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In this paper we study the high-energy exclusive photoproduction of heavy quarkonia pairs in
the leading order of the strong coupling constant αs. In the suggested mechanism, the quarkonia
pairs are produced with opposite charge parities, and predominantly have oppositely directed
transverse momenta. Using the Color Glass Condensate approach, we numerically estimate the
production cross sections in the kinematics of the forthcoming electron-proton colliders, as well as
proton-ion colliders in ultraperipheral collisions. We find that the cross sections are within the
reach of planned experiments and can be measured with reasonable precision. The suggested
mechanism has a significantly larger cross section than that of the same C-parity quarkonia pair
production.
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I. INTRODUCTION

The production of heavy quarkonia is frequently con-
sidered as a clean probe for the study of gluon dynamics in
high-energy interactions, since in the limit of heavy quark
mass mQ the running coupling becomes small, and it is
possible to apply perturbative methods for the description
of quark-gluon interactions. In many scattering problems
the small size of the color-singlet heavy quarkonium
provides additional twist suppression [1,2], thus facilitating
the applicability of perturbative treatments. The modern
nonrelativistic QCD framework allows to use quarkonia
production as a powerful probe of strong interactions,
systematically taking into account various perturbative
corrections [3–14].
For precision studies of hadronic interactions, exclusive

production presents a special interest in view of its simpler
structure. However, up to now most of the experimental
data on exclusive heavy quarkonia production were limited
to channels with single quarkonia in the final state. This
limitation was largely motivated by probable smaller cross
sections of events with more than one quarkonia in the final
state. Nevertheless, processes with two mesons in the
final state are particularly interesting and have been the
subject of studies since the early days of QCD [15–18].
A recent discovery of all-heavy tetraquarks, which might
be considered as molecular states of two quarkonia, has

significantly reinvigorated interest in the study of this
channel [19–29].
In LHC kinematics most of the previous studies of

exclusive double quarkonia production [30–35] focused
on the so-called two-photon mechanism, γγ → M1M2,
which gives the dominant contribution for the production
of quarkonia pairs with the same C parity in ultra-
peripheral collisions. Studies beyond the double-photon
fusion show that, in a transverse momentum distribution
factorization approach, the exclusive double quarkonia
production could allow to measure the currently unknown
generalized transverse momentum distributions of gluons
[36]. However, in LHC kinematics the cross section of
this process can get sizable contributions from the
so-called multiparton scattering diagrams. Such contribu-
tions depend on the poorly known multigluon distribu-
tions, leading to potential ambiguities in the theoretical
interpretation of the data.
Electron-proton collisions have a significant advantage

for studies of heavy quarkonia pair production, due to a
smaller number of production mechanisms compared to
hadron-hadron collisions. Moreover, precision studies of
double quarkonia production in ep collisions could
become possible after the launch of new high-luminosity
facilities, such as the forthcoming Electron-Ion Collider
(EIC) [37–40], the future Large Hadron electron Collider
(LHeC) [41], the Future Circular Collider (FCC-he)
[42–44], and the CEPC collider [45,46]. The main objec-
tive of this manuscript is the study of exclusive produc-
tion of heavy quarkonia pairs, γp → M1M2p, in the
kinematics of the above-mentioned electron-proton col-
liders. Potentially, such production might also be probed
in ultraperipheral heavy-ion and proton-ion collisions.
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However, in these cases the analysis becomes more
complicated in view of possible contributions of other
mechanisms [30–34]. The large mass mq of the heavy
flavors justifies the perturbative treatment in a wide
kinematic range, without additional restrictions on the
virtuality of the incoming photon Q2 or the invariant
mass of the produced quarkonia pair. In the absence of
imposed kinematic constraints, the dominant contribution
to the cross section will come from events induced by
quasireal photons with small Q2 ≈ 0 and relatively small
values of xB ≪ 1. In this kinematics it is appropriate to
use the language of color dipole amplitudes and apply the
color dipole (also known as Color Glass Condensate or
CGC) framework [47–55]. At high energies the color
dipoles are eigenstates of interaction, and thus can be
used as universal elementary building blocks, automati-
cally accumulating both the hard and soft fluctuations
[56]. The light-cone color dipole framework has been
developed and successfully applied to the phenomeno-
logical description of both hadron-hadron and lepton-
hadron collisions [57–64], and for this reason we will use
it for our estimates.
The paper is structured as follows. In Sec. II we

theoretically evaluate the cross section of exclusive
photoproduction of heavy quarkonia pairs in the CGC
approach. In Sec. III we present our numerical esti-
mates, in the kinematics of the future ep colliders
(EIC, LHeC, and FCC-he) and ultraperipheral pA
collisions at the LHC. Finally, in Sec. IV we draw
conclusions.

II. EXCLUSIVE MESON PAIR
PHOTOPRODUCTION

A. Kinematics of the process

We would like to start our discussion of the theo-
retical framework with a short description of the
kinematics of the process. Our choice of the light-cone
decomposition of particle momenta is similar to that of
earlier studies of pion-pair [65–69] and single-meson
production [70–86]. However, we should take into
account that the mass of the quarkonium (in contrast
to that of the pion) is quite large, and thus cannot be
disregarded as a kinematic higher-twist correction.
Besides, for photoproduction this mass can appear as
one of the hard scales in the problem.
In what follows we will use the notations q for the

photon momentum, P and P0 for the momentum of
the proton before and after the collision, and p1, p2 for the
4-momenta of produced heavy quarkonia. For sake of
generality, we will assume temporarily that the photon can
have a nonzero virtuality −q2 ¼ Q2, taking later that for
photoproduction Q2 ¼ 0. We will also use the notation Δ
for the momentum transfer to the proton, Δ ¼ P0 − P, and
the notation t for its square, t≡ Δ2. The light-cone

expansion of the above-mentioned momenta in the lab
frame is given by1

q ¼
�
qþ;

Q2

2qþ
; 0⊥
�
; qþ ¼ Eγ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
γ þQ2

q
≈ 2Eγ;

ð1Þ
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where ðya; p⊥a Þ are the rapidity and transverse momentum
of the quarkonium a, and Ma is its mass. Using con-
servation of 4-momentum, we may obtain for the momen-
tum transfer to the proton

Δ ¼ P0 − P ¼ q − p1 − p2

¼
�
qþ −M⊥

1 e
y1 −M⊥

2 e
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−
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1 e
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2
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; ð5Þ

and for the variable t≡ Δ2,

t¼Δ2 ¼ðqþ−M⊥
1 e

y1 −M⊥
2 e

y2Þ
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Q2
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−M⊥

1 e
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After the interaction, the 4-momentum of the proton is
given by

P0 ¼ Pþ Δ ¼
�
qþ þ m2

N

2P− −M⊥
1 e

y1 −M⊥
2 e

y2 ;

P− þ Q2

2qþ
−
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1 e
−y1 þM⊥
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2
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�
; ð7Þ

and the on-shell-ness condition ðPþ ΔÞ2 ¼ m2
N allows to

get an additional constraint

1In earlier theoretical studies [65–68,80,87] the evaluations
were done in the so-called symmetric frame, in which the z axis is
chosen in such a way that the vectors q and P̄≡ Pþ P0 do not
have transverse components. Besides, all evaluations were done
in the Bjorken limit, assuming an infinitely large Q2 and
negligibly small masses of the produced mesons (pions). In
our studies we consider quasireal photons, with Q2 ≈ 0, and
moreover the heavy mass of the quarkonia does not allow to drop
certain “higher-twist” terms. For this reason, the kinematic
expressions in the symmetric frame become quite complicated,
and there is no advantage in its use for photoproduction.
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q · P≡ qþP− ¼ P−ðM⊥
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Solving Eq. (8) with respect to q · P, we get
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which allows to express the energy of the photon Eγ ≈
qþ=2 in terms of the kinematic variables ðya; p⊥a Þ of the
produced quarkonia. In the kinematics of all experiments
that we consider below, the typical values qþ; P− ≫
fQ;Ma;mN;

ffiffi
t

p g, and for this reason we may approximate
Eq. (9) as

q · P≡ qþP− ≈ P−ðM⊥
1 e

y1 þM⊥
2 e

y2Þ; or ð10Þ

qþ ≈M⊥
1 e

y1 þM⊥
2 e

y2 : ð11Þ

From a comparison of Eqs. (3) and (8), we may see that at
high energies the light-cone plus component of the photon
momentum qþ is shared between the momenta of the
produced quarkonia, whereas the momentum transfer to the
proton (vectorΔ) has a negligibly small plus component, in
agreement with the eikonal picture expectations. Equa-
tions (9)–(10) allow to express the Bjorken variable xB,
which appears in the analysis of this process in Bjorken
kinematics, using its conventional definition xB ¼ Q2=
2ðp · qÞ ≈Q2=ðQ2 þW2Þ. As discussed in Refs. [88–91],
in phenomenological studies it is usually assumed that for
heavy quarks all the gluon densities and forward dipole
amplitudes should depend on the so-called “rescaling
variable”

x ¼ xB

�
1þ ð4mQÞ2

Q2

�
¼ Q2 þ ð4mQÞ2

2ðp · qÞ ; ð12Þ

which was introduced in Ref. [88] in order to improve the
description of the near-threshold heavy quarkonia produc-
tion. While the color dipole framework is usually applied
far from the near-threshold kinematics, the use of the
variable x instead of xB for heavy quarks improves agree-
ment of dipole-approach predictions with experimental
data. In the Bjorken limit, the variable x coincides with
xB. For smallQ2 ≈ 0 (photoproduction regime) the variable
xB vanishes, whereas x remains finite and is given by the
approximate expression

x ¼ Q2 þ ð4mQÞ2
2ðp · qÞ

����
Q≈0

≈
8m2

Q

P−ðM⊥
1 e
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2 e

y2Þ

þO
�
Q2

m2
Q

�
≈

4m2
Q

EpðM⊥
1 e

y1 þM⊥
2 e

y2Þ : ð13Þ

In this study, we are interested in the production of both
quarkonia at central rapidities (in the lab frame) by high-
energy photon-proton collisions. In this kinematics the
variable x is very small, which suggests that the amplitude
of this process should be analyzed in frameworks with
built-in saturation, such as the CGC. In contrast, in the
Bjorken limit (Q2 → ∞; Q2=2p · q ¼ const) we observe
that the variable x can be quite large, so it is more
appropriate to analyze this kinematics using collinear or
kT factorization. The latter case requires a separate study
and will be presented elsewhere.
In the photoproduction approximation the invariant

energy of the γp collision can be written as

W2 ≡ sγp ¼ ðqþ PÞ2 ¼ −Q2 þm2
N þ 2q · P ≈ −m2

N

þ P−ðM⊥
1 e

y1 þM⊥
2 e

y2Þ; ð14Þ

whereas the invariant mass of the produced heavy quarko-
nia pair is given by

M2
12 ¼ ðp1 þ p2Þ2 ¼ M2

1 þM2
2

þ 2ðM⊥
1 M

⊥
2 cosh ðy1 − y2Þ − p⊥1 · p⊥2 Þ: ð15Þ

In electron-proton collisions the cross section of heavy
meson pairs is dominated by a single-photon exchange
between its leptonic and hadronic parts, and for this reason
can be represented as

dσep→eM1M2p

dQ2dy1d2p⊥1 dy2d2p⊥2
¼ αem
πQ2

�
ð1−yÞ dσL

dy1d2p⊥1 dy2d2p⊥2

þ
�
1−yþy2

2

�
dσT

dy1d2p⊥1 dy2d2p⊥2

�
;

