
assigned as the SU(3) partner of 7(1295) (see, e.g., the
minireviews on non-gg mesons in early editions of Particle
Data Group (PDG) since 1990). However, the glueball
assignment with a low mass around 1.4 GeV is not
supported by the lattice QCD (LQCD) simulations which
came to the playground later. Both quenched [18-21] and
unquenched calculations [22,23] suggest that the ground-
state pseudoscalar glueball should have a mass around
2.4-2.6 GeV. In experiment, more and more high-precision
data from J/y and w(3686) decays at BESIII were
published during the past decade. There is no indication
that two pseudoscalar states 7(1405) and #5(1475) are
needed in the description of any exclusive channel such
as nam [24-26], KKz [27], and the isospin-violating 37
channel [28]. Interestingly, it seems to be true that the
pseudoscalars observed in different channels have slightly
shifted masses. For instance, the mass extracted in the KKz
channel is 1452.7 + 3.8 MeV [27], while the masses in 7z
and 37 are about 1405 MeV [24-26,28].

A breakthrough of the puzzling situation was the
proposal by Ref. [29] in the interpretation of the abnormally
large isospin-breaking effects observed by BESIII in
J/w — yn(1405/1475) — y + 37z [28]. The interference
from the intermediate K*K + c.c. rescattering via a triangle
loop can contribute to the isospin breaking at leading order
due to the satisfaction of the triangle singularity (TS)
condition [30-33]. The TS mechanism can naturally
explain the mass shift and decay patterns with only one
state around 1.4 GeV [29,34,35]. Further detailed studies
including the width effects were also investigated in the
literature [36,37]. In Ref. [36], it was claimed that the TS
contribution would be suppressed by the width effects of
the intermediate K*. Therefore, the TS mechanism may not
be sufficient for accounting for the large isospin-breaking
effects observed by BESIII [28]. A comprehensive analysis
in Ref. [37] later showed that one important transition
process via the TS mechanism was overlooked by the
previous analyses. The TS mechanism can also enhance the
direct production of ay(980) in the isospin-conserving
channel and then enhance the isospin-violating channel
via the a(980)-£,(980) mixing. The analysis of Ref. [37]
thus firms up the role played by the TS mechanism in the
understanding of the 7(1405) and 7(1475) puzzle.

It should be mentioned that in phenomenological studies
of the pseudoscalar glueball mixing with the ¢g states, i.e.,
n-n'-G or n--G-n, mixings, the physical mass of the
pseudoscalar glueball was assigned by 7(1405). By doing

so, the gluon contents introduced into # and #' seem to
agree with the experimental observables. However, as
shown by a detailed analysis of Ref. [17] following the
axial vector anomaly dynamics [15,16], the gluon contents
inside 77 and #' are not sensitive to the physical mass of the
pseudoscalar glueball. Furthermore, with the LQCD pure
gauge glueball mass as an input, the physical mass cannot
get to be lighter than 1.8 GeV [17]. A similar conclusion
was found by Refs. [38,39] in the framework of the axial
vector anomaly.

Motivated by this progress on disentangling the 7(1405)
and 7n(1475) puzzle, we will investigate the scenario of
treating 7(1295) and 5(1405) [hereafter, we use 7(1405) to
denote all signals related to either 7(1405) or (1475) in the
previous two-state scenario] as the first radial excitation
states of n and /. The radiative decay of 17(1405) — yp and
n(1405) — y¢ have been measured by BES-II [40] and
BESIII collaborations [41], respectively, in the J/y radi-
ative decays. We will systematically study J/y — yny —
yyV with ny = n(1295); 7(1405); and V = ¢, p°, ® and
examine the role played by the intermediate K*K meson
loops. This should provide further experimental evidence
for the one-state solution for 7(1405) and 5(1475) and
allow a natural categorization of 7(1295) and 5(1405) as
the first radial excitation states of # and 7’.

To proceed, we first introduce the mixing between the
SU(3) flavor singlet and octet and then present the
formalism for J/w — ynxy — yyV in the framework of
the vector meson dominance (VMD) model in Sec. II.
We stress that this will allow a self-consistent calculation of
both tree-level transitions and loop corrections of the
radiative decays of ny — yV. In Sec. III, we will present
our numerical results for measurable branching fractions
and discuss their phenomenological consequences. A
brief summary will be given in Sec. IV. In the Appendix,
the loop functions for each loop transition amplitude are
provided.

II. FORMALISM

A. Flavor singlet and octet mixing and parametrization
for the production mechanism

As the first radial excitation of # and 7/, 7(1295) and
n(1405) can be expressed on the quark-flavor basis similar
to n-17/,

7(1295) = cos apnii — sin apss,

n(1405) = sin apnii + cos apss, (1)

where nit = (uit + dd)/+/2 and ap = arctan /2 + 9, with
0, the flavor singlet and octet mixing angle. Whether the
mixing angle is the same as that for the #-7’ mixing is still
an open question. In Ref. [42], Isgur proposed that,
although the -’ mixing angle deviated from the ideal
mixing significantly, the higher states should restore the
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ideal mixing angle, given that the mass difference between
the flavor nii and 55 could be neglected. In this study, we
can either leave the mixing angle to be determined by
experimental data or test the results by adopting the same
mixing angle as that for -7

Taking the advantage of the antisymmetric tensor struc-
ture of the VV P coupling, we can parametrize the coupling
strength for J/y — y(qq),-+, where (qg),-+ stands for a
light isoscalar quark-antiquark pair produced in the J/y
radiative decays, as

90 =((q

where ﬁly represents the corresponding potential for the
production of (¢g),-+. Based on the SU(3) flavor sym-
metry, the coupling strengths g, can be written as

Qo+ [H, /), (2)

Gn(1205) = go(\/icos ap — Rsinap),
Gn(1405) = 90(V2sinap + Rcos ap), (3)

for #(1295) and #(1405), respectively. In the above
equation, R is an SU(3) flavor symmetry-breaking param-
eter. It distinguishes the production of an s5 from ui and dd
and generally takes R ~m, 4/ m.

It is clear here that the production of #(1295) would be
highly suppressed in comparison with the production of
n(1405) due to the destructive interference between the nn
and s5 component for 7(1295) and constructive interfer-
ence for n(1405) in the radial excitation scenario if the
same mixing angle as that for the #-#' mixing is adopted.
This is consistent with the current experimental observation
that signals for 7(1405) are much stronger than for
n(1295) [1].

Under the assumption, the ratio of T'(J/y — yn(14053))
to ['(J/y — yn(1295)) can be expressed as
|

L(J/w — yn(1405)) (|pr/(1405)|>3
T(J/y — yn(1295)) |Pn(1295)|

8 (\/zsinap—i—RcosaP)Z’ ()

V2 cosap — Rsinap

where the partial momentum has been included in these two
P-wave processes. In principle, experimental data for
exclusive decay branching ratios will determine gy, and
the relation in Eq. (4) will provide a test of the radial
excitation picture as ap and R will share the same values as
for 7 and 1 [43,44]. However, to extract the J/y exclusive
decay branching ratios, one has to subtract the decay
information of the intermediate pseudoscalar mesons in
J/w — ynx = yyV. As shown in Table I, so far, the most
precise data from BESIII are still combined branching
ratios. It means that a better understanding of the 5y
exclusive decay into yV is required.
The effective couplings for #y — yV are defined as

E gnxyveaﬁm@“V’saﬂA’lP (5)

nxyV —

where g, .y contains the contributions from all possible
mechanisms in 7y — yV and the electromagnetic (EM)
field A* contains both isoscalar and isovector components.
At the hadronic level, the effective coupling can be
decomposed into the tree diagram contributions via the
VMD model and meson loop transitions as higher-order
corrections. The transition mechanism is illustrated by
Fig. 1. Notice that the coupling vertices are well defined
in the SU(3) flavor symmetry limit. The detailed calcu-
lations of the tree and loop amplitudes will be given in the
next subsection. With the calculated g, v, one can express
the partial decay width for J/yw — ynxy — yyV as

&’pd’p,d’p3 4cd
L pympmy—ry & / (271)92E12E22E3 (2m)*s (PJ/U/ —Pp1—DP2—D3)
X Gy Gnrv Gy (s = (2 + p3)?) + Gy (s = (p1 + p3)?)]}?2s x 2m3, [p1]*[p2 [ (6)

TABLE 1.

Branching ratios of the combined decays of J/y — yn(1405/1475) and 5(1405/1475) decays into

final states. For J/w — yn(1405) — yy¢, two solutions are provided by the BESIII analysis [41].