ð16Þ
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where we use the standard deep inelastic scattering notation
y for the elasticity (i.e., the fraction of electron energy that
passes to the photon, not to be confused with the rapidities
ya of the produced quarkonia). The subscript letters L, T on
the right-hand side of Eq. (16) stand for the contributions of
longitudinally and transversely polarized photons, respec-
tively. The structure of Eq. (16) suggests that the dominant
contribution to the cross section comes from the region of
small Q2. In this kinematics the contribution of dσL is
suppressed compared to the term dσT . This expectation is
partially corroborated by the experimental data from ZEUS
[92] and H1 [93], which found that for single quarkonia
production in the region Q2 ≲ 1 GeV2 the longitudinal
cross section dσL constitutes less than 10% of the trans-
verse cross section dσT . For this reason, in this paper we
will disregard the cross section dσL altogether, while the
relevant cross section dσT is

dσT
dy1djp⊥

1 j2dy2djp⊥
2 j2dϕ

≈
1

256π4
jAγTp→M1M2pj2δ

�
M⊥

1 e
y1 þM⊥

2 e
y2

qþ
− 1

�
; ð17Þ

where AγTp→M1M2p is the amplitude of the exclusive
process, induced by a transversely polarized photon, and
ϕ is the angle between the vectors p1 and p2 in the
transverse plane. The δ function in Eq. (17) reflects the
conservation of the plus component of momentum, dis-
cussed earlier in Eq. (8).
Similarly, for exclusive hadro production pA →

pAM1M2 in ultraperipheral kinematics we may obtain the
cross section using the equivalent photon (Weizsäcker-
Williams) approximation,

dσðpþ A → pþ AþM1 þM2Þ
dy1d2p⊥1 dy2d2p⊥2

¼
Z

dnγðω≡ Eγ; q⊥Þ
dσTðγ þ p → γ þ pþM1 þM2Þ

dy1d2p�1dy2d
2p�2

;

ð18Þ

where dnγðω≡ Eγ; q⊥Þ is the spectral density of the flux
of photons created by the nucleus, q⊥ is the transverse
momentum of the photonwith respect to the nucleus, and the
energy Eγ of the photon can be related to the kinematics of
produced quarkonia using Eqs. (9)–(10). The explicit
expression for dnγðω≡ Eγ; q⊥Þ can be found in Ref. [94].
The momenta p�i ¼ p⊥i − q⊥ are the transverse parts of the
quarkonia momenta with respect to the produced photon.
Due to nuclear form factors, the typical values of momenta
q⊥ are controlled by the nuclear radius RA and are quite
small, hq2⊥i ∼ hQ2i ∼ hR2

Ai−1 ≲ ð0.2 GeV=A1=3Þ2. For this
reason, for very heavy ions (A ≫ 1) we may expect that the
pT dependence of the cross sections on the left-hand side of

Eq. (18) largely repeats the pT dependence of the cross
section in the integrand on the right-hand side. For the special
and experimentally important case of the p⊥-integrated cross
section, Eq. (18) simplifies and can be rewritten as

dσðpþA→ pþAþM1 þM2Þ
dy1dy2

¼
Z

dEγ
dNγðω≡EγÞ

dEγ

dσTðγþp→ γþpþM1 þM2Þ
dy1dy2

;

ð19Þ

where

NγðωÞ≡
Z

d2q⊥
dnγðω; q⊥Þ
dωd2q⊥

: ð20Þ

In the following Sec. II B we evaluate the amplitude
AγTp→M1M2p, which determines the cross sections of photo-
production processes.

B. Amplitude of the process in the color dipole picture

Since the formation time of rapidly moving heavy
quarkonia significantly exceeds the size of the proton,
the quarkonia formation occurs far outside the interaction
region. For this reason, the amplitudes of the quarkonia
production processes can be represented as a convolution of
the quarkonia wave functions with hard amplitudes, which
characterize the production of the small pairs of nearly on-
shell heavy quarks in the gluonic field of the target. In what
follows, we will refer to these nearly on-shell quarks as
“produced” or “final-state” quarks. For exclusive produc-
tion the cross section falls rapidly as a function of the
transverse momenta pT of the produced quarkonia, and for
this reason we expect that the quarkonia will be produced
predominantly with small momenta. In this kinematical
region it is possible to completely disregard the color-octet
contributions [8,9]. As was shown in Refs. [89–91], this
assumption gives a very good description of the exclusive
production of single quarkonia.
The general rules for the evaluation of different hard

amplitudes in terms of the color-singlet forward dipole
amplitude were introduced in Refs. [47,49–55] and are
briefly summarized in Appendix A. This approach is based
on the high-energy eikonal picture, and therefore the
parton’s transverse coordinates and helicities remain essen-
tially frozen during propagation in the gluonic field of the
target. The hard scale, which controls the interaction of a
heavy quark with the strong gluonic field, is its massmQ, so
in the heavy-mass limit we may treat this interaction
perturbatively. However, the interaction of gluons with
each other, as well as with light quarks, remains strongly
nonperturbative in the deeply saturated regime.
In the leading order over the strong coupling αsðmQÞ,

there are a few dozen Feynman diagrams that contribute to
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the exclusive photoproduction of meson pairs. In what
follows, it is convenient to represent them as one of the two
main classes shown schematically in Fig. 1. For the sake of
definiteness, all the diagrams in which quarkonia are
formed from different heavy quark lines (as shown in
the left panel of Fig. 1) will be referred to as “type-A”
diagrams. The opposite case, when quarkonia are formed
from the same quark lines (as shown in the right panel of
the Fig. 1), will be referred to as “type-B” diagrams. This
classification is convenient for a discussion of symmetries,
as well as for analysis of quarkonia production with mixed
flavors. For example, production of Bþ

c B−
c pairs clearly gets

contributions only from type-A diagrams, whereas produc-
tion of mixed-flavor hidden-charm and hidden-bottom
quarkonia (e.g., J=ψ þ ηb) gets contributions only from
type-B diagrams.

In configuration space the eikonal interactions with the
target do not affect the impact parameters of the partons, so
the interaction basically reduces to a mere multiplication of
target-dependent factors, as discussed in Appendix A. This
allows to express the amplitude of the whole process as a
convolution of the four-quark Fock component wave func-

tion ψ ðγÞ
Q̄QQ̄Q of the photon with dipole amplitudes and wave

functions of the produced quarkonia. The amplitude of the
process γ�p → M1M2p can be represented as a sum,

Aðy1;p⊥1 ;y2;p⊥2 Þ ¼A1ðy1;p⊥1 ; y2;p⊥2 ÞþA2ðy1;p⊥1 ; y2;p⊥2 Þ;
ð21Þ

where A1 and A2 stand for contributions of all type-A and
type-B diagrams. Explicitly, these amplitudes are given by

A1ðy1; p⊥1 ; y2; p⊥2 Þ ¼
Y4
i¼1

�Z
dαid2xi

�
δ

�X
k

αk − 1

�X̃
ln
σlσnclnγðblÞγðbnÞ

× ½Ψ†
M1
ðα14; r14ÞΨ†

M2
ðα23; r23Þeiðp⊥1 ·b14þp⊥

2
·b23Þδðy1 − Y14Þδðy2 − Y23Þ

þΨ†
M1
ðα23; r23ÞΨ†

M2
ðα14; r14Þeiðp⊥1 ·b23þp⊥

2
·b14Þδðy1 − Y23Þδðy2 − Y14Þ�

× ψ ðγÞ
Q̄QQ̄Qðα1; x1; α2; x2; α3; x3; α4; x4; qÞ; ð22Þ

A2ðy1; p⊥1 ; y2; p⊥2 Þ ¼
Y4
i¼1

�Z
dαid2xi

�
δ

�X
k

αk − 1

�X̃
ln
σlσnclnγðblÞγðbnÞ

× ½Ψ†
M1
ðα12; r12ÞΨ†

M2
ðα34; r34Þeiðp⊥1 ·b12þp⊥

2
·b34Þδðy1 − Y12Þδðy2 − Y34Þ

þΨ†
M1
ðα34; r34ÞΨ†

M2
ðα12; r12Þeiðp⊥1 ·b34þp⊥

2
·b12Þδðy1 − Y34Þδðy2 − Y12Þ�

× ψγ�→Q̄QQ̄Qðα1; x1; α2; x2; α3; x3; α4; x4; qÞ; ð23Þ

FIG. 1. Main classes of diagrams that contribute in the leading order over αsðmQÞ to exclusive photoproduction of quarkonia pairs
(type-A and type-B diagrams). The eikonal interactions are shown schematically as exchanges of t-channel gluons, indicated by the red
wavy lines. In both plots, (a) summation over all possible attachments of t-channel gluons to partons in the upper part of diagram and
(b) the inclusion of diagrams with inverted direction of heavy quark lines (“charge conjugation”) are implied. In the right diagram the t-
channel gluons must be connected to different quark loops in order to guarantee a color singlet Q̄Q in the final state. The blue dashed
rectangle schematically shows the part of the diagrams that (in the absence of eikonal interactions) contribute to the Q̄QQ̄Q component

of the photon wave function ψ ðγÞ
Q̄QQ̄Q.
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where we introduced a few shorthand notations, which
characterize the pair of heavy partons i and j: the relative
distance between them rij ¼ xi − xj, the light-cone fraction
αij ¼ αi=ðαi þ αjÞ carried by the quark in the pair (ij),
and the transverse coordinate of its center of mass bij ¼
ðαixi þ αjxjÞ=ðαi þ αjÞ. The notation

P̃
ln in the first line

of Eqs. (22) and (23) implies summation over all possible
attachments of t-channel gluons to the partons in the upper
part of the diagram. For type-A diagrams the variables l; n
may independently take six different values, which corre-
spond to connections to final quarks, a virtual quark, or a
virtual gluon. For type-B diagrams both produced quark
pairs must be in a color-singlet state, which translates into
the additional constraint that l; n should be connected to
different quark loops (either upper or lower quark-antiquark
pairs). The factors σl; σn in the first line of Eqs. (22) and
(23) have the valueþ1 if the corresponding t-channel gluon
is connected to a quark line or gluon, and −1 otherwise. On
the other hand, the color factors cln depend on the topology
of the diagram under consideration, that is, how the t-
channel gluons are connected to the quark lines. For type-A
diagrams, the color factor cln ¼ C1 ≡ 1

N2
c−1

trcðtatatbtbÞ ¼
ðN2

c − 1Þ=4Nc if both t-channel gluons are connected to
the same quark line or quark and antiquark lines of
opposite color (e.g., quark-antiquark lines originating
from a colorless photon or leading to the formation of
colorless quarkonium). If the vertices of the t-channel
gluons are separated by a color-changing vertex of a virtual
gluon, then the color factor is given by cln ¼ C2 ≡
1