Channel

Branching ratio

BR(J/y — yn(1405/1475) — yKKnr)
R(J/w — yn(1405/1475) = yyp)

BR(J/y — yn(1405/1475) — yy¢)(I)

BR(J/y — yn(1405/1475) — yy¢)(I1)

(2.8 £0.6) x 1073 [45]

(7.8 £2.0) x 107> [45]
(7.034+0.92 £0.91) x 107 [41]
(10.36 & 1.51 & 1.54) x 107 [41]
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FIG. 1. Schematic diagrams for the process 17y — yV at the tree
and loop levels in the VMD model. Part (a) stands for the tree-
level transitions; part (b) stands for the hadronic triangle loop
transitions; and parts (c) and (d) denote the contact diagrams with
a photon induced by the minimum substitution at the two strong
interaction vertices, respectively.

where P, is the 4-vector momentum of the initial J/y;
G, (s) denotes the propagator of »(1405) or ;(1295),
respectively, i.e.,

i

Gy (1405) (s) =

5= m3,<1405) + imy (1405 Ty (1405)

i
Gy(1205)(5) = - . (7)
e S = M3 1ags) T 1y (1295 Dy 1295)

Note that the parametrization of Eq. (6) has neglected the
energy or momentum dependence with the couplings g,
and g, ,v. For the kinematics near the pole masses of 7y,
this approximation is reasonable. The decay coupling g, v
contains contributions from both tree-level and loop am-
plitudes, i.e., g, ,v = g,WV + g,7 ,v with the superscripts 7'
and L indicating the tree and loop processes, respectively.
These two quantities, ggxyv and g,?xyv, will then be
calculated in our model.

B. Tree-level amplitude in the VMD model

In this work, we adopt the VMD model [46] to describe
the EM vertices. With the Lagrangian of Eq. (5) and the
VMD model, the amplitude of the tree diagram shown in
Fig. 1(a) can be written as

iMr = igzxyv%ﬂazl’?l’{/efe/\l/» (8)

. . T
where the tree-level effective coupling g, ,, can be
expressed as

2
emy,

Q;va = —igyvv fT Gy, )

where Gy is the propagator of the intermediate vector
meson V,

—i

Gy = , 10
v p}%—m%,—l—imVFV (10)

with V denoting the vector meson p°, @, or ¢, which is the
same as the final-state vector meson in 7y — yV as required
by the isospin symmetry. The strong coupling constants
gnyvv can be extracted by other independent processes.
Then, the couplings for other vectors within the same SU(3)
multiplet can be related to each other by the SU(3)
symmetry. We will come back to this in the next subsection
with detailed extraction of g, yy.

The vector meson decay constant e/fy can be deter-
mined by V — eTe™ using the experimental data, which
can be expressed as

e o <3FV—>E+E

>1/2 ( )
—=—-— , 11
fV 2ae|pe|

where p, is the three-vector momentum of the electron in
the vector-meson rest frame. The values for different vector
meson decays are extracted by adopting the experimental
data of the vector meson decays into e™e™ [1], and they are
listed in Table II.

C. Loop amplitudes in the VMD model

1. Lagrangians and coupling constants

The triangle loop amplitudes illustrated by Fig. 1(b) can
also be calculated in the VMD model. The loop amplitudes
can reduce to an effective coupling which contributes to the
nxyV coupling in the end. Within the triangle loops, the
vertices for the photon couplings to the kaon and/or K*
pairs can be described by the VMD model. Taking the
K*T K~ coupling to the photon y as an example, the photon
can couple to the intermediate po, , and ¢ mesons, via the
following amplitude,

2
em

lgV’VP 7 VGV’ (12)
v

=2 2

q=u.s V=p,w,p

9k+Kky = f]‘] 1-—

where V’ and P stand for the initial K** and pseudoscalar
meson K~, while V stands for the intermediate vector
mesons, p°, ®, and ¢, to which the photon can couple with a
strength of the decay constant e/ fy; ((¢g),--|V) is a favor
factor given by the decomposition of the ¢g into flavor
eigenstate of the intermediate vector mesons. For instance,
we have
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(uit) - |V) = < B (uit — dd) + % (uit + dc_l)} V),

Lt wv). (13)

V2

For each transition, we detailed

expressions as

present the

. 2 2
i emz, em
(ga)K*+K f— Gw + ng**K’ —L Gp)

AN ; 7,
) emi
+ lg(/)K*JrK—iRG(b, (14)
fo
2 2

i em en;
gK*OI_(Oy = \/E (ng*OI_(O f < Gw =+ ng*OI_(O f : GP)
[ P

em2

+igyxogo—2 RG, (15)
fo

for the K*Ky vertex,

H 2 2
i em;, em;,
KT = <g ok k75 = Go + okt f G”)
m;
RG,, (16)

em2

B i em(%, 5
Ir0ko, = \/_E Gk R f_ G, + G0k f— G/,
p

w

2
em¢

+ l'g¢K*01-(*o f¢

RG, (17)

for the K*K*y vertex, and

i em?> em?>
9ktKk—y = 75 <9w1<+1< f—m G, + 9pK K- f—p Gp)
2 p
2
em
—?RG,, (18)

H 2 2
1 em em
gKOI_(Oy = \/E <ga)KOI_(0 f “ G(u + ngOI_(O f . Gp)
[ P

87’]’12

+ l'g{/)Kol‘(o f—(:RG(ﬁ (19)

for the KKy vertex. The ground-state vector meson decay
constants e/ fy (V = ¢, p°, ) have been given by Eq. (11),
and their values are listed in Table II.

|

TABLE II. Vector meson decay constants determined by
V — ete™. The data are taken from the PDG [1].

Channel Total width of V. BR(V — eTe™) e/fy(x1072)
¢ —ete” 425 MeV (297 £0.04) x 107+ —2.26
P’ = efem 1478 MeV (4724 0.05) x 107 6.05
w—ete” 849 MeV  (7.3640.15) x 107 1.78

For the hadronic vertices, one can see that they can be
arranged by the SU(3) symmetry. Thus, their relative
strengths and phases are fixed. There are three types of
hadronic coupling vertices in the loop amplitudes, i.e.,
VPP, VVP, and VVV, for which effective Lagrangians are
adopted. The corresponding effective Lagrangians are

Lypp = igyppTr[(PO,P — 0,PP)V¥], (20)
Lyyp = gVVPeaﬂﬂuTr[aavﬂaﬁVyP]’ (21)
‘CVVV = igVVV<(8ﬂ VI/ - ayvu)v# VD>’ (22)

where V and P stand for the vector and pseudoscalar fields
for the flavor SU(3) multiplets, respectively, and they have
the forms

sinapy’ +cosapn+a’ + +
P N P P K
P= _ sinapy’ +cosapn—n" 0
T = 72 2 K
K- K° cosapn —sinapn
(23)
and
M + *+
no oK
V| , o2 go |, 24
P 7 K (24)
K I_{*O ¢

where the ideal mixing between o (= (uit + dd)/+/2) and
¢ (= s5) is implied.
Note that we adopt the same form as Eq. (23) for the first
radial excitation states of the pseudoscalar mesons.
Considering the 5y coupling to K*K, the effective
Lagrangians have the expressions

5;7(1405)1(*1(- = ign(1405)K*+K-(K_ayﬂ(1405) - ;1(1405)8”1(‘)(1(**)”

= igyyp <wR — cos ap> (K=0,n(1405) — 5(1405)0,K~) (K ¥, (25)

V2
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and

»Cn(1295)1<*+1(- = 10p(1295)K* K- (K‘(‘)ﬂn(1295) - 77(1295)8;¢K_)(K*+)”

= igyyp <°°SO”’R + sin ap> (K=0,n(1295) — 1(1295)0,K~) (K ), (26)

V2

where gyyp is the overall coupling between a radial excitation pseudoscalar ¢gg and K** K~ and will be determined later; R

is the SU(3) flavor symmetry-breaking factor defined earlier.

Couplings between 7y and K*K* also contribute to the loop amplitudes. The corresponding Lagrangians are

sin ap

£;7(1405)K*+K*’ = IxvvEapuv {—RG“(K*+)”6ﬁ(K*‘)”q(1405) + cos aPaa(K*_)”3ﬂ(K*+>D’1(1405)

V2
V2

— gevy (%R + cos ap>e{,ﬁw(?"(l(”)"8ﬁ(K*‘)”11(1405) (27)

for the #(1405)K** K*~ coupling and

cos ap .
Ly 1295) K+ k= = gxvv WR = SIap |€qpu
X O K* )P (K*~)*n(1295) (28)

for the 7(1295)K**K*~ coupling, respectively. The cou-
pling gxyy is the overall coupling strength of the first radial
excitation state of a (¢g),-+ to a vector meson pair. This
quantity will be determined by the combined analysis of the
data for J/yw — yn(1405/1475) - yKKz and J/y —
yn(1405/1475) = yyp° [1].