N2
c−1

trcðtatbtatbÞ ¼ −1=4Nc. For the diagrams with one

three-gluon vertex, when one of the t-channel gluons is
attached to a virtual gluon, the corresponding color factor is

cln ¼ �C3 ¼ �Nc=4, where the sign is positive for the
diagram with attachment of the other t-channel gluon to the
upper quark-antiquark pair (i.e., partons 1,2), and negative
otherwise. Finally, for the diagram when both t-channel
gluons are attached to a virtual (intermediate) gluon, the
corresponding factor is cln ¼ C4 ≡ Nc=2. For type-B
diagrams, the corresponding color factor is cln ¼
1

N2
c−1

½trcðtatcÞ�2 ¼ 1
4
for all possible connections of t-chan-

nel gluons. The functions γð…Þ characterize the interaction
of the parton with the target and can be related to the dipole
amplitude, as explained in Appendix A. The variables
bl; bn in the arguments of γð…Þ functions stand for the
transverse coordinate of the parton that interacts with a t-
channel gluon. For the final quarks this variable corre-
sponds to the transverse coordinates of these partons (the
integration variables xi). For intermediate partons this
variable is the position of the center of mass of all final
quarks that are produced at later stages,

bj1…jn ¼
P

j¼j1…jnαjxjP
j¼j1…jnαj

; ð24Þ

where the summation is done over all final quarks j1;…jn
that stem from a given parton. The notations ΨM1

;ΨM2
are

used for the wave functions of the final-state quarkoniaM1

andM2 (for the moment we completely disregard their spin

indices), andψ ðγÞ
Q̄QQ̄Qðfαi; xig; qÞ is the four-quark light-cone

wave function of the virtual photon γ�, which is evaluated in
Appendix B 2. The product

P̃
lnσlσnclnγðblÞγðbnÞ can be

expressed as a linear superposition of the color-singlet dipole
amplitudesNðx; rij; bijÞ (see derivation in Appendix C). For
the type-A contribution, the final result is

X̃
ln
σlσnclnγðblÞγðbnÞ ¼

�
2 − N2

c

4Nc
Nðx; r14; b14Þ −

1

2Nc
Nðx; r34; b34Þ −

3þ 5N2
c

4Nc
Nðx; r12; b12Þ

þ 1

4Nc

�
Nðx; r23; b23Þ − N

�
x;
α1r14 þ α3r34

1 − α2
; b1344

��

þ N2
c þ 2

4Nc
Nðx; r13; b13Þ þ

3N2
c − 2

4Nc
N

�
x;
α1r21 þ α3r23 þ α4r24

1 − α2
; b1234

�

þ 3Nc

2
N

�
x;
α3r13 þ α4r14

α3 þ α4
; b134

�
þ 2NcN

�
x;
α3r23 þ α4r24

α3 þ α4
; b234

�

þ N2
c þ 1

4Nc

�
N

�
x;
α3r13 þ α4r14

1 − α2
; b1134

�
þ Nðx; r24; b24Þ

�

−
Nc

2

�
N

�
x;

α4r34
α3 þ α4

; b334

�
þ N

�
x;−

α3r34
α3 þ α4

; b344

��

−
Nc

2
N

�
x;−

α1ðα3r13 þ α4r14Þ
ðα3 þ α4Þðα1 þ α3 þ α4Þ

; b34;134

�

−
N2

c − 1

4Nc
N

�
x;
α1r31 þ α4r34

1 − α2
; b1334

�	
; ð25Þ
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whereas for the type-B contribution it is given by

X̃
ln
σlσnclnγðblÞγðbnÞ ¼

1

4
½Nðx; r23; b23Þ − Nðx; r24; b24Þ þ Nðx; r3;234; b2334Þ − Nðx; r4;234; b2344Þ

þ 2Nðx; r14; b24Þ − 2Nðx; r13; b13Þ�: ð26Þ

The variables Yij in Eqs. (22) and (23) stand for the lab-
frame rapidity of the quark-antiquark pair made of partons
i, j. Explicitly, they are given by

Yij ¼ ln

�ðαi þ αjÞqþ
M⊥

�
; ð27Þ

where αi and αj are light-cone fractions of the heavy quarks
that form a given quarkonium.
The dipole amplitude, which appears in Eqs. (25) and

(26), effectively takes into account a sum of different
Pomeron ladders [57,60], and for this reason it corresponds
to the exchange of vacuum quantum numbers in the t
channel. This fact imposes certain constraints on possible
quantum numbers of heavy quarkonia produced via the γ þ
IP → M1M2 subprocess. Since the C parity of a photon is
negative, the neutral quarkoniaM1,M2 must have opposite
C parities. This explicitly excludes production of quarkonia
with the same quantum numbers (M1 ¼ M2). For the case
when quarkonia are charged (e.g., Bþ

c B−
c ), this implies that

they necessarily must be produced with an odd value of the
mutual angular momentum L. Finally, we need to mention
that at higher orders the interaction with the target should
be supplemented by the exchange of C-odd three-gluon
ladders (so-called odderons) in the t channel [95], poten-
tially giving contributions of odderon exchange, as
shown in the right panel of Fig. 2. Such interactions are
suppressed at high energies, because the odderon has a
smaller intercept than the Pomeron. Besides, formally
such contributions are also suppressed by OðαsðmQÞÞ.

Another possibility to produce a C-even pair of quarkonia
is via the exchange of a (C-odd) photon, as shown in the
right panel of Fig. 2. Formally, such contributions are
suppressed by ∼αem=α2sðmQÞ, which is a small parameter
for charm and bottom quarks, yet could get enhanced in
the infinitely heavy quark mass limit mQ → ∞ due to the
suppression of αsðmQÞ in the denominator. Besides, this
contribution can be enhanced in the very forward kinemat-
ics by the photon propagator ∼1=t, where t≡ ðpf − piÞ2 is
very small.2 According to phenomenological analyses
[30–34], the cross sections of this mechanism is much
smaller numerically than that of the mechanism suggested
in this paper. For this reason, in what follows we will focus
on the production of opposite-parity quarkonia, and will
disregard the contributions of t-channel odderons and
photons altogether.

FIG. 2. Examples of higher-order contributions, which become relevant for the exclusive production of quarkonia with the same C
parity. The left diagram corresponds to the exchange of an odderon (three-gluon ladder) in the t channel, whereas the right diagram
corresponds to photon exchange in the t channel. In both plots summation is implied over summation over all possible attachments of t-
channel gluons and photon (red) to black-colored partonic lines. As explained in the text, both types of contributions are suppressed
compared to diagrams from Fig. 1 and will be disregarded in what follows.

2Numerical estimates show that the invariant momentum
transfer t for photoproduction of a pair of quarkonia M1, M2

is restricted by

jtj≳ jtminðWÞj ≈m2
NM

2
12

W2
þO

�
m2

N

s
;
M2

12

s

�
;

where mN is the mass of the nucleon, W2 ≡ sγp ¼ ðqþ PÞ2,
and M2

12 ¼ ðpM1
þ pM2

Þ2 is the invariant mass of the quarkonia
pair (clearly, M12 ≥ M1 þM2). Already for EIC energies
W ∼ 100 GeV, so we can see that it is possible to achieve the
kinematics of very small t even for heavy quarkonia.
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III. NUMERICAL RESULTS

The framework developed in the previous section is valid
for heavy quarkonia of both c and b flavors. In what
follows we will focus on the all-charm sector and present
results for J=ψ þ ηc production, for which the cross section
is larger and thus easier to study experimentally.3

For the wave function of the J=ψ mesons we will use a
simple ansatz suggested in Refs. [96,97],

ΨJ=ψðz; r;M ¼ 0Þ ¼ δh;−h̄ffiffiffi
2

p zð1 − zÞφðz; rÞ;

φðz; rÞ ¼
ffiffiffi
2

p
πfVffiffiffiffiffiffi

Nc
p

êV
fðzÞe−ω2r2=2; ð28Þ

ΨJ=ψðz; r;M ¼ �1Þ

¼ 1

MV
½iMeiMθðz̄δh;−Mδh̄;M − zδh;Mδh̄;−MÞ∂r

þmQδh;Mδh̄;M�φðz; rÞ; ð29Þ

fðzÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zð1 − zÞ

p
e−M

2
V ðz−1=2Þ2=2ω2

; ð30Þ

whereM is the helicity of J=ψ , r is the distance between the
quark and antiquark, h; h̄ are the helicities of the quark and
antiquark, and fV; eV;ω are some numerical constants.
This result can be trivially extended to the case of the ηc
meson, which differs from the J=ψ meson only by the
orientation of the quark spins. Taking into account the
structure of the Clebsch-Gordan coefficients for the 1=2 ×
1=2 product, we may immediately write out the

corresponding wave functions for ηc, modifying the cor-
responding M ¼ 0 component of the J=ψ wave function,

Ψηcðz;rÞ¼
εh;h̄ffiffiffi
2

p zð1−zÞφðz;rÞ; εab¼−εba¼ δa;−bsignðaÞ:

ð31Þ

Alternatively, the wave functions of quarkonia can be
constructed using potential models or the well-known
Brodsky-Huang-Lepage-Terentyev prescription [98–100],
which allows to convert the rest-frame wave function ψRF
into a light-cone wave function ΨLC. It is known that in the
small-r region, which is relevant for estimates, the wave
functions of the S-wave heavy quarkonia in different
schemes are quite close to each other [101–104], and for
this reason in what follows we will use the ansatz of
Eqs. (28)–(31), in view of its simplicity.
For our numerical evaluations we also need a para-

metrization of the dipole amplitude. In what follows wewill
we use the impact parameter (b)-dependent “bCGC” para-
metrization of the dipole cross section [89,105],

Nðx; r; bÞ ¼
�N0ðrQsðxÞ

2
Þ2γeffðrÞ; r ≤ 2

QsðxÞ ;

1 − exp ð−A ln ðBrQsÞÞ; r > 2
QsðxÞ ;

ð32Þ

A ¼ −
N2

0γ
2
s

ð1 − N0Þ2 ln ð1 − N0Þ
; B ¼ 1

2
ð1 − N0Þ−

1−N0
N0γs ;

ð33Þ

Qsðx;bÞ¼
�
x0
x

�
λ=2

TGðbÞ; γeffðrÞ¼ γsþ
1

κλY
ln

�
2

rQsðxÞ
�
;

ð34Þ

FIG. 3. Left: different contributions to charmonia pair photoproduction in EIC kinematics: type-A and type-B diagrams, as well as
their interference. Right: dependence of the normalized ratio RðϕÞ, defined in Eq. (36), on the angle ϕ (difference between azimuthal
angles of both quarkonia). The appearance of a sharp peak in back-to-back kinematics is explained in the text. For definiteness we
consider the case when both quarkonia are produced at central rapidities (y1 ¼ y2 ¼ 0) in the lab frame; for other rapidities, the ϕ
dependence has a similar shape.

3According to our estimates, for bottomonia the cross sections
are at least an order of magnitude smaller due to the heavier quark
mass.
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γs ¼ 0.66; λ ¼ 0.206; x0 ¼ 1.05 × 10−3;

TGðbÞ ¼ exp

�
−

b2

2γsBCGC

�
: ð35Þ

Since the dipole approach as a whole and the par-
ticular CGC parametrization (32) are applicable in the
kinematics of small x≲ 10−2 ≪ 1, in what follows we will
consider only the kinematics of the highest energy runs at
EIC, with ffiffiffiffiffiffisep

p ≈ 141 GeV. For smaller energies the
contribution of Pomeron-mediated exchanges is sup-
pressed, and sizable corrections from other mechanisms
might become important.
We would like to start the presentation of numerical

results with a discussion of the relative contribution of
type-A and type-B diagrams introduced in the previous
section. From the left panel of Fig. 3 we can see that the
dominant contribution comes from the type-A diagrams.
This enhancement can be partially explained by larger color
factors in the large-Nc limit. The interference of type-A and
type-B contributions represents approximately a 10% cor-
rection and moreover has a node, whose position depends
on the produced quarkonia kinematics. As expected, the
cross section is suppressed as a function of pT (we consider
jp⊥J=ψ j ¼ jp⊥η j ¼ pT for the sake of definiteness). In the
right panel of the Fig. 3 we present the dependence of the
yields on the azimuthal angle ϕ between the transverse
momenta of the J=ψ and ηc mesons. For definiteness, we
assumed that the transverse momenta p⊥J=ψ ; p⊥η of both
quarkonia have equal absolute values. In order to make a
meaningful comparison of the cross sections, which differ
by orders of magnitude, we plot the normalized ratio

RðϕÞ ¼ dσð…;ϕÞ=dy1dp2
1dy2dp

2
2dϕ

dσð…;ϕ ¼ πÞ=ddy1dp2
1dy2dp

2
2dϕ

;

Rðϕ ¼ πÞ≡ 1: ð36Þ

We can see that the ratio has a sharp peak in the back-to-
back region (ϕ ¼ π), which happens because in this
kinematics the momentum transfer to the target jtj ¼
jΔ2j is minimal. In contrast, for the angle ϕ ≈ 0, which
maximizes the variable jtj ¼ jΔ2j, the ratio has a pro-
nounced dip. For p1 ≠ p2 the dependence on ϕ is quali-
tatively similar, although the maximum and minimum are
less pronounced.
In the left panel of Fig. 4 we analyze the pT dependence,

for the case when one of the quarkonia has a small
transverse momentum pi ∼ 1 GeV. As expected, in this
case the cross section has a significantly milder suppression
compared to the case when both quarkonia share the same
transverse momentum. This result indicates that the quar-
konia pair are predominantly produced with small trans-
verse momenta p⊥

1 ∼ p⊥
2 ≲ 1 GeV and opposite directions

in the transverse plane (ϕ≡ ϕ1 − ϕ2 ≈ π). In the right
panel of Fig. 4 we show the pT dependence of the cross
section in LHeC kinematics. While the absolute value
increases in this case, we may observe that qualitatively the
dependence on pT and the angle ϕ remains the same.
In Fig. 5 we analyze the dependence of the cross section

on rapidities of the quarkonia. In the left panel we consider
the special case when both quarkonia are produced with the
same transverse momenta p⊥

1 ∼ p⊥
2 ∼ 1 GeV and the same

rapidities y1 ¼ y2 in the lab frame. The variables y1;2 in
this case can be unambiguously related to the invariant

FIG. 4. Left: pT dependence of the charmonia pair photoproduction cross section. Comparison of the pT -dependence of the cross
sections in different kinematics: (a) both quarkonia are produced with large transverse momentum (solid line) (b) one of the quarkonia
has small momentum (dashed and dot-dashed lines). Within errors of numerical evaluation, there is no difference if the soft transverse
momentum pT ≈ 1 GeV is assigned to J=ψ or ηc mesons. Right: pT dependence of the cross section in LHeC kinematics. For
definiteness we consider the case when both quarkonia are produced at central rapidities (y1 ¼ y2 ¼ 0) in the lab frame.
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FIG. 5. Left: rapidity dependence of the photoproduction cross section in EIC kinematics, assuming equal rapidities of the produced
quarkonia, y1 ¼ y2. The upper horizontal scale illustrates the corresponding value of the invariant energyW ≡ ffiffiffiffiffiffisγp

p defined in Eq. (14).
Right: dependence on the rapidity difference between the produced quarkonia, y1 ¼ −y2 ¼ Δy=2. For the sake of definiteness we assume
that both quarkonia are produced at central rapidities (y1 ¼ y2 ¼ 0) with transverse momenta p1 ¼ p2 ¼ 1 GeV in the lab frame.

FIG. 6. Rapidity dependence of the pT -integrated cross section in the kinematics of ultraperipheral collisions at the LHC and in the
kinematics of the future ep colliders. A positive sign of rapidity is chosen in the direction of the electron or emitted quasireal photon. For
ultraperipheral collisions the positive direction of rapidity is that of a heavy lead ion, and the cross sections are given per nucleon. The solid
curves correspond to the cross section of the γp → M1M2p subprocess, whereas dotted lines correspond to the cross sections of the complete
physically observable ep or Ap processes. We assume for definiteness that the rapidities of both quarkonia are equal to each other in the lab
frame, y1 ¼ y2 ¼ y. The upper horizontal scale illustrates the corresponding value of the invariant energyW ≡ ffiffiffiffiffiffisγp

p , as defined in Eq. (14).
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photon-proton energy Wγp ∼
ffiffiffiffiffiffisγp

p (shown on the upper
horizontal axis) and, as expected, the cross section grows as
a function of energy. In the right panel of Fig. 5 we analyze
the dependence of the cross section on the rapidity differ-
ence Δy between two heavy mesons. For the sake of
definiteness we consider that both quarkonia have opposite
rapidities in the lab frame, y1 ¼ −y2 ¼ Δy=2. We observe
that in this case the cross section becomes suppressed as a
function of Δy, which illustrates the fact that the quarkonia
are predominantly produced with the same rapidities.
Finally, in Figs. 6–8 we show the results for the cross

section dσγp→M1M2p=dy1dy2, which is integrated over the
transverse momenta p⊥i of both quarkonia. This observable
can be the most promising for experimental studies, since it
is easier to measure. We make the predictions in the
kinematics of the ultraperipheral pA collisions at LHC,

as well as future electron-hadron colliders. The dependence
on y1, y2 largely repeats similar dependence of the pT-
unintegrated cross sections. This happens because the pT-
integrated cross sections get its dominant contributions
from the region of small pT ≪ mQ, where dependence on
rapidity is mild. In Figs. 6 and 7 we also show the cross
sections of the “master” processes ep → eM1M2p and
Ap → AM1M2p. The expressions for these cross sections
differ from those of γp → M1M2p by a convolution with
known kinematic factors, which correspond to fluxes of
equivalent photons generated by the electron or heavy
nucleus. These cross sections have completely different
dependence on the rapidity y1 ¼ y2 of both quarkonia,
which can be understood from Eqs. (8)–(16). Indeed,
mesons with higher lab-frame rapidities can be produced
by photons of higher energy Eγ, yet the flux of equivalent

FIG. 7. Dependence on rapidity difference for the pT -integrated cross section, in the kinematics of ultraperipheral collisions, at the
LHC and future electron-proton colliders. The positive sign of rapidity is chosen in the direction of the electron or emitted quasireal
photon. For ultraperipheral collisions the positive direction of rapidity is that of a heavy lead ion, and the cross sections are given per
nucleon. For the sake of definiteness we assume that in the lab frame the quarkonia have opposite rapidities, y1 ¼ −y2 ¼ Δy=2. The

upper horizontal scale illustrates the corresponding value of the invariant mass M12 ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpJ=ψ þ pηcÞ2

q
, as defined in Eq. (15). Dotted

curves correspond to the cross sections of the complete process (electron-proton or heavy ion–proton).
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photons created by a charged electron or ion is suppressed
and vanishes when the elasticity y ¼ Eγ=Ee approaches
unity. Finally, Fig. 8 illustrates how the cross section
behaves as a function of y1, y2 in general, when
jy1j ≠ jy2j. We can see that the cross section has a typical
ridge near y1 ≈ y2, i.e., when quarkonia are produced with
approximately the same rapidities.

IV. CONCLUSIONS

In this paper we studied in detail the exclusive photo-
production of heavy charmonia pairs. This process presents
a lot of interest, both on its own as a potential test of
quarkonia-production mechanisms in small-x kinematics,
and as a background to exotic hadron production. We
analyzed in detail the leading-order contributions and
found that in this mechanism the quarkonia pairs are
produced with opposite C parities, relatively small opposite
transverse momenta pT , and small separation in rapidity.
This finding is explained by the fact that in the chosen
kinematical region the momentum transfer to the recoil
proton is minimal. As expected, the cross section decreases
rapidly as a function of pT , and grows as a function of the
photon-proton invariant energy (∼ quarkonia rapidities),
similar to single-photon production. However, the cross
section decreases as a function of the rapidity difference
between the quarkonia. We numerically estimated the cross
section in the kinematics of ultraperipheral pA collisions at

the LHC, as well as in the kinematics of the future electron-
proton colliders, and found that the cross section is
sufficiently large for experimental studies. Our evaluation
is largely parameter free and relies only on the choice of the
parametrization for the dipole cross section (32) and wave
functions of quarkonia.
We need to mention that earlier studies [30–35] of

exclusive production focused on the production of quarkonia
pairswith the same quantumnumbers (e.g., J=ψJ=ψ ), which
means that this process predominantly proceeds via the
exchange of two photons at the amplitude level, like, e.g., via
photon-photon fusion γγ → M1M2 [30–34] or double-pho-
ton scattering [35]. Due to the extra virtual photon in the
amplitude, the cross sections of such processes are para-
metrically suppressed by∼α2em compared to the cross section
of opposite-C-parity quarkonia, and thus numerically are
significantly smaller. Most studies [30–35] presented their
predictions for the cross section of the γγ → J=ψJ=ψ
subprocess, which precludes a direct comparison with our
results in view of the different underlying mechanism. A
meaningful comparison can be done for the cross sections of
the full exclusive processpp → ppM1M2 in ultraperipheral
kinematics, which has been analyzed in Ref. [31]. In Fig. 9
we directly compare the results presented in Ref. [31] with
the cross section evaluated in the framework of Sec. II. As
expected, the cross section of our mechanism is larger than
for the γγ-fusion-mediated production, though the enhance-
ment is slightly milder than the naively expected ∼1=α2em.