The other hadronic vertices, which involve the inter-
actions between the ground-state vector and pseudoscalar
mesons, can be obtained by expanding Egs. (20)—(22).

We adopt the following strategy to determine the
coupling constants:

(1) In our calculation, we take the same sign for the
ground-state coupling gypp and gyyp. They are
defined as positive and real numbers, and then the
signs for the other couplings will be fixed.

(i) The coupling gypp between the ground-state vector
and pseudoscalar mesons can be determined by
¢ — KTK~. Then, the other VPP couplings can
be related to g,x+x- by the SU(3) flavor symmetry.
We note that one can also extract gypp via p — z7,
and some SU(3) flavor symmetry-breaking effects
can be found. By adopting the coupling extracted
from ¢p — KK, we actually absorb some leading SU
(3) flavor symmetry-breaking effects into this quan-
tity since all the vertices in the loop processes
involve couplings with the strange mesons. The
corresponding couplings g,x+x- and gypp are listed
in Table III.

(iii) The coupling gyyp in the loop between the ground-
state vector and pseudoscalar mesons is determined
by fitting the experimental data for V — yP and
7' = yV in the VMD model. For these transitions

between the ground-state vector and pseudoscalar
mesons, we assume that the intermediate ground-
state vector mesons saturate the transition ampli-
tudes. The corresponding channels and fitting results
are listed in Table IV, and the best fitting gives
gyvp = 8.38 £ 0.1 GeV~!. We then adopt gyyp =
8.38 GeV~! to extract other VVP couplings in the
loop amplitudes which are listed in Table V. The sign
is determined to be consistent with the gy pp follow-
ing the 3P, model.

TABLE III.  Strong couplings adopted for the VPP vertices in
the K*K(K™)) loops.

VPP coupling constant Values
9pK K~ 4.47
Yok K- - 'q""i/%r
Jwk* K- - g""\%" -
9vep 4.47

TABLE IV. The fitted radiative transitions between the ground-
state vector and pseudoscalar mesons in comparison with the
experimental data in the VMD model. The best fitting gives
gyyp = 8.38 £ 0.1 GeV~!.

Channels Experiments (MeV) Fitted values (MeV)
n—=yp (6.74+0.7) x 1072 (8.6 £0.2) x 1072
p—=n (45+03)x 1072 (5£0.1) x 1072
p = yr (7+£1)x1072 (6.1 +0.1) x 1072
0 = yw (5.8+£0.7) x 1073 (6.4 +0.2) x 1073
® =y (3.840.4)x 1073 (5240.1) x 1073
W=y 0.71 £0.03 0.72 £0.02

b — (26+£0.1)x 10™* (29+£0.1) x 10~
¢ - (554+0.1)x 1072 (5.2+0.1) x 1072
K — yK* (54+0.5)x 1072 (2.440.05) x 1072

K(K*) = yK°(K®)  0.1240.01 0.081 =+ 0.002
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TABLE V. Strong couplings adopted for the vertices in the
K*K(K™) loops.

VVP Values (GeV™!) VVV Values
Gok k- 8.38 Gox K- 447
Yok K- g“”f/%’(_ oK+ K+~ - y“%
Yok K- g””‘;%’(_ Yok K~ - q""%
gvvp 8.38 gyvy 4.47

(iv) The strong couplings gyyy, gyvps and gypp can be
related to each other by matching the relation of their
corresponding transition amplitudes in an effective
Lagrangian approach (ELA) to the same relation
which can be extracted explicitly in the quark pair
creation (QPC) model (i.e., *P, model). In Appen-
dix B, we provide the main formalisms for the QPC
model calculations as a reference. The values of
gyyy for the relevant channels are also listed in
Table V. We mention that the two couplings gypp
and gyyp hold a reasonable relation to that extracted
in the quark model, i.e., gypp =~ mygyyp/2.

(v) The physical coupling g,(1405)xx can be extracted
from experimental data by a combined analysis of the
1n(1405) decays into KK, nzr, and 37 [34,37]. By
adopting the branching ratio B.R.(y(1405) —
K*K +c.c.) ~50% and the total width [y(1405) =
90 MeV, we can extract gyyp with ap = 42° [37].
Then, both 917(1405)1(”1(‘ and 90(1295)1(”1(_ can be
determined. Their values are listed in Table VI. The
overall coupling gyyp can also be determined. The
extracted values are listed in Table VL

(vi) One can determine gyyy by matching the partial
decay width of 7(1405) — yp° to the existing data
[47]. We will show later that the gy determined in
this way is reasonable since the decay width for
1n(1405) — yp is dominated by the tree-level tran-
sition amplitude and the loop contributions are
negligibly small. Then, by taking the ratio
of  BR(J/y — yn(1405) — yyp®)/BR(J/y —
y1n(1405) — yK*K + c.c.) and with the constraint
from the experimental data (see Table I and
Refs. [41,45]), we can extract gyyy = 9.5+ 1.5 as
listed in Table VIIL.

TABLE VI. Hadronic couplings for ny — K*"K~ based on
Gn(1405)k+k- = —3.64 determined by combined analyses of the
decays of 7(1405) — K*K + c.c. and nax [34,37]. ap = 42° is
adopted for the mixing between 7(1295) and 5(1405).

nxVP Values
In(1405)K+ K~ —3.64 [34,37]
9n(1295)K*+ K- 10.9

gxvp 9.98

TABLE VII. Strong couplings for ny — VV in the VMD
model. The overall coupling gyyy = 9.5 £ 1.5 is extracted by
the combined analysis of J/y — yn(1405) — yyp® and
J/w — yn(1405) — yK*K + c.c. We adopt the central value of
gxyy = 9.5 in the numerical calculation.

Coupling constant Expression Value (GeV™")

gXVV(R cos aP/\/i — sin aP) —1.36 £0.22

In(1295)K*+ K*=

(
G(1405)K*F K~ gxvy(Rsinap/v/2 +cosap) 116 £1.8
9n(1295)pp V2gxyy cos ap 100+ 1.6
In(1405)pp V2gxyy sinap 9.0+14
In(1295)we V2gxyy cos ap 10.0 + 1.6
In(1405) 00 V2gxyy sinap 9.0+14
94(1295)(]5(’, _ngVVR sin ap -10.2+1.6
94(1405)¢¢ ZgXVVR CoS ap 113+1.8
Ixvy 95+£1.5

TABLE VIII. The effective couplings for the K*K*)y transi-
tions. The values extracted from the VMD model are listed in the
second column, and their corresponding modules are presented in
the parentheses. In the last column, the signs of the gx-x,
couplings are determined in the quark model. The couplings
9k k+y and gk, are treated as pure QED couplings. Thus, their
coupling strengths will be given by the charge of the hadron. Note
that e ~ 0.3.

Electromagnetic Values in VMD Experimental
couplings (magnitude) values
gk, (GeV™h) —0.17 —i0.05 (0.18) -0.25
Ik, (GeV™) 0.33 4 0.05i (0.33) 0.38
KKy 0.25 4 0.026i (0.25) e
Gr-0g0y —0.01 — 0.024i (0.03) 0
IK+K*y 0.25 4 0.026i (0.25) e
KoKy —0.01 — 0.024i (0.03) 0

Combining the couplings collected in Tables Il and V, we
can extract the effective couplings defined in Egs. (14)—(19)
as a test of the VMD model, and the couplings are listed in
Table VIII. Since the widths of the intermediate vector
mesons are considered, the couplings extracted in the VMD
are complex numbers. In Table VIII, we also provide the
magnitudes of the complex couplings in round brackets in
order to compare with the quantities extracted from experi-
ment. One can see that the VMD model has accounted for
the experimental data reasonably well under the assumption
of the ground-state vector meson saturation.

The relations for couplings among the flavor SU(3)
multiplets will be explicitly presented in the construction of
each loop amplitude.