FIG. 8. Dependence on rapidities y1, y2 of produced quarkonia for the pT -integrated photoproduction cross section dσγp=dy1dy2. The
plot illustrates the fact that partons are produced with approximately equal rapidities, y1 ≈ y2. For definiteness we consider a proton with
the typical energy of EIC kinematics (Ep ∼ 275 GeV in the lab frame). For other proton energies the dependence has a qualitatively
similar shape.
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We hope that the process suggested in this paper will be
included in the program of the future EIC collider, as well
as ongoing studies at the LHC in ultraperipheral kinemat-
ics. Finally, we need to mention that it is quite straightfor-
ward to extend the framework developed in this manuscript
to the case of all-heavy tetraquark production; for this, it is
only necessary that the product of the final-state quarkonia
wave functions in Eqs. (22) and (23) be replaced with the
wave function of the tetraquark state. Estimates of the cross
sections for this case will be presented in a separate
publication.
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APPENDIX A: HIGH-ENERGY SCATTERING IN
THE COLOR DIPOLE PICTURE

In this Appendix, for the sake of completeness we briefly
recall the general procedure that allows to express different
hard amplitudes in terms of the color-singlet forward
dipole scattering amplitude. While in the literature there
are several equivalent formulations [47,49–55], in what
follows we will use the Iancu-Mueller approach [106].
The natural hard scale, which controls the interaction of a

heavy quark with the gluonic field, is its mass mQ. In the

heavy quark mass limit we may formally develop a
systematic expansion over αsðmQÞ ≪ 1. Furthermore, for
small color-singlet dipoles there is an additional suppres-
sion by the dipole size, r ∼ 1=mQ, so the interaction of
singlet dipoles with perturbative gluons is suppressed at
least as ∼αsðmQÞ=mQ. However, the interaction of gluons
with each other, as well as with light quarks, remains
strongly nonperturbative in the deeply saturated regime, so
we expect that the dynamics of the dipole amplitudes
should satisfy the nonlinear Balitsky-Kovchegov equation.
At very high energies the dynamics of partons can be

described in the eikonal approximation. The transverse
coordinates of the high-energy partons remain essentially
frozen during their propagation in the gluonic field dipole
of the target. Similarly, due to eikonal interactions we may
completely disregard the change of the quark helicities. In
this picture the interaction of a dipole with the target is
described by the S-matrix element [60,106]

Sðy; xQ; xQ̄Þ ¼
1

Nc
htrðV†ðxQÞVðxQ̄ÞÞi; ðA1Þ

where we use the notation y ¼ lnð1=xÞ for the dipole
rapidity, xQ; xQ̄, are the transverse coordinates of the
partons (quark or antiquark), and the factors V†ðxQÞ and
VðxQ̄Þ in Eq. (A1) are the Wilson lines, which describe the
interaction of the partons with the color field of a hadron.
They can be expressed as

Vðx⊥Þ ¼ P exp

�
ig
Z

dx−Aþ
a ðx−; x⊥Þta

�
; ðA2Þ

where Aa
μ is the gluonic field in a hadron. The impact-

parameter-dependent dipole amplitude Nðx; r; bÞ can be
related to Sðy; xQ; xQ̄Þ as

FIG. 9. Cross sections of different quarkonia-production mechanisms in the exclusive pp → ppM1M2 process. The mechanism of
this paper leads to the production of quarkonia with opposite C parity (J=ψηc pairs). The theoretical expectations for J=ψJ=ψ
production (via photon-photon fusion) are taken from Ref. [31]. The left and right plots differ only by the value of the collision energyffiffiffiffiffiffiffispp
p . Following Ref. [31], we consider that both quarkonia are produced with the same rapidity Y ¼ y1 ¼ y2 in the lab frame; the cross
section is integrated over all other kinematical variables.
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Nðx; r; bÞ ¼ 1 − Sðy; xQ; xQ̄Þ; ðA3Þ
where the variable r≡ xQ − xQ̄ is the transverse size of the
dipole, b≡ zxQ þ ð1 − zÞxQ̄ is the transverse position of the
dipole center of mass, and z is the fraction of the light-cone
momentum of a dipole which is carried by the quark Q. In
view of the weakness of the interaction between heavy
quarks and gluons, we can make an expansion of the
exponent in Eq. (A2) over αsðmQÞ. In this approximation
the effective interaction of the quark or antiquark with the
gluonic field of the proton can be described by the factor
�itaγaðx⊥Þ, where x⊥ is the transverse coordinate of the
quark,

γaðxÞ ¼ g
Z

dx−Aþ
a ðx−; xÞ; ðA4Þ

and ta are the ordinary color group generators of perturbative
quantum chromodynamics in the fundamental representa-
tion. Inspired by the color structure of the interaction, in what
follows wewill refer to these interactions as “exchanges of t-
channel Pomeron (gluons),” tacitly assuming that it can
include cascades (showers) of particles. For the dipole
scattering amplitude (A3), using Eqs. (A1) and (A4), we
obtain

Nðx; r; bÞ ≈ 1

2
½γaðxQÞ − γaðxQ̄Þ�2: ðA5Þ

For further evaluations it is more convenient to rewrite this
result in the form

γaðx1Þγaðx2Þ ¼ −Nðx; r12; b12Þ þ
ρðx1Þ þ ρðx2Þ

2
; ðA6Þ

where we defined the shorthand notation ρðxaÞ≡ jγaðxÞj2,
and r12, b12 are the distance and center of mass of the quark-
antiquark pair located at points x1, x2. For many processes
the contributions ∼ρðxiÞ cancel, so the amplitude can
eventually be represented as a linear superposition of the
dipole amplitudes Nðx; r; bÞ. In what follows, we will see
that the amplitude of the process considered in this manu-
script can be represented as a bilinear combination of terms
with structure ∼½γðxiÞ − γðxjÞ�. For this special case the
substitution of Eq. (A6) allows to get a few important
identities between bilinear expressions:

½γaðx1Þ− γðx2Þ�½γaðx3Þ− γaðx4Þ�
¼ Nðx; r23;b23Þ þNðx; r14;b14Þ−Nðx; r13;b13Þ
−Nðx; r24;b24Þ; ðA7Þ

½γaðx1Þ − γaðx2Þ�½γaðx3Þ þ γaðx4Þ − 2γaðx5Þ�
¼ Nðx; r23; b23Þ þ Nðx; r24; b24Þ − Nðx; r13; b13Þ
− Nðx; r14; b14Þ þ 2½Nðx; r15; b15Þ − Nðx; r25; b25Þ�;

ðA8Þ

½γaðx1Þ þ γaðx2Þ − 2γaðx3Þ�2
¼ 2Nðx; r13; b13Þ þ 2Nðx; r23; b23Þ − Nðx; r12; b12Þ; ðA9Þ

where rij and bij are the relative distance and center of mass
of the quark-antiquark pair located at points xi, xj.
For the impact-parameter-independent (b-integrated)

cross section, the results (A5)–(A7) can be rewritten in a
simpler form:

Nðx; rÞ ¼ 1

2

Z
d2bjγaðx; b − zrÞ − γaðx; bþ z̄rÞj2; ðA10Þ

Z
d2bγaðx; bÞγaðx; bþ rÞ ¼ −Nðx; rÞ þ

Z
d2bjγaðx; bÞj2|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

¼const

:

ðA11Þ

The value of the constant term on the right-hand side of
Eq. (A11) is related to the infrared behavior of the theory,
and for the observables which we consider in this paper, it
cancels exactly. In what follows we will apply this
formalism to the evaluation of the exclusive di-meson
production amplitudes.

APPENDIX B: EVALUATION OF THE PHOTON
WAVE FUNCTION

For evaluation of the photon wave function we follow the
standard rules of the light-cone perturbation theory for-
mulated in Refs. [16,107]. The result for the Q̄Q compo-
nent is well known in the literature [96,108], yet in
Appendix B 1 we will briefly repeat its derivation in order
to introduce notations. As we will see later in Appendix B
2, the wave function of the Q̄QQ̄Q component can be
expressed in terms of the wave function of the Q̄Q
component. In our evaluation we will focus on on-shell
transversely polarized photons, which give the dominant
contribution, unless some specific cuts are imposed on its
virtuality Q2. The momentum of the photon (1) introduced
earlier simplifies in this case and has only a light-cone
component in the plus-axis direction,

q ≈ ðqþ; 0; 0⊥Þ: ðB1Þ

The polarization vector of the transversely polarized photon
is given by

εμTðqÞ≡
�
0;
q⊥ · εγ
qþ

; εγ

�
≈ ð0; 0; εγÞ; ðB2Þ

εγ ¼
1ffiffiffi
2

p
�

1

�i

�
; γ ¼ �1; ðB3Þ

where in Eq. (B2) we took into account that q⊥ ¼ 0.
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Before the interaction with the target, the photon might
fluctuate into virtual quark-antiquark pairs, as well as
gluons. In what follows we will use the convenient short-
hand notation αi ¼ ki=qþ for the fraction of light-cone
momentum of the photon carried by each parton, as well as
ki⊥ for the transverse component of the parton’s momen-
tum. In view of 4-momentum conservation we expect that
αi; ki⊥ should satisfy the identityX

i

αi ¼ 1;
X
i

ki⊥ ¼ 0; ðB4Þ

where summation is done over all partons. We may observe
that the vector εγ satisfies the identity

ε�γ ≡ ε−γ; ðB5Þ

and its scalar product with any 2-vector a yields

εγ · a¼
ax þ iγayffiffiffi

2
p ¼ jajffiffiffi

2
p eiγ argðaÞ; argðaÞ ¼ arctan

�
ay
ax

�
:

ðB6Þ

1. Q̄Q component of the photon wave function

In this section, for the sake of completeness we would
like to recall the main steps in the derivation of the Q̄Q-
component photon wave function [96,108] in the mixed (α,
r) representation. At leading order, the subprocess γ → Q̄Q
gets contributions only from the diagram shown in the left
panel of Fig. 10. A bit later we will see that γ → Q̄Q, as
well as the closely related g → Q̄Q subprocess, appear as
constituent blocks in the more complicated four-quark
wave function. For this reason, in order to facilitate further
discussion, in this section we will temporarily assume that
the photon momentum q might have a nonzero transverse
part q⊥, and use the notation z ¼ kþ1 =q

þ for the fraction of
light-cone momentum carried by the quark. In momentum
space the evaluation is straightforward, using the rules from
Refs. [16,107,109], and yields

ψλ
h;h̄
ðz; k1; qÞ ¼ −eqδcc̄

ūhðk1Þε̂λðqÞvh̄ðq − k1Þ
Δ−

01

ffiffiffiffiffiffi
kþ1

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qþ − kþ1

p ; ðB7Þ

Δ−
01 ¼ −

1

2pþ
n2 þm2

q

zð1 − zÞ ; ðB8Þ

where λ is the helicity of the incoming photon, h; h̄ are the
helicities of the produced quark and antiquark, c; c̄ are the
color indices ofQ and Q̄, respectively, and eq is the electric
charge corresponding to a given heavy flavor. The momen-
tum n is defined as n ¼ k1 − zq⊥ ¼ ð1 − zÞk1 − zk2 and
physically has the meaning of the transverse part of the
relative (internal) momentum of the QQ̄ pair. The numer-
ator of Eq. (B7) can be written out explicitly using the rules
from Refs. [96,108],

ūhðkÞε̂λðpÞvh̄ðp − kÞ

¼ 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zð1 − zÞp �

ðzδλ;h − ð1 − zÞδλ;−hÞδh;−h̄n · ελ

þ 1ffiffiffi
2

p mqsignðhÞδλ;hδh;h̄
�
: ðB9Þ

In configuration space the corresponding wave function can
be found by making a Fourier transformation over the
transverse momenta,Z

d2k1
ð2πÞ2

d2k2
ð2πÞ2 e

iðk1·r1þk2·r2Þð2πÞ2δðk1þ k2 − qÞψλ
h;h̄
ðz;k1;qÞ

¼ eiq·ðzr1þz̄r2Þeqδcc̄Ψλ
hh̄
ðz;r12;mq;mqÞ; ðB10Þ

where the integral over k2 was performed using the
properties of the δ function, and before the integration
over k1 we shifted the integration variable as k1 → nþ zq.
Explicitly, the integration over the variable d2n yields

Ψλ
hh̄
ðz; r12; mq; aÞ ¼ −

2

ð2πÞ
�
ðzδλ;h − ð1 − zÞδλ;−hÞδh;−h̄iελ

·∇ −
mqffiffiffi
2

p signðhÞδλ;hδh;h̄
�
K0ðarÞ:

ðB11Þ
The structure of Eq. (B10) clearly suggests that in a mixed
representation the variable zr1 þ z̄r2 plays the role of the
dipole center of mass, whereas r12 is its separation, in
agreement with earlier findings from Ref. [110]. For the
incoming off-shell photon with virtuality −q2 ¼ Q2, in a
similar fashion straightforward integration yields

eiq·ðzr1þz̄r2Þeqδcc̄Ψλ
hh̄

�
z;r12;mq;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

q−Q2zð1−zÞ
q �

ðB12Þ

in the second line of Eq. (B10). The extension of this
result for the production of a QQ̄ pair by a gluon is

FIG. 10. Left: leading-order contributions to the Q̄Q compo-
nent of the photon wave function ψg→Q̄Q. Right: so-called gluon
emission wave function, as defined in Ref. [109]. The momenta
ki shown on the right-hand side are Fourier conjugates of the
coordinates xi.
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straightforward and requires the simple replacement
eqδcc̄ → gðtaÞcc̄.
Finally, we would like to briefly discuss the so-called

parton-level wave function of the gluon emission subpro-
cess q → gq, as introduced in Ref. [109]. This object is
useful for the analysis of different amplitudes, as we will
see in the next section. At the leading order it gets
contributions from the diagram shown in the right panel
of Fig. 10. The evaluation of this object is quite similar to
the derivation of Eqs. (B7)–(B11). In momentum space we
obtain

ψ̃ λ
cfhf;cihi

ðz; k1; qÞ ¼ −gtacfci
ūhfðq − k1Þε̂λðk1ÞuhiðqÞ
Δ−

02

ffiffiffiffiffiffi
qþ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qþ − kþ1

p ;

ðB13Þ

Δ−
02 ¼ −

1

2pþ
n2 þ z2m2

q

zð1 − zÞ ; n ¼ k1 − zq; ðB14Þ

where λ is the helicity of the outgoing gluon, ðhi; ciÞ and
ðhf; cfÞ are the helicities and color indices of the incident
and final quark (before and after emission of a gluon), and
(similar to the previous case) we have introduced the
momentum n ¼ k1 − zq ¼ ð1 − zÞk1 − zk2 which corre-
sponds to the relative motion of the quark and gluon after
the emission of the latter. Using the rules from
Refs. [96,108], we may rewrite the numerator as

ūhfðq − k1Þε̂λðk1ÞuhiðqÞ

¼ 2

z
ffiffiffiffiffiffiffiffiffiffi
1 − z

p
�
ðδλ;hi þ ð1 − zÞδλ;−hiÞδhi;hfn · ελ

−
mqffiffiffi
2

p z2signðhiÞδλ;−hiδhi;−hf
�
:

In configuration space the corresponding wave function is
given by

Z
d2k1
ð2πÞ2

d2k2
ð2πÞ2 e

iðk1·r1þk2·r2Þð2πÞ2

× δðk1 þ k2 − qÞψλ
cfhf;cihi

ðz; k1; qÞ
¼ eiq·ðzr1þz̄r2ÞtacfciΦ

λ
hf;hi

ðz; r12; mq; zmqÞ; ðB15Þ

where the integral over k2 is performed using the properties
of the wave function, and integration over the variable k1 ¼
nþ zq yields

Φλ
hf;hi

ðz; r12; mq; aÞ

¼ −
2

ð2πÞ
�
ðδλ;hi þ ð1 − zÞδλ;−hiÞδhi;hf iελ

·∇þ mqffiffiffi
2

p z2signðhiÞδλ;−hiδhi;−hf
�
K0ðarÞ: ðB16Þ

For the case of an incoming off-shell quark with
virtuality Q2, a straightforward generalization shows that
the second line of Eq. (B15) takes the form

eiq·ðzr1þz̄r2ÞΦλ
hf;hi

�
z; r12; mq;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

qz −Q2zð1 − zÞ
q �

: ðB17Þ

Similar to the previous case, the structure of Eq. (B16)
clearly suggests that in a mixed representation the variable
zr1 þ z̄r2 plays the role of the dipole center of mass,
whereas r12 is its separation [110].

2. Q̄QQ̄Q component of the photon wave function

As mentioned earlier in Appendix A, in the eikonal
approximation the amplitude of the subprocess γ� →
Q̄QQ̄Q in configuration space can be represented as a

convolution of the wave function ψ ðγÞ
Q̄QQ̄Q with linear

combinations of dipole amplitudes (A7). At leading order
over αs the amplitude of the process is given by the two
diagrams shown in Fig. 11. It should be understood that
these diagrams should be supplemented by all possible
permutations of final-state quarks. More precisely, for the

FIG. 11. Leading-order contribution to the wave function ψ ðγÞ
Q̄QQ̄Q defined in the text. The momenta ki shown on the right-hand side are

Fourier conjugates of the coordinates xi. It is implied that both diagrams should be supplemented by all possible permutations of final-
state quarks (see the text for more details).
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production of different heavy flavors (e.g., c̄cb̄b) both
diagrams should be supplemented by contributions with
permuted pairs of momenta ðk1; k2Þ ↔ ðk3; k4Þ. For the
same-flavor quarkonia pairs (e.g., c̄cc̄c) we should take
into account contributions with independent permutations
of the quarks and antiquarks: k1 ↔ k3 and k2 ↔ k4. The
evaluation of the corresponding process follows the stan-
dard light-cone rules formulated in Refs. [16,107]. We need
to mention that some blocks, which will be needed for the
construction of the amplitude, have already been evaluated
in Refs. [109,111] (although in the chiral limit only). In this
section we extend those studies, and represent them in a
form convenient for further analysis. According to the
general light-cone rules [96,108], in the evaluation of the
diagrams in Fig. 11 each propagator of the virtual (inter-
mediate) parton has instantaneous and noninstantaneous
parts. For technical reasons it is convenient to analyze the
two types of contributions separately.

a. Noninstantaneous contributions

At leading order over αs, the amplitude of the process is
given by the two diagrams shown in Fig. 11 and depends on
the momenta of the four quarks in the final state. In what
follows we will use the standard notation αi ¼ ki=qþ for
the fractions of photon momentum carried by each of these
fermions, as well as ki⊥ for the transverse components of
their momenta. We also will use the shorthand notation
l ¼ k3 þ k3 for the momentum of the virtual gluon
connecting different quark lines. For the sake of generality,
we will assume that the produced quark-antiquark pairs
have different flavors, and will use the notations m1 for the
current mass of the quark line connected to a photon andm2

for the current masses of the quark-antiquark pair produced
from the virtual gluon.
Using the rules from Refs. [96,108], we may obtain for

the corresponding amplitude of the subprocess

Aa1a2;a3a4
c1c2;c3c2 ¼ −

eqg2ðtaÞc1c2 ⊗ ðtaÞc3c4
16π2

�
ūa1ðk1Þε̂�λðlÞubðk1 þ lÞūbðq − k2Þε̂γðqÞva2ðk2Þ
D11D12D13

ffiffiffiffiffiffi
kþ1

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kþ1 þ lþp ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

qþ − kþ2
p ffiffiffiffiffiffi

kþ2
p

þ −
ūa1ðk1Þε̂γðqÞvbðq − k1Þv̄bðk2 þ lÞε̂�λðlÞva2ðk2Þ
D21D22D23

ffiffiffiffiffiffi
kþ1

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qþ − kþ1

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kþ2 þ lþp ffiffiffiffiffiffi

kþ2
p �

ūa3ðk3Þε̂λðlÞva4ðk4Þ
ðkþ3 þ kþ4 Þ

ffiffiffiffiffiffiffiffiffiffiffi
kþ3 k

þ
4

p ; ðB18Þ

where ai and ci are the helicity and color indices of the final-state quarks, and Dij are the conventional light-cone
denominators (where the first subscript index i ¼ 1, 2 refers to the first and second diagrams in Fig. 11, respectively, and the
second index j ¼ 1, 2, 3 numerates proper cuts shown with dashed vertical lines). Explicitly, these light-cone denominators
are given by

D11 ¼ −
1

2qþ

�
k22⊥ þm2

1

α2
þ ðk1⊥ þ lÞ2 þm2

1

α1 þ z

�
¼ −

1

2qþ
k22⊥ þm2

1

α2ᾱ2
; ðB19Þ

D21 ¼ −
1

2qþ

�
k21⊥ þm2

1

α1
þ ðk2⊥ þ lÞ2 þm2

1

α2 þ z

�
¼ −

1

2qþ
k21⊥ þm2

1

α1ᾱ1
; ðB20Þ

D12 ¼ D22 ≡D2 ¼ −
1

2qþ

�
k21⊥ þm2

1

α1
þ k22⊥ þm2

1

α2
þ l2⊥

z

�
ðB21Þ

¼ −
1

2qþ
α2ᾱ2ðk1⊥ þ k2⊥ α1

ᾱ2
Þ2 þ α1

ᾱ2
ð1 − α1 − α2Þk22⊥ þm2

1ðα1 þ α2Þð1 − α1 − α2Þ
α1α2ð1 − α1 − α2Þ

¼ −
1

2qþ
α1ᾱ1ðk2⊥ þ k1⊥ α2

ᾱ1
Þ2 þ α2

ᾱ1
ð1 − α1 − α2Þk21⊥ þm2

1ðα1 þ α2Þð1 − α1 − α2Þ
α1α2ð1 − α1 − α2Þ

; ðB22Þ

D13 ¼ D23 ¼ D3 ¼ −
1

2qþ

�X2
i¼1

k2i⊥ þm2
1

2αi
þ
X4
i¼3

k2i⊥ þm2
2

2αi

�
ðB23Þ

¼ D12 −
ðk3⊥α4 − k4⊥α3Þ2 þm2

2ðα3 þ α4Þ2
2qþα3α4ðα3 þ α4Þ

¼ D12 −
�
α3 þ α4
α3α4

�
q234 þm2

2

2qþ
;

q34 ¼
k3⊥α4 − k4⊥α3

α3 þ α4
: ðB24Þ
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To simplify the structure of Eqs. (B19)–(B23), we intro-
duced the shorthand notation ᾱi ≡ 1 − αi; i ¼ 1…4. The
combination of momenta q34, defined in Eq. (B24),
represents the relative motion momenta of quarks 3
and 4 (Fourier conjugate of a relative distance r3 − r4).