2. Loop amplitudes

With the above effective Lagrangians, we can write
down the loop transition amplitudes for Figs. 1(b)-1(d). For
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the triangle loops [Fig. 1(b)], we use the notation
[M1,M3,(M2)] to denote the intermediate interaction
between particle M1 and M3 by exchanging M2; e.g.,
[K*, K, (K)] represents the loop where the intermediate K*
and K scatter into the final states by exchanging K. The
masses and 4-vector momenta of these internal particles are
denoted by (m, m3, my) and (p;, p3, p»), respectively. The
4-vector momenta of the initial-state meson X, final-state
photon, and vector meson are labeled as py, p,, and py,
respectively. The polarizations of the final-state photon and
vector meson are €, and ey, respectively. Similarly,
we adopt notation [M1, M2] for the internal mesons in
Figs. 1(c)-1(d).

To cut off the UV divergence in the loop integrals, we
include a commonly adopted form factor to regularize the
integrand,

F(p}) = HeXP <—I/]\22> (29)

where A is the cutoff energy and its typical value is around
the p mass; p; is the 3-momentum of the ith particle in the
loops in the c.m. frame of the initial particle. In the loop
integrals, we first reduce the four-dimension integrations
into the three-dimension ones by integrating the energy
component and then regularize the integrands by the above
form factor. Such a form factor originates from the quark
model wave function convolutions at the coupling vertices.
The corresponding hadronic coupling constant is usually
defined with all the interacting hadrons being at rest. For
instance, in a decay process where the final-state hadrons
carry momenta, suppressions or corrections to the constant
coupling will be introduced by the wave function con-
volutions which have a form as Eq. (29).

As follows, we will write down the detailed amplitude
for each loop transition with explicit phase conventions.

[K*, K, (K)].—The amplitude for the [K*, K, (K)] loop is

4
M= [ SRV DMKV VDEDEIF ). (30

where the vertex functions have been expressed by a
compact form and have the expressions

Vie = 9k k(Px + P3)g

Vo, = ng*Kﬁaﬁ&yP?Pﬁy’
V3 = iRgykz (P2 — P3)s€y (31)
with the SU(3) flavor symmetry-breaking factor R included
if the interacting vector meson V = p and w. In Eq. (30),

functions D*(K*) and D(K) are the propagators for K*
and K, respectively, with 4-vector momentum p, i.e.,

—i(g" —

p?—mi. +ie

L/Z’“)
D(m(K*): P
i
DK)=——5——. 32
(K) p*—m% + ie (32)

In the calculations, the propagators will carry the corre-
sponding 4-vector momenta required by momentum
conservation.

There are four isospin channels for this type of triangle
diagram, which include [K*", K*, (K7)], [K*",K~, (K")],
[K*9, K9, (K?)], and [K*°, K°(K?)]. The vertex coupling
constants are connected by the SU(3) flavor symmetry:

Gy kKK~ = “Gnpe kKKt = Gpy KOk = ~Y9p KOKO>
9pk+k= = TIpk-K+ = Gpk°K® = TYIHpKOKO>
9okt k- = “Yok-k+* = Jok'K® = ~YokOKOs
JpkrKk~ = “Ypk~K+ = TYpKkOR® = YpKOKO- (33)

The coupling constants for the sum of all the isospin
channels of the [K*,K,(K)] loop can be written as
the following forms for the y¢, yw, and yp channels,
respectively:

29,k k-9pK+ K- (g Kty T gK*OKOy)7 (34)

29,k k- 9ok K- (9x~+ Kty + gK*OKO;/)’ (35)

20,k K-9pK+ K- (gk*+k+y - gK*OKOy)' (36)
As listed in Table VIII, the couplings gg+ g+, and gg-ogo,
have a sign phase, which implies the constructive phase
between the charged and neutral meson loops for 7y — yp,
while the y¢ and yw channels involve a destructive phase.

The loop integral will be given in the Appendix, and the
contributions of each type of the loop transitions will be
collected and compared with each other among different
processes.

[K*, K, (K*)].—Similarly, by denoting the masses and 4-
vector momenta of the intermediate mesons (K*, K*, K) as
(my, my, m3) and (p;, p), p3), respectively, the loop
transition amplitude can be written as

4
M= / éTp)l“VlgD"”(K*)VzupD"”(K*)VsuD(I?)f (7).
(37)

where the vertex function V', has the same form as that in
Eq. (31) and the other two functions are
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V2/4p = _igK*K*y[e}(?géﬂplp + €§95pP2M - gﬂp(pl + p2)5€}é]’
(38)

. B
V3D = leVK**K’ea/ﬁ/ﬂpgp/Ve%/' (39)

Similar to the previous loop amplitude, there are also
four isospin channels which involve the charged and
neutral intermediate mesons. They can be combined
together with the coupling constants for the y¢, yw, and
yp" channels, respectively, i.e.,

ZQr/XK*‘K‘g(/)K**K‘ (9K*+K*+y + gK*OK*Oy)’ (40)
ZQr/XK“K’ng**K’ (9K*+K*+y + gK*UK*Oy)’ (41)
ZanK“K’ng**K’ (9K*+K*+y - QK*OK*U;/)- (42)

As listed in Table VIII, the charge neutral coupling gg-ox-o,
is much smaller than the charged one.

[K*, K*, (K)].—With the same notation convention for the

masses and 4-vector momenta of the intermediate mesons,
the loop amplitude can be expressed as

. d* / -
M= [ BV, D () VDKV DRV F ).
3)

where the vertex function V, has been given in Eq. (31)
and the other two vertex functions are

. p
V];w = —l9) kK eaﬂyl/p?pg (44)

Vay = iRGyk kEapa DY P €Y. (45)

Combining together the four isospin channels, we have the

coupling constants for the y¢, yw, and yp° decays,
respectively, as follows:
20k k- 9pk k- (9K K+y T Gr0K0 )5 (46)
20k k- Gk k- Gk Ky T Greogoy), (47)
29;7XK*+K*’ng*+K’ (9K*+K+y - QK*OKO;/)- (48)

[K*, K*, (K*)].—The transition amplitude can be written as

d4P1 ‘ -
iM= Vl/w (K )VZ///)D'D (K )VSD’G

x DV¥( K* )F(p?). (49)

where the vertex functions have been given earlier for the
corresponding couplings. Similar to the loop amplitudes

discussed, we combine the isospin channels together to
give the couplings for the y¢, yw, and yp° decays,
respectively, as follows:

29;7XK*+K*‘9¢K*'K*‘ (9K*+K*+y + 91(*01(*03/)’ (50)
ZQWXK*W*- Gkt K+ (91(*+K*+y + gK*OK*Oy)’ (51)

ZanK“K*’ 9okt K~ (9K*+K*+y - gK*OK*Oy)' (52)

[K, K*, (K)].—The transition amplitude can be written as
. d4p1 v( 2
IM = WVWD(IQVzD(K)V%D” (K*)F (7). (53)

where the vertex functions V', and V3, have been given
earlier and V, has the following form:

Vy = iggk,(p1 + Pz)aef- (54)
Again, combining the four isospin channels of this type

of the loop transitions, we obtain the coupling constants for
the y¢, yw, and yp° decays, respectively, as

20k k- 9k (Gx+ K+ + IKoKOy ) (55)
29;7XK+K*’9(0K+K*’ (9K+K+y + gKOK‘)y)’ (56)
20, kK- 9pk+ K- (91<+1<+y - gKOKOy)’ (57)

where the charge neutral amplitudes vanish literally due to
the suppressed coupling ggogo, -

[K, K*, (K*)].—The transition amplitude can be written as

d4 ! / gl
M= [ BV DIVAD (K)o D (RVF 9)
JT
(58)
where all the vertex functions have been given earlier. The
combined couplings for these four isospin channels can be
expressed as the following forms for the y¢, yw, and yp°
decays, respectively:
29;1XK+K*-9¢K*+K*- (9K*+K+y + gK*OKOy)’ (59)
29r;X1<+K*-9wK*+K*- (QK*+K+y + gK*OKOy)’ (60)

zgr/XK+K*_g/)K*+K*_ (gK*+K+y - gK*OKOy)' (61)

Contact loop diagrams.—Besides the triangle loop tran-
sitions, the photon can be produced by the minimum
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substitution of the derivative at the hadronic interaction
vertices, i.e.,

9, = 0, +ieQA,. (62)

Such contributions are illustrated by Figs. 1(c) and 1(d) and
are referred to as the contact loop diagrams in this paper.
For Figs. 1(c) or 1(d), the intermediate mesons [M1, M2]
both could be [K*, K] or [K*, K*]. It can be easily proven
that contributions from Fig. 1(c) with either [K*, K] or
[K*,K*] should vanish [48]. For Fig. 1(d) with
[M1,M2] = [K*, K*], the antisymmetric tensor coupling
for the nyK*K* vertex dictates that the induced photon can
only contribute via its longitudinal component. Thus, for
the real photon decay, this transition will be forbidden. As a
result, only the transition of Fig. 1(d) with the intermediate
K*K mesons will have nonvanishing contributions, and the
corresponding amplitude can be expressed as

iM = /d4pl W DMK VaeD(KT)F(p7),  (63)

where the vertex function V', has been defined in Eq. (31)
and V,, has the following form:

Vo = —ie(QK* ) Rgyx k-€spa€iPely.  (64)

It is obvious that the intermediate charge neutral loops
cannot contribute since the amplitude is proportional to the
charge of the pseudoscalar meson. Moreover, taking into
account the SU(3) relation among the couplings, one finds
that the two amplitudes with the intermediate K*~K™ and
K*TK~ loops are constructive for all the decay channels
into y¢, yw, and yp°.