Technically, the structure of the denominators, up to trivial
redefinitions, agrees with the findings of Ref. [109].
The expressions in the numerator of Eq. (B18) can be
written out explicitly using the light-cone algebra from
Refs. [16,107,109], yielding for the amplitude

Aa1a2;a3a4
c1c2;c3c4 ¼ 1

2π2ðqþÞ2
eqg2ðtaÞc1c2 ⊗ ðtaÞc3c4ffiffiffiffiffiffiffiffiffiffi

α1α2
p ð1 − α1 − α2Þðα3 þ α4ÞD2ðα1; k1; α2; k2Þ

×

�
1

k22⊥ þm2
1

ffiffiffiffiffi
α2
α1

r �
ðα2δγ;a2 − ᾱ2δγ;−a2Þδb;−a2k2 · εγ þ

mqffiffiffi
2

p signða2Þδγ;a2δb;a2
�

×

�
ðᾱ2δλ;a1 þ α1δλ;−a1Þδa1;bq1 · ε�λ þ

mqffiffiffi
2

p ð1 − α1 − α2Þ2
1 − α2

signð−a1Þδλ;−a1δa1;−b
�

−
1

k21⊥ þm2
1

ffiffiffiffiffi
α1
α2

r �
ðα1δγ;a1 − ᾱ1δγ;−a1Þδb;−a1k1 · εγ þ

mqffiffiffi
2

p signða1Þδγ;a1δa1;b
�

×

�
ðᾱ1δλ;a2 þ α2δλ;−a2Þδa2;bq2 · ε�λ þ

mqffiffiffi
2

p ð1 − α1 − α2Þ2
1 − α1

signð−a2Þδλ;−a2δa2;−b
�	

×

2ðα3þα4Þ
α3α4

½ð α3
α3þα4

δλ;−a3 −
α4

α3þα4
δλ;a3Þδa3;−a4q34 · ε−λ þ

mqffiffi
2

p signða3Þδλ;a3δa3;a4 �
D2ðα1; k1;α2; k2Þ − q2

34
þm2

2

2qþ ðα3þα4
α3α4

Þ
; ðB25Þ

where the momenta qi are defined as

q1 ¼ −
�
k1 þ

α1
1 − α2

k2

�
; q2 ¼ −

�
k2 þ

α2
1 − α1

k1

�
:

ðB26Þ

We may observe that the amplitude (B25) is antisymmetric
with respect to permutation of the momenta and helicities
of the first two quarks, ðα1;k1; a1Þ↔ ðα2;k2; a2Þ, and sym-
metric with respect to permutation of the momenta and
helicities of the third and fourth quarks, ðα3; k3; a3Þ ↔
ðα4; k4; a4Þ. This symmetry simply reflects that the ampli-
tude (B25) was evaluated as a sum of the left and right
diagrams in Fig. 11, which can be related by charge
conjugation. This symmetry allows to simplify some
evaluations.
For evaluations in the dipole framework we need to

rewrite the amplitude in configuration space, making a
Fourier transformation over the transverse components,

ψ ðγÞ
Q̄QQ̄Qðfαi; xigÞ ¼

Z �Y4
i¼1

d2ki
ð2πÞ2 e

iki·xi

�
ð2πÞ2δ2

�X
ki

�
×Aa1a2;a3a4

c1c2;c3c4 ðfαi; kigÞ: ðB27Þ

In view of momentum conservation [Eq. (B4)], the wave

function ψ ðγÞ
Q̄QQ̄Q will be invariant with respect to global

shifts,

xi → xi þ ai; ai ¼ const; ðB28Þ

i.e., it should only depend on relative distances between
quarks jxi − xjj. After straightforward evaluation of the
integrals and algebraic simplifications, it is possible to
reduce Eq. (B27) to the form

ψ ðγÞ
Q̄QQ̄Qðfαi; xigÞ ¼ Aðfαi; xigÞ þ Bðfαi; xigÞ; ðB29Þ

where

FIG. 12. Graphical illustration of the transverse momentum dependence of the wave function ψγ→Q̄QQ̄Qðfαi; rigÞ. The letters bij and
bijk stand for the center-of-mass position of the partons ij and ijk. See the text for more details.
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Aðfαi; rigÞ ¼ −
2eqαsðmQÞðtaÞc1c2 ⊗ ðtaÞc3c4

π3ð1 − α1 − α2Þ2 ffiffiffiffiffiffiffiffiffiffi
α1α2

p
Z

q1dq1k2dk2
ᾱ2q21

α1ð1−α1−α2Þ þ
m2

1
ðα1þα2Þ
α1α2

þ k2
2

α2ᾱ2

×
1

k22 þm2
1

ffiffiffiffiffi
α2
α1

r
½ðα2δγ;a2 − ᾱ2δγ;−a2Þðᾱ2δλ;a1 þ α1δλ;−a1Þδa1;−a2

× ðn2;134 · εγÞðn1;34 · ε�λÞk2J1ðk2jx2 − b134jÞq1J1ðq1jx1 − b34jÞ

þm2
q

2
δλ;−a1δγ;a2δa1;−a2J0ðk2jx2 − b134jÞJ0ðq1jx1 − b34jÞ

ð1 − α1 − α2Þ2
1 − α2

−
imqffiffiffi
2

p signða2Þδγ;a2δa1;a2ðᾱ2δλ;a1 þ α1δλ;−a1Þn1;34 · ε�λq1J1ðq1jx1 − b34jÞJ0ðk2jx2 − b134jÞ

−
imqffiffiffi
2

p signða1Þδλ;−a1ðα2δγ;a2 − ᾱ2δγ;−a2Þδa1;a2
ð1 − α1 − α2Þ2

1 − α2

× ðn2;134 · εγÞk2J1ðk2jx2 − b134jÞJ0ðq1jx1 − b34jÞ�

× Ψ−λ
a3;a4

 
α3

α3 þ α4
; r34; m2;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

2 þ
α3α4

α3 þ α4

�
ᾱ2q21

α1ð1 − α1 − α2Þ
þm2

1ðα1 þ α2Þ
α1α2

þ k22
α2ᾱ2

�s !
ðB30Þ

and

Bðα1; x1; α2; x2; α3; x3; α4; x4Þ ¼ −Aðα2; x2; α1; x1; α4; x4; α3; x3Þ:

The variable bj1…jn corresponds to the position of the center
of mass of n partons j1;…jn and was defined earlier in
Eq. (24). The variables ni;j1…jn ¼ðxi−bj1…jnÞ=jxi−bj1…jn j
are unit vectors pointing from quark i towards the
center of mass of a system of quarks j1…jn. It is not
possible to do the remaining integrals over q1, k2
analytically, nor present the wave function (B30) as a
convolution of simpler “elementary” wave functions from
Appendix B 1. Technically, this happens because in the
language of traditional Feynman diagrams the intermedi-
ate (virtual) partons are off shell, and the integration over
q1, k2 can be rewritten via integrals over virtualities of
intermediate particles. Nevertheless, the structure of the
coordinate dependence of ψγ→Q̄QQ̄Qðfαi; rigÞ can still be
understood using the simple rules suggested in Appen-
dix B 1. Indeed, in the eikonal picture the transverse
coordinates of all partons are frozen. The tree-like
structure of the leading-order diagrams 1 and 2 in Fig. 11
and the iterative evaluation of the coordinate of the center
of mass of two partons bij ¼ ðαiri þ αjrjÞ=ðαi þ αjÞ
allow to reconstruct the transverse coordinates of all
intermediate partons, as shown in Fig. 12. The variables
r1 − b34 and r2 − b34 have the physical meaning of the
relative distance between the recoil quark or antiquark
and the emitted gluon. Similarly, the variables r1 − b234
and r2 − b134 can be interpreted as the size of the Q̄Q
pair produced right after the splitting of the incident
photon. These simple rules allow for the construction of
the heavy Q̄QQ̄Q production amplitude in the gluonic
field of the target.

The wave function ψ ðγÞ
Q̄QQ̄Qðfαi; rigÞ has a few singular-

ities which require special attention in order to guarantee
that the amplitudes of the physical processes remain finite.
For the meson pair production, the choice of the quarkonia
wave functions (28)–(31), which vanish rapidly near the
end points, is sufficient in order to guarantee the finiteness
of the amplitudes (22)–(23).

b. Instantaneous contributions

According to canonical rules of the standard light–cone
perturbation theory [16,107], the evaluations from the
previous section should be supplemented by the instanta-
neous contributions of virtual partons, as show in the
Figure 13. The propagators of the instantaneous off-shell
quarks and gluons with momentum k are given by

SðinstÞðkÞ ¼
γþ

2kþ
≡ ðn · γÞ

2ðk · nÞ ; Πμν
ðinstÞ ¼

nμnν
ðkþÞ2 ; ðB31Þ

where nμ is the light-cone vector in the minus direction. The
results for the instantaneous contributions of gluons are
quite straightforward to get, essentially repeating the eval-
uations from the previous subsection. Since γþγþ ¼ 0, there
are no diagrams with two instantaneous propagators (quark
and gluon) connected to the same vertex. The numerators
of amplitudes with instantaneous propagators have a
simple structure in view of the identities [16,107,109]
ūhfðp1Þγþuhiðp2Þ¼2

ffiffiffiffiffiffiffiffiffiffiffiffi
pþ
1 p

þ
2

p
δhf;hi and ūhðp1Þγþvh̄ðp2Þ ¼

2
ffiffiffiffiffiffiffiffiffiffiffiffi
pþ
1 p

þ
2

p
δh;−h̄. The final result of the evaluation is
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ψ ðγÞ
Q̄QQ̄Qðfαi; rigÞ ¼ Agðfαi; rigÞ þ Bgðfαi; rigÞ þ Aqðfαi; rigÞ þ Bqðfαi; rigÞ; ðB32Þ

where the subscript indicesq, g on the right-hand side denote the parton propagator, which should be taken instantaneous (q for
quark, g for gluon), and

Agðfαi; rigÞ ¼ −
eqαsðmQÞðtaÞc1c2 ⊗ ðtaÞc3c4

π4ð1 − α1 − α2Þ3
Z

q1dq1k2dk2J0ðq1jr1 − b34jÞ

×
1

k22⊥ þm2
1

½ðα2δγ;a1 − ᾱ2δa1;−γÞδa1;−a2in2;134 · εγk2J1ðk2jr2 − b134jÞ

þmqffiffiffi
2

p signða1Þδγ;a1δa1;a2J0ðk2jr2 − b134jÞ�α3α4δa3;−a4K0ða34r34Þ; ðB33Þ

Aqðfαi; rigÞ ¼ −
eqαsðmqÞðtaÞc1c2 ⊗ ðtaÞc3c4

2π4ð1− α1 − α2Þ2ᾱ2
δa1;−a2δγ;−a1

Z
q1dq1k2dk2

J0ðq1jr1 − b34jÞJ0ðk2jr2 − b134jÞ
D2ðα1;k1;α2;k2Þ

×

�
−ðα3δ−γ;a3 − α4δγ;a3Þδa3;−a4iεγ · n34a34K1ða34r34Þ−

mqðα3 þ α4Þffiffiffi
2

p signða3Þδγ;−a3δa3;a4K0ða34r34Þ
�
; ðB34Þ

a34ðq1; k2Þ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

2 þ
α3α4

α3 þ α4

�
ᾱ2q21

α1ð1 − α1 − α2Þ
þm2

1ðα1 þ α2Þ
α1α2

þ k22
α2ᾱ2

�s
; ðB35Þ

and the functions Bq, Bg can be obtained from Aq, Ag using

Biðα1; x1;α2; x2; α3; x3; α4; x4Þ ¼ −Aiðα2; x2; α1; x1; α4; x4; α3; x3Þ; i ¼ q; g. ðB36Þ

FIG. 13. Instantaneous contributions to the wave function ψ ðγÞ
Q̄QQ̄Q defined in the text. The upper and lower rows correspond to

instantaneous gluons and quarks, respectively. The vertical dashed lines denote light-cone denominators. The momenta ki shown on the
right-hand side are Fourier conjugates of the coordinates xi. In what follows we will refer to the diagrams in the first row as A1, B1, and
the diagrams in the second row as A2, B2, respectively.
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APPENDIX C: SCATTERING AMPLITUDES IN
THE EIKONAL APPROXIMATION

As discussed in Appendix A, in configuration space the
interaction of the target with heavy quarks reduces to a
mere multiplication by the factor �γðx⊥Þ. For the evalu-
ation of the scattering amplitude it is very instructive to use
the light-cone evolution picture of the process, as shown in
Fig. 11, tacitly assuming that the cuts (vertical dashed lines)
in that figure separate different successive stages of the
scattering process.

We start our discussion assuming that the interaction of
high-energy partons with the target is dominated by single-
gluon exchange. The colorless photon creates quark-anti-
quark pair with transverse coordinates ðb134; x2Þ or
ðx1; b234Þ, respectively, as shown in Fig. 14. The eikonal
interaction can occur at any of the three stages of the
process, so the Born amplitude of such a process includes a
sum of contributions due to interactions at all stages,

A ¼ A1 þA2 þA3; ðC1Þ
where the corresponding contributions A1;2;3 are given by

A1 ¼ ψ ðγÞ
Q̄QQ̄Qðα1;x1;α2;x2;α3;x3;α4;x4;qÞ

X
acd

½γcðb134Þ− γcðx2Þ�
�
ifacd þ dacd

2

�
ðtdÞc1c2ðtaÞc3c4 − ð1↔ 2;3↔ 4Þ; ðC2Þ

A2 ¼ ψ ðγÞ
Q̄QQ̄Qðα1; x1; α2; x2; α3; x3; α4; x4; qÞ

�X
acd

½γcðx1Þ þ γcðx2Þ − 2γcðx34Þ�
�
ifacd
2

�
ðtdÞc1c2ðtaÞc3c4

þ
X
acd

½γcðx1Þ − γcðx2Þ�
�
dacd
2

�
ðtdÞc1c2ðtaÞc3c4 þ

X
acd

½γcðx1Þ − γcðx2Þ�δc1c2ðtcÞc3c4
	
− ð1 ↔ 2; 3 ↔ 4Þ; ðC3Þ

A3 ¼ ψ ðγÞ
Q̄QQ̄Qðα1; x1;α2; x2; α3; x3; α4; x4; qÞ

�X
acd

½γcðx1Þ þ γcðx2Þ − γcðx3Þ − γcðx4Þ�
�
ifcad
2

�
ðtdÞc1c2ðtaÞc3c4

þ
X
acd

½γcðx1Þ − γcðx2Þ þ γcðx3Þ − γcðx4Þ�
�
dacd
2

�
ðtdÞc1c2ðtaÞc3c4

	
− ð1 ↔ 2; 3 ↔ 4Þ: ðC4Þ

Wemay observe that all factors γcðxiÞ always appear in the combination γcðxiÞ − γcðxjÞ, which guarantees that in the heavy
quark mass limit, when the distances between the quarks are small, the corresponding amplitude is suppressed at least as
∼1=mQ. The three-gluon coupling ∼γðx34Þ always appears in the combination ½γcðx1Þ þ γcðx2Þ − 2γcðx34Þ�, in agreement
with the earlier findings of Ref. [54].
For the case of two-gluon exchanges, we may repeat the same evaluations, taking into account the set of diagrams shown

in Fig. 15. The final result of this evaluation is

A ¼ ψ ðγÞ
Q̄QQ̄Qðα1; x1; α2; x2; α3; x3; α4; x4; qÞ ðC5Þ

× fC1½ðγðx1Þ − γðx4ÞÞ2 þ ðγðx3Þ − γðx2ÞÞ2� þ 2C2ðγðx1Þ − γðx4ÞÞðγðx3Þ − γðx2ÞÞ
−þC3ðγðx1Þ þ γðx2Þ − 2γðx34ÞÞðγðx1Þ þ γðx2Þ − γðx3Þ − γðx4ÞÞ
þ C1ðγðb134Þ − γðx2ÞÞðγðx3Þ − γðx2ÞÞ þ C2ðγðb134Þ − γðx2ÞÞðγðx1Þ − γðx4ÞÞ
þ −C3ðγðb134Þ − γðx2ÞÞðγðx1Þ þ γðx2Þ − 2γðx34ÞÞ
þ C1ðγðb134Þ − γðx2ÞÞ2 þ C4ðγðx1Þ þ γðx2Þ − 2γðx34ÞÞ2g; ðC6Þ

FIG. 14. Schematic illustration of the diagrams that contribute to a γ → Q̄QQ̄Q subprocess, via single-gluon exchange in the t
channel. For the sake of simplicity we omit a proton blob in the lower part. The square box with a gluon connected in the middle stands
for the coupling of a dipole [sum of the couplings to all partons that pass through the block, ∼

Pð�ÞγðxiÞta]. The center of mass bi1…in
of a system of partons i1…in is defined in Eq. (24). In all plots it the inclusion of diagrams that can be obtained by inversion of heavy
quark lines is implied (“charge conjugation”).
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where the color factors C1 − C4 were defined earlier in Sec. II B, in the text under Eq. (23). With the help of Eqs. (A5) and
(A7), it is possible to rewrite the amplitude (C5) as

A ¼ ψ ðγÞ
Q̄QQ̄Qðα1; x1; α2; x2; α3; x3; α4; x4; qÞf−2C1½Nðx; r14; b14Þ þ Nðx; r23; b23Þ�

þ 2C2½Nðx; r34; b34Þ þ Nðx; r12; b12Þ − Nðx; r13; b13Þ − Nðx; r24; b24Þ�
þ C3½−2Nðx; r12; b12Þ þ Nðx; r13; b13Þ þ Nðx; r14; b14Þ þ Nðx; r23; b23Þ þ Nðx; r24; b24Þ
þ 2Nðx; r1;34; b134Þ þ 2Nðx; r2;34; b234Þ − 2Nðx; r3;34; b334Þ − 2Nðx; r4;34; b344Þ�
þ C1½Nðx; r2;134; b1234Þ þ Nðx; r23; b23Þ − Nðx; r3;134; b1334Þ�
þ C2½Nðx; r4;134; b1344Þ þ Nðx; r12; b12Þ − Nðx; r1;134; b1;134Þ − Nðx; r24; b24Þ�
− C3½−Nðx; r1;134; b1134Þ − Nðx; r2;134; b1234Þ þ Nðx; r12; b12Þ
þ 2Nðx; r34;134; b34;134Þ − 2Nðx; r2;34; b234Þ� þ C1Nðx; r2;134; b1234Þ
þ C4½2Nðx; r1;34; b134Þ þ 2Nðx; r2;34; b234Þ − Nðx; r12; b12Þ�g; ðC7Þ

where

r1;34 ¼ r1 −
α3r3 þ α4r4
α3 þ α4

¼ α3r13 þ α4r14
α3 þ α4

; ðC8Þ

r2;34 ¼
α3r23 þ α4r24

α3 þ α4
; ðC9Þ

r3;34 ¼
α4r34

α3 þ α4
; ðC10Þ

r4;34 ¼ −
α3r34

α3 þ α4
¼ −

α3
α4

r3;34; ðC11Þ

r34;134 ¼
α3r3 þ α4r4
α3 þ α4

−
α1r1 þ α3r3 þ α4r4

α1 þ α3 þ α4

¼ −
α1ðα3r13 þ α4r14Þ

ðα3 þ α4Þðα1 þ α3 þ α4Þ
; ðC12Þ

r1;134 ¼ r1 −
α1r1 þ α3r3 þ α4r4

1 − α2

¼ ð1 − α2 − α3Þr1 − α3r3 − α4r4
1 − α2

¼ α3r13 þ α4r14
1 − α2

;

ðC13Þ

r2;134 ¼ r2 −
α1r1 þ α3r3 þ α4r4

1 − α2

¼ ð1 − α2Þr2 − α3r3 − α1r1 − α4r4
1 − α2

¼ α1r21 þ α3r23 þ α4r24
1 − α2

; ðC14Þ

r3;134 ¼ r3 −
α1r1 þ α3r3 þ α4r4

1 − α2

¼ ð1 − α2 − α3Þr3 − α1r1 − α4r4
1 − α2

¼ α1r31 þ α4r34
1 − α2

;

ðC15Þ

r4;134 ¼ r4 −
α1r1 þ α3r3 þ α4r4

1 − α2

¼ ð1 − α2 − α4Þr4 − α1r1 − α3r3
1 − α2

¼ α1r41 þ α3r43
1 − α2

¼ −
α1r14 þ α3r34

1 − α2
: ðC16Þ

If we introduce the variable R ¼P αiri, we may rewrite
the above given expressions as

FIG. 15. Schematic illustration of the diagrams that contribute to meson pair production. For the sake of simplicity we approximate a
Pomeron with a pair of t-channel gluons, and omit all possible gluon exchanges between them (as well as a proton blob in the lower
part). The square box with a gluon connected in the middle stands for a dipole coupling [sum of the couplings of a quark and antiquark
that pass through the block, ∼ðγðxQÞ − γðxQ̄ÞÞta]. In all plots it the inclusion of diagrams that can be obtained by the inversion of the
heavy quark lines is implied (“charge conjugation”).
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r1;134 ¼ r1 −
R − α2r2
1 − α2

¼ ᾱ2r1 þ α2r2 − R
1 − α2

; ðC17Þ

r2;134 ¼ r2 −
R − α2r2
1 − α2

¼ r2 − R
1 − α2

; ðC18Þ

r3;134 ¼ r3 −
R − α2r2
1 − α2

¼ ᾱ2r3 þ α2r2 − R
1 − α2

; ðC19Þ

r4;134 ¼ r4 −
R − α2r2
1 − α2

¼ ᾱ2r4 þ α2r2 − R
1 − α2

: ðC20Þ

Using the values of the color factors C1 ¼ ðN2
c − 1Þ=

4Nc ¼ C2 þ C3, C2 ¼ −1=4Nc, C3 ¼ Nc=4, C4 ≡ Nc=2 ¼
2C3, and identifying the coefficient in front of ψ ðγÞ

Q̄QQ̄Q in

Eq. (C7) with
P̃

lnσlσnclnγðblÞγðbnÞ in Eq. (22), we get
the final result (25). The evaluation of the amplitude (23)
follows the same algorithm; technically, it is significantly
simpler because the production of two colorless Q̄Q
requires in this topology that each of the t-channel gluons
should be attached to different quark loops, thus signifi-
cantly reducing the number of possible diagrams. After
straightforward algebraic simplifications, we can get the
final result for this case, Eq. (26).
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