The detailed expressions of the loop amplitudes defined
in this subsection are provided in the Appendix.
Meanwhile, taking the advantage of the antisymmetric
tensor structure for the VVP (VyP) coupling, we can
define effective couplings for each transition amplitude,
and the total amplitude can be written as a sum of all these
amplitudes, i.e.,

b 5,4

iMTotal = i(g;z;xy\/ + g;?XyV)ea[)’(S/lpypVe €y, (65)

T L . .
where g, . and g, are the effective couplings extracted
from the tree and loop transitions, respectively.

III. NUMERICAL RESULTS AND DISCUSSIONS

The present experimental measurements of the exclusive
decays of 7(1295) and 7(1405) are still far from satisfac-
tory. In particular, the mass degeneracy of f(1285) and
f1(1420) with (1295) and 7(1405) has brought a lot of
challenges to the data analysis. At this moment, the data

TABLE IX. Partial decay widths of ny — yV (in unit of MeV)
calculated by the exclusive tree-level amplitudes, and two values
A =0.75 and 1.0 GeV for the cut-off energy are adopted as a
comparison.

Widths (all) Widths (all)

Widths with A = with A =

Channels (tree amp.) 0.75 GeV 1.0 GeV

vp 2.14+0.6 25407 2.84+0.7
n(1295)  yo  0.17+£0.06 0.26 & 0.06 0.28 + 0.06
y¢p 0.0624+0.02 0.19+0.03 0.34+0.03
yp 27£09 25408 2.5+ 0.08
n(1405)  yo 023 +0.07 0.17 £0.06 0.14 £ 0.04
y¢  0.19£0.06 0.27+0.07 0.33 £0.06

from J/y and y(3686) decays provide the joint branching
ratios for the production and decay of these two states.

A. Partial decay widths for 7(1405) and 7(1295) — yV

With the amplitudes and parameters provided in the
previous section, we can directly calculate the radiative
decays of these two states. In Table IX, the exclusive
contributions from the tree-level amplitudes are listed and
compared with the results with the loop contributions
included. Two values for the cutoff parameter A = 0.75
and 1.0 GeV are adopted for the loop amplitudes to show
the sensitivities of the partial decay widths to the loop
contributions. It shows that the tree-level amplitude is
dominant in 7(1405) — yp°, while relatively large loop
interferences occur in 7(1405) — yw and y¢. Similar
phenomena appear in the #(1295) decays. One can see
the dominance of the tree-level transition amplitude in
17(1295) — yp°, while the loop transitions have relatively
large interference effects in #7(1295) - yw and y¢. In
particular, the loop contributions in 7(1295) — y¢ turn
out to be dominant. This is understandable since 7(1295)
has large couplings to K*K + c.c. in the mixing scheme,
which will strongly enhance the loop amplitude. Moreover,
the tree-level amplitude is suppressed by the intermediate
¢ — ete™ coupling in the VMD model.

We can also examine the exclusive contributions from
each loop diagram in order to clarify their roles in the
interference with the tree-level amplitude. The results are
listed in Table X for two cutoff values, i.e., A = 0.75 and
1.0 GeV. It shows that the triangle diagrams [Fig. 1(b)] have
much smaller contributions than the contact diagrams
[Figs. 1(c) and (d)]. Since both the yw and y¢ channels
experience relatively large interferences from the loop
transitions, it may lead to significant changes to the
branching ratio fractions among these channels if compared
with the tree-level results. It should also be noted that
dependence of the interference effects on the cutoff param-
eter implies that a combined analysis of all the channels with
constraints from experimental data is necessary. In the next
subsection, we will show that the branching ratio fractions
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TABLE X. Decay widths of each type of the hadronic loop diagrams with the cutoff parameter A = 0.75 and

1.0 GeV.
A =0.75 GeV A =1.0 GeV
Diagrams Decay channels (KeV) 1n(1295) 1n(1405) 1n(1295) n(1405)
vp 0.48 0.39 2.54 1.33
K*.K, (K)] yo 0.038 0.034 0.21 0.16
vz 0.70 0.37 1.33 0.78
p 573 2.63 10.0 7.63
[K*, K, (K")] Y@ 5.45 24 8.65 34
r¢ 4.56 2.83 5.3 3.25
” 0.12 2.16 0.55 10.7
[K*, K*, (K)] Yo 6.8 x 1073 0.20 0.031 0.98
Yo 8.2x 1073 0.38 0.031 1.54
7 0.044 1.46 0.15 5.1
[K*, K", (K*)] yo 0.036 1.22 0.12 422
v 0.051 2.68 0.15 7.97
rp 5.8 x 1073 3.8x 1073 0.073 0.028
K. K", (K) yo 49 %107 3.2 % 1073 0.06 0.024
v 0.012 0.013 0.087 0.058
vp 6.1 1.16 29.3 3.35
K. K", (K*)] yo 1.16 0.43 391 0.16
v 0.8 0.69 3.9 3.39
p 85.3 17 193.3 423
[K*, K] 0 82.3 16.6 185.4 41.1
r¢ 73.2 23.1 149.4 51.2
vp 84.0 8.5 264.6 209
All loops yo 43.9 11.7 111.6 43.8
vz 57.4 15.4 158.0 64.6

between different decay channels can provide further con-
straints on the role of the loop transitions.

B. Relative production rate between 7(1405) and
n(1295)

To extract information about their internal structures,
we define several branching ratio fractions which can be
directly compared with the experimental data. For the
production and decay of #7(1295) and 7(1405) in the same
channel, we define

’

L) jy—yn(1405)~yyp
’R/, _
1

FJ/(//—>yr/( 295)—yyp
R = FJ/y/—>y;1(1405)—>yyw
¢ IﬂJ/l//—>]/;’/(1295 )=ryw
r — —
Ry = J/y—=yn(1405)—yre (66)

FJ/‘//*J’VI(UQS)—WW/’

With the amplitudes given in the previous section, we
can first examine the branching ratio fractions contributed
by the tree diagram in Fig. 1. As an example, the fraction
R, has the expression from the tree-level transitions

R

B (|Pn(14os)|>3 <|Pp|>3<
P — /
|Pn(1295)‘ |Pp|

mply 2
myly

<\/§tanap—|—R>2 5
X | —————) tan’ap,

\/E—Rtanap

where p,(1405) and p,(1295) denote the three-vector momenta
of 7(1405) and n(1295) in the J /y rest frame, respectively;
p, and p, are the final-state vector meson momenta in the
rest frame of #7(1405) and 1(1295), respectively. This ratio
is likely to be larger than unity given that ap ~42° in the
scenario of the first radial excitations. Similarly, the ratios
R, and R from the tree diagrams can be extracted.

In Table XI, these three branching ratio fractions from
the tree diagrams are listed. It shows that the combined
branching ratio for 7(1405) is about 1 order of magnitude
larger than that for #(1295). This is consistent with the
experimental observations that the signal for #7(1295) is
significantly suppressed in the J/y radiative decays.

The inclusion of the loop processes introduces sizeable
corrections to the branching ratio fractions, as we have
learned earlier. In Table XI, the calculation results of R,
R, and R, with the loop contributions are also listed.
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TABLE XI.  Numerical results of R, R,,, and R with SU(3)-
breaking factor R = 0.8, cutoff energy A = 0.75 GeV, and
mixing angle ap = 42°. Here, we only list the values calculated
with the central value of coupling gxyy.

A =0.75 GeV R, Ro Ry
Tree level 10.8 10.9 20.8
T+L 8.8 6.0 12.5

The results marked with “Tree level” and “T +L”
distinguish the situations of whether or not to include
the loop contributions. Note again that Fig. 1(c) always
vanishes. It shows that the inclusion of the loop diagrams
has led to significant corrections to both R, and R,. In
contrast, R, appears to be a relatively stable quantity. This

is due to the dominance of the tree diagrams in yp° for both
n(1405) and n(1295).

C. Branching ratio fractions between different radiative
decay channels

For 7(1295) or 7(1405) radiative decays into different
channels, we define the following branching ratio fractions:

rrld— Dn1405)~p
n(1405) = ’
1(1405)—7¢
Rqﬁ/a} — Fﬂ(1405)—>}/¢
7(1405) = T )
7(1405)—yw
RIS = Ly(1295)7p
(1295) — r ’
1(1295)—r¢
r
w/P _ A p(1295)—yw
CAMEEIL ] (68)
n(1295)—y¢
30
25 + Treelevel — ----- ExpCent=11.1
20 e T+L —— ExpCent=7.53
E15 . s 4
g A s
& ol e CEELC e L T e ¢
& - .
5
0
38 39 40 41 42 43 44
ap
(a)

FIG. 2.

calculation results and tree-level results, respectively. (b) Dependence of

Note that the fractions in Eq. (68) are defined in such a way
that the values at leading order will be larger than unity if
7(1295) and 5(1405) are the first radial excitations of 7 and
1, respectively.

Supposing that only the tree-level amplitudes contribute
in ny — yV, the branching ratio fractions defined in
Eq. (68) would have simple forms in terms of the mixing
angle. As an example, the ratio between the yp® and y¢
decay channel can be written as

_ I (1405)=p _ <|P_,;|>3 {(emf,/f,,)Gp} 2 tan’ap
Pyl 2R

Rﬂ/lﬁ
L (1405) 79 (emy/f4)Gy

1(1405)

(69)

where p,, and p,, are the three-vector momenta of the final-
state p° and ¢ in the initial 7(1405) rest frame. By including
the loop amplitudes, the branching ratio fractions will
deviate from the above expectation.

As mentioned in the Introduction that the BESIII
Collaboration recently measured the radiative decay of

n(1405) — y¢ in J/w — yy¢ [41], we can thus calculate

o/p
R, 1(1405)

presented in Fig. 2 in terms of two parameters ap and
my(1405)- These two variables are closely related to the

interpretation of these two pseudoscalars. Therefore, the

and compare it with the data. The results are

dependence of R on these two variables can illustrate

1405
whether it is a reasonable picture to treat these two states as
the first radial excitation states

1. 7(1405) — yV

In Fig. 2, the two overlapping bands denote the ranges of
the experimental ratios extracted from the two solutions for
J/w — yn(1405/1475) — yy¢ at BESIII [41] as listed in

30
25 s Treelevel — ----- ExpCent=11.1
- 20 e T+L —— ExpCent=7.53
B
E # AAAAAAAAAAAAA
---------------------- serengresneneio et AL
10; P *};,w! I ;..éé
5
0
141 142 143 144 145 146 147
My (1405)
(b)

(a) Dependence of R’/ <1 405) ON the mixing angle ap with m,,(;49s) fixed at 1.405 GeV. The solid dots and triangles denote the full

R/’/ ¢

(1405) ON the mass of 7(1405) with the mixing angle ap set at

42°. The solid dots and triangles have the same meaning as (a). In both flgures the cutoff energy A = 0.75 GeV is adopted; “T + L”
denotes the full calculations including the tree and loop contributions. “ExpCent” denotes the central value of the two solutions from the

BESIII analysis of R (1 405>, ie., 11.10 £ 3.50 and 7.53 £ 2.49, respectively [41]. The light and dark gray bands indicate the error bars of

the two solutions.
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a e T+L
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0
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()

FIG. 3. (a) The dependence of Rf{ 1041105)

4k s+ Tree level
_ o T+L
T
§2'§§§§%§§§§§§ %iii 3

IVAAAAAAAAAAAAAAAAAA‘

1.44 145 146 147

My (1405)

(b)

141 142 143

on the mixing angle ap with A = 0.75 GeV and m, 1405y = 1.405 GeV. (b) The dependence of

Rf(/ﬁ%) on the mass of 7(1405) with the mixing angle ap = 42°. In both figures, the cutoff energy A = 0.75 GeV is adopted. The

legends of the symbols are the same as those in Fig. 2.

Table I. The central values, 7.53 £2.49 and 11.10 & 3.50,
are denoted by the solid and dashed lines, respectively.
Within the commonly adopted values for ap, i.e., ap ~
38°~44° [Fig. 2(a)] and within the mass region of
My (1405) = 1.405~1.475 GeV [Fig. 2(b)], the ratios (round
dots) are consistent with the data within the errors. Since we
carry out numerical calculations of the loop integrals, we
only present separated calculation results for demonstra-
tion. The errors with the round dots are given by the
experimental errors with the data for (1405) — yp° [45].
We also plot the ratios with only the tree amplitude
(triangles) as a comparison. Again, the large discrepancies
between the round dots and triangles indicate that the loop
diagrams provide the significant interferences to the
branching ratio fractions.

In Fig. 3, we present the predictions of R¢(/1Ci4)os) for a
range of ap [Fig. 3(a)] and m,405) [Fig. 3(b)i similar to
Fig. 2. The ratios turn out to be stable, and these two
decays, i.e., 7(1405) — y¢ and yw, are comparable to each
other. Again, we see that the full amplitude calculations
(round dots) are significantly different from the results with
only the tree diagram contributions (triangles). This also

25
----- ExpCent=11.1 o T+L
20
—— ExpCent=7.53
§ 15
%T 10 .........................................................
= I N LI T TS —
5 4
%.75 0.80 0.85 0.90 0.95 1.00
A
(a)
FIG. 4. The dependence of Rf; (/ﬁos) [Fig. 4(a)] and Rf(/luios

indicates the dominant role played by the loop diagrams.
The distributions of the round dots with errors show that the
loop contributions are sensitive to the coupling of gyyy
determined by the data of 7(1405) — yp°.

Another aspect to be examined is the cutoff dependence
of the branching ratio fractions. In Fig. 4, both ratios

R (/ﬂos) and Rf(/ﬁ%) in terms of a range of the cutoff
parameter A = 0.75-1.0 GeV are presented in parts (a) and

»/P
1(1405)

with the increasing A. Because of the dominance of the
tree-level amplitude in 5(1405) — yp°, the errors with the
round dots appear to be relatively smaller than those

- po/o
n R”<1405>.

In Fig. 4(b), it shows that the ratio R?/® _increases

. L n(1405). .
gradually in terms of A. This indicates the increasing
contributions of the loop amplitudes in 7(1405) — y¢
with the increasing A. Combining Figs. 4(a) and 4(b)
together, one can see that the relation I (j405),,0 >
Ly 1405)=y¢ > y(1405)~yw> Which is consistent with the

expectation of the first radial excitation assignment

(b), respectively. It shows that R is a stable quantity

3.0

2.5F o T+L

R, 1405,
(3]
(=)
—e—i
——
—e—
—e—

) [Fig. 4(b)] on the cutoff energy A, with ap = 42° and My (1405) =

1.405 GeV fixed in the calculations. The light and dark gray bands in (a) indicate the two solutions from the BESIII analysis,
7.53 £2.49 and 11.10 £ 3.50, respectively [41], and the central values are denoted by the solid and dashed lines, respectively.
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g 1o R
10 ¢ : ¢ : o t it
0 38 39 40 41 42 43 44 070 075 080 0.85 090 095 1.00
ap A
(a) b)
FIG.S5. (a) The dependence of Rp (1205) O the mixing angle ap with A = 0.75 GeV. The tree-level results are denoted by the triangles,

while the full calculation results are denoted by the solid round dots. (b) The dependence of R

A with ap = 42°.

[29,34]. Also, the ratio R’W

(1405) favors the solution of
7.53 & 2.49 in Ref. [41].

2. 7(1295) > yV

In Fig. 5(a), the predicted ratio Rf; (/{295) in terms of the

mixing angle ap is plotted. The full calculation is denoted
by the solid round dots, while the results for the exclusive
tree-level transition are denoted by the triangles. Their
difference indicates the significant interferences from the
loop diagrams.

In Fig. 5(b), the dependence of R’/ 1295 on the cutoff
parameter A is shown by the solid round dots. Within the
range of A =0.75~1.0 GeV, the ratio remains stable,
although a decreasing tendency appears with the
increasing A.

In Fig. 6, the ratio R (/1295 is calculated and presented in
a similar way as in Flg 5. We can see that the dependence

of the ratios on the mixing angle ap [Fig. 6(a)] is similar to

n
R (1295

loop transition contributions, and the results are presented
in Fig. 6(b). Again, we find that the ratio keeps stable.

) We also investigate the cutoff dependence of the

5

4l + Tree level

_ . . o T+L

[E I Coo
2 3 : 3 ; .
1,

38 39 40 41 42 43 44
ap

()

FIG. 6. (a) The dependence of R *'11‘&1295

with the mixing angle ap =

1295 on the cutoff energy

The present calculation results favor that RU{ 1405) takes
the lower ratio 7.53 + 2.49 in Ref. [41], and its dependence
of the form factor parameter appears to be stable. However,
we should caution that the experimental ratio strongly
depends on the data for 5(1405) — yp® [40], which still
contain large errors. Meanwhile, the two experimental
solutions are for the constructive and destructive interfer-
ences from X(1835) in Ref. [41], which means a combined
partial wave analysis is required for more quantitative
studies. Such uncertainties will affect our determination of
the parameter gyyy and influence the loop interfering
patterns.

D. Loop influence on the mixing angle

The above studies have shown the impact of the loop
transitions on the experimental observables defined in the
productions and decays of x(1295) and 7(1405) in
J/w — yyV. As a consequence, it implies that the mea-
sured mixing angle between 7(1295) and #(1405)
may possess different values in different processes if the
detailed transition mechanisms have not been properly
included.

4

3 o T+L

R, (1205

;
§§§§i§§§;§§
§

A
(b)

on the mixing angle ap with A = 0.75 GeV. (b) The dependence of R” (1295) on parameter A
e legends are the same as Fig. 5.
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To illustrate this, we adopt Eq. (69) as an example.
Without the loop transitions, Eq. (69) will define a mixing
angle which can be extracted with the experimental value
of R?/ 1{/405 as the input. But if the loop transitions are
1nclu<qed the ratio should be expressed as

L(1405)—p

Rﬂ/ ®

n(1403) r (]405)—>y¢

G [z

By matching it to the tree-level relation defined in Eq. (69),
one has

n(1405)yp (a )—|—g$(1405)yﬂ(ap)} ’
1(1405) ¢( )+9r€(1405)y¢(ap)
(70)

{(emﬁ/fp)Gp} “tan’ap _ {9&1405)7;:(“1’) +9$<1405>y,,(ap)] ’

(emé/f(/,)G(/, 2R2 N 92(1405)7¢(aP)+g$(1405)},¢(aP) ’

(71)

and the “empirical” mixing angle &p can be extracted. In
Table XII, we list the extracted values of @p from the ratios

/¢ /¢
Rp(1405) and Rp 1(1295)"

calculations as an illustration, we see that the extracted values
for the mixing angle &p are different in the measurements of
these two ratios. To some extent, the deviations of &p from the
commonly adopted values could be acceptable in a single
channel. However, when putting two channels together, such
deviations should be regarded as significant. Further exper-
imental measurements of these ratios would be able to clarify
the role played by the loop transitions.

With three values for ap in the

IV. SUMMARY

In this work, based on the one-state assumption for
n(1405) and 7(1475), we systematically investigate the
radiative decays of #(1295) and 7(1405) by treating them
as the first radial excitations of 7 and . In the framework of
the VMD model, we include the intermediate KK* + c.c.
meson loops as the leading correction to the tree-level
transition amplitudes for the #(1295) and 7(1405) — yV.
With an exponential form factor for the regularization of the
loop integrals, we are able to to understand the production
and decay behavior of both states in the J/y radiative

TABLE XII. Extracting a new mixing angle @p for the given
mixing angle ap with cut off parameter A = 0.75 GeV.
dip
/b /b

ap Rp(1295) RZ<1405
42° 54.9° 32.4°
40° 52.4° 34.2°
38° 50° 36°

decays. In particular, the radiative decays of n(1405) — yV
can be described in agreement with the BESIII measure-
ment. It is interesting to note that the loop transitions can
produce significant effects in some decay channels. For
instance, the loop contributions in 7(1295) — y¢ are found
to be compatible with the tree-level contributions. This
should not be surprising since the coupling of g, 1295k In
the loop amplitude is sizeable and the ¢ meson decay
constant in the tree-level amplitude is much smaller than
that of the p° meson (see Table II). Since the production of
n(1295) in J/w — yyp® has the largest branching ratio,
experimental study of 7(1295) in this channel is strongly
recommended for testing the relations presented in
this work.

In the scenario of assigning #(1295) and 7(1405) as the
first radial excitation states of # and #’, we show that the
branching ratio fractions between these two states in the
same decay channel, or between two exclusive decay
channels for the same state, exhibit interesting patterns
when the intermediate KK* + c.c. meson loops are prop-
erly included. Due to the loop corrections, the mixing angle
extracted from the radiative decay data will be affected by
the loop correction effects. It would be different from the
commonly adopted one extracted in other processes. We
also find that the contributions from the meson loops are
relatively small in 7(1405) and 5(1295) — yp°. Thus, this
channel will be dominated by the tree-level transition and is
ideal for extracting the mixing angle.

In brief, we find that the radiative decays of J/y — yyV
can serve as a probe for understanding the nature of
n(1295) and 7n(1405). With the large data sample of
J/w at BESIII, we can disentangle the role played by
the meson loop transitions and gain more insights into the
pseudoscalar meson spectrum.
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APPENDIX A: AMPLITUDES OF THE
HADRONIC LOOP DIAGRAMS

In this Appendix, we present the loop amplitudes for the
convenience of tracking the calculation details (for
simplicity, we do not distinguish the coupling constants
at the hadronic vertices but just denote them as g; with
i=1,2,3):
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@) [K*. K. (K)]:

(g — 280 :
7Pf€ 5 p“pﬂe‘s (Pz - P3)/1€v
Pt —mi +ie” PPV (pF — mi + ie) (p} — m}, + ie)
- / d*py €apouP P €S (2D, + 2py — p1 ) (2p1 = 2p, — Pv)zev Fp?)
2r)*  (p} —mi. + ie)(p3 — mi + ie)(p3 — mi + ie)

. d4P1 2
IM = g10,93 /W(p)( +P3)o F(p7)

= 2019293€apsuP D" €€ /dpl pf[z(pl)/l_(zpy‘va)l]
1R BT EVEREY. [ )4 (p? — m2. + i€)(p2 — mE + i€)(p2 — mE + i€)

F®?)

d4P1 ZPfPu <p2>

=2 a M b ﬂ/
NPG3CapuPrPVErY [0y (7 = m2. + ie)(p2 — mk + i€)(pd — m% + i€)

(A1)

Note that, due to the property of the antisymmetric tensor, only the éf term could survive in the tensor integral.

(if) [K*. K. (K")]:

G o H
e / i p, 919295(Px + P3)ol97 = ) (¢ — BB)eups PPl
l

(2” (P1 mK*)(Pz mK*)(P3 %()

X [€95:01p + €95,P20 — Gup(P1 + P2) €0 F (PF)

- d*p -2
— / (27)* pi(pt = mi-)(p3 — mg-)(p3 — m%)
X {ea/MP?Pe/e;e%/[(Pl -py)* = pilpv-py) + (p1-py)(P1- py)]
—eapiPiPvesel((pr - p)? = P2(py - p,) + (P1 ) (P1 PY))]
— Pt PV PYEL (P16, — Py €,) 2P = pr- P, = i pv) = PPy - €)}F (P2). (A2)

In the above integral, after contracting the Lorentz indices, the amplitude can be simplified to a more compact form.
One notices that the first term in the big brackets is a scalar integral, while the second and third terms will pick up the
linear terms containing py and e, respectively, due to the property of the antisymmetric tensor. The same analysis is
also applied to the following loop amplitudes.

(i) [K*, K*, (K)]:

» /d4pl Capu PP (g~ B et Pl eyeaz/;zmpzzp/ézev(g””'—%)f(pz)
IM=3G19293 ] i
(2m)* (p? mg.)(p3 —mg)(p3 —mg.)
d*p1 €apu iP5 Xealﬂmapl‘p’f‘e X €qpuiPY PV EY .
=919293 4 7 7:(1’ )
(27) (P1 mk*)(Pz )(P3_m1< )
d4p1 ]:(Pz) 2 2
_919293/ x {eapsi PPVl [(P1 P2+ (p1-p,) (1 Pv) = PPy p,)]
(2”) (Pl_mK )(Pz mk)(l’3 ml(*) PAErEVETY ! ! ! !

+€a/15/1P(11Pv€y€v[—(P1 ‘Py) ]+€aﬁﬁpyl’1€y€v[(l’l 'PV)Z—P%P%/] aﬁé&P?P@P?GQ/[(PI ‘Py)(Pl ‘€y)

_(pV'py)(pl'€y)+(p1'p;/)(pv'€y)]+€aﬂéﬂp?p€/€?pﬂ(pl pv)(pi-ev)]} (A3)
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(v) [K*, K*, (K*)]:

, o
d4p1 eaﬂ/wp(lng(glm - 17117#) (g/w P2P2)<gw P3173)

M —
KT 919203 / @ (=) (pd = ) (P = i)
X (2950 P1p + €095, P2 — Gup(P1 + P2)s€0) X (€401 P36 — €5910P2 + Gua(P2 = P3),E4F (P?).
d4p] aﬁyup]p’i (g/m - pzpz)
= 919293 / s
(27 ) (P] _mK*)(pZ mK*)(P3 - mK*)
X [€095,01p + €95,020 — Gup(P1 + P2)5€0) X (€491 P36 — €4 910 P2 + 906(P2 — P3),€V1F (P?).
= 019293 / d4p1 ]:(plZ)
(27)* p3(p7 - Mi*)(p% - m%.)(p3 — my.)
x {= eaﬁml’ll’ve ev[ 2( = D1 py+ P%) + (P Py — P%)(—Z(l’l 'Py) +pv-pP,—P1Pv+ P%)]

+ €apiPIPREEL D3 (=P - py = P1 Py + DY)+ (P = P)(=2(p1 - p,) + Py p, = Pi Py + DY)
— €Dl Py PN 2P3(p1 - €,) + P3(P1 €, — Py €,) + (P €)(=2(py - py) + Py - Py = Py Py + DY)

+ eapﬁpﬁpeeip? [ZP%(P;/ ~ey) = 3p3(p1-ev) —2(pt—pi- p,)(p1-€v)
+(p3 = p1-p)(pi-ev—p,-ev) +2(pT = pi - p,) (P, - €v)]}- (A4)
(v) [K,K*,(K)]:
" / d*p, (Px + P0)u(P1+ P2)s€leapapiPvel (¢ = 55) o)
iM= | —2g109 ,-
(2m)* 7172 (pt = m%)(p3 — mg)(p3 — m%.)

d* Py €apuiPvel 2py + p3) (2p1 — p,)s€)
—919293/ Dy CapalDS PV oPL T DAV P = Prlo® )

(27) (Pl _mK)(Pz _mK)(p% —my.)
_919293/ d*p, aﬁyngpéeé(zm) (2P1)5€ J’:(pz)

(27 )4 (P1 - mK)(Pz - mK)(P3 - mK*)

d*p1 €apua(py + Pv — P1)° Pvev(zpl) (2p1)s€d 2
=g 9293/ F(p;)
: @2zt (p7 _mK)(Pz mg)(p3 — mg.)

d*p, pepipis — PP pS
—4 B2 5/ 4 2
919293€apui Py €y €y (2”)4 (Pl mK)(Pz _ mK)(Ps - mK ) (p )

= 4g,0,95¢ papﬁelleé/ d4p1 p1P1§ .7:(112) (A5)
€ PIVVS | (o (7 ) (2 = ) (3= i)

(vi) [K.K*, (K*)):

d4p1 (pX+p1) aﬁy§p2p}’ }’(gw p2p2)<gp/4 szfg) i i a F 5
(2r)* (P1—m1()<P2 mK*)(P3 m%() [evg,l,/Psl/—€Vg,11,/pzﬂ/—|—gﬂ/vl(p2—p3)/1€v} P7),

iM :919293/

’ H
d4pl (pX+p1)ﬂ€aﬂv5png/f€§(¢#_p;—?) 1 a i ’
919293 / 2n)" (P —m2) (P (P2 X (€993 D3 =€V Ga P2y + Gu (P2 = P3) €9 F (P7),

= 019293 / p, 7 i)
(27)* p3(pi—m%)(p3—m%.)(p3—m%.)
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X {—€aps P PIESe [2(p, - pv)> +2p3(py - p,) = P3P, pv) + P3(p1-pv) + PiPE+ P, pyv) =2p% (P p,)

=2(p1-pv)(p,-pv)=4(p1-p,) (P, Pv)+ Py (P, pv)+ PPy + PP Pyv) =Py (P py) — Pl

— s PPt~ P3P, -ev) +3P3(P1ev) = PP, ev) = 2(p, pv) (Pr-ev) + P} (P, -ev)
+2(p,-pv)(py-ev)+pi(pr1-ev)—py(pr-ey)]}. (A6)
i) [K*, K]:
pirs /]
M = eq . / d*p, (Px + P2)u (9" =5 l)eéﬁa/le;épvel‘lf Fp?)
= K+ K- VKK~ i)
" (27)* (Pt - mK*)(pz my)
/ d*p, eaﬁazefpﬁveé(px + p2),(¢"* = %) Fid)
€g192 i)e
(2”)4 (1’1 - mK*)(Pz mj %)
d*p, { 5 2(p1-py+pi-pv) 2€aﬁ52pypve e }
= 39192/— €apsiP P - ]:(PZ) (A7)
)t PPV T T (03— m)  (pF = mi) (p3 — m})

APPENDIX B: COUPLING RELATION EXTRACTED IN THE *P, MODEL

The VPP, VVP, and VVV couplings have dynamic connections in the quark model. Here, V and P are the ground-state
vector and pseudoscalar gg mesons. Taking the ¢ meson couplings to KK, K*K, and K*K* as an example, we can see that
the spatial wave function overlaps only involve the ground states V and P and they can be treated the same at the leading
order. Then, the coupling differences will arise from the spin-flavor structure in the transition operators. Note that the color
factor is a trivial one and it is the same for all these couplings.

Considering the effective couplings at the hadronic level, we can write down the transition amplitudes as follows:

iMypp = —igspk-k-(PB — Pc)ﬂeﬁv (B1)
IMyyp = 59¢K*K€(1/3,4UPAPB€”€Z§*’ (BZ)
IMyyy = —igpk g les - €c(pg—Pc) -€a — € - €a(pp - €c) + € €a(pc - €3)]. (B3)

The same processes can also be described by the quark model formalism, and we adopt the quark pair creation model (i.e.,
3P, model) [49] to extract the coupling in the quark model.
For an Okubo-Zweig-lizuka (OZI)-allowed decay of A — BC, the general form of the transition matrix element is [50]

MMuMiMic (P) = y\/REJEgEc > (LaMy,SyMg,|JoMy (LgMy, SgMss,|TpM;, ) (LeMy ScMs [T cM,,)

My, Mg, Mpp Mg,

x (Im1 —m|00><ZsBMS )(sCMj I)(SAMS )(1 m>[< |¢ > (P my, my, ms)
+ (=) SIS (R RGP, my, my, m3)], (B4)

where M, , M;,, and M, denote the spin projections of each particles and the kinematic variables in the rest frame of the
initial-state A are defined as

pa = (my,0,0,0), pp = (Ep.0,0,p,), pc = (Ec.0,0,-p,). (BS)

The overlap of the spin wave functions is
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14 32 12 34
SpMs X ScMg,. SAMSA)(I—m>

= Z<<j1j4)53, (J372)Scs SMs|(j1j2)Sa. (j3ja)1: SMs)
S M

X <SBMSBSCMSC|SMS><SAMSA1_m|SMS>' (B6)

As we know, in the case of VV P, only the transversely
polarized states of A will have nonvanishing contributions
due to the antisymmetric tensor coupling. It is consistent
with the fact that in the 3P, model the nonvanishing helicity
amplitudes are just the M; M; M, =110 and
My M;M; =—1-10. Similarly, we can analyze the
VPP and VVV coupling in the quark model. The transition
amplitudes calculated in the ELA and 3P, model, respec-
tively, are listed in Table XIII. One can easily read the
coupling relation:

m
gvpp = TVQVVI% (B7)
gvvv = gvpp- (BS)

TABLE XIII. Relevant amplitudes in the 3P, model and ELA.
Amplitudes 3P, ELA

¢ — KK~

MO® 755 Pz i94KK2P:
¢ — KK~

MO Y%pz —igg-xMyP;
M=o r i pe igk-xmyp:
¢ — KR

Mo V575 Pz ~i9pKk k- 2D:
M-t ENIL —igpx-&-2P:

Note that these two relations hold in the degenerate limit of
V and P. In reality, they are broken by the mass differences
between the V and P mesons. But for the purpose of
constraining the number of free parameters, we can still
adopt them in the analysis.
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